fbpx
Wikipedia

Exponential function

The exponential function is a mathematical function denoted by or (where the argument x is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number (repeated multiplication), but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".[1]

Exponential
The natural exponential function along part of the real axis
General information
General definition
Domain, codomain and image
Domain
Image
Specific values
At zero1
Value at 1e
Specific features
Fixed pointWn(−1) for
Related functions
Reciprocal
InverseNatural logarithm, Complex logarithm
Derivative
Antiderivative
Series definition
Taylor series
Exponential functions with bases 2 and 1/2

The functions for positive real numbers are also known as exponential functions, and satisfy the exponentiation identity:

This implies (with factors) for positive integers , where , relating exponential functions to the elementary notion of exponentiation. The natural base is a ubiquitous mathematical constant called Euler's number. To distinguish it, is called the exponential function or the natural exponential function: it is the unique real-valued function of a real variable whose derivative is itself and whose value at 0 is 1:

for all , and

The relation for and real or complex allows general exponential functions to be expressed in terms of the natural exponential.

More generally, especially in applied settings, any function defined by

is also known as an exponential function, as it solves the initial value problem , meaning its rate of change at each point is proportional to the value of the function at that point. This behavior models diverse phenomena in the biological, physical, and social sciences, for example the unconstrained growth of a self-reproducing population, the decay of a radioactive element, the compound interest accruing on a financial fund, or a growing body of manufacturing expertise.

The real exponential function can also be defined as a power series, which is readily extended to complex arguments to define the complex exponential function . This function takes on all complex values except for 0 and is closely related to the complex trigonometric functions, as shown by Euler's formula:

Motivated by its more abstract properties and characterizations, the exponential function can be generalized to much larger contexts such as square matrices and Lie groups. Even further, the differential equation definition can be generalized to a Riemannian manifold.

The real exponential function is a bijection from to the interval .[2] Its inverse function is the natural logarithm, denoted ,[nb 1] ,[nb 2] or , and some old texts[3] called it the antilogarithm.

Graph edit

The graph of   is upward-sloping, and increases faster as x increases.[4] The graph always lies above the x-axis, but becomes arbitrarily close to it for large negative x; thus, the x-axis is a horizontal asymptote. The equation   means that the slope of the tangent to the graph at each point is equal to its y-coordinate at that point.

Relation to more general exponential functions edit

The exponential function   is sometimes called the natural exponential function in order to distinguish it from the other exponential functions. The study of any exponential function can easily be reduced to that of the natural exponential function, since per definition, for positive b,

 

As functions of a real variable, exponential functions are uniquely characterized by the fact that the derivative of such a function is directly proportional to the value of the function. The constant of proportionality of this relationship is the natural logarithm of the base b:

 

For b > 1, the function   is increasing (as depicted for b = e and b = 2), because   makes the derivative always positive; this is often referred to as exponential growth. For positive b < 1, the function is decreasing (as depicted for b = 1/2); this is often referred to as exponential decay. For b = 1, the function is constant.

Euler's number e = 2.71828...[5] is the unique base for which the constant of proportionality is 1, since  , so that the function is its own derivative:

 

This function, also denoted as exp x, is called the "natural exponential function",[6][7] or simply "the exponential function". Since any exponential function defined by   can be written in terms of the natural exponential as  , it is computationally and conceptually convenient to reduce the study of exponential functions to this particular one. The natural exponential is hence denoted by

 
or
 

The former notation is commonly used for simpler exponents, while the latter is preferred when the exponent is more complicated and harder to read in a small font.

For real numbers c and d, a function of the form   is also an exponential function, since it can be rewritten as

 

Formal definition edit

 
The exponential function (in blue), and the sum of the first n + 1 terms of its power series (in red)

The real exponential function   can be characterized in a variety of equivalent ways. It is commonly defined by the following power series:[1][8]

 

Since the radius of convergence of this power series is infinite, this definition is, in fact, applicable to all complex numbers; see § Complex plane for the extension of   to the complex plane. Using the power series, the constant e can be defined as  

The term-by-term differentiation of this power series reveals that   for all real x, leading to another common characterization of   as the unique solution of the differential equation

 
that satisfies the initial condition  

Based on this characterization, the chain rule shows that its inverse function, the natural logarithm, satisfies   for   or   This relationship leads to a less common definition of the real exponential function   as the solution   to the equation

 

Solving the ordinary differential equation   with the initial condition   using Euler's method gives the product limit formula, valid for all complex values of  :[9][8]

 

It can be shown that every continuous, nonzero solution of the functional equation   for   is an exponential function,   with  

Overview edit

 
The red curve is the exponential function. The black horizontal lines show where it crosses the green vertical lines.

The exponential function arises whenever a quantity grows or decays at a rate proportional to its current value. One such situation is continuously compounded interest, and in fact it was this observation that led Jacob Bernoulli in 1683[10] to the number

 
now known as e. Later, in 1697, Johann Bernoulli studied the calculus of the exponential function.[10]

If a principal amount of 1 earns interest at an annual rate of x compounded monthly, then the interest earned each month is x/12 times the current value, so each month the total value is multiplied by (1 + x/12), and the value at the end of the year is (1 + x/12)12. If instead interest is compounded daily, this becomes (1 + x/365)365. Letting the number of time intervals per year grow without bound leads to the limit definition of the exponential function,

 
first given by Leonhard Euler.[9] This is one of a number of characterizations of the exponential function; others involve series or differential equations.

From any of these definitions it can be shown that ex is the reciprocal of ex. For example from the differential equation definition, ex ex = 1 when x = 0 and its derivative using the product rule is ex exex ex = 0 for all x, so ex ex = 1 for all x.

From any of these definitions it can be shown that the exponential function obeys the basic exponentiation identity. For example from the power series definition,

 
This justifies the notation ex for exp x.

The derivative (rate of change) of the exponential function is the exponential function itself. More generally, a function with a rate of change proportional to the function itself (rather than equal to it) is expressible in terms of the exponential function. This function property leads to exponential growth or exponential decay.

The exponential function extends to an entire function on the complex plane. Euler's formula relates its values at purely imaginary arguments to trigonometric functions. The exponential function also has analogues for which the argument is a matrix, or even an element of a Banach algebra or a Lie algebra.

