fbpx
Wikipedia

Natural disaster

A natural disaster is the highly harmful impact on a society or community following a natural hazard event. Some examples of natural hazard events include: flooding, drought, earthquake, tropical cyclone, lightning, tsunami, volcanic activity, wildfire.[1] A natural disaster can cause loss of life or damage property, and typically leaves economic damage in its wake. The severity of the damage depends on the affected population's resilience and on the infrastructure available.[2] Scholars have been saying that the term natural disaster is unsuitable and should be abandoned. Instead, the simpler term disaster could be used, while also specifying the category (or type) of hazard.[3][4][5] A disaster is a result of a natural or human-made hazard impacting a vulnerable community. It is the combination of the hazard along with exposure of a vulnerable society that results in a disaster.

Global multihazard proportional economic loss by natural disasters as cyclones, droughts, earthquakes, floods, landslides and volcanoes

In modern times, the divide between natural, human-made and human-accelerated disasters is quite difficult to draw.[6][7][8] Human choices and activities like architecture,[9] fire,[10][11] resource management[11][12] and climate change[13] potentially play a role in causing natural disasters. In fact, the term natural disaster was called a misnomer already in 1976.[5]

Natural disasters can be aggravated by inadequate building norms, marginalization of people, inequities, overexploitation of resources, extreme urban sprawl and climate change.[6] The rapid growth of the world's population and its increased concentration often in hazardous environments has escalated both the frequency and severity of disasters. Extreme climates (such as those in the Tropics) and unstable landforms, coupled with deforestation, unplanned growth proliferation and non-engineered constructions create more vulnerable interfaces of populated areas with disaster-prone natural spaces. Developing countries which suffer from chronic natural disasters, often have ineffective communication systems combined with insufficient support for disaster prevention and management.[14]

An adverse event will not rise to the level of a disaster if it occurs in an area without a vulnerable population.[15][16] Once a vulnerable population has experienced a disaster, the community can take many years to repair and that repair period can lead to further vulnerability. The disastrous consequences of natural disaster also affect the mental health of affected communities, often leading to post-traumatic symptoms. These increased emotional experiences can be supported through collective processing, leading to resilience and increased community engagement.[17]

Terminology

A natural disaster is the highly harmful impact on a society or community following a natural hazard event. The term "disaster" itself is defined as follows: "Disasters are serious disruptions to the functioning of a community that exceed its capacity to cope using its own resources. Disasters can be caused by natural, man-made and technological hazards, as well as various factors that influence the exposure and vulnerability of a community."[18]

The US Federal Emergency Management Agency (FEMA) explains the relationship between natural disasters and natural hazards as follows: "Natural hazards and natural disasters are related but are not the same. A natural hazard is the threat of an event that will likely have a negative impact. A natural disaster is the negative impact following an actual occurrence of natural hazard in the event that it significantly harms a community.[1] An example of the distinction between a natural hazard and a disaster is that an earthquake is the hazard which caused the 1906 San Francisco earthquake disaster.

A natural hazard[19] is a natural phenomenon that might have a negative effect on humans and other animals, or the environment. Natural hazard events can be classified into two broad categories: geophysical and biological.[20] Natural hazards can be provoked or affected by anthropogenic processes, e.g. land-use change, drainage and construction.[21]

There are 18 natural hazards included in the National Risk Index of FEMA: avalanche, coastal flooding, cold wave, drought, earthquake, hail, heat wave,tropical cyclone, ice storm, landslide, lightning, riverine flooding, strong wind, tornado, tsunami, volcanic activity, wildfire, winter weather.[1] In addition there are also tornados and dust storms.

Critique

The term natural disaster has been called a misnomer already in 1976.[5] A disaster is a result of a natural hazard impacting a vulnerable community. But disasters can be avoided. Earthquakes, droughts, floods, storms, and other events lead to disasters because of human action and inaction. Poor land and policy planning and deregulation can create worse conditions. They often involve development activities that ignore or fail to reduce the disaster risks. Nature alone is blamed for disasters even when disasters result from failures in development. Disasters also result from failure of societies to prepare. Examples for such failures include inadequate building norms, marginalization of people, inequities, overexploitation of resources, extreme urban sprawl and climate change.[5]

Defining disasters as solely natural events has serious implications when it comes to understanding the causes of a disaster and the distribution of political and financial responsibility in disaster risk reduction, disaster management, compensation, insurance and disaster prevention.[22] Using natural to describe disasters misleads people to think the devastating results are inevitable, out of our control, and are simply part of a natural process. Hazards (earthquakes, hurricanes, pandemics, drought etc.) are inevitable, but the impact they have on society is not.

Thus, the term natural disaster is unsuitable and should be abandoned in favour of the simpler term disaster, while also specifying the category (or type) of hazard.[3]

Scale

 
Number of recorded natural disaster events (1900–2022)

Some of the 18 natural hazards included in the National Risk Index of FEMA[1] now have a higher probability of occurring, and at higher intensity, due to the effects of climate change. This applies to heat waves, droughts, wildfire and coastal flooding.[23]: 9 

By region and country

As of 2019, the countries with the highest share of disability-adjusted life years (DALY) lost due to natural disasters are Bahamas, Haiti, Zimbabwe and Armenia (probably mainly due to the Spitak Earthquake).[24][25] The Asia-Pacific region is the world's most disaster prone region.[26] A person in Asia-Pacific is five times more likely to be hit by a natural disaster than someone living in other regions.[27]

Between 1995 and 2015, the greatest number of natural disasters occurred in America, China and India.[28] In 2012, there were 905 natural disasters worldwide, 93% of which were weather-related disasters. Overall costs were US$170 billion and insured losses $70 billion. 2012 was a moderate year. 45% were meteorological (storms), 36% were hydrological (floods), 12% were climatological (heat waves, cold waves, droughts, wildfires) and 7% were geophysical events (earthquakes and volcanic eruptions). Between 1980 and 2011 geophysical events accounted for 14% of all natural catastrophes.[29]

Slow and rapid onset events

Natural hazards occur across different time scales as well as area scales. Tornadoes and flash floods are rapid onset events, meaning they occur with a short warning time and are short-lived. Slow onset events can also be very damaging, for example drought is a natural hazards that develops slowly, sometimes over years.[30]

Impacts

 
Global death rate from natural disasters (1900–2022)
 
Global damage cost from natural disasters (1980–2022)

A natural disaster may cause loss of life, injury or other health impacts, property damage, loss of livelihoods and services, social and economic disruption, or environmental damage.

Various phenomena like earthquakes, landslides, volcanic eruptions, floods, hurricanes, tornadoes, blizzards, tsunamis, cyclones, wildfires, and pandemics are all natural hazards that kill thousands of people and destroy billions of dollars of habitat and property each year.[31] However, the rapid growth of the world's population and its increased concentration often in hazardous environments has escalated both the frequency and severity of disasters. With the tropical climate and unstable landforms, coupled with deforestation, unplanned growth proliferation, non-engineered constructions make the disaster-prone areas more vulnerable.[citation needed]

The death rate from natural disasters is highest in poorly developed countries due to the lower quality of building construction, infrastructure, and medical facilities.[32] Globally, the total number of deaths from natural disasters has been reduced by 75% over the last 100 years, due to the increased development of countries, increased preparedness, better education, better methods, and aid from international organizations. Since the global population has grown over the same time period, the decrease in number of deaths per capita is larger, dropping to 6% of the original amount.[32]

On the environment

During emergencies such as natural disasters and armed conflicts more waste may be produced, while waste management is given low priority compared with other services. Existing waste management services and infrastructures can be disrupted, leaving communities with unmanaged waste and increased littering. Under these circumstances human health and the environment are often negatively impacted.[33]

Natural disasters (e.g. earthquakes, tsunamis, hurricanes) have the potential to generate a significant amount of waste within a short period. Waste management systems can be out of action or curtailed, often requiring considerable time and funding to restore. For example, the tsunami in Japan in 2011 produced huge amounts of debris: estimates of 5 million tonnes of waste were reported by the Japanese Ministry of the Environment. Some of this waste, mostly plastic and styrofoam washed up on the coasts of Canada and the United States in late 2011. Along the west coast of the United States, this increased the amount of litter by a factor of 10 and may have transported alien species. Storms are also important generators of plastic litter. A study by Lo et al. (2020) reported a 100% increase in the amount of microplastics on beaches surveyed following a typhoon in Hong Kong in 2018.[33]

A significant amount of plastic waste can be produced during disaster relief operations. Following the 2010 earthquake in Haiti, the generation of waste from relief operations was referred to as a "second disaster". The United States military reported that millions of water bottles and styrofoam food packages were distributed although there was no operational waste management system. Over 700,000 plastic tarpaulins and 100,000 tents were required for emergency shelters. The increase in plastic waste, combined with poor disposal practices, resulted in open drainage channels being blocked, increasing the risk of disease.[33]

Conflicts can result in large-scale displacement of communities. People living under these conditions are often provided with minimal waste management facilities. Burn pits are widely used to dispose of mixed wastes, including plastics. Air pollution can lead to respiratory and other illnesses. For example, Sahrawi refugees have been living in five camps near Tindouf, Algeria for nearly 45 years. As waste collection services are underfunded and there is no recycling facility, plastics have flooded the camps’ streets and surroundings. In contrast, the Azraq camp in Jordan for refugees from Syria has waste management services; of 20.7 tonnes of waste produced per day, 15% is recyclable.[33]

On vulnerable groups

Women

Because of the social, political and cultural context of many places throughout the world, women are often disproportionately affected by disaster.[34] In the 2004 Indian Ocean tsunami, more women died than men, partly due to the fact that fewer women knew how to swim.[34] During and after a natural disaster, women are at increased risk of being affected by gender based violence and are increasingly vulnerable to sexual violence. Disrupted police enforcement, lax regulations, and displacement all contribute to increased risk of gender based violence and sexual assault.[34] Women who have been affected by sexual violence are at a significantly increased risk of sexually transmitted infections, unique physical injuries and long term psychological consequences.[34] All of these long-term health outcomes can prevent successful reintegration into society after the disaster recovery period.[34]

In addition to LGBT people and immigrants, women are also disproportionately victimised by religion-based scapegoating for natural disasters: fanatical religious leaders or adherents may claim that a god or gods are angry with women's independent, freethinking behaviour, such as dressing 'immodestly', having sex or abortions.[35] For example, Hindutva party Hindu Makkal Katchi and others blamed women's struggle for the right to enter the Sabarimala temple for the August 2018 Kerala floods, purportedly inflicted by the angry god Ayyappan.[36][37] In response to Iranian Islamic cleric Kazem Seddiqi's accusation of women dressing immodestly and spreading promiscuity being the cause of earthquakes, American student Jennifer McCreight organised the Boobquake event on 26 April 2010: she encouraged women around the world to participate in dressing immodestly all at the same time while performing regular seismographic checks to prove that such behaviour in women causes no significant increase in earthquake activity.[38]

During and after natural disasters, routine health behaviors become interrupted. In addition, health care systems may have broken down as a result of the disaster, further reducing access to contraceptives.[34] Unprotected intercourse during this time can lead to increased rates of childbirth, unintended pregnancies and sexually transmitted infections (STIs).[34][39] Methods used to prevent STIs (such as condom use) are often forgotten or not accessible during times surrounding a disaster. Lack of health care infrastructure and medical shortages hinder the ability to treat individuals once they acquire an STI. In addition, health efforts to prevent, monitor or treat HIV/AIDS are often disrupted, leading to increased rates of HIV complications and increased transmission of the virus through the population.[34]

Pregnant women are one of the groups disproportionately affected by natural disasters. Inadequate nutrition, little access to clean water, lack of health-care services and psychological stress in the aftermath of the disaster can lead to a significant increase in maternal morbidity and mortality. Furthermore, shortage of healthcare resources during this time can convert even routine obstetric complications into emergencies.[40] During and after a disaster, women's prenatal, peri-natal and postpartum care can become disrupted.[39] Among women affected by natural disaster, there are significantly higher rates of low birth weight infants, preterm infants and infants with low head circumference.[34][41]

On governments and voting processes

Everyone is desperate for food and water. There's no food, water, or gasoline. The government is missing.
— Lian Gogali Aid worker following 2018 Sulawesi earthquake and tsunami.[42]

Disasters stress government capacity, as the government tries to conduct routine as well as emergency operations.[43] Some theorists of voting behavior propose that citizens update information about government effectiveness based on their response to disasters, which affects their vote choice in the next election.[44] Indeed, some evidence, based on data from the United States, reveals that incumbent parties can lose votes if citizens perceives them as responsible for a poor disaster response[45] or gain votes based on perceptions of well-executed relief work.[46] The latter study also finds, however, that voters do not reward incumbent parties for disaster preparedness, which may end up affecting government incentives to invest in such preparedness.[46] Other evidence, however, also based on the United States, finds that citizens can simply backlash and blame the incumbent for hardship following a natural disaster, causing the incumbent party to lose votes.[47] One study in India finds that incumbent parties extend more relief following disasters in areas where there is higher newspaper coverage, electoral turnout, and literacy – the authors reason that these results indicate that incumbent parties are more responsive with relief to areas with more politically informed citizens who would be more likely to punish them for poor relief efforts.[48]

Violent conflicts within states can exacerbate the impact of natural disasters by weakening the ability of states, communities and individuals to provide disaster relief. Natural disasters can also worsen ongoing conflicts within states by weakening the capacity of states to fight rebels.[49][50]

In Chinese and Japanese history, it has been routine for era names or capital cities and palaces of emperors to be changed after a major natural disaster, chiefly for political reasons such as association with hardships by the populace and fear of upheaval (i.e. in East Asian government chronicles, such fears were recorded in a low profile way as an unlucky name or place requiring change).[51]

Disasters caused by geological hazards

Landslides

 
A landslide near Cusco, Peru, in 2018
A NASA model has been developed to look at how potential landslide activity is changing around the world.
 
Animation of a landslide in San Mateo County, California

Landslides, also known as landslips,[52][53][54] are several forms of mass wasting that may include a wide range of ground movements, such as rockfalls,mudflows, shallow or deep-seated slope failures and debris flows.[55] Landslides occur in a variety of environments, characterized by either steep or gentle slope gradients, from mountain ranges to coastal cliffs or even underwater,[56] in which case they are called submarine landslides.

Gravity is the primary driving force for a landslide to occur, but there are other factors affecting slope stability that produce specific conditions that make a slope prone to failure. In many cases, the landslide is triggered by a specific event (such as a heavy rainfall, an earthquake, a slope cut to build a road, and many others), although this is not always identifiable.

