fbpx
Wikipedia

Digital elevation model

A digital elevation model (DEM) or digital surface model (DSM) is a 3D computer graphics representation of elevation data to represent terrain or overlaying objects, commonly of a planet, moon, or asteroid. A "global DEM" refers to a discrete global grid. DEMs are used often in geographic information systems (GIS), and are the most common basis for digitally produced relief maps. A digital terrain model (DTM) represents specifically the ground surface while DEM and DSM may represent tree top canopy or building roofs.

3D rendering of a DEM of Tithonium Chasma on Mars

While a DSM may be useful for landscape modeling, city modeling and visualization applications, a DTM is often required for flood or drainage modeling, land-use studies,[1] geological applications, and other applications,[2] and in planetary science.

Terminology edit

 
Surfaces represented by a Digital Surface Model include buildings and other objects. Digital Terrain Models represent the bare ground.

There is no universal usage of the terms digital elevation model (DEM), digital terrain model (DTM) and digital surface model (DSM) in scientific literature. In most cases the term digital surface model represents the earth's surface and includes all objects on it. In contrast to a DSM, the digital terrain model (DTM) represents the bare ground surface without any objects like plants and buildings (see the figure on the right).[3][4]

DEM is often used as a generic term for DSMs and DTMs,[5] only representing height information without any further definition about the surface.[6] Other definitions equalise the terms DEM and DTM,[7] equalise the terms DEM and DSM,[8] define the DEM as a subset of the DTM, which also represents other morphological elements,[9] or define a DEM as a rectangular grid and a DTM as a three-dimensional model (TIN).[10] Most of the data providers (USGS, ERSDAC, CGIAR, Spot Image) use the term DEM as a generic term for DSMs and DTMs. Some datasets such as SRTM or the ASTER GDEM are originally DSMs, although in forested areas, SRTM reaches into the tree canopy giving readings somewhere between a DSM and a DTM). DTMs are created from high resolution DSM datasets using complex algorithms to filter out buildings and other objects, a process known as "bare-earth extraction".[11][12] In the following, the term DEM is used as a generic term for DSMs and DTMs.

Types edit

 
Heightmap of Earth's surface (including water and ice), rendered as an equirectangular projection with elevations indicated as normalized 8-bit grayscale, where lighter values indicate higher elevation

A DEM can be represented as a raster (a grid of squares, also known as a heightmap when representing elevation) or as a vector-based triangular irregular network (TIN).[13] The TIN DEM dataset is also referred to as a primary (measured) DEM, whereas the Raster DEM is referred to as a secondary (computed) DEM.[14] The DEM could be acquired through techniques such as photogrammetry, lidar, IfSAR or InSAR, land surveying, etc. (Li et al. 2005).

DEMs are commonly built using data collected using remote sensing techniques, but they may also be built from land surveying.

Rendering edit

 
Relief map of Spain's Sierra Nevada, showing use of both shading and false color as visualization tools to indicate elevation

The digital elevation model itself consists of a matrix of numbers, but the data from a DEM is often rendered in visual form to make it understandable to humans. This visualization may be in the form of a contoured topographic map, or could use shading and false color assignment (or "pseudo-color") to render elevations as colors (for example, using green for the lowest elevations, shading to red, with white for the highest elevation.).

Visualizations are sometimes also done as oblique views, reconstructing a synthetic visual image of the terrain as it would appear looking down at an angle. In these oblique visualizations, elevations are sometimes scaled using "vertical exaggeration" in order to make subtle elevation differences more noticeable.[15] Some scientists,[16][17] however, object to vertical exaggeration as misleading the viewer about the true landscape.

Production edit

Mappers may prepare digital elevation models in a number of ways, but they frequently use remote sensing rather than direct survey data.

Older methods of generating DEMs often involve interpolating digital contour maps that may have been produced by direct survey of the land surface. This method is still used in mountain areas, where interferometry is not always satisfactory. Note that contour line data or any other sampled elevation datasets (by GPS or ground survey) are not DEMs, but may be considered digital terrain models. A DEM implies that elevation is available continuously at each location in the study area.

Satellite mapping edit

One powerful technique for generating digital elevation models is interferometric synthetic aperture radar where two passes of a radar satellite (such as RADARSAT-1 or TerraSAR-X or Cosmo SkyMed), or a single pass if the satellite is equipped with two antennas (like the SRTM instrumentation), collect sufficient data to generate a digital elevation map tens of kilometers on a side with a resolution of around ten meters.[18] Other kinds of stereoscopic pairs can be employed using the digital image correlation method, where two optical images are acquired with different angles taken from the same pass of an airplane or an Earth Observation Satellite (such as the HRS instrument of SPOT5 or the VNIR band of ASTER).[19]

The SPOT 1 satellite (1986) provided the first usable elevation data for a sizeable portion of the planet's landmass, using two-pass stereoscopic correlation. Later, further data were provided by the European Remote-Sensing Satellite (ERS, 1991) using the same method, the Shuttle Radar Topography Mission (SRTM, 2000) using single-pass SAR and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, 2000) instrumentation on the Terra satellite using double-pass stereo pairs.[19]

The HRS instrument on SPOT 5 has acquired over 100 million square kilometers of stereo pairs.