Derivatives and differential equations edit

 
The derivative of the exponential function is equal to the value of the function. From any point P on the curve (blue), let a tangent line (red), and a vertical line (green) with height h be drawn, forming a right triangle with a base b on the x-axis. Since the slope of the red tangent line (the derivative) at P is equal to the ratio of the triangle's height to the triangle's base (rise over run), and the derivative is equal to the value of the function, h must be equal to the ratio of h to b. Therefore, the base b must always be 1.

The importance of the exponential function in mathematics and the sciences stems mainly from its property as the unique function which is equal to its derivative and is equal to 1 when x = 0. That is,

 

Functions of the form cex for constant c are the only functions that are equal to their derivative (by the Picard–Lindelöf theorem). Other ways of saying the same thing include:

  • The slope of the graph at any point is the height of the function at that point.
  • The rate of increase of the function at x is equal to the value of the function at x.
  • The function solves the differential equation y′ = y.
  • exp is a fixed point of derivative as a functional.

If a variable's growth or decay rate is proportional to its size—as is the case in unlimited population growth (see Malthusian catastrophe), continuously compounded interest, or radioactive decay—then the variable can be written as a constant times an exponential function of time. Explicitly for any real constant k, a function f: RR satisfies f′ = kf if and only if f(x) = cekx for some constant c. The constant k is called the decay constant, disintegration constant,[11] rate constant,[12] or transformation constant.[13]

Furthermore, for any differentiable function f, we find, by the chain rule:

 

Continued fractions for ex edit

A continued fraction for ex can be obtained via an identity of Euler:

 

The following generalized continued fraction for ez converges more quickly:[14]

 

or, by applying the substitution z = x/y:

 
with a special case for z = 2:
 

This formula also converges, though more slowly, for z > 2. For example:

 

Complex plane edit

 
The exponential function e^z plotted in the complex plane from -2-2i to 2+2i
 
A complex plot of  , with the argument   represented by varying hue. The transition from dark to light colors shows that   is increasing only to the right. The periodic horizontal bands corresponding to the same hue indicate that   is periodic in the imaginary part of  .

As in the real case, the exponential function can be defined on the complex plane in several equivalent forms.

The most common definition of the complex exponential function parallels the power series definition for real arguments, where the real variable is replaced by a complex one:

 

Alternatively, the complex exponential function may be defined by modelling the limit definition for real arguments, but with the real variable replaced by a complex one:

 

For the power series definition, term-wise multiplication of two copies of this power series in the Cauchy sense, permitted by Mertens' theorem, shows that the defining multiplicative property of exponential functions continues to hold for all complex arguments:

 

The definition of the complex exponential function in turn leads to the appropriate definitions extending the trigonometric functions to complex arguments.

In particular, when z = it (t real), the series definition yields the expansion

 

In this expansion, the rearrangement of the terms into real and imaginary parts is justified by the absolute convergence of the series. The real and imaginary parts of the above expression in fact correspond to the series expansions of cos t and sin t, respectively.

This correspondence provides motivation for defining cosine and sine for all complex arguments in terms of   and the equivalent power series:[15]

 

for all  

The functions exp, cos, and sin so defined have infinite radii of convergence by the ratio test and are therefore entire functions (that is, holomorphic on  ). The range of the exponential function is  , while the ranges of the complex sine and cosine functions are both   in its entirety, in accord with Picard's theorem, which asserts that the range of a nonconstant entire function is either all of  , or   excluding one lacunary value.

These definitions for the exponential and trigonometric functions lead trivially to Euler's formula:

 

We could alternatively define the complex exponential function based on this relationship. If z = x + iy, where x and y are both real, then we could define its exponential as

 
where exp, cos, and sin on the right-hand side of the definition sign are to be interpreted as functions of a real variable, previously defined by other means.[16]

For  , the relationship   holds, so that   for real   and   maps the real line (mod 2π) to the unit circle in the complex plane. Moreover, going from   to  , the curve defined by   traces a segment of the unit circle of length

 
starting from z = 1 in the complex plane and going counterclockwise. Based on these observations and the fact that the measure of an angle in radians is the arc length on the unit circle subtended by the angle, it is easy to see that, restricted to real arguments, the sine and cosine functions as defined above coincide with the sine and cosine functions as introduced in elementary mathematics via geometric notions.

The complex exponential function is periodic with period 2πi and   holds for all  .

When its domain is extended from the real line to the complex plane, the exponential function retains the following properties:

 

for all  

Extending the natural logarithm to complex arguments yields the complex logarithm log z, which is a multivalued function.

We can then define a more general exponentiation:

 
for all complex numbers z and w. This is also a multivalued function, even when z is real. This distinction is problematic, as the multivalued functions log z and zw are easily confused with their single-valued equivalents when substituting a real number for z. The rule about multiplying exponents for the case of positive real numbers must be modified in a multivalued context:
(ez)w
ezw
, but rather (ez)w
= e(z + 2niπ)w
multivalued over integers n

See failure of power and logarithm identities for more about problems with combining powers.

The exponential function maps any line in the complex plane to a logarithmic spiral in the complex plane with the center at the origin. Two special cases exist: when the original line is parallel to the real axis, the resulting spiral never closes in on itself; when the original line is parallel to the imaginary axis, the resulting spiral is a circle of some radius.

Considering the complex exponential function as a function involving four real variables:

 
the graph of the exponential function is a two-dimensional surface curving through four dimensions.

Starting with a color-coded portion of the   domain, the following are depictions of the graph as variously projected into two or three dimensions.

The second image shows how the domain complex plane is mapped into the range complex plane:

  • zero is mapped to 1
  • the real   axis is mapped to the positive real   axis
  • the imaginary   axis is wrapped around the unit circle at a constant angular rate
  • values with negative real parts are mapped inside the unit circle
  • values with positive real parts are mapped outside of the unit circle
  • values with a constant real part are mapped to circles centered at zero
  • values with a constant imaginary part are mapped to rays extending from zero

The third and fourth images show how the graph in the second image extends into one of the other two dimensions not shown in the second image.

The third image shows the graph extended along the real   axis. It shows the graph is a surface of revolution about the   axis of the graph of the real exponential function, producing a horn or funnel shape.

The fourth image shows the graph extended along the imaginary   axis. It shows that the graph's surface for positive and negative   values doesn't really meet along the negative real   axis, but instead forms a spiral surface about the   axis. Because its   values have been extended to ±2π, this image also better depicts the 2π periodicity in the imaginary   value.

Computation of ab where both a and b are complex edit

Complex exponentiation ab can be defined by converting a to polar coordinates and using the identity (eln a)b
= ab
:

 

However, when b is not an integer, this function is multivalued, because θ is not unique (see Exponentiation § Failure of power and logarithm identities).