Landslides are frequently made worse by human development (such as urban sprawl) and resource exploitation (such as mining and deforestation). Land degradation frequently leads to less stabilization of soil by vegetation.[57] Additionally, global Warming caused by climate change and other human impact on the environment, can increase the frequency of natural events (such as extreme weather) which trigger landslides.[58] Landslide mitigation describes the policy and practices for reducing the risk of human impacts of landslides, reducing the risk of natural disaster.
 
A landslide in San Clemente, California in 1966

Avalanches

 
A powder snow avalanche in the Himalayas near Mount Everest.
 
Heavy equipment in action after an avalanche has interrupted service on the Saint-Gervais–Vallorcine railway in Haute-Savoie, France (2006).
 
The terminus of an avalanche in Alaska's Kenai Fjords.

An avalanche is a rapid flow of snow down a slope, such as a hill or mountain.[59]

Avalanches can be set off spontaneously, by factors such as increased precipitation or snowpack weakening, or by external means such as humans, other animals, and earthquakes. Primarily composed of flowing snow and air, large avalanches have the capability to capture and move ice, rocks, and trees.

Avalanches can happen in any mountain range that has an enduring snowpack. They are most frequent in winter or spring, but may occur at any time of the year. In mountainous areas, avalanches are among the most serious natural hazards to life and property, so great efforts are made in avalanche control.

Earthquakes

 
San Francisco was devastated by an earthquake in 1906
 
Global number of deaths from earthquake (1960–2017)
 
Global number of recorded earthquake events (1901–2019)

An earthquake is the result of a sudden release of energy in the Earth's crust that creates seismic waves. At the Earth's surface, earthquakes manifest themselves by vibration, shaking, and sometimes displacement of the ground. Earthquakes are caused by slippage within geological faults. The underground point of origin of the earthquake is called the seismic focus. The point directly above the focus on the surface is called the epicenter. Earthquakes by themselves rarely kill people or wildlife – it is usually the secondary events that they trigger, such as building collapse, fires, tsunamis and volcanic eruptions, that cause death. Many of these can possibly be avoided by better construction, safety systems, early warning and planning.[citation needed]

Sinkholes

A sinkhole is a depression or hole in the ground caused by some form of collapse of the surface layer. When natural erosion, human mining or underground excavation makes the ground too weak to support the structures built on it, the ground can collapse and produce a sinkhole. For example, the 2010 Guatemala City sinkhole, which killed one, was caused when heavy rain from Tropical Storm Agatha, diverted by leaking pipes into a pumice bedrock, led to the sudden collapse of the ground beneath a factory building.[citation needed]

Coastal erosion

Coastal erosion is a physical process by which shorelines in coastal areas around the world shift and change, primarily in response to waves and currents that can be influenced by tides and storm surge.[60] Coastal erosion can result from long-term processes (see also beach evolution) as well as from episodic events such as tropical cyclones or other severe storm events. Coastal erosion is one of the most significant coastal hazards. It forms a threat to infrastructure, capital assets and property.

Volcanic eruptions

 
Puʻu ʻŌʻō

Volcanoes can cause widespread destruction and consequent disaster in several ways. One hazard is the volcanic eruption itself, with the force of the explosion and falling rocks able to cause harm. Lava may also be released during the eruption of a volcano; as it leaves the volcano, it can destroy buildings, plants and animals due to its extreme heat. In addition, volcanic ash may form a cloud (generally after cooling) and settle thickly in nearby locations. When mixed with water, this forms a concrete-like material. In sufficient quantities, ash may cause roofs to collapse under its weight. Even small quantities will harm humans if inhaled – it has the consistency of ground glass and therefore causes laceration to the throat and lungs. Volcanic ash can also cause abrasion damage to moving machinery such as engines. The main killer of humans in the immediate surroundings of a volcanic eruption is pyroclastic flows, consisting of a cloud of hot ash which builds up in the air above the volcano and rushes down the slopes when the eruption no longer supports the lifting of the gases. It is believed that Pompeii was destroyed by a pyroclastic flow. A lahar is a volcanic mudflow or landslide. The 1953 Tangiwai disaster was caused by a lahar, as was the 1985 Armero tragedy in which the town of Armero was buried and an estimated 23,000 people were killed.[citation needed]

Volcanoes rated at 8 (the highest level) on the Volcanic Explosivity Index are known as supervolcanoes. According to the Toba catastrophe theory, 75,000 to 80,000 years ago, a supervolcanic eruption at what is now Lake Toba in Sumatra reduced the human population to 10,000 or even 1,000 breeding pairs, creating a bottleneck in human evolution,[61] and killed three-quarters of all plant life in the northern hemisphere. However, there is considerable debate regarding the veracity of this theory. The main danger from a supervolcano is the immense cloud of ash, which has a disastrous global effect on climate and temperature for many years.

Disasters caused by water hazards

 
The Limpopo River during the 2000 Mozambique flood

A hydrological disaster is a violent, sudden and destructive change either in the quality of Earth's water or in the distribution or movement of water on land below the surface or in the atmosphere.

Floods

A flood is an overflow of water that 'submerges' land.[62] The EU Floods Directive defines a flood as a temporary covering of land that is usually dry with water.[63] In the sense of 'flowing water', the word may also be applied to the inflow of the tides. Flooding may result from the volume of a body of water, such as a river or lake, becoming higher than usual, causing some of the water to escape its usual boundaries.[64] While the size of a lake or other body of water will vary with seasonal changes in precipitation and snow melt, a flood is not considered significant unless the water covers land used by humans, such as a village, city or other inhabited area, roads or expanses of farmland.

Tsunami

 
1755 copper engraving depicting Lisbon in ruins and in flames after the 1755 Lisbon earthquake. A tsunami overwhelms the ships in the harbor.

A tsunami (plural: tsunamis or tsunami; from Japanese: 津波, lit. "harbour wave"; English pronunciation: /tsuːˈnɑːmi/), also known as a seismic sea wave or tidal wave, is a series of waves in a water body caused by the displacement of a large volume of water, generally in an ocean or a large lake. Tsunamis can be caused by undersea earthquakes such as the 2004 Boxing Day tsunami, or by landslides such as the one in 1958 at Lituya Bay, Alaska, or by volcanic eruptions such as the ancient eruption of Santorini. On March 11, 2011, a tsunami occurred near Fukushima, Japan and spread through the Pacific Ocean.

Limnic eruptions

A limnic eruption, also known as a lake overturn, occurs when a gas, usually CO2, suddenly erupts from deep lake water, posing the threat of suffocating wildlife, livestock and humans. Such an eruption may also cause tsunamis in the lake as the rising gas displaces water. Scientists believe that landslides, explosions or volcanic activity can trigger such an eruption. To date, only two limnic eruptions have been observed and recorded. In 1984, in Cameroon, a limnic eruption in Lake Monoun caused the deaths of 37 nearby residents; at nearby Lake Nyos in 1986, a much larger eruption killed between 1,700 and 1,800 people by asphyxiation.

Disasters caused by extreme weather hazards

Hot and dry conditions

Heat waves

A heat wave is a period of unusually and excessively hot weather. Heat waves are rare and require specific combinations of weather events to take place, and may include temperature inversions, katabatic winds, or other phenomena. The worst heat wave in recent history was the European Heat Wave of 2003. A summer heat wave in Victoria, Australia, created conditions which fuelled the massive bushfires in 2009. Melbourne experienced three days in a row of temperatures exceeding 40 °C (104 °F), with some regional areas sweltering through much higher temperatures. The bushfires, collectively known as "Black Saturday", were partly the act of arsonists. The 2010 Northern Hemisphere summer resulted in severe heat waves which killed over 2,000 people. The heat caused hundreds of wildfires which led to widespread air pollution and burned thousands of square kilometers of forest.

Droughts

 
 
 
 
Droughts cause a range of impacts and are often worsened by to the effects of climate change on the water cycle: a dry riverbed in France; sandstorm in Somaliland due to drought; droughts negatively impact agriculture in Texas; drought and high temperatures worsened the 2020 bushfires in Australia.
A drought is a period of drier-than-normal conditions.[65]: 1157  A drought can last for days, months or years. Drought often has large impacts on the ecosystems and agriculture of affected regions, and causes harm to the local economy.[66][67] Annual dry seasons in the tropics significantly increase the chances of a drought developing and subsequent wildfires.[68] Periods of heat can significantly worsen drought conditions by hastening evaporation of water vapour,[69] drying out forests and other vegetation and increasing fuel for wildfires.[68][70]

Well-known historical droughts include the 1997–2009 Millennium Drought in Australia which led to a water supply crisis across much of the country. As a result, many desalination plants were built for the first time (see list). In 2011, the State of Texas lived under a drought emergency declaration for the entire calendar year and suffered severe economic losses.[71] The drought caused the Bastrop fires.

Duststorms

A dust storm, also called a sandstorm, is a meteorological phenomenon common in arid and semi-arid regions.[72] Dust storms arise when a gust front or other strong wind blows loose sand and dirt from a dry surface. Fine particles are transported by saltation and suspension, a process that moves soil from one place and deposits it in another.

Firestorms

A firestorm is a conflagration which attains such intensity that it creates and sustains its own wind system. It is most commonly a natural phenomenon, created during some of the largest bushfires and wildfires. Although the term has been used to describe certain large fires,[73] the phenomenon's determining characteristic is a fire with its own storm-force winds from every point of the compass towards the storm's center, where the air is heated and then ascends.[74][75]

Wildfires

 
A wildfire in California.

Wildfires are large fires which often start in wildland areas. Common causes include lightning and drought but wildfires may also be started by human negligence or arson. They can spread to populated areas and thus be a threat to humans and property, as well as wildlife. Notable wildfires include the 1871 Peshtigo Fire in the United States, which killed at least 1700 people, and the 2009 Victorian bushfires in Australia.[76][77][78][79][80]

Storms

Tropical cyclone

Typhoon, cyclone, cyclonic storm and hurricane are different names for the same phenomenon: a tropical storm that forms over an ocean. It is caused by evaporated water that comes off of the ocean and becomes a storm. It is characterized by strong winds, heavy rainfall and thunderstorms. The determining factor on which term is used is based on where the storm originates. In the Atlantic and Northeast Pacific, the term "hurricane" is used; in the Northwest Pacific, it is referred to as a "typhoon"; a "cyclone" occurs in the South Pacific and Indian Ocean.

The deadliest hurricane ever was the 1970 Bhola cyclone; the deadliest Atlantic hurricane was the Great Hurricane of 1780, which devastated Martinique, St. Eustatius and Barbados. Another notable hurricane is Hurricane Katrina, which devastated the Gulf Coast of the United States in 2005. Hurricanes may become more intense and produce more heavy rainfall as a consequence of human-induced climate change.

Thunderstorms

 
A classic anvil-shaped, and clearly-developed Cumulonimbus incus

Severe storms, dust clouds and volcanic eruptions can generate lightning. Apart from the damage typically associated with storms, such as winds, hail and flooding, the lightning itself can damage buildings, ignite fires and kill by direct contact. Especially deadly lightning incidents include a 2007 strike in Ushari Dara, a remote mountain village in northwestern Pakistan, that killed 30 people;[81] the crash of LANSA Flight 508 which killed 91 people; and a fuel explosion in Dronka, Egypt, caused by lightning in 1994 which killed 469 people.[82] Most deaths from lightning occur in the poorer countries of the Americas and Asia, where lightning is common and adobe mud brick housing provides little protection.[83]

Tornadoes

 
A rope tornado in its dissipating stage, Tecumseh, Oklahoma.

A tornado is a violent and dangerous rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud, or, in rare cases, the base of a cumulus cloud. It is also referred to as a twister or a cyclone,[84] although the word cyclone is used in meteorology in a wider sense to refer to any closed low pressure circulation. Tornadoes come in many shapes and sizes but typically take the form of a visible condensation funnel, the narrow end of which touches the Earth and is often encircled by a cloud of debris and dust. Tornadoes can occur one at a time, or can occur in large tornado outbreaks associated with supercells or in other large areas of thunderstorm development.

Most tornadoes have wind speeds of less than 180 km/h (110 mph), are approximately 75 m (250 ft) across, and travel a few kilometers before dissipating. The most extreme tornadoes can attain wind speeds of more than 480 km/h (300 mph), stretch more than 3 km (2 mi) across, and stay on the ground for perhaps more than 100 km (60 mi).[85][86][87]

Cold-weather events

Blizzards

 
A blizzard in Maryland in 2009

Blizzards are severe winter storms characterized by heavy snow and strong winds. When high winds stir up snow that has already fallen, it is known as a ground blizzard. Blizzards can impact local economic activities, especially in regions where snowfall is rare. The Great Blizzard of 1888 affected the United States, when many tons of wheat crops were destroyed. In Asia, the 1972 Iran blizzard and the 2008 Afghanistan blizzard, were the deadliest blizzards in history; in the former, an area the size of Wisconsin was entirely buried in snow. The 1993 Superstorm originated in the Gulf of Mexico and traveled north, causing damage in 26 American states as well as in Canada and leading to more than 300 deaths.[88]

Hailstorms

 
A large hailstone, about 6 cm (2+12 in) in diameter

Hail is precipitation in the form of ice that does not melt before it hits the ground. Hailstorms are produced by thunderstorms .Hailstones usually measure between 5 and 150 mm (14 and 6 in) in diameter. These can damage the location in which they fall. Hailstorms can be especially devastating to farm fields, ruining crops and damaging equipment. A particularly damaging hailstorm hit Munich, Germany, on July 12, 1984, causing about $2 billion in insurance claims.

Ice storms

An ice storm is a type of winter storm characterized by freezing rain. The U.S. National Weather Service defines an ice storm as a storm which results in the accumulation of at least 14 inch (6.35 mm) of ice on exposed surfaces.

Cold waves

A cold wave, known in some regions as a cold snap or cold spell, is a weather phenomenon that is distinguished by a cooling of the air. Specifically, as used by the U.S. National Weather Service, a cold wave is a rapid fall in temperature within a 24-hour period, requiring substantially increased protection to agriculture, industry, commerce and social activities. The precise criterion for a cold wave is determined by the rate at which the temperature falls and the minimum to which it falls. This minimum temperature is dependent on the geographical region and time of year.