Planetary mapping edit

 
MOLA digital elevation model showing the two hemispheres of Mars. This image appeared on the cover of Science magazine in May 1999.

A tool of increasing value in planetary science has been use of orbital altimetry used to make digital elevation map of planets. A primary tool for this is laser altimetry but radar altimetry is also used.[20] Planetary digital elevation maps made using laser altimetry include the Mars Orbiter Laser Altimeter (MOLA) mapping of Mars,[21] the Lunar Orbital Laser Altimeter (LOLA)[22] and Lunar Altimeter (LALT) mapping of the Moon, and the Mercury Laser Altimeter (MLA) mapping of Mercury.[23] In planetary mapping, each planetary body has a unique reference surface.[24]

Methods for obtaining elevation data used to create DEMs edit

 
Gatewing X100 unmanned aerial vehicle

Accuracy edit

The quality of a DEM is a measure of how accurate elevation is at each pixel (absolute accuracy) and how accurately is the morphology presented (relative accuracy). Quality assessment of DEM can be performed by comparison of DEMs from different sources.[27] Several factors play an important role for quality of DEM-derived products:

  • terrain roughness;
  • sampling density (elevation data collection method);
  • grid resolution or pixel size;
  • interpolation algorithm;
  • vertical resolution;
  • terrain analysis algorithm;
  • Reference 3D products include quality masks that give information on the coastline, lake, snow, clouds, correlation etc.

Uses edit

 
Digital Elevation Model - Red Rocks Amphitheater, Colorado obtained using an UAV
 
Bezmiechowa airfield 3D Digital Surface Model obtained using Pteryx UAV flying 200 m above hilltop
 
Digital Surface Model of motorway interchange construction site. Note that tunnels are closed.
 
Example DEM flown with the Gatewing X100 in Assenede
 
Digital Terrain Model Generator + Textures(Maps) + Vectors

Common uses of DEMs include:

Sources edit

Global edit

Released at the beginning of 2022, FABDEM offers a bare earth simulation of the earth's surface at 30 arc-second resolution. Adapted from GLO-30, the data removes all forests and buildings. The data is free to download non-commercially and through the developer's website at a cost commercially.

An alternative free global DEM is called GTOPO30 (30 arcsecond resolution, c. 1 km along the equator) is available, but its quality is variable and in some areas it is very poor. A much higher quality DEM from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument of the Terra satellite is also freely available for 99% of the globe, and represents elevation at 30 meter resolution. A similarly high resolution was previously only available for the United States territory under the Shuttle Radar Topography Mission (SRTM) data, while most of the rest of the planet was only covered in a 3 arc-second resolution (around 90 meters along the equator). SRTM does not cover the polar regions and has mountain and desert no data (void) areas. SRTM data, being derived from radar, represents the elevation of the first-reflected surface—quite often tree tops. So, the data are not necessarily representative of the ground surface, but the top of whatever is first encountered by the radar.

Submarine elevation (known as bathymetry) data is generated using ship-mounted depth soundings. When land topography and bathymetry is combined, a truly global relief model is obtained. The SRTM30Plus dataset (used in NASA World Wind) attempts to combine GTOPO30, SRTM and bathymetric data to produce a truly global elevation model.[30] The Earth2014 global topography and relief model[31] provides layered topography grids at 1 arc-minute resolution. Other than SRTM30plus, Earth2014 provides information on ice-sheet heights and bedrock (that is, topography below the ice) over Antarctica and Greenland. Another global model is Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) with 7.5 arc second resolution. It is based on SRTM data and combines other data outside SRTM coverage. A novel global DEM of postings lower than 12 m and a height accuracy of less than 2 m is expected from the TanDEM-X satellite mission which started in July 2010.

The most common grid (raster) spacing is between 50 and 500 meters. In gravimetry e.g., the primary grid may be 50 m, but is switched to 100 or 500 meters in distances of about 5 or 10 kilometers.

Since 2002, the HRS instrument on SPOT 5 has acquired over 100 million square kilometers of stereo pairs used to produce a DTED2 format DEM (with a 30-meter posting) DEM format DTED2 over 50 million km2.[32] The radar satellite RADARSAT-2 has been used by MacDonald, Dettwiler and Associates Ltd. to provide DEMs for commercial and military customers.[33]

In 2014, acquisitions from radar satellites TerraSAR-X and TanDEM-X will be available in the form of a uniform global coverage with a resolution of 12 meters.[34]

ALOS provides since 2016 a global 1-arc second DSM free of charge,[35] and a commercial 5 meter DSM/DTM.[36]

Local edit

Many national mapping agencies produce their own DEMs, often of a higher resolution and quality, but frequently these have to be purchased, and the cost is usually prohibitive to all except public authorities and large corporations. DEMs are often a product of national lidar dataset programs.

