fbpx
Wikipedia

Convergent series

In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted

The nth partial sum Sn is the sum of the first n terms of the sequence; that is,

A series is convergent (or converges) if the sequence of its partial sums tends to a limit; that means that, when adding one after the other in the order given by the indices, one gets partial sums that become closer and closer to a given number. More precisely, a series converges, if there exists a number such that for every arbitrarily small positive number , there is a (sufficiently large) integer such that for all ,

If the series is convergent, the (necessarily unique) number is called the sum of the series.

The same notation

is used for the series, and, if it is convergent, to its sum. This convention is similar to that which is used for addition: a + b denotes the operation of adding a and b as well as the result of this addition, which is called the sum of a and b.

Any series that is not convergent is said to be divergent or to diverge.

Examples of convergent and divergent series

  • The reciprocals of the positive integers produce a divergent series (harmonic series):
     
  • Alternating the signs of the reciprocals of positive integers produces a convergent series (alternating harmonic series):
     
  • The reciprocals of prime numbers produce a divergent series (so the set of primes is "large"; see divergence of the sum of the reciprocals of the primes):
     
  • The reciprocals of triangular numbers produce a convergent series:
     
  • The reciprocals of factorials produce a convergent series (see Euler's number):
     
  • The reciprocals of square numbers produce a convergent series (the Basel problem):
     
  • The reciprocals of powers of 2 produce a convergent series (so the set of powers of 2 is "small"):
     
  • The reciprocals of powers of any n>1 produce a convergent series:
     
  • Alternating the signs of reciprocals of powers of 2 also produces a convergent series:
     
  • Alternating the signs of reciprocals of powers of any n>1 produces a convergent series:
     
  • The reciprocals of Fibonacci numbers produce a convergent series (see ψ):
     

Convergence tests

There are a number of methods of determining whether a series converges or diverges.

 
If the blue series,  , can be proven to converge, then the smaller series,   must converge. By contraposition, if the red series   is proven to diverge, then   must also diverge.

Comparison test. The terms of the sequence   are compared to those of another sequence  . If, for all n,  , and   converges, then so does  

However, if, for all n,  , and   diverges, then so does  

Ratio test. Assume that for all n,   is not zero. Suppose that there exists   such that

 

If r < 1, then the series is absolutely convergent. If r > 1, then the series diverges. If r = 1, the ratio test is inconclusive, and the series may converge or diverge.

Root test or nth root test. Suppose that the terms of the sequence in question are non-negative. Define r as follows:

 
where "lim sup" denotes the limit superior (possibly ∞; if the limit exists it is the same value).

If r < 1, then the series converges. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge.

The ratio test and the root test are both based on comparison with a geometric series, and as such they work in similar situations. In fact, if the ratio test works (meaning that the limit exists and is not equal to 1) then so does the root test; the converse, however, is not true. The root test is therefore more generally applicable, but as a practical matter the limit is often difficult to compute for commonly seen types of series.

Integral test. The series can be compared to an integral to establish convergence or divergence. Let   be a positive and monotonically decreasing function. If

 

then the series converges. But if the integral diverges, then the series does so as well.

Limit comparison test. If  , and the limit   exists and is not zero, then   converges if and only if   converges.

Alternating series test. Also known as the Leibniz criterion, the alternating series test states that for an alternating series of the form  , if   is monotonically decreasing, and has a limit of 0 at infinity, then the series converges.

Cauchy condensation test. If   is a positive monotone decreasing sequence, then   converges if and only if   converges.

Dirichlet's test

Abel's test

Conditional and absolute convergence

For any sequence  ,   for all n. Therefore,

 

This means that if   converges, then   also converges (but not vice versa).

If the series   converges, then the series   is absolutely convergent. The Maclaurin series of the exponential function is absolutely convergent for every complex value of the variable.

If the series   converges but the series   diverges, then the series   is conditionally convergent. The Maclaurin series of the logarithm function   is conditionally convergent for x = 1.

The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges.

Uniform convergence

Let   be a sequence of functions. The series   is said to converge uniformly to f if the sequence   of partial sums defined by

 

converges uniformly to f.

There is an analogue of the comparison test for infinite series of functions called the Weierstrass M-test.

Cauchy convergence criterion

The Cauchy convergence criterion states that a series

 

converges if and only if the sequence of partial sums is a Cauchy sequence. This means that for every   there is a positive integer   such that for all   we have

 

which is equivalent to

 

See also

External links

  • "Series", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Weisstein, Eric (2005). Riemann Series Theorem. Retrieved May 16, 2005.