Multi-hazard analysis

Each of the natural hazard types outlined above have very different characteristics, in terms of the spatial and temporal scales they influence, hazard frequency and return period, and measures of intensity and impact. These complexities result in "single-hazard" assessments being commonplace, where the hazard potential from one particular hazard type is constrained. In these examples, hazards are often treated as isolated or independent. An alternative is a "multi-hazard" approach which seeks to identify all possible natural hazards and their interactions or interrelationships.[89][90]

Many examples exist of one natural hazard triggering or increasing the probability of one or more other natural hazards. For example, an earthquake may trigger landslides, whereas a wildfire may increase the probability of landslides being generated in the future.[90] A detailed review of such interactions across 21 natural hazards identified 90 possible interactions, of varying likelihood and spatial importance.[90] There may also be interactions between these natural hazards and anthropic processes.[91] For example, groundwater abstraction may trigger groundwater-related subsidence.[92]

Effective hazard analysis in any given area (e.g., for the purposes of disaster risk reduction) should ideally include an examination of all relevant hazards and their interactions. To be of most use for risk reduction, hazard analysis should be extended to risk assessment wherein the vulnerability of the built environment to each of the hazards is taken into account. This step is well developed for seismic risk, where the possible effect of future earthquakes on structures and infrastructure is assessed, as well as for risk from extreme wind and to a lesser extent flood risk. For other types of natural hazard the calculation of risk is more challenging, principally because of the lack of functions linking the intensity of a hazard and the probability of different levels of damage (fragility curves).[93]

Responses

Disaster management is a main function of civil protection (or civil defence) authorities. It should address all four of the phases of disasters: mitigation and prevention, disaster response, recovery and preparedness.

 
Haiti earthquake damage

Mitigation and prevention

Preventive or mitigation measures vary for different types of disasters. In earthquake prone areas, these preventive measures might include structural changes such as the installation of an earthquake valve to instantly shut off the natural gas supply, seismic retrofits of property, and the securing of items inside a building. The latter may include the mounting of furniture, refrigerators, water heaters and breakables to the walls, and the addition of cabinet latches. In flood prone areas, houses can be built on stilts. In areas prone to prolonged electricity black-outs installation of a generator ensures continuation of electrical service. The construction of storm cellars and fallout shelters are further examples of personal mitigative actions.

Disaster risk reduction

 
Villages have adapted the design of houses to protect people from rising flood waters and small boats are used to transport people and food to sustain livelihoods. This kind of disaster risk reduction is an important Climate change adaptation

Disaster risk reduction (DRR) sometimes called disaster risk management (DRM) is a systematic approach to identifying, assessing and reducing the risks of disaster. It aims to reduce socio-economic vulnerabilities to disaster as well as dealing with the environmental and other hazards that trigger them. In other words, the aim of DRR is "to prevent new and reducing existing disaster risk and managing residual risk, all of which contribute to strengthening resilience and therefore to the achievement of sustainable development".[94]: 16 

Disaster risk reduction has been strongly influenced by the research on vulnerability since the mid-1970s[95] as well as the mapping of natural disaster risks.[96] Disaster risk reduction is the responsibility of development and relief agencies alike. It should be an integral part of the way such organizations do their work, not an add-on or one-off action. [citation needed] Disaster risk reduction is very wide-ranging: Its scope is much broader and deeper than conventional emergency management. There is potential for disaster risk reduction initiatives in most sectors of development and humanitarian work.

Internationally, an important initiative is the Sendai Framework for Disaster Risk Reduction. It aims to help countries establish national and local strategies for DRR; as of 2022, 125 countries had national strategies. The International Day for Disaster Risk Reduction, on October 13, has helped increase the visibility of DRR and promote a culture of prevention. Some of the main issues and challenges include the importance of communities and local organisations in disaster risk management, governance of disaster risk and how this relates to development, and gender sensitivity of disaster impacts and disaster prevention strategies.

Response

Disaster response refers to the actions taken directly before, during or in the immediate aftermath of a disaster. The objective is to save lives, ensure health and safety and to meet the subsistence needs of the people affected.[97]: 16  This includes warning/evacuation, search and rescue, providing immediate assistance, assessing damage, continuing assistance and the immediate restoration or construction of infrastructure (i.e. provisional storm drains or diversion dams). The aim of emergency response is to provide immediate assistance to maintain life, improve health and support the morale of the affected population. Such assistance may range from providing specific but limited aid, such as assisting refugees with transport, temporary shelter, and food to establishing semi-permanent settlements in camps and other locations. It also may involve initial repairs to damage or diversion to infrastructure.

Recovery

 
Driving through flash flood

The recovery phase starts after the immediate threat to human life has subsided. The immediate goal of the recovery phase is to bring the affected area back to normalcy as quickly as possible. During reconstruction, it is recommended to consider the location or construction material of the property.[98]

The most extreme home confinement scenarios include war, famine, and severe epidemics and may last a year or more. Then recovery will take place inside the home. Planners for these events usually buy bulk foods and appropriate storage and preparation equipment, and eat the food as part of normal life. A simple balanced diet can be constructed from vitamin pills, whole-grain wheat, beans, dried milk, corn, and cooking oil.[99] Vegetables, fruits, spices and meats, both prepared and fresh-gardened, are included when possible.[100]

Preparedness

Preparedness focuses on preparing equipment and procedures for use when a disaster occurs. The equipment and procedures can be used to reduce vulnerability to disaster, to mitigate the impacts of a disaster, or to respond more efficiently in an emergency. The US Federal Emergency Management Agency (FEMA) proposed out a basic four-stage vision of preparedness flowing from mitigation to preparedness to response to recovery and back to mitigation in a circular planning process.[101] This circular, overlapping model has been modified by other agencies, taught in emergency classes, and discussed in academic papers.[102]

Society and culture

International law

The United Nations Office for the Coordination of Humanitarian Affairs was formed by General Assembly Resolution 44/182.

Under the Convention on the Rights of Persons with Disabilities, "States Parties shall take, in accordance with their obligations under international law, including international humanitarian law and international human rights law, all necessary measures to ensure the protection and safety of persons with disabilities in situations of risk, including situations of armed conflict, humanitarian emergencies and the occurrence of natural disasters."[103] The 1998 UN Guiding Principles on Internal Displacement and 2009 Kampala Convention also protect people displaced due to natural disasters.[104][105]