Free DEMs are also available for Mars: the MEGDR, or Mission Experiment Gridded Data Record, from the Mars Global Surveyor's Mars Orbiter Laser Altimeter (MOLA) instrument; and NASA's Mars Digital Terrain Model (DTM).[37]

Websites edit

OpenTopography[38] is a web based community resource for access to high-resolution, Earth science-oriented, topography data (lidar and DEM data), and processing tools running on commodity and high performance compute system along with educational resources.[39] OpenTopography is based at the San Diego Supercomputer Center[40] at the University of California San Diego and is operated in collaboration with colleagues in the School of Earth and Space Exploration at Arizona State University and UNAVCO.[41] Core operational support for OpenTopography comes from the National Science Foundation, Division of Earth Sciences.

The OpenDemSearcher is a Mapclient with a visualization of regions with free available middle and high resolution DEMs.[42]

 
STL 3D model of the Moon with 10× elevation exaggeration rendered with data from the Lunar Orbiter Laser Altimeter of the Lunar Reconnaissance Orbiter

See also edit

DEM file formats edit

References edit

  1. ^ I. Balenovic, H. Marjanovic, D. Vuletic, etc. Quality assessment of high density digital surface model over different land cover classes. PERIODICUM BIOLOGORUM. VOL. 117, No 4, 459–470, 2015.
  2. ^ (PDF). Severn Tidal Tributaries Catchment Flood Management Plan – Scoping Stage. UK: Environment Agency. Archived from the original (PDF) on 2007-07-10.
  3. ^ . Archived from the original on 2011-09-28.
  4. ^ Li, Z., Zhu, Q. and Gold, C. (2005), Digital terrain modeling: principles and methodology, CRC Press, Boca Raton, FL.
  5. ^ Hirt, C. (2014). "Digital Terrain Models". Encyclopedia of Geodesy. pp. 1–6. doi:10.1007/978-3-319-02370-0_31-1. ISBN 978-3-319-01868-3. Retrieved February 10, 2016.
  6. ^ Peckham, Robert Joseph; Jordan, Gyozo (Eds.)(2007): Development and Applications in a Policy Support Environment Series: Lecture Notes in Geoinformation and Cartography. Heidelberg.
  7. ^ Podobnikar, Tomaz (2008). "Methods for visual quality assessment of a digital terrain model". S.A.P.I.EN.S. 1 (2).
  8. ^ Adrian W. Graham, Nicholas C. Kirkman, Peter M. Paul (2007): Mobile radio network design in the VHF and UHF bands: a practical approach. West Sussex.
  9. ^ . Archived from the original on 2011-01-11.
  10. ^ . Archived from the original on 2011-05-16.
  11. ^ Li, Z., Zhu, Q. and Gold, C. (2005), Digital terrain modeling: principles and methodology, CRC Press, Boca Raton, FL.
  12. ^ "Understanding Digital Surface Models, Digital Terrain Models and Digital Elevation Models: A Comprehensive Guide to Digital Models of the Earth's Surface". FlyGuys. Retrieved 7 September 2023.
  13. ^ DeMers, Michael (2002). GIS Modeling in Raster. Wiley. ISBN 978-0-471-31965-8.
  14. ^ RONALD TOPPE (1987): Terrain models — A tool for natural hazard Mapping 2020-07-29 at the Wayback Machine. In: Avalanche Formation, Movement and Effects (Proceedings of the Davos Symposium, September 1986). IAHS Publ. no. 162,1987
  15. ^ Making 3D Terrain Maps, Shaded Relief. Retrieved 11 March 2019.
  16. ^ David Morrison, ""Flat-Venus Society" organizes", EOS, Volume 73, Issue 9, American Geophysical Union, 3 March 1992, p. 99. https://doi.org/10.1029/91EO00076. Retrieved 11 March 2019.
  17. ^ Robert Simmon. "Elegant Figures What Not To Do: Vertical Exaggeration," NASA Earth Observatory, November 5, 2010. Retrieved 11 March 2019.
  18. ^ . www.intelligence-airbusds.com. Archived from the original on 2018-06-04. Retrieved 2018-01-05.
  19. ^ a b Nikolakopoulos, K. G.; Kamaratakis, E. K; Chrysoulakis, N. (10 November 2006). (PDF). International Journal of Remote Sensing. 27 (21): 4819–4838. Bibcode:2006IJRS...27.4819N. doi:10.1080/01431160600835853. ISSN 0143-1161. S2CID 1939968. Archived from the original (PDF) on July 21, 2011. Retrieved June 22, 2010.
  20. ^ Hargitai, Henrik; Willner, Konrad; Buchroithner, Manfred (2019), Hargitai, Henrik (ed.), "Methods in Planetary Topographic Mapping: A Review", Planetary Cartography and GIS, Lecture Notes in Geoinformation and Cartography, Springer International Publishing, pp. 147–174, doi:10.1007/978-3-319-62849-3_6, ISBN 978-3-319-62848-6, S2CID 133855780
  21. ^ Bruce Banerdt, Orbital Laser Altimeter, The Martian Chronicle, Volume 1, No. 3, NASA. Retrieved 11 March 2019.
  22. ^ NASA, LOLA. Retrieved 11 March 2019.
  23. ^ John F. Cavanaugh, et al., "The Mercury Laser Altimeter Instrument for the MESSENGER Mission", Space Sci Rev, DOI 10.1007/s11214-007-9273-4, 24 August 2007. Retrieved 11 March 2019.
  24. ^ Hargitai, Henrik; Willner, Konrad; Hare, Trent (2019), Hargitai, Henrik (ed.), "Fundamental Frameworks in Planetary Mapping: A Review", Planetary Cartography and GIS, Lecture Notes in Geoinformation and Cartography, Springer International Publishing, pp. 75–101, doi:10.1007/978-3-319-62849-3_4, ISBN 978-3-319-62848-6, S2CID 133867607
  25. ^ a b Campbell, D. M. H.; White, B.; Arp, P. A. (2013-11-01). "Modeling and mapping soil resistance to penetration and rutting using LiDAR-derived digital elevation data". Journal of Soil and Water Conservation. 68 (6): 460–473. doi:10.2489/jswc.68.6.460. ISSN 0022-4561.
  26. ^ James, M. R.; Robson, S. (2012). "Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application" (PDF). Journal of Geophysical Research: Earth Surface. 117 (F3): n/a. Bibcode:2012JGRF..117.3017J. doi:10.1029/2011JF002289.
  27. ^ Szypuła, Bartłomiej (1 January 2019). "Quality assessment of DEM derived from topographic maps for geomorphometric purposes". Open Geosciences. 11 (1): 843–865. Bibcode:2019OGeo...11...66S. doi:10.1515/geo-2019-0066. hdl:20.500.12128/11742. ISSN 2391-5447. S2CID 208868204.
  28. ^ Adams, Aaron (2019). A Comparative Usability Assessment of Augmented Reality 3-D Printed Terrain Models and 2-D Topographic Maps. NMSU. Retrieved 11 March 2022 – via ProQuest.{{cite book}}: CS1 maint: location missing publisher (link)
  29. ^ "I. Balenović, A. Seletković, R. Pernar, A. Jazbec. Estimation of the mean tree height of forest stands by photogrammetric measurement using digital aerial images of high spatial resolution. ANNALS OF FOREST RESEARCH. 58(1), P. 125-143, 2015".
  30. ^ "Martin Gamache's paper on free sources of global data" (PDF).
  31. ^ Hirt, C.; Rexer, M. (2015). "Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models - available as gridded data and degree-10,800 spherical harmonics" (PDF). International Journal of Applied Earth Observation and Geoinformation. 39: 103–112. Bibcode:2015IJAEO..39..103H. doi:10.1016/j.jag.2015.03.001. hdl:20.500.11937/25468. Retrieved February 20, 2016.
  32. ^ . www.astrium-geo.com. Archived from the original on 2014-06-26. Retrieved 2012-01-11.
  33. ^ . gs.mdacorporation.com. Archived from the original on 2016-03-04. Retrieved 2012-02-02.
  34. ^ . www.astrium-geo.com. Archived from the original on 2014-08-12. Retrieved 2012-01-11.
  35. ^ . www.eorc.jaxa.jp. Archived from the original on 2020-05-04. Retrieved 2017-09-09.
  36. ^ "ALOS World 3D". www.aw3d.jp.
  37. ^ . Archived from the original on 2007-05-19.
  38. ^ "OpenTopography". www.opentopography.org.
  39. ^ "About OpenTopography".
  40. ^ "San Diego Supercomputer Center". www.sdsc.edu. Retrieved 2018-08-16.
  41. ^ "Home | UNAVCO". www.unavco.org. Retrieved 2018-08-16.
  42. ^ OpenDemSearcher