Matrices and Banach algebras edit

The power series definition of the exponential function makes sense for square matrices (for which the function is called the matrix exponential) and more generally in any unital Banach algebra B. In this setting, e0 = 1, and ex is invertible with inverse ex for any x in B. If xy = yx, then ex + y = exey, but this identity can fail for noncommuting x and y.

Some alternative definitions lead to the same function. For instance, ex can be defined as

 

Or ex can be defined as fx(1), where fx : RB is the solution to the differential equation dfx/dt(t) = xfx(t), with initial condition fx(0) = 1; it follows that fx(t) = etx for every t in R.

Lie algebras edit

Given a Lie group G and its associated Lie algebra  , the exponential map is a map   G satisfying similar properties. In fact, since R is the Lie algebra of the Lie group of all positive real numbers under multiplication, the ordinary exponential function for real arguments is a special case of the Lie algebra situation. Similarly, since the Lie group GL(n,R) of invertible n × n matrices has as Lie algebra M(n,R), the space of all n × n matrices, the exponential function for square matrices is a special case of the Lie algebra exponential map.

The identity   can fail for Lie algebra elements x and y that do not commute; the Baker–Campbell–Hausdorff formula supplies the necessary correction terms.

Transcendency edit

The function ez is not in the rational function ring  : it is not the quotient of two polynomials with complex coefficients.

If a1, ..., an are distinct complex numbers, then ea1z, ..., eanz are linearly independent over  , and hence ez is transcendental over  .

Computation edit

When computing (an approximation of) the exponential function near the argument 0, the result will be close to 1, and computing the value of the difference   with floating-point arithmetic may lead to the loss of (possibly all) significant figures, producing a large calculation error, possibly even a meaningless result.

Following a proposal by William Kahan, it may thus be useful to have a dedicated routine, often called expm1, for computing ex − 1 directly, bypassing computation of ex. For example, if the exponential is computed by using its Taylor series

 
one may use the Taylor series of  :
 

This was first implemented in 1979 in the Hewlett-Packard HP-41C calculator, and provided by several calculators,[17][18] operating systems (for example Berkeley UNIX 4.3BSD[19]), computer algebra systems, and programming languages (for example C99).[20]

In addition to base e, the IEEE 754-2008 standard defines similar exponential functions near 0 for base 2 and 10:   and  .

A similar approach has been used for the logarithm (see lnp1).[nb 3]

An identity in terms of the hyperbolic tangent,

 
gives a high-precision value for small values of x on systems that do not implement expm1(x).

See also edit

Notes edit

  1. ^ The notation ln x is the ISO standard and is prevalent in the natural sciences and secondary education (US). However, some mathematicians (for example, Paul Halmos) have criticized this notation and prefer to use log x for the natural logarithm of x.
  2. ^ In pure mathematics, the notation log x generally refers to the natural logarithm of x or a logarithm in general if the base is immaterial.
  3. ^ A similar approach to reduce round-off errors of calculations for certain input values of trigonometric functions consists of using the less common trigonometric functions versine, vercosine, coversine, covercosine, haversine, havercosine, hacoversine, hacovercosine, exsecant and excosecant.

References edit

  1. ^ a b Rudin, Walter (1987). Real and complex analysis (3rd ed.). New York: McGraw-Hill. p. 1. ISBN 978-0-07-054234-1.
  2. ^ Meier, John; Smith, Derek (2017-08-07). Exploring Mathematics. Cambridge University Press. p. 167. ISBN 978-1-107-12898-9.
  3. ^ Converse, Henry Augustus; Durell, Fletcher (1911). Plane and Spherical Trigonometry. Durell's mathematical series. C. E. Merrill Company. p. 12. Inverse Use of a Table of Logarithms; that is, given a logarithm, to find the number corresponding to it, (called its antilogarithm) ... [1]
  4. ^ "Exponential Function Reference". www.mathsisfun.com. Retrieved 2020-08-28.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A001113 (Decimal expansion of e)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ Goldstein, Larry Joel; Lay, David C.; Schneider, David I.; Asmar, Nakhle H. (2006). Brief calculus and its applications (11th ed.). Prentice–Hall. ISBN 978-0-13-191965-5. (467 pages)
  7. ^ Courant; Robbins (1996). Stewart (ed.). What is Mathematics? An Elementary Approach to Ideas and Methods (2nd revised ed.). Oxford University Press. p. 448. ISBN 978-0-13-191965-5. This natural exponential function is identical with its derivative. This is really the source of all the properties of the exponential function, and the basic reason for its importance in applications…
  8. ^ a b Weisstein, Eric W. "Exponential Function". mathworld.wolfram.com. Retrieved 2020-08-28.
  9. ^ a b Maor, Eli. e: the Story of a Number. p. 156.
  10. ^ a b O'Connor, John J.; Robertson, Edmund F. (September 2001). "The number e". School of Mathematics and Statistics. University of St Andrews, Scotland. Retrieved 2011-06-13.
  11. ^ Serway, Raymond A.; Moses, Clement J.; Moyer, Curt A. (1989). Modern Physics. Fort Worth: Harcourt Brace Jovanovich. p. 384. ISBN 0-03-004844-3.
  12. ^ Simmons, George F. (1972). Differential Equations with Applications and Historical Notes. New York: McGraw-Hill. p. 15. LCCN 75173716.
  13. ^ McGraw-Hill Encyclopedia of Science & Technology (10th ed.). New York: McGraw-Hill. 2007. ISBN 978-0-07-144143-8.
  14. ^ Lorentzen, L.; Waadeland, H. (2008). "A.2.2 The exponential function.". Continued Fractions. Atlantis Studies in Mathematics. Vol. 1. p. 268. doi:10.2991/978-94-91216-37-4. ISBN 978-94-91216-37-4.
  15. ^ Rudin, Walter (1976). Principles of Mathematical Analysis. New York: McGraw-Hill. p. 182. ISBN 978-0-07-054235-8.
  16. ^ Apostol, Tom M. (1974). Mathematical Analysis (2nd ed.). Reading, Mass.: Addison Wesley. pp. 19. ISBN 978-0-201-00288-1.
  17. ^ HP 48G Series – Advanced User's Reference Manual (AUR) (4 ed.). Hewlett-Packard. December 1994 [1993]. HP 00048-90136, 0-88698-01574-2. Retrieved 2015-09-06.
  18. ^ HP 50g / 49g+ / 48gII graphing calculator advanced user's reference manual (AUR) (2 ed.). Hewlett-Packard. 2009-07-14 [2005]. HP F2228-90010. Retrieved 2015-10-10. [2]
  19. ^ Beebe, Nelson H. F. (2017-08-22). "Chapter 10.2. Exponential near zero". The Mathematical-Function Computation Handbook - Programming Using the MathCW Portable Software Library (1 ed.). Salt Lake City, UT, USA: Springer International Publishing AG. pp. 273–282. doi:10.1007/978-3-319-64110-2. ISBN 978-3-319-64109-6. LCCN 2017947446. S2CID 30244721. Berkeley UNIX 4.3BSD introduced the expm1() function in 1987.
  20. ^ Beebe, Nelson H. F. (2002-07-09). "Computation of expm1 = exp(x)−1" (PDF). 1.00. Salt Lake City, Utah, USA: Department of Mathematics, Center for Scientific Computing, University of Utah. Retrieved 2015-11-02.