See also

References

  1. ^ a b c d "Natural Hazards | National Risk Index". hazards.fema.gov. Retrieved 2022-06-08.
  2. ^ G. Bankoff, G. Frerks, D. Hilhorst (eds.) (2003). Mapping Vulnerability: Disasters, Development and People. ISBN 1-85383-964-7.{{cite book}}: CS1 maint: multiple names: authors list (link)[page needed]
  3. ^ a b Kevin Blanchard #NoNaturalDisasters – Changing the discourse of natural disaster reporting (16 November 2018)
  4. ^ Cannon, Terry. (1994). Vulnerability Analysis and The Explanation Of 'Natural' Disasters. Disasters, Development and Environment.
  5. ^ a b c d "Why natural disasters aren't all that natural". www.preventionweb.net. 14 September 2017. Retrieved 2022-06-06.
  6. ^ a b "Why natural disasters aren't all that natural". openDemocracy. 2020-11-26. from the original on 2020-11-29. Retrieved 2020-12-29.
  7. ^ Gould, Kevin A.; Garcia, M. Magdalena; Remes, Jacob A.C. (1 December 2016). "Beyond 'natural-disasters-are-not-natural': the work of state and nature after the 2010 earthquake in Chile". Journal of Political Ecology. 23 (1): 93. doi:10.2458/v23i1.20181.
  8. ^ Smith, Neil (2006-06-11). "There's No Such Thing as a Natural Disaster". Items. from the original on 2021-01-22. Retrieved 2020-12-29.
  9. ^ Coburn, Andrew W.; Spence, Robin JS; Pomonis, Antonios (1992). "Factors determining human casualty levels in earthquakes: mortality prediction in building collapse" (PDF). Proceedings of the tenth world conference on earthquake engineering. Vol. 10. pp. 5989–5994. ISBN 978-90-5410-060-7. (PDF) from the original on 2020-11-12. Retrieved 2020-12-29.
  10. ^ "Wildfire Causes and Evaluations (U.S. National Park Service)". NPS.gov Homepage (U.S. National Park Service). 2018-11-27. from the original on 2021-01-01. Retrieved 2020-12-29.
  11. ^ a b DeWeerdt, Sarah (2020-09-15). "Humans cause 96% of wildfires that threaten homes in the U.S." Anthropocene. from the original on 2020-12-10. Retrieved 2020-12-29.
  12. ^ Smil, Vaclav (18 December 1999). "China's great famine: 40 years later". BMJ. 319 (7225): 1619–1621. doi:10.1136/bmj.319.7225.1619. PMC 1127087. PMID 10600969.
  13. ^ McGuire, Bill (2012). Waking the Giant: How a changing climate triggers earthquakes, tsunamis, and volcanoes. Oxford University Press. ISBN 978-0-19-959226-5. from the original on 2022-04-18. Retrieved 2020-12-29.[page needed]
  14. ^ Zorn, Matija (2018), Pelc, Stanko; Koderman, Miha (eds.), "Natural Disasters and Less Developed Countries", Nature, Tourism and Ethnicity as Drivers of (De)Marginalization: Insights to Marginality from Perspective of Sustainability and Development, Perspectives on Geographical Marginality, Cham: Springer International Publishing, vol. 3, pp. 59–78, doi:10.1007/978-3-319-59002-8_4, ISBN 978-3-319-59002-8, retrieved 2022-06-08
  15. ^ D. Alexander (2002). Principles of Emergency planning and Management. Harpended: Terra publishing. ISBN 1-903544-10-6.
  16. ^ B. Wisner; P. Blaikie; T. Cannon & I. Davis (2004). At Risk – Natural hazards, people's vulnerability and disasters. Wiltshire: Routledge. ISBN 0-415-25216-4.[page needed]
  17. ^ Kieft, J.; Bendell, J (2021). "The responsibility of communicating difficult truths about climate influenced societal disruption and collapse: an introduction to psychological research". Institute for Leadership and Sustainability (IFLAS) Occasional Papers. 7: 1–39. from the original on 2021-03-10. Retrieved 2021-04-03.
  18. ^ "What is a disaster?". www.ifrc.org – IFRC. Retrieved 2023-05-24.
  19. ^ Organization of American States, Department of Regional Development; Organization of American States, Natural Hazards Project; United States Agency for International Development, Office of Foreign Disaster Assistance (1990). Disaster, planning and development: managing natural hazards to reduce loss (PDF). Washington, D.C.: Organization of American States. Retrieved 21 July 2014.
  20. ^ Burton, I.; Kates, R.W.; White, G.F. (1993). The environment as hazard. Guilford Press. ISBN 978-0898621594.
  21. ^ Gill, Joel C.; Malamud, Bruce D. (2017-03-01). "Anthropogenic processes, natural hazards, and interactions in a multi-hazard framework". Earth-Science Reviews. 166: 246–269. Bibcode:2017ESRv..166..246G. doi:10.1016/j.earscirev.2017.01.002.
  22. ^ "Time to say goodbye to "natural" disasters". www.preventionweb.net. Retrieved 2022-06-06.
  23. ^ IPCC, 2022: Summary for Policymakers [H.-O. Pörtner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem (eds.)]. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press: Cambridge and New York, pp. 3–33, doi:10.1017/9781009325844.001.
  24. ^ "Global health estimates: Leading causes of DALYs". from the original on 2021-01-06.
  25. ^ "2019 WHO DALY report data". from the original on 2022-03-31.
  26. ^ Asia-Pacific World’s Most Disaster-Prone Region
  27. ^ "Asia-Pacific: the world's most disaster-prone region – World". ReliefWeb. 10 October 2017. from the original on 2018-10-04. Retrieved 2018-10-04.
  28. ^ "Weather-related disasters are increasing". The Economist. 29 Aug 2017. from the original on 30 August 2017. Retrieved 30 August 2017.
  29. ^ Natural Catastrophes in 2012 Dominated by U.S. Weather Extremes 2013-07-02 at the Wayback Machine Worldwatch Institute May 29, 2013
  30. ^ "Natural hazards and disaster risk reduction". public.wmo.int. 2015-12-01. Retrieved 2023-05-18.
  31. ^ Cueto, Lavinia Javier; Agaton, Casper Boongaling (2021). "Pandemic and Typhoon: Positive Impacts of a Double Disaster on Mental Health of Female Students in the Philippines". Behavioral Sciences. 11 (5): 64. doi:10.3390/bs11050064. PMC 8147095. PMID 33946801.
  32. ^ a b Rosling, H.; Rosling, O.; Rönnlund, A.R. (2018). Factfulness: Ten Reasons We're Wrong About the World – and Why Things Are Better Than You Think. Flatiron Books. pp. 107–109, 299–325. ISBN 978-1-250-10781-7.
  33. ^ a b c d "Drowning in Plastics – Marine Litter and Plastic Waste Vital Graphics". UNEP – UN Environment Programme. 2021-10-21. from the original on 2022-03-21. Retrieved 2022-03-23.  This article incorporates text available under the CC BY 4.0 license.
  34. ^ a b c d e f g h i Nour, Nawal N (2011). "Maternal Health Considerations During Disaster Relief". Reviews in Obstetrics and Gynecology. 4 (1): 22–27. PMC 3100103. PMID 21629495.
  35. ^ Lord, Leighann (1 October 2019). "The easiest way to respond to a natural disaster? Blame God or global warming". The Guardian. from the original on 28 September 2019. Retrieved 28 September 2019.
  36. ^ "Kerala flood blamed on women's entry into Sabarimala by Hindu Makkal Katchi". The New Indian Express. 15 August 2018. from the original on 28 September 2019. Retrieved 28 September 2019.
  37. ^ Asmita Nandy (20 August 2018). "Hate Mongers on Twitter Blamed Women, Beef, Muslims, Christians and Communism for Causing the Kerala Floods". The Quint. from the original on 28 September 2019. Retrieved 28 September 2019.
  38. ^ Pat Pilcher (26 April 2010). "Islamic cleric causes Boobquake". The New Zealand Herald. from the original on 15 February 2020. Retrieved 28 September 2019.
  39. ^ a b Harville, Emily; Xiong, Xu; Buekens, Pierre (November 2010). "Disasters and Perinatal Health: A Systematic Review". Obstetrical & Gynecological Survey. 65 (11): 713–728. doi:10.1097/OGX.0b013e31820eddbe. PMC 3472448. PMID 21375788.
  40. ^ Meyers, Talya (23 December 2019). "Pregnant women are particularly vulnerable to disasters". Direct Relief. from the original on 1 October 2020. Retrieved 21 September 2020.
  41. ^ American College of Obstetricians and Gynecologists Committee on Health Care for Underserved Women (June 2010). "Committee Opinions No. 457: Preparing for Disasters: Perspectives on Women". Obstetrics & Gynecology. 115 (6): 1339–1342. doi:10.1097/AOG.0b013e3181e45a6f. PMID 20502312.
  42. ^ "Indonesia earthquake and tsunami: All the latest updates". www.aljazeera.com. from the original on 2020-12-26. Retrieved 2020-12-29.
  43. ^ Clarke, Daniel J.; Dercon, Stefan (2016). Dull Disasters? How planning ahead will make a difference. Oxford University Press. ISBN 978-0-19-878557-6. from the original on 2021-10-04. Retrieved 2021-10-04.
  44. ^ Ashworth, Scott; Bueno de Mesquita, Ethan; Friedenberg, Amanda (May 2017). "Accountability and Information in Elections". American Economic Journal: Microeconomics. 9 (2): 95–138. doi:10.1257/mic.20150349. ISSN 1945-7669. from the original on 2021-10-04. Retrieved 2022-04-18.
  45. ^ Gasper, John T.; Reeves, Andrew (April 2011). "Make It Rain? Retrospection and the Attentive Electorate in the Context of Natural Disasters". American Journal of Political Science. 55 (2): 340–355. doi:10.1111/j.1540-5907.2010.00503.x. JSTOR 23025055.
  46. ^ a b Healy, Andrew; Malhotra, Neil (August 2009). "Myopic Voters and Natural Disaster Policy". American Political Science Review. 103 (3): 387–406. doi:10.1017/S0003055409990104. ISSN 1537-5943. S2CID 32422707. from the original on 2021-10-04. Retrieved 2021-10-04.
  47. ^ Achen, Christopher; Bartels, Larry (2017). Blind Retrospection: Electoral Responses to Droughts, Floods, and Shark Attacks. Princeton University Press. doi:10.1515/9781400888740-007. ISBN 978-1-4008-8874-0. from the original on 2021-10-04. Retrieved 2021-10-04.
  48. ^ Besley, Timothy; Burgess, Robin (2001-05-01). "Political agency, government responsiveness and the role of the media". European Economic Review. 15th Annual Congress of the European Economic Association. 45 (4): 629–640. doi:10.1016/S0014-2921(01)00133-7. ISSN 0014-2921. from the original on 2020-06-23. Retrieved 2021-10-04.
  49. ^ Nel, Philip; Righarts, Marjolein (1 March 2008). "Natural Disasters and the Risk of Violent Civil Conflict". International Studies Quarterly. 52 (1): 159–185. CiteSeerX 10.1.1.408.6031. doi:10.1111/j.1468-2478.2007.00495.x. JSTOR 29734228.
  50. ^ Brancati, Dawn (October 2007). "Political Aftershocks: The Impact of Earthquakes on Intrastate Conflict". Journal of Conflict Resolution. 51 (5): 715–743. doi:10.1177/0022002707305234. JSTOR 27638575. S2CID 154551510. SSRN 2558790. ProQuest 224558525.
  51. ^ "Name of Japan's next era to avoid initial letters used to refer to past four eras". The Japan Times. September 3, 2018. from the original on October 4, 2018. Retrieved October 4, 2018.
  52. ^ "Landslide synonyms". thesaurus.com. Roget's 21st Century Thesaurus. 2013. from the original on 24 September 2020. Retrieved 16 March 2018.
  53. ^ McGraw-Hill Encyclopedia of Science & Technology, 11th Edition, ISBN 9780071778343, 2012
  54. ^ "USGS factsheet, Landslide Types and Processes, 2004". from the original on 2020-10-04. Retrieved 2020-08-28.
  55. ^ Hungr, Oldrich; Leroueil, Serge; Picarelli, Luciano (2014-04-01). "The Varnes classification of landslide types, an update". Landslides. 11 (2): 167–194. doi:10.1007/s10346-013-0436-y. ISSN 1612-5118. S2CID 38328696.
  56. ^ Haflidason, Haflidi; Sejrup, Hans Petter; Nygård, Atle; Mienert, Jurgen; Bryn, Petter; Lien, Reidar; Forsberg, Carl Fredrik; Berg, Kjell; Masson, Doug (2004-12-15). "The Storegga Slide: architecture, geometry and slide development". Marine Geology. COSTA - Continental Slope Stability. 213 (1): 201–234. Bibcode:2004MGeol.213..201H. doi:10.1016/j.margeo.2004.10.007. ISSN 0025-3227.
  57. ^ Giacomo Pepe; Andrea Mandarino; Emanuele Raso; Patrizio Scarpellini; Pierluigi Brandolini; Andrea Cevasco (2019). "Investigation on Farmland Abandonment of Terraced Slopes Using Multitemporal Data Sources Comparison and Its Implication on Hydro-Geomorphological Processes". Water. MDPI. 8 (11): 1552. doi:10.3390/w11081552. ISSN 2073-4441. OCLC 8206777258., at the introductory section.
  58. ^ Center, By Jessica Merzdorf, NASA’s Goddard Space Flight. "Climate Change Could Trigger More Landslides in High Mountain Asia". Climate Change: Vital Signs of the Planet. from the original on 2023-02-04. Retrieved 2023-02-04.{{cite web}}: CS1 maint: multiple names: authors list (link)
  59. ^ "Snow Avalanches | National Snow and Ice Data Center". nsidc.org. Retrieved 23 March 2021.
  60. ^ Komar, Paul D. (1983). CRC handbook of coastal processes and erosion. CRC Press. ISBN 9780849302251.
  61. ^ GibbonsJan. 19, Ann (19 January 2010). "Human Ancestors Were an Endangered Species". Science. AAAS. from the original on 8 December 2020. Retrieved 29 December 2020.
  62. ^ MSN Encarta Dictionary. Flood. 2011-02-04 at the Wayback Machine Retrieved on 2006-12-28. 2009-10-31.
  63. ^ "Directive 2007/60/EC Chapter 1 Article2". from the original on 2015-11-06. Retrieved 2011-11-14.
  64. ^ Glossary of Meteorology (June 2000). Flood. 2007-08-24 at the Wayback Machine Retrieved on 2009-01-09.
  65. ^ Douville, H., K. Raghavan, J. Renwick, R.P. Allan, P.A. Arias, M. Barlow, R. Cerezo-Mota, A. Cherchi, T.Y. Gan, J. Gergis, D.  Jiang, A.  Khan, W.  Pokam Mba, D.  Rosenfeld, J. Tierney, and O.  Zolina, 2021: Water Cycle Changes 2022-09-29 at the Wayback Machine. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I  to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1055–1210, doi:10.1017/9781009157896.010.
  66. ^ Living With Drought 2007-02-18 at the Wayback Machine
  67. ^ Australian Drought and Climate Change 2018-07-26 at the Wayback Machine, retrieved on June 7th 2007.
  68. ^ a b Brando, Paulo M.; Paolucci, Lucas; Ummenhofer, Caroline C.; Ordway, Elsa M.; Hartmann, Henrik; Cattau, Megan E.; Rattis, Ludmila; Medjibe, Vincent; Coe, Michael T.; Balch, Jennifer (30 May 2019). "Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis". Annual Review of Earth and Planetary Sciences. 47 (1): 555–581. doi:10.1146/annurev-earth-082517-010235. ISSN 0084-6597.
  69. ^ Merzdorf, Jessica (July 9, 2019). "A Drier Future Sets the Stage for More Wildfires". Climate Change: Vital Signs of the Planet. NASA.
  70. ^ Hartmann, Henrik; Bastos, Ana; Das, Adrian J.; Esquivel-Muelbert, Adriane; Hammond, William M.; Martínez-Vilalta, Jordi; McDowell, Nate G.; Powers, Jennifer S.; Pugh, Thomas A.M.; Ruthrof, Katinka X.; Allen, Craig D. (20 May 2022). "Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide". Annual Review of Plant Biology. 73 (1): 673–702. doi:10.1146/annurev-arplant-102820-012804. ISSN 1543-5008.
  71. ^ "Billion-Dollar Weather and Climate Disasters: Events | National Centers for Environmental Information (NCEI)". www.ncdc.noaa.gov. from the original on 2014-04-01. Retrieved 2015-03-20.
  72. ^ "Airborne Dust: A Hazard to Human Health, Environment and Society". WMO - Bulletin: Vol 64 (2) - 2015. 2022.
  73. ^ Scawthorn, Charles, ed. (2005). Fire following earthquake. Technical Council on Lifeline Earthquake Engineering monograph. Reston, VA: American Society of Civil Engineers. p. 68. ISBN 978-0-7844-0739-4.
  74. ^ Alexander Mckee's Dresden 1945: The Devil's Tinderbox
  75. ^ (PDF). Dtic.mil. Archived from the original (PDF) on 18 February 2013. Retrieved 11 May 2016. A fire storm is characterized by strong to gale force winds blowing toward the fire everywhere around the fire perimeter and results from the rising column of hot gases over an intense, mass fire drawing in the cool air from the periphery. These winds blow the fire brands into the burning area and tend to cool the unignited fuel outside so that ignition by radiated heat is more difficult, thus limiting fire spread.
  76. ^ "2009 Victorian Bushfires | Victorian Government". www.vic.gov.au. from the original on 2021-04-28. Retrieved 2021-04-25.
  77. ^ US Department of Commerce, NOAA. "The Peshtigo Fire". www.weather.gov. from the original on 2021-04-25. Retrieved 2021-04-25.
  78. ^ "Massive fire burns in Wisconsin". History.com. from the original on 2021-04-15. Retrieved 2021-04-25.
  79. ^ corporateName=National Museum of Australia; address=Lawson Crescent, Acton Peninsula. "National Museum of Australia – Black Saturday bushfires". www.nma.gov.au. from the original on 2021-04-23. Retrieved 2021-04-25.{{cite web}}: CS1 maint: multiple names: authors list (link)
  80. ^ "Bushfire – Black Saturday, Victoria, 2009 | Australian Disaster Resilience Knowledge Hub". knowledge.aidr.org.au. from the original on 2021-03-26. Retrieved 2021-04-25.
  81. ^ "Lightning kills 30 people in Pakistan's north". Reuters. 20 July 2007. from the original on 4 April 2020. Retrieved 29 December 2020.
  82. ^ "An appraisal of underground gas storage technologies". Health and Safety Executive. from the original on 2020-10-25. Retrieved 2020-12-29.
  83. ^ "Deadly lightning strike in Mexico reveals plight of poorest citizens". The Guardian. 31 July 2015. from the original on 6 January 2017. Retrieved 17 December 2016.
  84. ^ "Definition of CYCLONE". www.merriam-webster.com. from the original on 2021-01-05. Retrieved 2020-12-29.
  85. ^ Wurman, Joshua (2008-08-29). . Center for Severe Weather Research. Archived from the original on 2007-02-05. Retrieved 2009-12-13.
  86. ^ "Hallam Nebraska Tornado". National Weather Service. National Oceanic and Atmospheric Administration. 2005-10-02. from the original on 2014-08-20. Retrieved 2009-11-15.
  87. ^ Roger Edwards (2006-04-04). . National Weather Service. National Oceanic and Atmospheric Administration. Archived from the original on 2006-09-29. Retrieved 2006-09-08.
  88. ^ "Natural Hazards – Snow & Hail Storms". www.n-d-a.org. from the original on 2017-02-03. Retrieved 2017-02-26.
  89. ^ Kappes, Melanie S.; Keiler, Margreth; von Elverfeldt, Kirsten; Glade, Thomas (2012). "Challenges of analyzing multi-hazard risk: a review" (PDF). Natural Hazards. 64 (2): 1925–1958. doi:10.1007/s11069-012-0294-2. S2CID 108636952.
  90. ^ a b c Gill, Joel C.; Malamud, Bruce D. (December 2014). "Reviewing and visualizing the interactions of natural hazards". Reviews of Geophysics. 52 (4): 680–722. Bibcode:2014RvGeo..52..680G. doi:10.1002/2013RG000445.
  91. ^ "Reviewing and visualising relationships between anthropic processes and natural hazards within a multi-hazard framework" (PDF). Copernicus Office. Retrieved 10 September 2023.
  92. ^ "Land Subsidence". USGS Water Science School. Retrieved 11 May 2017.
  93. ^ Douglas, J. (2007-04-05). "Physical vulnerability modelling in natural hazard risk assessment" (PDF). Nat. Hazards Earth Syst. Sci. 7 (2): 283–288. Bibcode:2007NHESS...7..283D. doi:10.5194/nhess-7-283-2007. ISSN 1684-9981.
  94. ^ UNGA (2016). Report of the open-ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction. United Nations General Assembly (UNGA).
  95. ^ Blaikie, Piers; Cannon, Terry; Davis, Ian; Wisner, Ben (2004). At Risk: Natural hazards, people's risk and disasters (2nd ed.). London: Routledge. ISBN 9780415252157.
  96. ^ Shi, Peijun; Kasperson, Roger, eds. (2015). "World Atlas of Natural Disaster Risk". IHDP/Future Earth-Integrated Risk Governance Project Series. doi:10.1007/978-3-662-45430-5. ISBN 978-3-662-45429-9. ISSN 2363-4979. S2CID 199492512.
  97. ^ UNGA (2016). Report of the open-ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction. United Nations General Assembly (UNGA).
  98. ^ Akcay, Cemil; Şolt, Ayşen; Korkmaz, Nail Mahir; Sayin, Baris (2020-11-01). "A proposal for the reconstruction of a historical masonry building constructed in Ottoman Era (Istanbul)". Journal of Building Engineering. 32: 101493. doi:10.1016/j.jobe.2020.101493. ISSN 2352-7102.
  99. ^ "Federal Emergency Management Agency". FEMA.gov. Retrieved 2013-08-11.
  100. ^ Galhena, Dilrukshi Hashini; Freed, Russell; Maredia, Karim M. (2013-05-31). "Home gardens: a promising approach to enhance household food security and wellbeing". Agriculture & Food Security. 2 (1): 8. doi:10.1186/2048-7010-2-8. ISSN 2048-7010.
  101. ^ . Training.fema.gov. Archived from the original on 2015-07-14. Retrieved 2015-03-06.
  102. ^ Baird, Malcolm E. (2010). "The "Phases" of Emergency Management" (PDF). Vanderbilt Center for Transportation Research. Retrieved 2015-03-08.
  103. ^ "Article 11 – Situations of risk and humanitarian emergencies". United Nations. 13 December 2006. from the original on 3 September 2021. Retrieved 3 September 2021.
  104. ^ Terminski, Bogumil (2012). Towards recognition and protection of forced environmental migrants in the public international law: Refugee or IDPs umbrella? (Report). from the original on 2022-04-18. Retrieved 2020-12-29.
  105. ^ "2009 Kampala Convention on IDPs" (PDF). UNHCR. May 2019. (PDF) from the original on 11 December 2021. Retrieved 3 September 2021.