Further reading edit

  • Wilson, J.P.; Gallant, J.C. (2000). "Chapter 1" (PDF). In Wilson, J.P.; Gallant, J.C. (eds.). Terrain Analysis: Principles and Applications. New York: Wiley. pp. 1–27. ISBN 978-0-471-32188-0. Retrieved 2007-02-16.
  • Hirt, C.; Filmer, M.S.; Featherstone, W.E. (2010). "Comparison and validation of recent freely-available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia". Australian Journal of Earth Sciences. 57 (3): 337–347. Bibcode:2010AuJES..57..337H. doi:10.1080/08120091003677553. hdl:20.500.11937/43846. S2CID 140651372. Retrieved May 5, 2012.
  • Rexer, M.; Hirt, C. (2014). (PDF). Australian Journal of Earth Sciences. 61 (2): 213–226. Bibcode:2014AuJES..61..213R. doi:10.1080/08120099.2014.884983. hdl:20.500.11937/38264. S2CID 3783826. Archived from the original (PDF) on June 7, 2016. Retrieved April 24, 2014.

External links edit

  • DEM Quality Comparison
  • Terrainmap.com
  • Maps-for-free.com
  • Geo-Spatial Data Acquisition 2013-08-22 at the Wayback Machine
  • Elevation Mapper, Create geo-referenced elevation maps
Data products