External links edit

exponential, function, this, article, about, function, generalizations, functions, form, power, function, bivariate, function, exponentiation, representation, scientific, numbers, notation, exponential, function, mathematical, function, denoted, displaystyle, . This article is about the function f x ex and its generalizations For functions of the form f x xr see Power function For the bivariate function f x y xy see Exponentiation For the representation of scientific numbers see E notation The exponential function is a mathematical function denoted by f x exp x displaystyle f x exp x or e x displaystyle e x where the argument x is written as an exponent Unless otherwise specified the term generally refers to the positive valued function of a real variable although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras The exponential function originated from the operation of taking powers of a number repeated multiplication but various modern definitions allow it to be rigorously extended to all real arguments x displaystyle x including irrational numbers Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be the most important function in mathematics 1 ExponentialThe natural exponential function along part of the real axisGeneral informationGeneral definitionexp z e z displaystyle exp z e z Domain codomain and imageDomainC displaystyle mathbb C Image 0 for z R C 0 for z C displaystyle begin cases 0 infty amp text for z in mathbb R mathbb C setminus 0 amp text for z in mathbb C end cases Specific valuesAt zero1Value at 1eSpecific featuresFixed point Wn 1 for n Z displaystyle n in mathbb Z Related functionsReciprocalexp z displaystyle exp z InverseNatural logarithm Complex logarithmDerivativeexp z exp z displaystyle exp z exp z Antiderivative exp z d z exp z C displaystyle int exp z dz exp z C Series definitionTaylor seriesexp z n 0 z n n displaystyle exp z sum n 0 infty frac z n n Exponential functions with bases 2 and 1 2 The functions f x b x displaystyle f x b x for positive real numbers b displaystyle b are also known as exponential functions and satisfy the exponentiation identity b x y b x b y for all x y R displaystyle b x y b x b y text for all x y in mathbb R This implies b n b b displaystyle b n b times cdots times b with n displaystyle n factors for positive integers n displaystyle n where b b 1 displaystyle b b 1 relating exponential functions to the elementary notion of exponentiation The natural base e exp 1 2 71828 displaystyle e exp 1 2 71828 ldots is a ubiquitous mathematical constant called Euler s number To distinguish it exp x e x displaystyle exp x e x is called the exponential function or the natural exponential function it is the unique real valued function of a real variable whose derivative is itself and whose value at 0 is 1 exp x exp x displaystyle exp x exp x for all x R displaystyle x in mathbb R and exp 0 1 displaystyle exp 0 1 The relation b x e x ln b displaystyle b x e x ln b for b gt 0 displaystyle b gt 0 and real or complex x displaystyle x allows general exponential functions to be expressed in terms of the natural exponential More generally especially in applied settings any function f R R displaystyle f mathbb R to mathbb R defined byf x c e a x c b k x with k a ln b a 0 b c gt 0 displaystyle f x ce ax cb kx text with k a ln b a neq 0 b c gt 0 is also known as an exponential function as it solves the initial value problem f a f f 0 c displaystyle f af f 0 c meaning its rate of change at each point is proportional to the value of the function at that point This behavior models diverse phenomena in the biological physical and social sciences for example the unconstrained growth of a self reproducing population the decay of a radioactive element the compound interest accruing on a financial fund or a growing body of manufacturing expertise The real exponential function can also be defined as a power series which is readily extended to complex arguments to define the complex exponential function exp C C displaystyle exp mathbb C to mathbb C This function takes on all complex values except for 0 and is closely related to the complex trigonometric functions as shown by Euler s formula e x i y e x cos y i e x sin y displaystyle e x iy e x cos y i e x sin y Motivated by its more abstract properties and characterizations the exponential function can be generalized to much larger contexts such as square matrices and Lie groups Even further the differential equation definition can be generalized to a Riemannian manifold The real exponential function is a bijection from R displaystyle mathbb R to the interval 0 displaystyle 0 infty 2 Its inverse function is the natural logarithm denoted ln displaystyle ln nb 1 log displaystyle log nb 2 or log e displaystyle log e and some old texts 3 called it the antilogarithm Contents 1 Graph 2 Relation to more general exponential functions 3 Formal definition 4 Overview 5 Derivatives and differential equations 6 Continued fractions for ex 7 Complex plane 7 1 Computation of ab where both a and b are complex 8 Matrices and Banach algebras 9 Lie algebras 10 Transcendency 11 Computation 12 See also 13 Notes 14 References 15 External linksGraph editThe graph of y e x displaystyle y e x nbsp is upward sloping and increases faster as x increases 4 The graph always lies above the x axis but becomes arbitrarily close to it for large negative x thus the x axis is a horizontal asymptote The equation d d x e x e x displaystyle tfrac d dx e x e x nbsp means that the slope of the tangent to the graph at each point is equal to its y coordinate at that point Relation to more general exponential functions editThe exponential function f x e x displaystyle f x e x nbsp is sometimes called the natural exponential function in order to distinguish it from the other exponential functions The study of any exponential function can easily be reduced to that of the natural exponential function since per definition for positive b b x def e x ln b displaystyle b x mathrel stackrel text def e x ln b nbsp As functions of a real variable exponential functions are uniquely characterized by the fact that the derivative of such a function is directly proportional to the value of the function The constant of proportionality of this relationship is the natural logarithm of the base b d d x b x d d x e x ln b e x ln b ln b b x ln b displaystyle frac d dx b x frac d dx e x ln b e x ln b ln b b x ln b nbsp For b gt 1 the function b x displaystyle b x nbsp is increasing as depicted for b e and b 2 because ln b gt 0 displaystyle ln b gt 0 nbsp makes the derivative always positive this is often referred to as exponential growth For positive b lt 1 the function is decreasing as depicted for b 1 2 this is often