External links

  • "World Bank's Hazard Risk Management". World Bank. Archived from the original on 2010-04-09. Retrieved 2007-06-30.
  • "Billion-dollar Weather and Climate Disasters". NCDC.
  • "Global Disaster Alert and Coordination System". European Commission and United Nations website initiative.
  • "Natural Disaster and Extreme Weather. Searchable Information Center". Ebrary.

natural, disaster, other, uses, disambiguation, natural, disaster, highly, harmful, impact, society, community, following, natural, hazard, event, some, examples, natural, hazard, events, include, flooding, drought, earthquake, tropical, cyclone, lightning, ts. For other uses see Natural disaster disambiguation A natural disaster is the highly harmful impact on a society or community following a natural hazard event Some examples of natural hazard events include flooding drought earthquake tropical cyclone lightning tsunami volcanic activity wildfire 1 A natural disaster can cause loss of life or damage property and typically leaves economic damage in its wake The severity of the damage depends on the affected population s resilience and on the infrastructure available 2 Scholars have been saying that the term natural disaster is unsuitable and should be abandoned Instead the simpler term disaster could be used while also specifying the category or type of hazard 3 4 5 A disaster is a result of a natural or human made hazard impacting a vulnerable community It is the combination of the hazard along with exposure of a vulnerable society that results in a disaster Global multihazard proportional economic loss by natural disasters as cyclones droughts earthquakes floods landslides and volcanoesIn modern times the divide between natural human made and human accelerated disasters is quite difficult to draw 6 7 8 Human choices and activities like architecture 9 fire 10 11 resource management 11 12 and climate change 13 potentially play a role in causing natural disasters In fact the term natural disaster was called a misnomer already in 1976 5 Natural disasters can be aggravated by inadequate building norms marginalization of people inequities overexploitation of resources extreme urban sprawl and climate change 6 The rapid growth of the world s population and its increased concentration often in hazardous environments has escalated both the frequency and severity of disasters Extreme climates such as those in the Tropics and unstable landforms coupled with deforestation unplanned growth proliferation and non engineered constructions create more vulnerable interfaces of populated areas with disaster prone natural spaces Developing countries which suffer from chronic natural disasters often have ineffective communication systems combined with insufficient support for disaster prevention and management 14 An adverse event will not rise to the level of a disaster if it occurs in an area without a vulnerable population 15 16 Once a vulnerable population has experienced a disaster the community can take many years to repair and that repair period can lead to further vulnerability The disastrous consequences of natural disaster also affect the mental health of affected communities often leading to post traumatic symptoms These increased emotional experiences can be supported through collective processing leading to resilience and increased community engagement 17 Contents 1 Terminology 1 1 Critique 2 Scale 2 1 By region and country 2 2 Slow and rapid onset events 3 Impacts 3 1 On the environment 3 2 On vulnerable groups 3 2 1 Women 3 3 On governments and voting processes 4 Disasters caused by geological hazards 4 1 Landslides 4 2 Avalanches 4 3 Earthquakes 4 4 Sinkholes 4 5 Coastal erosion 4 6 Volcanic eruptions 5 Disasters caused by water hazards 5 1 Floods 5 2 Tsunami 5 3 Limnic eruptions 6 Disasters caused by extreme weather hazards 6 1 Hot and dry conditions 6 1 1 Heat waves 6 1 2 Droughts 6 1 3 Duststorms 6 1 4 Firestorms 6 1 5 Wildfires 6 2 Storms 6 2 1 Tropical cyclone 6 2 2 Thunderstorms 6 2 3 Tornadoes 6 3 Cold weather events 6 3 1 Blizzards 6 3 2 Hailstorms 6 3 3 Ice storms 6 3 4 Cold waves 7 Multi hazard analysis 8 Responses 8 1 Mitigation and prevention 8 1 1 Disaster risk reduction 8 2 Response 8 3 Recovery 8 4 Preparedness 9 Society and culture 9 1 International law 10 See also 11 References 12 External linksTerminologyA natural disaster is the highly harmful impact on a society or community following a natural hazard event The term disaster itself is defined as follows Disasters are serious disruptions to the functioning of a community that exceed its capacity to cope using its own resources Disasters can be caused by natural man made and technological hazards as well as various factors that influence the exposure and vulnerability of a community 18 The US Federal Emergency Management Agency FEMA explains the relationship between natural disasters and natural hazards as follows Natural hazards and natural disasters are related but are not the same A natural hazard is the threat of an event that will likely have a negative impact A natural disaster is the negative impact following an actual occurrence of natural hazard in the event that it significantly harms a community 1 An example of the distinction between a natural hazard and a disaster is that an earthquake is the hazard which caused the 1906 San Francisco earthquake disaster A natural hazard 19 is a natural phenomenon that might have a negative effect on humans and other animals or the environment Natural hazard events can be classified into two broad categories geophysical and biological 20 Natural hazards can be provoked or affected by anthropogenic processes e g land use change drainage and construction 21 There are 18 natural hazards included in the National Risk Index of FEMA avalanche coastal flooding cold wave drought earthquake hail heat wave tropical cyclone ice storm landslide lightning riverine flooding strong wind tornado tsunami volcanic activity wildfire winter weather 1 In addition there are also tornados and dust storms Critique The term natural disaster has been called a misnomer already in 1976 5 A disaster is a result of a natural hazard impacting a vulnerable community But disasters can be avoided Earthquakes droughts floods storms and other events lead to disasters because of human action and inaction Poor land and policy planning and deregulation can create worse conditions They often involve development activities that ignore or fail to reduce the disaster risks Nature alone is blamed for disasters even when disasters result from failures in development Disasters also result from failure of societies to prepare Examples for such failures include inadequate building norms marginalization of people inequities overexploitation of resources extreme urban sprawl and climate change 5 Defining disasters as solely natural events has serious implications when it comes to understanding the causes of a disaster and the distribution of political and financial responsibility in disaster risk reduction disaster management compensation insurance and disaster prevention 22 Using natural to describe disasters misleads people to think the devastating results are inevitable out of our control and are simply part of a natural process Hazards earthquakes hurricanes pandemics drought etc are inevitable but the impact they have on society is not Thus the term natural disaster is unsuitable and should be abandoned in favour of the simpler term disaster while also specifying the category or type of hazard 3 ScaleMain articles List of natural disasters by death toll and List of countries by natural disaster risk nbsp Number of recorded natural disaster events 1900 2022 Some of the 18 natural hazards included in the National Risk Index of FEMA 1 now have a higher probability of occurring and at higher intensity due to the effects of climate change This applies to heat waves droughts wildfire and coastal flooding 23 9 By region and country As of 2019 the countries with the highest share of disability adjusted life years DALY lost due to natural disasters are Bahamas Haiti Zimbabwe and Armenia probably mainly due to the Spitak Earthquake 24 25 The Asia Pacific region is the world s most disaster prone region 26 A person in Asia Pacific is five times more likely to be hit by a natural disaster than someone living in other regions 27 Between 1995 and 2015 the greatest number of natural disasters occurred in America China and India 28 In 2012 there were 905 natural disasters worldwide 93 of which were weather related disasters Overall costs were US 170 billion and insured losses 70 billion 2012 was a moderate year 45 were meteorological storms 36 were hydrological floods 12 were climatological heat waves cold waves droughts wildfires and 7 were geophysical events earthquakes and volcanic eruptions Between 1980 and 2011 geophysical events accounted for 14 of all natural catastrophes 29 Slow and rapid onset events Natural hazards occur across different time scales as well as area scales Tornadoes and flash floods are rapid onset events meaning they occur with a short warning time and are short lived Slow onset events can also be very damaging for example drought is a natural hazards that develops slowly sometimes over years 30 Impacts nbsp Global death rate from natural disasters 1900 2022 nbsp Global damage cost from natural disasters 1980 2022 A natural disaster may cause loss of life injury or other health impacts property damage loss of livelihoods and services social and economic disruption or environmental damage Various phenomena like earthquakes landslides volcanic eruptions floods hurricanes tornadoes blizzards tsunamis cyclones wildfires and pandemics are all natural hazards that kill thousands of people and destroy billions of dollars of habitat and property each year 31 However the rapid growth of the world s population and its increased concentration often in hazardous environments has escalated both the frequency and severity of disasters With the tropical climate and unstable landforms coupled with deforestation unplanned growth proliferation non engineered constructions make the disaster prone areas more vulnerable citation needed The death rate from natural disasters is highest in poorly developed countries due to the lower quality of building construction infrastructure and medical facilities 32 Globally the total number of deaths from natural disasters has been reduced by 75 over the last 100 years due to the increased development of countries increased preparedness better education better methods and aid from international organizations Since the global population has grown over the same time period the decrease in number of deaths per capita is larger dropping to 6 of the original amount 32 On the environment During emergencies such as natural disasters and armed conflicts more waste may be produced while waste management is given low priority compared with other services Existing waste management services and infrastructures can be disrupted leaving communities with unmanaged waste and increased littering Under these circumstances human health and the environment are often negatively impacted 33 Natural disasters e g earthquakes tsunamis hurricanes have the potential to generate a significant amount of waste within a short period Waste management systems can be out of action or curtailed often requiring considerable time and funding to restore For example the tsunami in Japan in 2011 produced huge amounts of debris estimates of 5 million tonnes of waste were reported by the Japanese Ministry of the Environment Some of this waste mostly plastic and styrofoam washed up on the coasts of Canada and the United States in late 2011 Along the west coast of the United States this increased the amount of litter by a factor of 10 and may have transported alien species Storms are also important generators of plastic litter A study by Lo et al 2020 reported a 100 increase in the amount of microplastics on beaches surveyed following a typhoon in Hong Kong in 2018 33 A significant amount of plastic waste can be produced during disaster relief operations Following the 2010 earthquake in Haiti the generation of waste from relief operations was referred to as a second disaster The United States military reported that millions of water bottles and styrofoam food packages were distributed although there was no operational waste management system Over 700 000 plastic tarpaulins and 100 000 tents were required for emergency shelters The increase in plastic waste combined with poor disposal practices resulted in open drainage channels being blocked increasing the risk of disease 33 Conflicts can result in large scale displacement of communities People living under these conditions are often provided with minimal waste management facilities Burn pits are widely used to dispose of mixed wastes including plastics Air pollution can lead to respiratory and other illnesses For example Sahrawi refugees have been living in five camps near Tindouf Algeria for nearly 45 years As waste collection services are underfunded and there is no recycling facility plastics have flooded the camps streets and surroundings In contrast the Azraq camp in Jordan for refugees from Syria has waste management services of 20 7 tonnes of waste produced per day 15 is recyclable 33 On vulnerable groups Women Because of the social political and cultural context of many places throughout the world women are often disproportionately affected by disaster 34 In the 2004 Indian Ocean tsunami more women died than men partly due to the fact that fewer women knew how to swim 34 During and after a natural disaster women are at increased risk of being affected by gender based violence and are increasingly vulnerable to sexual violence Disrupted police enforcement lax regulations and displacement all contribute to increased risk of gender based violence and sexual assault 34 Women who have been affected by sexual violence are at a significantly increased risk of sexually transmitted infections unique physical injuries and long term psychological consequences 34 All of these long term health outcomes can prevent successful reintegration into society after the disaster recovery period 34 In addition to LGBT people and immigrants women are also disproportionately victimised by religion based scapegoating for natural disasters fanatical religious leaders or adherents may claim that a god or gods are angry with women s independent freethinking behaviour such as dressing immodestly having sex or abortions 35 For example Hindutva party Hindu Makkal Katchi and others blamed women s struggle for the right to enter the Sabarimala temple for the August 2018 Kerala floods purportedly inflicted by the angry god Ayyappan 36 37 In response to Iranian Islamic cleric Kazem Seddiqi s accusation of women dressing immodestly and spreading promiscuity being the cause of earthquakes American student Jennifer McCreight organised the Boobquake event on 26 April 2010 she encouraged women around the world to participate in dressing immodestly all at the same time while performing regular seismographic checks to prove that such behaviour in women causes no significant increase in earthquake activity 38 During and after natural disasters routine health behaviors become interrupted In addition health care systems may have broken down as a result of the disaster further reducing access to contraceptives 34 Unprotected intercourse during this time can lead to increased rates of childbirth unintended pregnancies and sexually transmitted infections STIs 34 39 Methods used to prevent STIs such as condom use are often forgotten or not accessible during times surrounding a disaster Lack of health care infrastructure and medical shortages hinder the ability to treat individuals once they acquire an STI In addition health efforts to prevent monitor or treat HIV AIDS are often disrupted leading to increased rates of HIV complications and increased transmission of the virus through the population 34 Pregnant women are one of the groups disproportionately affected by natural disasters Inadequate nutrition little access to clean water lack of health care services and psychological stress in the aftermath of the disaster can lead to a significant increase in maternal morbidity and mortality Furthermore shortage of healthcare resources during this time can convert even routine obstetric complications into emergencies 40 During and after a disaster women s prenatal peri natal and postpartum care can become disrupted 