digital, elevation, model, digital, elevation, model, digital, surface, model, computer, graphics, representation, elevation, data, represent, terrain, overlaying, objects, commonly, planet, moon, asteroid, global, refers, discrete, global, grid, dems, used, o. A digital elevation model DEM or digital surface model DSM is a 3D computer graphics representation of elevation data to represent terrain or overlaying objects commonly of a planet moon or asteroid A global DEM refers to a discrete global grid DEMs are used often in geographic information systems GIS and are the most common basis for digitally produced relief maps A digital terrain model DTM represents specifically the ground surface while DEM and DSM may represent tree top canopy or building roofs 3D rendering of a DEM of Tithonium Chasma on MarsWhile a DSM may be useful for landscape modeling city modeling and visualization applications a DTM is often required for flood or drainage modeling land use studies 1 geological applications and other applications 2 and in planetary science Contents 1 Terminology 2 Types 2 1 Rendering 3 Production 3 1 Satellite mapping 3 2 Planetary mapping 3 3 Methods for obtaining elevation data used to create DEMs 3 4 Accuracy 4 Uses 5 Sources 5 1 Global 5 2 Local 5 3 Websites 6 See also 6 1 DEM file formats 7 References 8 Further reading 9 External linksTerminology edit nbsp Surfaces represented by a Digital Surface Model include buildings and other objects Digital Terrain Models represent the bare ground There is no universal usage of the terms digital elevation model DEM digital terrain model DTM and digital surface model DSM in scientific literature In most cases the term digital surface model represents the earth s surface and includes all objects on it In contrast to a DSM the digital terrain model DTM represents the bare ground surface without any objects like plants and buildings see the figure on the right 3 4 DEM is often used as a generic term for DSMs and DTMs 5 only representing height information without any further definition about the surface 6 Other definitions equalise the terms DEM and DTM 7 equalise the terms DEM and DSM 8 define the DEM as a subset of the DTM which also represents other morphological elements 9 or define a DEM as a rectangular grid and a DTM as a three dimensional model TIN 10 Most of the data providers USGS ERSDAC CGIAR Spot Image use the term DEM as a generic term for DSMs and DTMs Some datasets such as SRTM or the ASTER GDEM are originally DSMs although in forested areas SRTM reaches into the tree canopy giving readings somewhere between a DSM and a DTM DTMs are created from high resolution DSM datasets using complex algorithms to filter out buildings and other objects a process known as bare earth extraction 11 12 In the following the term DEM is used as a generic term for DSMs and DTMs Types edit nbsp Heightmap of Earth s surface including water and ice rendered as an equirectangular projection with elevations indicated as normalized 8 bit grayscale where lighter values indicate higher elevationA DEM can be represented as a raster a grid of squares also known as a heightmap when representing elevation or as a vector based triangular irregular network TIN 13 The TIN DEM dataset is also referred to as a primary measured DEM whereas the Raster DEM is referred to as a secondary computed DEM 14 The DEM could be acquired through techniques such as photogrammetry lidar IfSAR or InSAR land surveying etc Li et al 2005 DEMs are commonly built using data collected using remote sensing techniques but they may also be built from land surveying Rendering edit nbsp Relief map of Spain s Sierra Nevada showing use of both shading and false color as visualization tools to indicate elevationThe digital elevation model itself consists of a matrix of numbers but the data from a DEM is often rendered in visual form to make it understandable to humans This visualization may be in the form of a contoured topographic map or could use shading and false color assignment or pseudo color to render elevations as colors for example using green for the lowest elevations shading to red with white for the highest elevation Visualizations are sometimes also done as oblique views reconstructing a synthetic visual image of the terrain as it would appear looking down at an angle In these oblique visualizations elevations are sometimes scaled using vertical exaggeration in order to make subtle elevation differences more noticeable 15 Some scientists 16 17 however object to vertical exaggeration as misleading the viewer about the true landscape Production editMappers may prepare digital elevation models in a number of ways but they frequently use remote sensing rather than direct survey data Older methods of generating DEMs often involve interpolating digital contour maps that may have been produced by direct survey of the land surface This method is still used in mountain areas where interferometry is not always satisfactory Note that contour line data or any other sampled elevation datasets by GPS or ground survey are not DEMs but may be considered digital terrain models A DEM implies that elevation is available continuously at each location in the study area Satellite mapping edit One powerful technique for generating digital elevation models is interferometric synthetic aperture radar where two passes of a radar satellite such as RADARSAT 1 or TerraSAR X or Cosmo SkyMed or a single pass if the satellite is equipped with two antennas like the SRTM instrumentation