convergent, series, short, story, collection, convergent, series, short, story, collection, convergence, mathematics, redirects, here, other, uses, convergence, disambiguation, mathematics, series, terms, infinite, sequence, numbers, more, precisely, infinite,. For the short story collection see Convergent Series short story collection Convergence mathematics redirects here For other uses see Convergence disambiguation In mathematics a series is the sum of the terms of an infinite sequence of numbers More precisely an infinite sequence a 0 a 1 a 2 displaystyle a 0 a 1 a 2 ldots defines a series S that is denoted S a 0 a 1 a 2 k 0 a k displaystyle S a 0 a 1 a 2 cdots sum k 0 infty a k The n th partial sum Sn is the sum of the first n terms of the sequence that is S n k 1 n a k displaystyle S n sum k 1 n a k A series is convergent or converges if the sequence S 1 S 2 S 3 displaystyle S 1 S 2 S 3 dots of its partial sums tends to a limit that means that when adding one a k displaystyle a k after the other in the order given by the indices one gets partial sums that become closer and closer to a given number More precisely a series converges if there exists a number ℓ displaystyle ell such that for every arbitrarily small positive number e displaystyle varepsilon there is a sufficiently large integer N displaystyle N such that for all n N displaystyle n geq N S n ℓ lt e displaystyle left S n ell right lt varepsilon If the series is convergent the necessarily unique number ℓ displaystyle ell is called the sum of the series The same notation k 1 a k displaystyle sum k 1 infty a k is used for the series and if it is convergent to its sum This convention is similar to that which is used for addition a b denotes the operation of adding a and b as well as the result of this addition which is called the sum of a and b Any series that is not convergent is said to be divergent or to diverge Contents 1 Examples of convergent and divergent series 2 Convergence tests 3 Conditional and absolute convergence 4 Uniform convergence 5 Cauchy convergence criterion 6 See also 7 External linksExamples of convergent and divergent series EditThe reciprocals of the positive integers produce a divergent series harmonic series 1 1 1 2 1 3 1 4 1 5 1 6 displaystyle 1 over 1 1 over 2 1 over 3 1 over 4 1 over 5 1 over 6 cdots rightarrow infty Alternating the signs of the reciprocals of positive integers produces a convergent series alternating harmonic series 1 1 1 2 1 3 1 4 1 5 ln 2 displaystyle 1 over 1 1 over 2 1 over 3 1 over 4 1 over 5 cdots ln 2 The reciprocals of prime numbers produce a divergent series so the set of primes is large see divergence of the sum of the reciprocals of the primes 1 2 1 3 1 5 1 7 1 11 1 13 displaystyle 1 over 2 1 over 3 1 over 5 1 over 7 1 over 11 1 over 13 cdots rightarrow infty The reciprocals of triangular numbers produce a convergent series 1 1 1 3 1 6 1 10 1 15 1 21 2 displaystyle 1 over 1 1 over 3 1 over 6 1 over 10 1 over 15 1 over 21 cdots 2 The reciprocals of factorials produce a convergent series see Euler s number 1 1 1 1 1 2 1 6 1 24 1 120 e displaystyle frac 1 1 frac 1 1 frac 1 2 frac 1 6 frac 1 24 frac 1 120 cdots e The reciprocals of square numbers produce a convergent series the Basel problem 1 1 1 4 1 9 1 16 1 25 1 36 p 2 6 displaystyle 1 over 1 1 over 4 1 over 9 1 over 16 1 over 25 1 over 36 cdots pi 2 over 6 The reciprocals of powers of 2 produce a convergent series so the set of powers of 2 is small 1 1 1 2 1 4 1 8 1 16 1 32 2 displaystyle 1 over 1 1 over 2 1 over 4 1 over 8 1 over 16 1 over 32 cdots 2 The reciprocals of powers of any n gt 1 produce a convergent series 1 1 1 n 1 n 2 1 n 3 1 n 4 1 n 5 n n 1 displaystyle 1 over 1 1 over n 1 over n 2 1 over n 3 1 over n 4 1 over n 5 cdots n over n 1 Alternating the signs of reciprocals of powers of 2 also produces a convergent series 1 1 1 2 1 4 1 8 1 16 1 32 2 3 displaystyle 1 over 1 1 over 2 1 over 4 1 over 8 1 over 16 1 over 32 cdots 2 over 3 Alternating the signs of reciprocals of powers of any n gt 1 produces a convergent series 1 1 1 n 1 n 2 1 n 3 1 n 4 1 n 5 n n 1 displaystyle 1 over 1 1 over n 1 over n 2 1 over n 3 1 over n 4 1 over n 5 cdots n over n 1 The reciprocals of Fibonacci numbers produce a convergent series see ps 1 1 1 1 1 2 1 3 1 5 1 8 ps displaystyle frac 1 1 frac 1 1 frac 1 2 frac 1 3 frac 1 5 frac 1 8 cdots psi Convergence tests EditMain article Convergence tests There are a number of methods of determining whether a series converges or diverges If the blue series S b n displaystyle Sigma b n can be proven to converge then the smaller series S a n displaystyle Sigma a n must converge By contraposition if the red series S a n displaystyle Sigma a n is proven to diverge then S b n displaystyle Sigma b n must also diverge Comparison test The terms of the sequence a n displaystyle left a n right are compared to those of another sequence b n displaystyle left b n right If for all n 0 a n b n displaystyle 0 leq a n leq b n and n 1 b n textstyle sum n 1 infty b n converges then so does n 1 a n textstyle sum n 1 infty a n However if