39 Among women affected by natural disaster there are significantly higher rates of low birth weight infants preterm infants and infants with low head circumference 34 41 On governments and voting processes Everyone is desperate for food and water There s no food water or gasoline The government is missing Lian Gogali Aid worker following 2018 Sulawesi earthquake and tsunami 42 Disasters stress government capacity as the government tries to conduct routine as well as emergency operations 43 Some theorists of voting behavior propose that citizens update information about government effectiveness based on their response to disasters which affects their vote choice in the next election 44 Indeed some evidence based on data from the United States reveals that incumbent parties can lose votes if citizens perceives them as responsible for a poor disaster response 45 or gain votes based on perceptions of well executed relief work 46 The latter study also finds however that voters do not reward incumbent parties for disaster preparedness which may end up affecting government incentives to invest in such preparedness 46 Other evidence however also based on the United States finds that citizens can simply backlash and blame the incumbent for hardship following a natural disaster causing the incumbent party to lose votes 47 One study in India finds that incumbent parties extend more relief following disasters in areas where there is higher newspaper coverage electoral turnout and literacy the authors reason that these results indicate that incumbent parties are more responsive with relief to areas with more politically informed citizens who would be more likely to punish them for poor relief efforts 48 Violent conflicts within states can exacerbate the impact of natural disasters by weakening the ability of states communities and individuals to provide disaster relief Natural disasters can also worsen ongoing conflicts within states by weakening the capacity of states to fight rebels 49 50 In Chinese and Japanese history it has been routine for era names or capital cities and palaces of emperors to be changed after a major natural disaster chiefly for political reasons such as association with hardships by the populace and fear of upheaval i e in East Asian government chronicles such fears were recorded in a low profile way as an unlucky name or place requiring change 51 Disasters caused by geological hazardsLandslides This section is an excerpt from Landslide edit nbsp A landslide near Cusco Peru in 2018 source source source source source source source A NASA model has been developed to look at how potential landslide activity is changing around the world nbsp Animation of a landslide in San Mateo County CaliforniaLandslides also known as landslips 52 53 54 are several forms of mass wasting that may include a wide range of ground movements such as rockfalls mudflows shallow or deep seated slope failures and debris flows 55 Landslides occur in a variety of environments characterized by either steep or gentle slope gradients from mountain ranges to coastal cliffs or even underwater 56 in which case they are called submarine landslides Gravity is the primary driving force for a landslide to occur but there are other factors affecting slope stability that produce specific conditions that make a slope prone to failure In many cases the landslide is triggered by a specific event such as a heavy rainfall an earthquake a slope cut to build a road and many others although this is not always identifiable Landslides are frequently made worse by human development such as urban sprawl and resource exploitation such as mining and deforestation Land degradation frequently leads to less stabilization of soil by vegetation 57 Additionally global Warming caused by climate change and other human impact on the environment can increase the frequency of natural events such as extreme weather which trigger landslides 58 Landslide mitigation describes the policy and practices for reducing the risk of human impacts of landslides reducing the risk of natural disaster See also List of landslides and List of avalanches nbsp A landslide in San Clemente California in 1966Avalanches This section is an excerpt from Avalanche edit nbsp A powder snow avalanche in the Himalayas near Mount Everest nbsp Heavy equipment in action after an avalanche has interrupted service on the Saint Gervais Vallorcine railway in Haute Savoie France 2006 nbsp The terminus of an avalanche in Alaska s Kenai Fjords An avalanche is a rapid flow of snow down a slope such as a hill or mountain 59 Avalanches can be set off spontaneously by factors such as increased precipitation or snowpack weakening or by external means such as humans other animals and earthquakes Primarily composed of flowing snow and air large avalanches have the capability to capture and move ice rocks and trees Avalanches can happen in any mountain range that has an enduring snowpack They are most frequent in winter or spring but may occur at any time of the year In mountainous areas avalanches are among the most serious natural hazards to life and property so great efforts are made in avalanche control Earthquakes Main article Earthquake See also Lists of earthquakes and Soil liquefaction nbsp San Francisco was devastated by an earthquake in 1906 nbsp Global number of deaths from earthquake 1960 2017 nbsp Global number of recorded earthquake events 1901 2019 An earthquake is the result of a sudden release of energy in the Earth s crust that creates seismic waves At the Earth s surface earthquakes manifest themselves by vibration shaking and sometimes displacement of the ground Earthquakes are caused by slippage within geological faults The underground point of origin of the earthquake is called the seismic focus The point directly above the focus on the surface is called the epicenter Earthquakes by themselves rarely kill people or wildlife it is usually the secondary events that they trigger such as building collapse fires tsunamis and volcanic eruptions that cause death Many of these can possibly be avoided by better construction safety systems early warning and planning citation needed Sinkholes Main article Sinkhole See also List of sinkholesA sinkhole is a depression or hole in the ground caused by some form of collapse of the surface layer When natural erosion human mining or underground excavation makes the ground too weak to support the structures built on it the ground can collapse and produce a sinkhole For example the 2010 Guatemala City sinkhole which killed one was caused when heavy rain from Tropical Storm Agatha diverted by leaking pipes into a pumice bedrock led to the sudden collapse of the ground beneath a factory building citation needed Coastal erosion See also Coastal management Coastal and oceanic landforms Coastal development hazards Coastal geography Coastal engineering Coastal morphodynamics and Bioerosion Coastal erosion is a physical process by which shorelines in coastal areas around the world shift and change primarily in response to waves and currents that can be influenced by tides and storm surge 60 Coastal erosion can result from long term processes see also beach evolution as well as from episodic events such as tropical cyclones or other severe storm events Coastal erosion is one of the most significant coastal hazards It forms a threat to infrastructure capital assets and property Volcanic eruptions See also Types of volcanic eruptions and List of largest volcanic eruptions nbsp Puʻu ʻŌʻōVolcanoes can cause widespread destruction and consequent disaster in several ways One hazard is the volcanic eruption itself with the force of the explosion and falling rocks able to cause harm Lava may also be released during the eruption of a volcano as it leaves the volcano it can destroy buildings plants and animals due to its extreme heat In addition volcanic ash may form a cloud generally after cooling and settle thickly in nearby locations When mixed with water this forms a concrete like material In sufficient quantities ash may cause roofs to collapse under its weight Even small quantities will harm humans if inhaled it has the consistency of ground glass and therefore causes laceration to the throat and lungs Volcanic ash can also cause abrasion damage to moving machinery such as engines The main killer of humans in the immediate surroundings of a volcanic eruption is pyroclastic flows consisting of a cloud of hot ash which builds up in the air above the volcano and rushes down the slopes when the eruption no longer supports the lifting of the gases It is believed that Pompeii was destroyed by a pyroclastic flow A lahar is a volcanic mudflow or landslide The 1953 Tangiwai disaster was caused by a lahar as was the 1985 Armero tragedy in which the town of Armero was buried and an estimated 23 000 people were killed citation needed Volcanoes rated at 8 the highest level on the Volcanic Explosivity Index are known as supervolcanoes According to the Toba catastrophe theory 75 000 to 80 000 years ago a supervolcanic eruption at what is now Lake Toba in Sumatra reduced the human population to 10 000 or even 1 000 breeding pairs creating a bottleneck in human evolution 61 and killed three quarters of all plant life in the northern hemisphere However there is considerable debate regarding the veracity of this theory The main danger from a supervolcano is the immense cloud of ash which has a disastrous global effect on climate and temperature for many years Disasters caused by water hazards nbsp The Limpopo River during the 2000 Mozambique floodA hydrological disaster is a violent sudden and destructive change either in the quality of Earth s water or in the distribution or movement of water on land below the surface or in the atmosphere Floods Main article Flood See also List of floods A flood is an overflow of water that submerges land 62 The EU Floods Directive defines a flood as a temporary covering of land that is usually dry with water 63 In the sense of flowing water the word may also be applied to the inflow of the tides Flooding may result from the volume of a body of water such as a river or lake becoming higher than usual causing some of the water to escape its usual boundaries 64 While the size of a lake or other body of water will vary with seasonal changes in precipitation and snow melt a flood is not considered significant unless the water covers land used by humans such as a village city or other inhabited area roads or expanses of farmland Tsunami nbsp 1755 copper engraving depicting Lisbon in ruins and in flames after the 1755 Lisbon earthquake A tsunami overwhelms the ships in the harbor Main article Tsunami See also List of historical tsunamis A tsunami plural tsunamis or tsunami from Japanese 津波 lit harbour wave English pronunciation tsuːˈnɑːmi also known as a seismic sea wave or tidal wave is a series of waves in a water body caused by the displacement of a large volume of water generally in an ocean or a large lake Tsunamis can be caused by undersea earthquakes such as the 2004 Boxing Day tsunami or by landslides such as the one in 1958 at Lituya Bay Alaska or by volcanic eruptions such as the ancient eruption of Santorini On March 11 2011 a tsunami occurred near Fukushima Japan and spread through the Pacific Ocean Limnic eruptions Main article Limnic eruption A limnic eruption also known as a lake overturn occurs when a gas usually CO2 suddenly erupts from deep lake water posing the threat of suffocating wildlife livestock and humans Such an eruption may also cause tsunamis in the lake as the rising gas displaces water Scientists believe that landslides explosions or volcanic activity can trigger such an eruption To date only two limnic eruptions have been observed and recorded In 1984 in Cameroon a limnic eruption in Lake Monoun caused the deaths of 37 nearby residents at nearby Lake Nyos in 1986 a much larger eruption killed between 1 700 and 1 800 people by asphyxiation Disasters caused by extreme weather hazardsHot and dry conditions Heat waves Main article Heat wave See also List of heat waves A heat wave is a period of unusually and excessively hot weather Heat waves are rare and require specific combinations of weather events to take place and may include temperature inversions katabatic winds or other phenomena The worst heat wave in recent history was the European Heat Wave of 2003 A summer heat wave in Victoria Australia created conditions which fuelled the massive bushfires in 2009 Melbourne experienced three days in a row of temperatures exceeding 40 C 104 F with some regional areas sweltering through much higher temperatures The bushfires collectively known as Black Saturday were partly the act of arsonists The 2010 Northern Hemisphere summer resulted in severe heat waves which killed over 2 000 people The heat caused hundreds of wildfires which led to widespread air pollution and burned thousands of square kilometers of forest Droughts Main article Drought See also List of droughts This section is an excerpt from Drought edit nbsp nbsp nbsp nbsp Droughts cause a range of impacts and are often worsened by to the effects of climate change on the water cycle a dry riverbed in France sandstorm in Somaliland due to drought droughts negatively impact agriculture in Texas drought and high temperatures worsened the 2020 bushfires in Australia A drought is a period of drier than normal conditions 65 1157 A drought can last for days months or years Drought often has large impacts on the ecosystems and agriculture of affected regions and causes harm to the local economy 66 67 Annual dry seasons in the tropics significantly increase the chances of a drought developing and subsequent wildfires 68 Periods of heat can significantly worsen drought conditions by hastening evaporation of water vapour 69 drying out forests and other vegetation and increasing fuel for wildfires 68 70 Well known historical droughts include the 1997 2009 Millennium Drought in Australia which led to a water supply crisis across much of the country As a result many desalination plants were built for the first time see list In 2011 the State of Texas lived under a drought emergency declaration for the entire calendar year and suffered severe economic losses 71 The drought caused the Bastrop fires Duststorms This section is an excerpt from Dust storm edit A dust storm also called a sandstorm is a meteorological phenomenon common in arid and semi arid regions 72 Dust storms arise when a gust front or other strong wind blows loose sand and dirt from a dry surface Fine particles are transported by saltation and suspension a process that moves soil from one place and deposits it in another Firestorms This section is an excerpt from Firestorm edit A firestorm is a conflagration which attains such intensity that it creates and sustains its own wind system It is most commonly a natural phenomenon created during some of the largest bushfires and wildfires Although the term has been used to describe certain large fires 73 the phenomenon s determining characteristic is a fire with its own storm force winds from every point of the compass towards the storm s center where the air is heated and then ascends 74 75 Wildfires nbsp A wildfire in California Main article Wildfire See also List of forest fires Wildfires are large fires which often start in wildland areas Common causes include lightning and drought but wildfires may also be started by human negligence or arson They can spread to populated areas and thus be a threat to humans and property as well as wildlife Notable wildfires include the 1871 Peshtigo Fire in the United States which killed at least 1700 people and the 2009 Victorian bushfires in Australia 76 77 78 79 80 Storms Tropical cyclone See also Tropical cyclones and climate change Typhoon cyclone cyclonic storm and hurricane are different names for the same phenomenon a tropical storm that forms over an ocean It is caused by evaporated water that comes off of the ocean and becomes a storm It is characterized by strong winds heavy rainfall and thunderstorms The determining factor on which term is used is based on where the storm originates In the Atlantic and Northeast Pacific the term hurricane is used in the Northwest Pacific it is referred to as a typhoon a cyclone occurs in the South Pacific and Indian Ocean The deadliest hurricane ever was the 1970 Bhola cyclone the deadliest Atlantic hurricane was the Great Hurricane of 1780 which devastated Martinique St Eustatius and Barbados Another notable hurricane is Hurricane Katrina which