collect sufficient data to generate a digital elevation map tens of kilometers on a side with a resolution of around ten meters 18 Other kinds of stereoscopic pairs can be employed using the digital image correlation method where two optical images are acquired with different angles taken from the same pass of an airplane or an Earth Observation Satellite such as the HRS instrument of SPOT5 or the VNIR band of ASTER 19 The SPOT 1 satellite 1986 provided the first usable elevation data for a sizeable portion of the planet s landmass using two pass stereoscopic correlation Later further data were provided by the European Remote Sensing Satellite ERS 1991 using the same method the Shuttle Radar Topography Mission SRTM 2000 using single pass SAR and the Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER 2000 instrumentation on the Terra satellite using double pass stereo pairs 19 The HRS instrument on SPOT 5 has acquired over 100 million square kilometers of stereo pairs Planetary mapping edit nbsp MOLA digital elevation model showing the two hemispheres of Mars This image appeared on the cover of Science magazine in May 1999 A tool of increasing value in planetary science has been use of orbital altimetry used to make digital elevation map of planets A primary tool for this is laser altimetry but radar altimetry is also used 20 Planetary digital elevation maps made using laser altimetry include the Mars Orbiter Laser Altimeter MOLA mapping of Mars 21 the Lunar Orbital Laser Altimeter LOLA 22 and Lunar Altimeter LALT mapping of the Moon and the Mercury Laser Altimeter MLA mapping of Mercury 23 In planetary mapping each planetary body has a unique reference surface 24 Methods for obtaining elevation data used to create DEMs edit nbsp Gatewing X100 unmanned aerial vehicleLidar 25 Radar Stereo photogrammetry from aerial surveys Structure from motion Multi view stereo applied to aerial photography 26 Block adjustment from optical satellite imagery Interferometry from radar data Real Time Kinematic GPS Topographic maps Theodolite or total station Doppler radar Focus variation Inertial surveys Surveying and mapping drones Range imagingAccuracy edit The quality of a DEM is a measure of how accurate elevation is at each pixel absolute accuracy and how accurately is the morphology presented relative accuracy Quality assessment of DEM can be performed by comparison of DEMs from different sources 27 Several factors play an important role for quality of DEM derived products terrain roughness sampling density elevation data collection method grid resolution or pixel size interpolation algorithm vertical resolution terrain analysis algorithm Reference 3D products include quality masks that give information on the coastline lake snow clouds correlation etc Uses edit nbsp Digital Elevation Model Red Rocks Amphitheater Colorado obtained using an UAV nbsp Bezmiechowa airfield 3D Digital Surface Model obtained using Pteryx UAV flying 200 m above hilltop nbsp Digital Surface Model of motorway interchange construction site Note that tunnels are closed nbsp Example DEM flown with the Gatewing X100 in Assenede nbsp Digital Terrain Model Generator Textures Maps VectorsCommon uses of DEMs include Extracting terrain parameters for geomorphology Modeling water flow for hydrology or mass movement for example avalanches and landslides Modeling soils wetness with Cartographic Depth to Water Indexes DTW index 25 Creation of relief maps Rendering of 3D visualizations 3D flight planning and TERCOM Creation of physical models including raised relief maps and 3D printed terrain models 28 Rectification of aerial photography or satellite imagery Reduction terrain correction of gravity measurements gravimetry physical geodesy Terrain analysis in geomorphology and physical geography Geographic information systems GIS Engineering and infrastructure design Satellite navigation for example GPS and GLONASS Line of sight analysis Base mapping Flight simulation Train simulation Precision farming and forestry 29 Surface analysis Intelligent transportation systems ITS Auto safety advanced driver assistance systems ADAS ArchaeologySources editGlobal edit Released at the beginning of 2022 FABDEM offers a bare earth simulation of the earth s surface at 30 arc second resolution Adapted from GLO 30 the data removes all forests and buildings The data is free to download non commercially and through the developer s website at a cost commercially An alternative free global DEM is called GTOPO30 30 arcsecond resolution c 1 km along the equator is available but its quality is variable and in some areas it is very poor A much higher quality DEM from the Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER instrument of the Terra satellite is also freely available for 99 of the globe and represents elevation at 30 meter resolution A similarly high resolution was previously only available for the United States territory under the Shuttle Radar Topography Mission SRTM data while most of the rest of the planet was only covered in a 3 arc second resolution around 90 meters along the equator SRTM does not cover the polar regions and has mountain and desert no data void areas SRTM data being derived from radar represents the elevation of the first reflected surface quite often tree tops So the data are not necessarily representative of the ground surface but the top of whatever is first encountered by the radar Submarine elevation known as bathymetry data is generated using ship mounted depth soundings