referred to as exponential decay For b 1 the function is constant Euler s number e 2 71828 5 is the unique base for which the constant of proportionality is 1 since ln e 1 displaystyle ln e 1 nbsp so that the function is its own derivative d d x e x e x ln e e x displaystyle frac d dx e x e x ln e e x nbsp This function also denoted as exp x is called the natural exponential function 6 7 or simply the exponential function Since any exponential function defined by f x b x displaystyle f x b x nbsp can be written in terms of the natural exponential as b x e x ln b displaystyle b x e x ln b nbsp it is computationally and conceptually convenient to reduce the study of exponential functions to this particular one The natural exponential is hence denoted byx e x displaystyle x mapsto e x nbsp or x exp x displaystyle x mapsto exp x nbsp The former notation is commonly used for simpler exponents while the latter is preferred when the exponent is more complicated and harder to read in a small font For real numbers c and d a function of the form f x a b c x d displaystyle f x ab cx d nbsp is also an exponential function since it can be rewritten asa b c x d a b d b c x displaystyle ab cx d left ab d right left b c right x nbsp Formal definition editMain article Characterizations of the exponential function nbsp The exponential function in blue and the sum of the first n 1 terms of its power series in red The real exponential function exp R R displaystyle exp mathbb R to mathbb R nbsp can be characterized in a variety of equivalent ways It is commonly defined by the following power series 1 8 exp x k 0 x k k 1 x x 2 2 x 3 6 x 4 24 displaystyle exp x sum k 0 infty frac x k k 1 x frac x 2 2 frac x 3 6 frac x 4 24 cdots nbsp Since the radius of convergence of this power series is infinite this definition is in fact applicable to all complex numbers see Complex plane for the extension of exp x displaystyle exp x nbsp to the complex plane Using the power series the constant e can be defined as e exp 1 k 0 1 k textstyle e exp 1 sum k 0 infty 1 k nbsp The term by term differentiation of this power series reveals that d d x exp x exp x textstyle frac d dx exp x exp x nbsp for all real x leading to another common characterization of exp x displaystyle exp x nbsp as the unique solution of the differential equationy x y x displaystyle y x y x nbsp that satisfies the initial condition y 0 1 displaystyle y 0 1 nbsp Based on this characterization the chain rule shows that its inverse function the natural logarithm satisfies d d y ln y 1 y textstyle frac d dy ln y 1 y nbsp for y gt 0 displaystyle y gt 0 nbsp or ln y 1 y d t t textstyle ln y int 1 y frac dt t nbsp This relationship leads to a less common definition of the real exponential function exp x displaystyle exp x nbsp as the solution y displaystyle y nbsp to the equationx 1 y 1 t d t displaystyle x int 1 y frac 1 t dt nbsp Solving the ordinary differential equation y x y x displaystyle y x y x nbsp with the initial condition y 0 1 displaystyle y 0 1 nbsp using Euler s method gives the product limit formula valid for all complex values of x displaystyle x nbsp 9 8 exp x lim n 1 x n n displaystyle exp x lim n to infty left 1 frac x n right n nbsp It can be shown that every continuous nonzero solution of the functional equation f x y f x f y displaystyle f x y f x f y nbsp for f R R displaystyle f mathbb R to mathbb R nbsp is an exponential function f x e k x displaystyle f x e kx nbsp with k R displaystyle k in mathbb R nbsp Overview edit nbsp The red curve is the exponential function The black horizontal lines show where it crosses the green vertical lines The exponential function arises whenever a quantity grows or decays at a rate proportional to its current value One such situation is continuously compounded interest and in fact it was this observation that led Jacob Bernoulli in 1683 10 to the numberlim n 1 1 n n displaystyle lim n to infty left 1 frac 1 n right n nbsp now known as e Later in 1697 Johann Bernoulli studied the calculus of the exponential function 10 If a principal amount of 1 earns interest at an annual rate of x compounded monthly then the interest earned each month is x 12 times the current value so each month the total value is multiplied by 1 x 12 and the value at the end of the year is 1 x 12 12 If instead interest is compounded daily this becomes 1 x 365 365 Letting the number of time intervals per year grow without bound leads to the limit definition of the exponential function exp x lim n 1 x n n displaystyle exp x lim n to infty left 1 frac x n right n nbsp first given by Leonhard Euler 9 This is one of a number of characterizations of the exponential function others involve series or differential equations From any of these definitions it can be shown that e x is the reciprocal of ex For example from the differential equation definition ex e x 1 when x 0 and its derivative using the product rule is ex e x ex e x 0 for all x so ex e x 1 for all x From any of these definitions it can be shown that the exponential function obeys the basic exponentiation identity For example from the power series definition exp x y m 0 x y m m m 0 k 0 m m k m k x k y m k m n 0 k 0 x k y n k n exp x exp y displaystyle exp x y sum m 0 infty frac x y m m sum m 0 infty sum k 0 m frac m k m k frac x k y m k m sum n 0 infty sum k 0 infty frac x k y n k n exp x cdot exp y nbsp This justifies the notation ex for exp x The derivative rate of change of the exponential function is the exponential function itself More generally a function with a rate of change proportional to the function itself rather than equal to it is expressible in terms of the exponential function This function property leads to exponential growth or exponential decay The exponential function extends to an entire function on the complex plane Euler s formula relates its values at purely imaginary arguments to trigonometric functions The exponential function also has analogues for which the argument is a matrix or even an element of a Banach algebra or a Lie algebra Derivatives and differential equations edit nbsp The derivative of the exponential function is equal to the value of the function From any point P on the curve blue let a tangent line red and a vertical line green with height h be drawn forming a right triangle with a base b on the x axis Since the slope of the red tangent line the derivative at P is equal to the ratio of the triangle s height to the triangle s base rise over run and the derivative is equal to the value of the function h must be equal to the ratio of h to b Therefore the base b must always be 1 The importance of the exponential function in mathematics and the sciences stems mainly from its property as the unique function which is