devastated the Gulf Coast of the United States in 2005 Hurricanes may become more intense and produce more heavy rainfall as a consequence of human induced climate change Thunderstorms nbsp A classic anvil shaped and clearly developed Cumulonimbus incusMain article Thunderstorm Severe storms dust clouds and volcanic eruptions can generate lightning Apart from the damage typically associated with storms such as winds hail and flooding the lightning itself can damage buildings ignite fires and kill by direct contact Especially deadly lightning incidents include a 2007 strike in Ushari Dara a remote mountain village in northwestern Pakistan that killed 30 people 81 the crash of LANSA Flight 508 which killed 91 people and a fuel explosion in Dronka Egypt caused by lightning in 1994 which killed 469 people 82 Most deaths from lightning occur in the poorer countries of the Americas and Asia where lightning is common and adobe mud brick housing provides little protection 83 Tornadoes nbsp A rope tornado in its dissipating stage Tecumseh Oklahoma See also List of tornadoes and tornado outbreaks A tornado is a violent and dangerous rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or in rare cases the base of a cumulus cloud It is also referred to as a twister or a cyclone 84 although the word cyclone is used in meteorology in a wider sense to refer to any closed low pressure circulation Tornadoes come in many shapes and sizes but typically take the form of a visible condensation funnel the narrow end of which touches the Earth and is often encircled by a cloud of debris and dust Tornadoes can occur one at a time or can occur in large tornado outbreaks associated with supercells or in other large areas of thunderstorm development Most tornadoes have wind speeds of less than 180 km h 110 mph are approximately 75 m 250 ft across and travel a few kilometers before dissipating The most extreme tornadoes can attain wind speeds of more than 480 km h 300 mph stretch more than 3 km 2 mi across and stay on the ground for perhaps more than 100 km 60 mi 85 86 87 Cold weather events Blizzards nbsp A blizzard in Maryland in 2009Main article Blizzard Blizzards are severe winter storms characterized by heavy snow and strong winds When high winds stir up snow that has already fallen it is known as a ground blizzard Blizzards can impact local economic activities especially in regions where snowfall is rare The Great Blizzard of 1888 affected the United States when many tons of wheat crops were destroyed In Asia the 1972 Iran blizzard and the 2008 Afghanistan blizzard were the deadliest blizzards in history in the former an area the size of Wisconsin was entirely buried in snow The 1993 Superstorm originated in the Gulf of Mexico and traveled north causing damage in 26 American states as well as in Canada and leading to more than 300 deaths 88 Hailstorms nbsp A large hailstone about 6 cm 2 1 2 in in diameterMain article Hail See also List of costly or deadly hailstorms Hail is precipitation in the form of ice that does not melt before it hits the ground Hailstorms are produced by thunderstorms Hailstones usually measure between 5 and 150 mm 1 4 and 6 in in diameter These can damage the location in which they fall Hailstorms can be especially devastating to farm fields ruining crops and damaging equipment A particularly damaging hailstorm hit Munich Germany on July 12 1984 causing about 2 billion in insurance claims Ice storms Main article Ice storm An ice storm is a type of winter storm characterized by freezing rain The U S National Weather Service defines an ice storm as a storm which results in the accumulation of at least 1 4 inch 6 35 mm of ice on exposed surfaces Cold waves Main article Cold wave A cold wave known in some regions as a cold snap or cold spell is a weather phenomenon that is distinguished by a cooling of the air Specifically as used by the U S National Weather Service a cold wave is a rapid fall in temperature within a 24 hour period requiring substantially increased protection to agriculture industry commerce and social activities The precise criterion for a cold wave is determined by the rate at which the temperature falls and the minimum to which it falls This minimum temperature is dependent on the geographical region and time of year Multi hazard analysisEach of the natural hazard types outlined above have very different characteristics in terms of the spatial and temporal scales they influence hazard frequency and return period and measures of intensity and impact These complexities result in single hazard assessments being commonplace where the hazard potential from one particular hazard type is constrained In these examples hazards are often treated as isolated or independent An alternative is a multi hazard approach which seeks to identify all possible natural hazards and their interactions or interrelationships 89 90 Many examples exist of one natural hazard triggering or increasing the probability of one or more other natural hazards For example an earthquake may trigger landslides whereas a wildfire may increase the probability of landslides being generated in the future 90 A detailed review of such interactions across 21 natural hazards identified 90 possible interactions of varying likelihood and spatial importance 90 There may also be interactions between these natural hazards and anthropic processes 91 For example groundwater abstraction may trigger groundwater related subsidence 92 Effective hazard analysis in any given area e g for the purposes of disaster risk reduction should ideally include an examination of all relevant hazards and their interactions To be of most use for risk reduction hazard analysis should be extended to risk assessment wherein the vulnerability of the built environment to each of the hazards is taken into account This step is well developed for seismic risk where the possible effect of future earthquakes on structures and infrastructure is assessed as well as for risk from extreme wind and to a lesser extent flood risk For other types of natural hazard the calculation of risk is more challenging principally because of the lack of functions linking the intensity of a hazard and the probability of different levels of damage fragility curves 93 ResponsesMain articles Disaster response and Emergency managementDisaster management is a main function of civil protection or civil defence authorities It should address all four of the phases of disasters mitigation and prevention disaster response recovery and preparedness nbsp Haiti earthquake damageMitigation and prevention This section is an excerpt from Emergency management Mitigation strategy edit Preventive or mitigation measures vary for different types of disasters In earthquake prone areas these preventive measures might include structural changes such as the installation of an earthquake valve to instantly shut off the natural gas supply seismic retrofits of property and the securing of items inside a building The latter may include the mounting of furniture refrigerators water heaters and breakables to the walls and the addition of cabinet latches In flood prone areas houses can be built on stilts In areas prone to prolonged electricity black outs installation of a generator ensures continuation of electrical service The construction of storm cellars and fallout shelters are further examples of personal mitigative actions Disaster risk reduction This section is an excerpt from Disaster risk reduction edit nbsp Villages have adapted the design of houses to protect people from rising flood waters and small boats are used to transport people and food to sustain livelihoods This kind of disaster risk reduction is an important Climate change adaptationDisaster risk reduction DRR sometimes called disaster risk management DRM is a systematic approach to identifying assessing and reducing the risks of disaster It aims to reduce socio economic vulnerabilities to disaster as well as dealing with the environmental and other hazards that trigger them In other words the aim of DRR is to prevent new and reducing existing disaster risk and managing residual risk all of which contribute to strengthening resilience and therefore to the achievement of sustainable development 94 16 Disaster risk reduction has been strongly influenced by the research on vulnerability since the mid 1970s 95 as well as the mapping of natural disaster risks 96 Disaster risk reduction is the responsibility of development and relief agencies alike It should be an integral part of the way such organizations do their work not an add on or one off action citation needed Disaster risk reduction is very wide ranging Its scope is much broader and deeper than conventional emergency management There is potential for disaster risk reduction initiatives in most sectors of development and humanitarian work Internationally an important initiative is the Sendai Framework for Disaster Risk Reduction It aims to help countries establish national and local strategies for DRR as of 2022 125 countries had national strategies The International Day for Disaster Risk Reduction on October 13 has helped increase the visibility of DRR and promote a culture of prevention Some of the main issues and challenges include the importance of communities and local organisations in disaster risk management governance of disaster risk and how this relates to development and gender sensitivity of disaster impacts and disaster prevention strategies Response This section is an excerpt from Disaster response edit Disaster response refers to the actions taken directly before during or in the immediate aftermath of a disaster The objective is to save lives ensure health and safety and to meet the subsistence needs of the people affected 97 16 This includes warning evacuation search and rescue providing immediate assistance assessing damage continuing assistance and the immediate restoration or construction of infrastructure i e provisional storm drains or diversion dams The aim of emergency response is to provide immediate assistance to maintain life improve health and support the morale of the affected population Such assistance may range from providing specific but limited aid such as assisting refugees with transport temporary shelter and food to establishing semi permanent settlements in camps and other locations It also may involve initial repairs to damage or diversion to infrastructure Recovery nbsp Driving through flash floodThis section is an excerpt from Emergency management Recovery edit The recovery phase starts after the immediate threat to human life has subsided The immediate goal of the recovery phase is to bring the affected area back to normalcy as quickly as possible During reconstruction it is recommended to consider the location or construction material of the property 98 The most extreme home confinement scenarios include war famine and severe epidemics and may last a year or more Then recovery will take place inside the home Planners for these events usually buy bulk foods and appropriate storage and preparation equipment and eat the food as part of normal life A simple balanced diet can be constructed from vitamin pills whole grain wheat beans dried milk corn and cooking oil 99 Vegetables fruits spices and meats both prepared and fresh gardened are included when possible 100 Preparedness This section is an excerpt from Emergency management Preparedness edit Preparedness focuses on preparing equipment and procedures for use when a disaster occurs The equipment and procedures can be used to reduce vulnerability to disaster to mitigate the impacts of a disaster or to respond more efficiently in an emergency The US Federal Emergency Management Agency FEMA proposed out a basic four stage vision of preparedness flowing from mitigation to preparedness to response to recovery and back to mitigation in a circular planning process 101 This circular overlapping model has been modified by other agencies taught in emergency classes and discussed in academic papers 102 Society and cultureInternational law This section needs expansion You can help by adding to it February 2023 The United Nations Office for the Coordination of Humanitarian Affairs was formed by General Assembly Resolution 44 182 Under the Convention on the Rights of Persons with Disabilities States Parties shall take in accordance with their obligations under international law including international humanitarian law and international human rights law all necessary measures to ensure the protection and safety of persons with disabilities in situations of risk including situations of armed conflict humanitarian emergencies and the occurrence of natural disasters 103 The 1998 UN Guiding Principles on Internal Displacement and 2009 Kampala Convention also protect people displaced due to natural disasters 104 105 See alsoAct of God Civil defense Disaster relief Disaster risk reduction Emergency management Environmental disaster Environmental emergency Global catastrophic risk List of environmental disasters Social vulnerability Urban Search and Rescue World Conference on Disaster Risk Reduction Wild animal sufferingReferences a b c d Natural Hazards National Risk Index hazards fema gov Retrieved 2022 06 08 G Bankoff G Frerks D Hilhorst eds 2003 Mapping Vulnerability Disasters Development and People ISBN 1 85383 964 7 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link page needed a b Kevin Blanchard NoNaturalDisasters Changing the discourse of natural disaster reporting 16 November 2018 Cannon Terry 1994 Vulnerability Analysis and The Explanation Of Natural Disasters Disasters Development and Environment a b c d Why natural disasters aren t all that natural www preventionweb net 14 September 2017 Retrieved 2022 06 06 a b Why natural disasters aren t all that natural openDemocracy 2020 11 26 Archived from the original on 2020 11 29 Retrieved 2020 12 29 Gould Kevin A Garcia M Magdalena Remes Jacob A C 1 December 2016 Beyond natural disasters are not natural the work of state and nature after the 2010 earthquake in Chile Journal of Political Ecology 23 1 93 doi 10 2458 v23i1 20181 Smith Neil 2006 06 11 There s No Such Thing as a Natural Disaster Items Archived from the original on 2021 01 22 Retrieved 2020 12 29 Coburn Andrew W Spence Robin JS Pomonis Antonios 1992 Factors determining human casualty levels in earthquakes mortality prediction in building collapse PDF Proceedings of the tenth world conference on earthquake engineering Vol 10 pp 5989 5994 ISBN 978 90 5410 060 7 Archived PDF from the original on 2020 11 12 Retrieved 2020 12 29 Wildfire Causes and Evaluations U S National Park Service NPS gov Homepage U S National Park Service 2018 11 27 Archived from the original on 2021 01 01 Retrieved 2020 12 29 a b DeWeerdt Sarah 2020 09 15 Humans cause 96 of wildfires that threaten homes in the U S Anthropocene Archived from the original on 2020 12 10 Retrieved 2020 12 29 Smil Vaclav 18 December 1999 China s great famine 40 years later BMJ 319 7225 1619 1621 doi 10 1136 bmj 319 7225 1619 PMC 1127087 PMID 10600969 McGuire Bill 2012 Waking the Giant How a changing climate triggers earthquakes tsunamis and volcanoes Oxford University Press ISBN 978 0 19 959226 5 Archived from the original on 2022 04 18 Retrieved 2020 12 29 page needed Zorn Matija 2018 Pelc Stanko Koderman Miha eds Natural Disasters and Less Developed Countries Nature Tourism and Ethnicity as Drivers of De Marginalization Insights to Marginality from Perspective of Sustainability and Development Perspectives on Geographical Marginality Cham Springer International Publishing vol 3 pp 59 78 doi 10 1007 978 3 319 59002 8 4 ISBN 978 3 319 59002 8 retrieved 2022 06 08 D Alexander 2002 Principles of Emergency planning and Management Harpended Terra publishing ISBN 1 903544 10 6 B Wisner P Blaikie T Cannon amp I Davis 2004 At Risk Natural hazards people s vulnerability and disasters Wiltshire Routledge ISBN 0 415 25216 4 page needed Kieft J Bendell J 2021 The responsibility of communicating difficult truths about climate influenced societal disruption and collapse an introduction to psychological research Institute for Leadership and Sustainability IFLAS Occasional Papers 7 1 39 Archived from the original on 2021 03 10 Retrieved 2021 04 03 What is a disaster www ifrc org IFRC Retrieved 2023 05 24 Organization of American States Department of Regional Development Organization of American States Natural Hazards Project United States Agency for International Development Office of Foreign Disaster Assistance 1990 Disaster