When land topography and bathymetry is combined a truly global relief model is obtained The SRTM30Plus dataset used in NASA World Wind attempts to combine GTOPO30 SRTM and bathymetric data to produce a truly global elevation model 30 The Earth2014 global topography and relief model 31 provides layered topography grids at 1 arc minute resolution Other than SRTM30plus Earth2014 provides information on ice sheet heights and bedrock that is topography below the ice over Antarctica and Greenland Another global model is Global Multi resolution Terrain Elevation Data 2010 GMTED2010 with 7 5 arc second resolution It is based on SRTM data and combines other data outside SRTM coverage A novel global DEM of postings lower than 12 m and a height accuracy of less than 2 m is expected from the TanDEM X satellite mission which started in July 2010 The most common grid raster spacing is between 50 and 500 meters In gravimetry e g the primary grid may be 50 m but is switched to 100 or 500 meters in distances of about 5 or 10 kilometers Since 2002 the HRS instrument on SPOT 5 has acquired over 100 million square kilometers of stereo pairs used to produce a DTED2 format DEM with a 30 meter posting DEM format DTED2 over 50 million km2 32 The radar satellite RADARSAT 2 has been used by MacDonald Dettwiler and Associates Ltd to provide DEMs for commercial and military customers 33 In 2014 acquisitions from radar satellites TerraSAR X and TanDEM X will be available in the form of a uniform global coverage with a resolution of 12 meters 34 ALOS provides since 2016 a global 1 arc second DSM free of charge 35 and a commercial 5 meter DSM DTM 36 Local edit Many national mapping agencies produce their own DEMs often of a higher resolution and quality but frequently these have to be purchased and the cost is usually prohibitive to all except public authorities and large corporations DEMs are often a product of national lidar dataset programs Free DEMs are also available for Mars the MEGDR or Mission Experiment Gridded Data Record from the Mars Global Surveyor s Mars Orbiter Laser Altimeter MOLA instrument and NASA s Mars Digital Terrain Model DTM 37 Websites edit OpenTopography 38 is a web based community resource for access to high resolution Earth science oriented topography data lidar and DEM data and processing tools running on commodity and high performance compute system along with educational resources 39 OpenTopography is based at the San Diego Supercomputer Center 40 at the University of California San Diego and is operated in collaboration with colleagues in the School of Earth and Space Exploration at Arizona State University and UNAVCO 41 Core operational support for OpenTopography comes from the National Science Foundation Division of Earth Sciences The OpenDemSearcher is a Mapclient with a visualization of regions with free available middle and high resolution DEMs 42 nbsp STL 3D model of the Moon with 10 elevation exaggeration rendered with data from the Lunar Orbiter Laser Altimeter of the Lunar Reconnaissance OrbiterSee also editGround slope and aspect ground spatial gradient Digital outcrop model Global Relief Model Physical terrain model Terrain cartography Terrain renderingDEM file formats edit Bathymetric Attributed Grid BAG DTED DIMAP Sentinel 1 ESA data base SDTS DEM USGS DEMReferences edit I Balenovic H Marjanovic D Vuletic etc Quality assessment of high density digital surface model over different land cover classes PERIODICUM BIOLOGORUM VOL 117 No 4 459 470 2015 Appendix A Glossary and Acronyms PDF Severn Tidal Tributaries Catchment Flood Management Plan Scoping Stage UK Environment Agency Archived from the original PDF on 2007 07 10 Intermap Digital Surface Model accurate seamless wide area surface models Archived from the original on 2011 09 28 Li Z Zhu Q and Gold C 2005 Digital terrain modeling principles and methodology CRC Press Boca Raton FL Hirt C 2014 Digital Terrain Models Encyclopedia of Geodesy pp 1 6 doi 10 1007 978 3 319 02370 0 31 1 ISBN 978 3 319 01868 3 Retrieved February 10 2016 Peckham Robert Joseph Jordan Gyozo Eds 2007 Development and Applications in a Policy Support Environment Series Lecture Notes in Geoinformation and Cartography Heidelberg Podobnikar Tomaz 2008 Methods for visual quality assessment of a digital terrain model S A P I EN S 1 2 Adrian W Graham Nicholas C Kirkman Peter M Paul 2007 Mobile radio network design in the VHF and UHF bands a practical approach West Sussex DIN Standard 18709 1 Archived from the original on 2011 01 11 Landslide Glossary USGS Archived from the original on 2011 05 16 Li Z Zhu Q and Gold C 2005 Digital terrain modeling principles and methodology CRC Press Boca Raton FL Understanding Digital Surface Models Digital Terrain Models and Digital Elevation Models A Comprehensive Guide to Digital Models of the Earth s Surface FlyGuys Retrieved 7 September 2023 DeMers Michael 2002 GIS Modeling in Raster Wiley ISBN 978 0 471 31965 8 RONALD TOPPE 1987 Terrain models A tool for natural hazard Mapping Archived 2020 07 29 at the Wayback Machine In Avalanche Formation Movement and Effects Proceedings of the Davos Symposium September 1986 IAHS Publ no 162 1987 Making 3D Terrain Maps Shaded Relief Retrieved 11 March 2019 David Morrison Flat Venus Society organizes EOS Volume 73 Issue 9 American Geophysical Union 3 March 1992 p 99 https doi org 10 1029 91EO00076 Retrieved 11 March 2019 Robert Simmon Elegant Figures What Not To Do Vertical Exaggeration NASA Earth Observatory November 5 2010 Retrieved 11 March 2019 