equal to its derivative and is equal to 1 when x 0 That is d d x e x e x and e 0 1 displaystyle frac d dx e x e x quad text and quad e 0 1 nbsp Functions of the form cex for constant c are the only functions that are equal to their derivative by the Picard Lindelof theorem Other ways of saying the same thing include The slope of the graph at any point is the height of the function at that point The rate of increase of the function at x is equal to the value of the function at x The function solves the differential equation y y exp is a fixed point of derivative as a functional If a variable s growth or decay rate is proportional to its size as is the case in unlimited population growth see Malthusian catastrophe continuously compounded interest or radioactive decay then the variable can be written as a constant times an exponential function of time Explicitly for any real constant k a function f R R satisfies f kf if and only if f x cekx for some constant c The constant k is called the decay constant disintegration constant 11 rate constant 12 or transformation constant 13 Furthermore for any differentiable function f we find by the chain rule d d x e f x f x e f x displaystyle frac d dx e f x f x e f x nbsp Continued fractions for ex editA continued fraction for ex can be obtained via an identity of Euler e x 1 x 1 x x 2 2 x x 3 3 x x 4 displaystyle e x 1 cfrac x 1 cfrac x x 2 cfrac 2x x 3 cfrac 3x x 4 ddots nbsp The following generalized continued fraction for ez converges more quickly 14 e z 1 2 z 2 z z 2 6 z 2 10 z 2 14 displaystyle e z 1 cfrac 2z 2 z cfrac z 2 6 cfrac z 2 10 cfrac z 2 14 ddots nbsp or by applying the substitution z x y e x y 1 2 x 2 y x x 2 6 y x 2 10 y x 2 14 y displaystyle e frac x y 1 cfrac 2x 2y x cfrac x 2 6y cfrac x 2 10y cfrac x 2 14y ddots nbsp with a special case for z 2 e 2 1 4 0 2 2 6 2 2 10 2 2 14 7 2 5 1 7 1 9 1 11 displaystyle e 2 1 cfrac 4 0 cfrac 2 2 6 cfrac 2 2 10 cfrac 2 2 14 ddots 7 cfrac 2 5 cfrac 1 7 cfrac 1 9 cfrac 1 11 ddots nbsp This formula also converges though more slowly for z gt 2 For example e 3 1 6 1 3 2 6 3 2 10 3 2 14 13 54 7 9 14 9 18 9 22 displaystyle e 3 1 cfrac 6 1 cfrac 3 2 6 cfrac 3 2 10 cfrac 3 2 14 ddots 13 cfrac 54 7 cfrac 9 14 cfrac 9 18 cfrac 9 22 ddots nbsp Complex plane editSee also Euler s formula Definitions of complex exponentiation nbsp The exponential function e z plotted in the complex plane from 2 2i to 2 2i nbsp A complex plot of z exp z displaystyle z mapsto exp z nbsp with the argument Arg exp z displaystyle operatorname Arg exp z nbsp represented by varying hue The transition from dark to light colors shows that exp z displaystyle left exp z right nbsp is increasing only to the right The periodic horizontal bands corresponding to the same hue indicate that z exp z displaystyle z mapsto exp z nbsp is periodic in the imaginary part of z displaystyle z nbsp As in the real case the exponential function can be defined on the complex plane in several equivalent forms The most common definition of the complex exponential function parallels the power series definition for real arguments where the real variable is replaced by a complex one exp z k 0 z k k displaystyle exp z sum k 0 infty frac z k k nbsp Alternatively the complex exponential function may be defined by modelling the limit definition for real arguments but with the real variable replaced by a complex one exp z lim n 1 z n n displaystyle exp z lim n to infty left 1 frac z n right n nbsp For the power series definition term wise multiplication of two copies of this power series in the Cauchy sense permitted by Mertens theorem shows that the defining multiplicative property of exponential functions continues to hold for all complex arguments exp w z exp w exp z for all w z C displaystyle exp w z exp w exp z text for all w z in mathbb C nbsp The definition of the complex exponential function in turn leads to the appropriate definitions extending the trigonometric functions to complex arguments In particular when z it t real the series definition yields the expansionexp i t 1 t 2 2 t 4 4 t 6 6 i t t 3 3 t 5 5 t 7 7 displaystyle exp it left 1 frac t 2 2 frac t 4 4 frac t 6 6 cdots right i left t frac t 3 3 frac t 5 5 frac t 7 7 cdots right nbsp In this expansion the rearrangement of the terms into real and imaginary parts is justified by the absolute convergence of the series The real and imaginary parts of the above expression in fact correspond to the series expansions of cos t and sin t respectively This correspondence provides motivation for defining cosine and sine for all complex arguments in terms of exp i z displaystyle exp pm iz nbsp and the equivalent power series 15 cos z exp i z exp i z 2 k 0 1 k z 2 k 2 k and sin z exp i z exp i z 2 i k 0 1 k z 2 k 1 2 k 1 displaystyle begin aligned amp cos z frac exp iz exp iz 2 sum k 0 infty 1 k frac z 2k 2k 5pt text and quad amp sin z frac exp iz exp iz 2i sum k 0 infty 1 k frac z 2k 1 2k 1 end aligned nbsp for all z C textstyle z in mathbb C nbsp The functions exp cos and sin so defined have infinite radii of convergence by the ratio test and are therefore entire functions that is holomorphic on C displaystyle mathbb C nbsp The range of the exponential function is C 0 displaystyle mathbb C setminus 0 nbsp while the ranges of the complex sine and cosine functions are both C displaystyle mathbb C nbsp in its entirety in accord with Picard s theorem which asserts that the range of a nonconstant entire function is either all of C displaystyle mathbb C nbsp or C displaystyle mathbb C nbsp excluding one lacunary value These definitions for the exponential and trigonometric functions lead trivially to Euler s formula exp i z cos z i sin z for all z C displaystyle exp iz cos z i sin z text for all z in mathbb C nbsp We could alternatively define the complex exponential function based on this relationship If z x iy where x and y are both real then we could define its exponential asexp z exp x i y exp x cos y i sin y displaystyle exp z exp x iy exp x cos y i sin y nbsp where exp cos and sin on the right hand side of the definition sign are to be interpreted as functions of a real variable previously defined by other means 16 For t R displaystyle t in mathbb R nbsp the relationship exp i t exp i t displaystyle overline exp it exp it nbsp holds so that exp i t 1 displaystyle left exp it right 1 nbsp for real t displaystyle t nbsp and t exp i t displaystyle t mapsto exp it nbsp maps the real line mod 2p to the unit circle in the complex plane Moreover going from t 0 displaystyle t 0 nbsp to t t 0 displaystyle t t 0 nbsp the curve defined by g t exp i t displaystyle gamma t exp it nbsp traces a segment of the unit circle of length 0 t 0 g t d t 0 t 0 i exp i t d t t 0 displaystyle int 0 t 0 