for all n 0 b n a n displaystyle 0 leq b n leq a n and n 1 b n textstyle sum n 1 infty b n diverges then so does n 1 a n textstyle sum n 1 infty a n Ratio test Assume that for all n a n displaystyle a n is not zero Suppose that there exists r displaystyle r such that lim n a n 1 a n r displaystyle lim n to infty left frac a n 1 a n right r If r lt 1 then the series is absolutely convergent If r gt 1 then the series diverges If r 1 the ratio test is inconclusive and the series may converge or diverge Root test or nth root test Suppose that the terms of the sequence in question are non negative Define r as follows r lim sup n a n n displaystyle r limsup n to infty sqrt n a n where lim sup denotes the limit superior possibly if the limit exists it is the same value If r lt 1 then the series converges If r gt 1 then the series diverges If r 1 the root test is inconclusive and the series may converge or diverge The ratio test and the root test are both based on comparison with a geometric series and as such they work in similar situations In fact if the ratio test works meaning that the limit exists and is not equal to 1 then so does the root test the converse however is not true The root test is therefore more generally applicable but as a practical matter the limit is often difficult to compute for commonly seen types of series Integral test The series can be compared to an integral to establish convergence or divergence Let f n a n displaystyle f n a n be a positive and monotonically decreasing function If 1 f x d x lim t 1 t f x d x lt displaystyle int 1 infty f x dx lim t to infty int 1 t f x dx lt infty then the series converges But if the integral diverges then the series does so as well Limit comparison test If a n b n gt 0 displaystyle left a n right left b n right gt 0 and the limit lim n a n b n displaystyle lim n to infty frac a n b n exists and is not zero then n 1 a n textstyle sum n 1 infty a n converges if and only if n 1 b n textstyle sum n 1 infty b n converges Alternating series test Also known as the Leibniz criterion the alternating series test states that for an alternating series of the form n 1 a n 1 n textstyle sum n 1 infty a n 1 n if a n displaystyle left a n right is monotonically decreasing and has a limit of 0 at infinity then the series converges Cauchy condensation test If a n displaystyle left a n right is a positive monotone decreasing sequence then n 1 a n textstyle sum n 1 infty a n converges if and only if k 1 2 k a 2 k textstyle sum k 1 infty 2 k a 2 k converges Dirichlet s testAbel s testConditional and absolute convergence EditFor any sequence a 1 a 2 a 3 displaystyle left a 1 a 2 a 3 dots right a n a n displaystyle a n leq left a n right for all n Therefore n 1 a n n 1 a n displaystyle sum n 1 infty a n leq sum n 1 infty left a n right This means that if n 1 a n textstyle sum n 1 infty left a n right converges then n 1 a n textstyle sum n 1 infty a n also converges but not vice versa If the series n 1 a n textstyle sum n 1 infty left a n right converges then the series n 1 a n textstyle sum n 1 infty a n is absolutely convergent The Maclaurin series of the exponential function is absolutely convergent for every complex value of the variable If the series n 1 a n textstyle sum n 1 infty a n converges but the series n 1 a n textstyle sum n 1 infty left a n right diverges then the series n 1 a n textstyle sum n 1 infty a n is conditionally convergent The Maclaurin series of the logarithm function ln 1 x displaystyle ln 1 x is conditionally convergent for x 1 The Riemann series theorem states that if a series converges conditionally it is possible to rearrange the terms of the series in such a way that the series converges to any value or even diverges Uniform convergence EditMain article Uniform convergence Let f 1 f 2 f 3 displaystyle left f 1 f 2 f 3 dots right be a sequence of functions The series n 1 f n textstyle sum n 1 infty f n is said to converge uniformly to f if the sequence s n displaystyle s n of partial sums defined by s n x k 1 n f k x displaystyle s n x sum k 1 n f k x converges uniformly to f There is an analogue of the comparison test for infinite series of functions called the Weierstrass M test Cauchy convergence criterion EditThe Cauchy convergence criterion states that a series n 1 a n displaystyle sum n 1 infty a n converges if and only if the sequence of partial sums is a Cauchy sequence This means that for every e gt 0 displaystyle varepsilon gt 0 there is a positive integer N displaystyle N such that for all n m N displaystyle n geq m geq N we have k m n a k lt e displaystyle left sum k m n a k right lt varepsilon which is equivalent to lim n m k n n m a k 0 displaystyle lim n to infty atop m to infty sum k n n m a k 0 See also EditNormal convergence List of mathematical seriesExternal links Edit Series Encyclopedia of Mathematics EMS Press 2001 1994 Weisstein Eric 2005 Riemann Series Theorem Retrieved May 16 2005 Retrieved from https en wikipedia org w index php title Convergent series amp oldid 1137192973, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.