WorldDEM TM Airbus Defence and Space www intelligence airbusds com Archived from the original on 2018 06 04 Retrieved 2018 01 05 a b Nikolakopoulos K G Kamaratakis E K Chrysoulakis N 10 November 2006 SRTM vs ASTER elevation products Comparison for two regions in Crete Greece PDF International Journal of Remote Sensing 27 21 4819 4838 Bibcode 2006IJRS 27 4819N doi 10 1080 01431160600835853 ISSN 0143 1161 S2CID 1939968 Archived from the original PDF on July 21 2011 Retrieved June 22 2010 Hargitai Henrik Willner Konrad Buchroithner Manfred 2019 Hargitai Henrik ed Methods in Planetary Topographic Mapping A Review Planetary Cartography and GIS Lecture Notes in Geoinformation and Cartography Springer International Publishing pp 147 174 doi 10 1007 978 3 319 62849 3 6 ISBN 978 3 319 62848 6 S2CID 133855780 Bruce Banerdt Orbital Laser Altimeter The Martian Chronicle Volume 1 No 3 NASA Retrieved 11 March 2019 NASA LOLA Retrieved 11 March 2019 John F Cavanaugh et al The Mercury Laser Altimeter Instrument for the MESSENGER Mission Space Sci Rev DOI 10 1007 s11214 007 9273 4 24 August 2007 Retrieved 11 March 2019 Hargitai Henrik Willner Konrad Hare Trent 2019 Hargitai Henrik ed Fundamental Frameworks in Planetary Mapping A Review Planetary Cartography and GIS Lecture Notes in Geoinformation and Cartography Springer International Publishing pp 75 101 doi 10 1007 978 3 319 62849 3 4 ISBN 978 3 319 62848 6 S2CID 133867607 a b Campbell D M H White B Arp P A 2013 11 01 Modeling and mapping soil resistance to penetration and rutting using LiDAR derived digital elevation data Journal of Soil and Water Conservation 68 6 460 473 doi 10 2489 jswc 68 6 460 ISSN 0022 4561 James M R Robson S 2012 Straightforward reconstruction of 3D surfaces and topography with a camera Accuracy and geoscience application PDF Journal of Geophysical Research Earth Surface 117 F3 n a Bibcode 2012JGRF 117 3017J doi 10 1029 2011JF002289 Szypula Bartlomiej 1 January 2019 Quality assessment of DEM derived from topographic maps for geomorphometric purposes Open Geosciences 11 1 843 865 Bibcode 2019OGeo 11 66S doi 10 1515 geo 2019 0066 hdl 20 500 12128 11742 ISSN 2391 5447 S2CID 208868204 Adams Aaron 2019 A Comparative Usability Assessment of Augmented Reality 3 D Printed Terrain Models and 2 D Topographic Maps NMSU Retrieved 11 March 2022 via ProQuest a href Template Cite book html title Template Cite book cite book a CS1 maint location missing publisher link I Balenovic A Seletkovic R Pernar A Jazbec Estimation of the mean tree height of forest stands by photogrammetric measurement using digital aerial images of high spatial resolution ANNALS OF FOREST RESEARCH 58 1 P 125 143 2015 Martin Gamache s paper on free sources of global data PDF Hirt C Rexer M 2015 Earth2014 1 arc min shape topography bedrock and ice sheet models available as gridded data and degree 10 800 spherical harmonics PDF International Journal of Applied Earth Observation and Geoinformation 39 103 112 Bibcode 2015IJAEO 39 103H doi 10 1016 j jag 2015 03 001 hdl 20 500 11937 25468 Retrieved February 20 2016 GEO Elevation Services Airbus Defence and Space www astrium geo com Archived from the original on 2014 06 26 Retrieved 2012 01 11 International Geospatial gs mdacorporation com Archived from the original on 2016 03 04 Retrieved 2012 02 02 TerraSAR X Airbus Defence and Space www astrium geo com Archived from the original on 2014 08 12 Retrieved 2012 01 11 ALOS World 3D 30m www eorc jaxa jp Archived from the original on 2020 05 04 Retrieved 2017 09 09 ALOS World 3D www aw3d jp A basic guide for using Digital Elevation Models with Terragen Archived from the original on 2007 05 19 OpenTopography www opentopography org About OpenTopography San Diego Supercomputer Center www sdsc edu Retrieved 2018 08 16 Home UNAVCO www unavco org Retrieved 2018 08 16 OpenDemSearcherFurther reading editWilson J P Gallant J C 2000 Chapter 1 PDF In Wilson J P Gallant J C eds Terrain Analysis Principles and Applications New York Wiley pp 1 27 ISBN 978 0 471 32188 0 Retrieved 2007 02 16 Hirt C Filmer M S Featherstone W E 2010 Comparison and validation of recent freely available ASTER GDEM ver1 SRTM ver4 1 and GEODATA DEM 9S ver3 digital elevation models over Australia Australian Journal of Earth Sciences 57 3 337 347 Bibcode 2010AuJES 57 337H doi 10 1080 08120091003677553 hdl 20 500 11937 43846 S2CID 140651372 Retrieved May 5 2012 Rexer M Hirt C 2014 Comparison of free high resolution digital elevation data sets ASTER GDEM2 SRTM v2 1 v4 1 and validation against accurate heights from the Australian National Gravity Database PDF Australian Journal of Earth Sciences 61 2 213 226 Bibcode 2014AuJES 61 213R doi 10 1080 08120099 2014 884983 hdl 20 500 11937 38264 S2CID 3783826 Archived from the original PDF on June 7 2016 Retrieved April 24 2014 External links editDEM Quality Comparison Terrainmap com Maps for free com Geo Spatial Data Acquisition Archived 2013 08 22 at the Wayback Machine Elevation Mapper Create geo referenced elevation mapsData productsSatellite Geodesy by Scripps Institution of Oceanography Shuttle Radar Topography Mission by NASA JPL Global 30 Arc Second Elevation GTOPO30 by the U S Geological Survey Global Multi resolution Terrain Elevation Data 2010 GMTED2010 by the U S Geological Survey Earth2014 by Technische Universitat Munchen Sonny s LiDAR Digital Terrain Models of European countries Retrieved from https en wikipedia org w index php title Digital elevation model amp oldid 1176337607, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.