gamma t dt int 0 t 0 i exp it dt t 0 nbsp starting from z 1 in the complex plane and going counterclockwise Based on these observations and the fact that the measure of an angle in radians is the arc length on the unit circle subtended by the angle it is easy to see that restricted to real arguments the sine and cosine functions as defined above coincide with the sine and cosine functions as introduced in elementary mathematics via geometric notions The complex exponential function is periodic with period 2pi and exp z 2 p i k exp z displaystyle exp z 2 pi ik exp z nbsp holds for all z C k Z displaystyle z in mathbb C k in mathbb Z nbsp When its domain is extended from the real line to the complex plane the exponential function retains the following properties e z w e z e w e 0 1 e z 0 d d z e z e z e z n e n z n Z displaystyle begin aligned amp e z w e z e w 5pt amp e 0 1 5pt amp e z neq 0 5pt amp frac d dz e z e z 5pt amp left e z right n e nz n in mathbb Z end aligned nbsp for all w z C textstyle w z in mathbb C nbsp Extending the natural logarithm to complex arguments yields the complex logarithm log z which is a multivalued function We can then define a more general exponentiation z w e w log z displaystyle z w e w log z nbsp for all complex numbers z and w This is also a multivalued function even when z is real This distinction is problematic as the multivalued functions log z and zw are easily confused with their single valued equivalents when substituting a real number for z The rule about multiplying exponents for the case of positive real numbers must be modified in a multivalued context ez w ezw but rather ez w e z 2nip w multivalued over integers n See failure of power and logarithm identities for more about problems with combining powers The exponential function maps any line in the complex plane to a logarithmic spiral in the complex plane with the center at the origin Two special cases exist when the original line is parallel to the real axis the resulting spiral never closes in on itself when the original line is parallel to the imaginary axis the resulting spiral is a circle of some radius 3D plots of real part imaginary part and modulus of the exponential function nbsp z Re ex iy nbsp z Im ex iy nbsp z ex iy Considering the complex exponential function as a function involving four real variables v i w exp x i y displaystyle v iw exp x iy nbsp the graph of the exponential function is a two dimensional surface curving through four dimensions Starting with a color coded portion of the x y displaystyle xy nbsp domain the following are depictions of the graph as variously projected into two or three dimensions Graphs of the complex exponential function nbsp Checker board key x gt 0 green displaystyle x gt 0 text green nbsp x lt 0 red displaystyle x lt 0 text red nbsp y gt 0 yellow displaystyle y gt 0 text yellow nbsp y lt 0 blue displaystyle y lt 0 text blue nbsp nbsp Projection onto the range complex plane V W Compare to the next perspective picture nbsp Projection into the x displaystyle x nbsp v displaystyle v nbsp and w displaystyle w nbsp dimensions producing a flared horn or funnel shape envisioned as 2 D perspective image nbsp Projection into the y displaystyle y nbsp v displaystyle v nbsp and w displaystyle w nbsp dimensions producing a spiral shape y displaystyle y nbsp range extended to 2p again as 2 D perspective image The second image shows how the domain complex plane is mapped into the range complex plane zero is mapped to 1 the real x displaystyle x nbsp axis is mapped to the positive real v displaystyle v nbsp axis the imaginary y displaystyle y nbsp axis is wrapped around the unit circle at a constant angular rate values with negative real parts are mapped inside the unit circle values with positive real parts are mapped outside of the unit circle values with a constant real part are mapped to circles centered at zero values with a constant imaginary part are mapped to rays extending from zero The third and fourth images show how the graph in the second image extends into one of the other two dimensions not shown in the second image The third image shows the graph extended along the real x displaystyle x nbsp axis It shows the graph is a surface of revolution about the x displaystyle x nbsp axis of the graph of the real exponential function producing a horn or funnel shape The fourth image shows the graph extended along the imaginary y displaystyle y nbsp axis It shows that the graph s surface for positive and negative y displaystyle y nbsp values doesn t really meet along the negative real v displaystyle v nbsp axis but instead forms a spiral surface about the y displaystyle y nbsp axis Because its y displaystyle y nbsp values have been extended to 2p this image also better depicts the 2p periodicity in the imaginary y displaystyle y nbsp value Computation of ab where both a and b are complex edit Main article Exponentiation Complex exponentiation ab can be defined by converting a to polar coordinates and using the identity eln a b ab a b r e 8 i b e ln r 8 i b e ln r 8 i b displaystyle a b left re theta i right b left e ln r theta i right b e left ln r theta i right b nbsp However when b is not an integer this function is multivalued because 8 is not unique see Exponentiation Failure of power and logarithm identities Matrices and Banach algebras editThe power series definition of the exponential function makes sense for square matrices for which the function is called the matrix exponential and more generally in any unital Banach algebra B In this setting e0 1 and ex is invertible with inverse e x for any x in B If xy yx then ex y exey but this identity can fail for noncommuting x and y Some alternative definitions lead to the same function For instance ex can be defined aslim n 1 x n n displaystyle lim n to infty left 1 frac x n right n nbsp Or ex can be defined as fx 1 where fx R B is the solution to the differential equation dfx dt t x fx t with initial condition fx 0 1 it follows that fx t etx for every t in R Lie algebras editGiven a Lie group G and its associated Lie algebra g displaystyle mathfrak g nbsp the exponential map is a map g displaystyle mathfrak g nbsp G satisfying similar properties In fact since R is the Lie algebra of the Lie group of all positive real numbers under multiplication the ordinary exponential function for real arguments is a special case of the Lie algebra situation Similarly since the Lie group GL n R of invertible n n matrices has as Lie algebra M n R the space of all n n matrices the exponential function for square matrices is a special case of the Lie algebra exponential map The identity exp x y exp x exp y displaystyle exp x y exp x exp y nbsp can fail for Lie algebra elements x and