planning and development managing natural hazards to reduce loss PDF Washington D C Organization of American States Retrieved 21 July 2014 Burton I Kates R W White G F 1993 The environment as hazard Guilford Press ISBN 978 0898621594 Gill Joel C Malamud Bruce D 2017 03 01 Anthropogenic processes natural hazards and interactions in a multi hazard framework Earth Science Reviews 166 246 269 Bibcode 2017ESRv 166 246G doi 10 1016 j earscirev 2017 01 002 Time to say goodbye to natural disasters www preventionweb net Retrieved 2022 06 06 IPCC 2022 Summary for Policymakers H O Portner D C Roberts E S Poloczanska K Mintenbeck M Tignor A Alegria M Craig S Langsdorf S Loschke V Moller A Okem eds In Climate Change 2022 Impacts Adaptation and Vulnerability Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change H O Portner D C Roberts M Tignor E S Poloczanska K Mintenbeck A Alegria M Craig S Langsdorf S Loschke V Moller A Okem B Rama eds Cambridge University Press Cambridge and New York pp 3 33 doi 10 1017 9781009325844 001 Global health estimates Leading causes of DALYs Archived from the original on 2021 01 06 2019 WHO DALY report data Archived from the original on 2022 03 31 Asia Pacific World s Most Disaster Prone Region Asia Pacific the world s most disaster prone region World ReliefWeb 10 October 2017 Archived from the original on 2018 10 04 Retrieved 2018 10 04 Weather related disasters are increasing The Economist 29 Aug 2017 Archived from the original on 30 August 2017 Retrieved 30 August 2017 Natural Catastrophes in 2012 Dominated by U S Weather Extremes Archived 2013 07 02 at the Wayback Machine Worldwatch Institute May 29 2013 Natural hazards and disaster risk reduction public wmo int 2015 12 01 Retrieved 2023 05 18 Cueto Lavinia Javier Agaton Casper Boongaling 2021 Pandemic and Typhoon Positive Impacts of a Double Disaster on Mental Health of Female Students in the Philippines Behavioral Sciences 11 5 64 doi 10 3390 bs11050064 PMC 8147095 PMID 33946801 a b Rosling H Rosling O Ronnlund A R 2018 Factfulness Ten Reasons We re Wrong About the World and Why Things Are Better Than You Think Flatiron Books pp 107 109 299 325 ISBN 978 1 250 10781 7 a b c d Drowning in Plastics Marine Litter and Plastic Waste Vital Graphics UNEP UN Environment Programme 2021 10 21 Archived from the original on 2022 03 21 Retrieved 2022 03 23 nbsp This article incorporates text available under the CC BY 4 0 license a b c d e f g h i Nour Nawal N 2011 Maternal Health Considerations During Disaster Relief Reviews in Obstetrics and Gynecology 4 1 22 27 PMC 3100103 PMID 21629495 Lord Leighann 1 October 2019 The easiest way to respond to a natural disaster Blame God or global warming The Guardian Archived from the original on 28 September 2019 Retrieved 28 September 2019 Kerala flood blamed on women s entry into Sabarimala by Hindu Makkal Katchi The New Indian Express 15 August 2018 Archived from the original on 28 September 2019 Retrieved 28 September 2019 Asmita Nandy 20 August 2018 Hate Mongers on Twitter Blamed Women Beef Muslims Christians and Communism for Causing the Kerala Floods The Quint Archived from the original on 28 September 2019 Retrieved 28 September 2019 Pat Pilcher 26 April 2010 Islamic cleric causes Boobquake The New Zealand Herald Archived from the original on 15 February 2020 Retrieved 28 September 2019 a b Harville Emily Xiong Xu Buekens Pierre November 2010 Disasters and Perinatal Health A Systematic Review Obstetrical amp Gynecological Survey 65 11 713 728 doi 10 1097 OGX 0b013e31820eddbe PMC 3472448 PMID 21375788 Meyers Talya 23 December 2019 Pregnant women are particularly vulnerable to disasters Direct Relief Archived from the original on 1 October 2020 Retrieved 21 September 2020 American College of Obstetricians and Gynecologists Committee on Health Care for Underserved Women June 2010 Committee Opinions No 457 Preparing for Disasters Perspectives on Women Obstetrics amp Gynecology 115 6 1339 1342 doi 10 1097 AOG 0b013e3181e45a6f PMID 20502312 Indonesia earthquake and tsunami All the latest updates www aljazeera com Archived from the original on 2020 12 26 Retrieved 2020 12 29 Clarke Daniel J Dercon Stefan 2016 Dull Disasters How planning ahead will make a difference Oxford University Press ISBN 978 0 19 878557 6 Archived from the original on 2021 10 04 Retrieved 2021 10 04 Ashworth Scott Bueno de Mesquita Ethan Friedenberg Amanda May 2017 Accountability and Information in Elections American Economic Journal Microeconomics 9 2 95 138 doi 10 1257 mic 20150349 ISSN 1945 7669 Archived from the original on 2021 10 04 Retrieved 2022 04 18 Gasper John T Reeves Andrew April 2011 Make It Rain Retrospection and the Attentive Electorate in the Context of Natural Disasters American Journal of Political Science 55 2 340 355 doi 10 1111 j 1540 5907 2010 00503 x JSTOR 23025055 a b Healy Andrew Malhotra Neil August 2009 Myopic Voters and Natural Disaster Policy American Political Science Review 103 3 387 406 doi 10 1017 S0003055409990104 ISSN 1537 5943 S2CID 32422707 Archived from the original on 2021 10 04 Retrieved 2021 10 04 Achen Christopher Bartels Larry 2017 Blind Retrospection Electoral Responses to Droughts Floods and Shark Attacks Princeton University Press doi 10 1515 9781400888740 007 ISBN 978 1 4008 8874 0 Archived from the original on 2021 10 04 Retrieved 2021 10 04 Besley Timothy Burgess Robin 2001 05 01 Political agency government responsiveness and the role of the media European Economic Review 15th Annual Congress of the European Economic Association 45 4 629 640 doi 10 1016 S0014 2921 01 00133 7 ISSN 0014 2921 Archived from the original on 2020 06 23 Retrieved 2021 10 04 Nel Philip Righarts Marjolein 1 March 2008 Natural Disasters and the Risk of Violent Civil Conflict International Studies Quarterly 52 1 159 185 CiteSeerX 10 1 1 408 6031 doi 10 1111 j 1468 2478 2007 00495 x JSTOR 29734228 Brancati Dawn October 2007 Political Aftershocks The Impact of Earthquakes on Intrastate Conflict Journal of Conflict Resolution 51 5 715 743 doi 10 1177 0022002707305234 JSTOR 27638575 S2CID 154551510 SSRN 2558790 ProQuest 224558525 Name of Japan s next era to avoid initial letters used to refer to past four eras The Japan Times September 3 2018 Archived from the original on October 4 2018 Retrieved October 4 2018 Landslide synonyms thesaurus com Roget s 21st Century Thesaurus 2013 Archived from the original on 24 September 2020 Retrieved 16 March 2018 McGraw Hill Encyclopedia of Science amp Technology 11th Edition ISBN 9780071778343 2012 USGS factsheet Landslide Types and Processes 2004 Archived from the original on 2020 10 04 Retrieved 2020 08 28 Hungr Oldrich Leroueil Serge Picarelli Luciano 2014 04 01 The Varnes classification of landslide types an update Landslides 11 2 167 194 doi 10 1007 s10346 013 0436 y ISSN 1612 5118 S2CID 38328696 Haflidason Haflidi Sejrup Hans Petter Nygard Atle Mienert Jurgen Bryn Petter Lien Reidar Forsberg Carl Fredrik Berg Kjell Masson Doug 2004 12 15 The Storegga Slide architecture geometry and slide development Marine Geology COSTA Continental Slope Stability 213 1 201 234 Bibcode 2004MGeol 213 201H doi 10 1016 j margeo 2004 10 007 ISSN 0025 3227 Giacomo Pepe Andrea Mandarino Emanuele Raso Patrizio Scarpellini Pierluigi Brandolini Andrea Cevasco 2019 Investigation on Farmland Abandonment of Terraced Slopes Using Multitemporal Data Sources Comparison and Its Implication on Hydro Geomorphological Processes Water MDPI 8 11 1552 doi 10 3390 w11081552 ISSN 2073 4441 OCLC 8206777258 at the introductory section Center By Jessica Merzdorf NASA s Goddard Space Flight Climate Change Could Trigger More Landslides in High Mountain Asia Climate Change Vital Signs of the Planet Archived from the original on 2023 02 04 Retrieved 2023 02 04 a href Template Cite web html title Template Cite web cite web a CS1 maint multiple names authors list link Snow Avalanches National Snow and Ice Data Center nsidc org Retrieved 23 March 2021 Komar Paul D 1983 CRC handbook of coastal processes and erosion CRC Press ISBN 9780849302251 GibbonsJan 19 Ann 19 January 2010 Human Ancestors Were an Endangered Species Science AAAS Archived from the original on 8 December 2020 Retrieved 29 December 2020 MSN Encarta Dictionary Flood Archived 2011 02 04 at the Wayback Machine Retrieved on 2006 12 28 2009 10 31 Directive 2007 60 EC Chapter 1 Article2 Archived from the original on 2015 11 06 Retrieved 2011 11 14 Glossary of Meteorology June 2000 Flood Archived 2007 08 24 at the Wayback Machine Retrieved on 2009 01 09 Douville H K Raghavan J Renwick R P Allan P A Arias M Barlow R Cerezo Mota A Cherchi T Y Gan J Gergis D Jiang A Khan W Pokam Mba D Rosenfeld J Tierney and O Zolina 2021 Water Cycle Changes Archived 2022 09 29 at the Wayback Machine In Climate Change 2021 The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Masson Delmotte V P Zhai A Pirani S L Connors C Pean S Berger N Caud Y Chen L Goldfarb M I Gomis M Huang K Leitzell E Lonnoy J B R Matthews T K Maycock T Waterfield O Yelekci R Yu and B Zhou eds Cambridge University Press Cambridge United Kingdom and New York NY USA pp 1055 1210 doi 10 1017 9781009157896 010 Living With Drought Archived 2007 02 18 at the Wayback Machine Australian Drought and Climate Change Archived 2018 07 26 at the Wayback Machine retrieved on June 7th 2007 a b Brando Paulo M Paolucci Lucas Ummenhofer Caroline C Ordway Elsa M Hartmann Henrik Cattau Megan E Rattis Ludmila Medjibe Vincent Coe Michael T Balch Jennifer 30 May 2019 Droughts Wildfires and Forest Carbon Cycling A Pantropical Synthesis Annual Review of Earth and Planetary Sciences 47 1 555 581 doi 10 1146 annurev earth 082517 010235 ISSN 0084 6597 Merzdorf Jessica July 9 2019 A Drier Future Sets the Stage for More Wildfires Climate Change Vital Signs of the Planet NASA Hartmann Henrik Bastos Ana Das Adrian J Esquivel Muelbert Adriane Hammond William M Martinez Vilalta Jordi McDowell Nate G Powers Jennifer S Pugh Thomas A M Ruthrof Katinka X Allen Craig D 20 May 2022 Climate Change Risks to Global Forest Health Emergence of Unexpected Events of Elevated Tree Mortality Worldwide Annual Review of Plant Biology 73 1 673 702 doi 10 1146 annurev arplant 102820 012804 ISSN 1543 5008 Billion Dollar Weather and Climate Disasters Events National Centers for Environmental Information NCEI www ncdc noaa gov Archived from the original on 2014 04 01 Retrieved 2015 03 20 Airborne Dust A Hazard to Human Health Environment and Society WMO Bulletin Vol 64 2 2015 2022 Scawthorn Charles ed 2005 Fire following earthquake Technical Council on Lifeline Earthquake Engineering monograph Reston VA American Society of Civil Engineers p 68 ISBN 978 0 7844 0739 4 Alexander Mckee s Dresden 1945 The Devil s Tinderbox Problems of Fire in Nuclear Warfare 1961 PDF Dtic mil Archived from the original PDF on 18 February 2013 Retrieved 11 May 2016 A fire storm is characterized by strong to gale force winds blowing toward the fire everywhere around the fire perimeter and results from the rising column of hot gases over an intense mass fire drawing in the cool air from the periphery These winds blow the fire brands into the burning area and tend to cool the unignited fuel outside so that ignition by radiated heat is more difficult thus limiting fire spread 2009 Victorian Bushfires Victorian Government www vic gov au Archived from the original on 2021 04 28 Retrieved 2021 04 25 US Department of Commerce NOAA The Peshtigo Fire www weather gov Archived from the original on 2021 04 25 Retrieved 2021 04 25 Massive fire burns in Wisconsin History com Archived from the original on 2021 04 15 Retrieved 2021 04 25 corporateName National Museum of Australia address Lawson Crescent Acton Peninsula National Museum of Australia Black Saturday bushfires www nma gov au Archived from the original on 2021 04 23 Retrieved 2021 04 25 a href Template Cite web html title Template Cite web cite web a CS1 maint multiple names authors list link Bushfire Black Saturday Victoria 2009 Australian Disaster Resilience Knowledge Hub knowledge aidr org au Archived from the original on 2021 03 26 Retrieved 2021 04 25 Lightning kills 30 people in Pakistan s north Reuters 20 July 2007 Archived from the original on 4 April 2020 Retrieved 29 December 2020 An appraisal of underground gas storage technologies Health and Safety Executive Archived from the original on 2020 10 25 Retrieved 2020 12 29 Deadly lightning strike in Mexico reveals plight of poorest citizens The Guardian 31 July 2015 Archived from the original on 6 January 2017 Retrieved 17 December 2016 Definition of CYCLONE www merriam webster com Archived from the original on 2021 01 05 Retrieved 2020 12 29 Wurman Joshua 2008 08 29 Doppler on Wheels Center for Severe Weather Research Archived from the original on 2007 02 05 Retrieved 2009 12 13 Hallam Nebraska Tornado National Weather Service National Oceanic and Atmospheric Administration 2005 10 02 Archived from the original on 2014 08 20 Retrieved 2009 11 15 Roger Edwards 2006 04 04 The Online Tornado FAQ National Weather Service National Oceanic and Atmospheric Administration Archived from the original on 2006 09 29 Retrieved 2006 09 08 Natural Hazards Snow amp Hail Storms www n d a org Archived from the original on 2017 02 03 Retrieved 2017 02 26 Kappes Melanie S Keiler Margreth von Elverfeldt Kirsten Glade Thomas 2012 Challenges of analyzing multi hazard risk a review PDF Natural Hazards 64 2 1925 1958 doi 10 1007 s11069 012 0294 2 S2CID 108636952 a b c Gill Joel C Malamud Bruce D December 2014 Reviewing and visualizing the interactions of natural hazards Reviews of Geophysics 52 4 680 722 Bibcode 2014RvGeo 52 680G doi 10 1002 2013RG000445 Reviewing and visualising relationships between anthropic processes and natural hazards within a multi hazard framework PDF Copernicus Office Retrieved 10 September 2023 Land Subsidence USGS Water Science School Retrieved 11 May 2017 Douglas J 2007 04 05 Physical vulnerability modelling in natural hazard risk assessment PDF Nat Hazards Earth Syst Sci 7 2 283 288 Bibcode 2007NHESS 7 283D doi 10 5194 nhess 7 283 2007 ISSN 1684 9981 UNGA 2016 Report of the open ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction United Nations General Assembly UNGA Blaikie Piers Cannon Terry Davis Ian Wisner Ben 2004 At Risk Natural hazards people s risk and disasters 2nd ed London Routledge ISBN 9780415252157 Shi Peijun Kasperson Roger eds 2015 World Atlas of Natural Disaster Risk IHDP Future Earth Integrated Risk Governance Project Series doi 10 1007 978 3 662 45430 5 ISBN 978 3 662 45429 9 ISSN 2363 4979 S2CID 199492512 UNGA 2016 Report of the open ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction United Nations General Assembly UNGA Akcay Cemil Solt Aysen Korkmaz Nail Mahir Sayin Baris 2020 11 01 A proposal for the reconstruction of a historical masonry building constructed in Ottoman Era Istanbul Journal of Building Engineering 32 101493 doi 10 1016 j jobe 2020 101493 ISSN 2352 7102 Federal Emergency Management Agency FEMA gov Retrieved 2013 08 11 Galhena Dilrukshi Hashini Freed Russell Maredia Karim M 2013 05 31 Home gardens a promising approach to enhance household food security and wellbeing Agriculture amp Food Security 2 1 8 doi 10 1186 2048 7010 2 8 ISSN 2048 7010 Animals in Disasters Training fema gov Archived from the original on 2015 07 14 Retrieved 2015 03 06 Baird Malcolm E 2010 The Phases of Emergency Management PDF Vanderbilt Center for Transportation Research Retrieved 2015 03 08 Article 11 Situations of risk and humanitarian emergencies United Nations 13 December 2006 Archived from the original on 3 September 2021 Retrieved 3 September 2021 Terminski Bogumil 2012 Towards recognition and protection of forced environmental migrants in the public international law Refugee or IDPs umbrella Report Archived from the original on 2022 04 18 Retrieved 2020 12 29 2009 Kampala Convention on IDPs PDF UNHCR May 2019 Archived PDF from the original on 11 December 2021 Retrieved 3 September 2021 External links nbsp Wikiquote has quotations related to Natural disasters nbsp Wikimedia Commons has media related to Natural disasters World Bank s Hazard Risk Management World Bank Archived from the original on 2010 04 09 Retrieved 2007 06 30 Billion dollar Weather and Climate Disasters NCDC Global Disaster Alert and Coordination System European Commission and United Nations website initiative Natural Disaster and Extreme Weather Searchable Information Center Ebrary Retrieved from https en wikipedia org w index php title Natural disaster amp oldid 1181343781, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.