y that do not commute the Baker Campbell Hausdorff formula supplies the necessary correction terms Transcendency editThe function ez is not in the rational function ring C z displaystyle mathbb C z nbsp it is not the quotient of two polynomials with complex coefficients If a1 an are distinct complex numbers then ea1z eanz are linearly independent over C z displaystyle mathbb C z nbsp and hence ez is transcendental over C z displaystyle mathbb C z nbsp Computation editWhen computing an approximation of the exponential function near the argument 0 the result will be close to 1 and computing the value of the difference e x 1 displaystyle e x 1 nbsp with floating point arithmetic may lead to the loss of possibly all significant figures producing a large calculation error possibly even a meaningless result Following a proposal by William Kahan it may thus be useful to have a dedicated routine often called expm1 for computing ex 1 directly bypassing computation of ex For example if the exponential is computed by using its Taylor seriese x 1 x x 2 2 x 3 6 x n n displaystyle e x 1 x frac x 2 2 frac x 3 6 cdots frac x n n cdots nbsp one may use the Taylor series of e x 1 displaystyle e x 1 nbsp e x 1 x x 2 2 x 3 6 x n n displaystyle e x 1 x frac x 2 2 frac x 3 6 cdots frac x n n cdots nbsp This was first implemented in 1979 in the Hewlett Packard HP 41C calculator and provided by several calculators 17 18 operating systems for example Berkeley UNIX 4 3BSD 19 computer algebra systems and programming languages for example C99 20 In addition to base e the IEEE 754 2008 standard defines similar exponential functions near 0 for base 2 and 10 2 x 1 displaystyle 2 x 1 nbsp and 10 x 1 displaystyle 10 x 1 nbsp A similar approach has been used for the logarithm see lnp1 nb 3 An identity in terms of the hyperbolic tangent expm1 x e x 1 2 tanh x 2 1 tanh x 2 displaystyle operatorname expm1 x e x 1 frac 2 tanh x 2 1 tanh x 2 nbsp gives a high precision value for small values of x on systems that do not implement expm1 x See also edit nbsp Mathematics portal Carlitz exponential a characteristic p analogue Double exponential function Exponential function of an exponential function Exponential field Mathematical field with an extra operation Gaussian function Half exponential function a compositional square root of an exponential function Lambert W function Solving equations Multivalued function in mathematics Used for solving exponential equations List of exponential topics List of integrals of exponential functions Mittag Leffler function a generalization of the exponential function p adic exponential function Pade table for exponential function Pade approximation of exponential function by a fraction of polynomial functions Phase factorNotes edit The notation ln x is the ISO standard and is prevalent in the natural sciences and secondary education US However some mathematicians for example Paul Halmos have criticized this notation and prefer to use log x for the natural logarithm of x In pure mathematics the notation log x generally refers to the natural logarithm of x or a logarithm in general if the base is immaterial A similar approach to reduce round off errors of calculations for certain input values of trigonometric functions consists of using the less common trigonometric functions versine vercosine coversine covercosine haversine havercosine hacoversine hacovercosine exsecant and excosecant References edit a b Rudin Walter 1987 Real and complex analysis 3rd ed New York McGraw Hill p 1 ISBN 978 0 07 054234 1 Meier John Smith Derek 2017 08 07 Exploring Mathematics Cambridge University Press p 167 ISBN 978 1 107 12898 9 Converse Henry Augustus Durell Fletcher 1911 Plane and Spherical Trigonometry Durell s mathematical series C E Merrill Company p 12 Inverse Use of a Table of Logarithms that is given a logarithm to find the number corresponding to it called its antilogarithm 1 Exponential Function Reference www mathsisfun com Retrieved 2020 08 28 Sloane N J A ed Sequence A001113 Decimal expansion of e The On Line Encyclopedia of Integer Sequences OEIS Foundation Goldstein Larry Joel Lay David C Schneider David I Asmar Nakhle H 2006 Brief calculus and its applications 11th ed Prentice Hall ISBN 978 0 13 191965 5 467 pages Courant Robbins 1996 Stewart ed What is Mathematics An Elementary Approach to Ideas and Methods 2nd revised ed Oxford University Press p 448 ISBN 978 0 13 191965 5 This natural exponential function is identical with its derivative This is really the source of all the properties of the exponential function and the basic reason for its importance in applications a b Weisstein Eric W Exponential Function mathworld wolfram com Retrieved 2020 08 28 a b Maor Eli e the Story of a Number p 156 a b O Connor John J Robertson Edmund F September 2001 The number e School of Mathematics and Statistics University of St Andrews Scotland Retrieved 2011 06 13 Serway Raymond A Moses Clement J Moyer Curt A 1989 Modern Physics Fort Worth Harcourt Brace Jovanovich p 384 ISBN 0 03 004844 3 Simmons George F 1972 Differential Equations with Applications and Historical Notes New York McGraw Hill p 15 LCCN 75173716 McGraw Hill Encyclopedia of Science amp Technology 10th ed New York McGraw Hill 2007 ISBN 978 0 07 144143 8 Lorentzen L Waadeland H 2008 A 2 2 The exponential function Continued Fractions Atlantis Studies in Mathematics Vol 1 p 268 doi 10 2991 978 94 91216 37 4 ISBN 978 94 91216 37 4 Rudin Walter 1976 Principles of Mathematical Analysis New York McGraw Hill p 182 ISBN 978 0 07 054235 8 Apostol Tom M 1974 Mathematical Analysis 2nd ed Reading Mass Addison Wesley pp 19 ISBN 978 0 201 00288 1 HP 48G Series Advanced User s Reference Manual AUR 4 ed Hewlett Packard December 1994 1993 HP 00048 90136 0 88698 01574 2 Retrieved 2015 09 06 HP 50g 49g 48gII graphing calculator advanced user s reference manual AUR 2 ed Hewlett Packard 2009 07 14 2005 HP F2228 90010 Retrieved 2015 10 10 2 Beebe Nelson H F 2017 08 22 Chapter 10 2 Exponential near zero The Mathematical Function Computation Handbook Programming Using the MathCW Portable Software Library 1 ed Salt Lake City UT USA Springer International Publishing AG pp 273 282 doi 10 1007 978 3 319 64110 2 ISBN 978 3 319 64109 6 LCCN 2017947446 S2CID 30244721 Berkeley UNIX 4 3BSD introduced the expm1 function in 1987 Beebe Nelson H F 2002 07 09 Computation of expm1 exp x 1 PDF 1 00 Salt Lake City Utah USA Department of Mathematics Center for Scientific Computing University of Utah Retrieved 2015 11 02 External links edit Exponential function Encyclopedia of Mathematics EMS Press 2001 1994 Retrieved from https en wikipedia org w index php title Exponential function amp oldid 1218573829, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.