fbpx
Wikipedia

Digital television

Digital television (DTV) is the transmission of television signals using digital encoding, in contrast to the earlier analog television technology which used analog signals. At the time of its development it was considered an innovative advancement and represented the first significant evolution in television technology since color television in the 1950s.[1] Modern digital television is transmitted in high-definition television (HDTV) with greater resolution than analog TV. It typically uses a widescreen aspect ratio (commonly 16:9) in contrast to the narrower format of analog TV. It makes more economical use of scarce radio spectrum space; it can transmit up to seven channels in the same bandwidth as a single analog channel,[2] and provides many new features that analog television cannot. A transition from analog to digital broadcasting began around 2000. Different digital television broadcasting standards have been adopted in different parts of the world; below are the more widely used standards:

A map depicting digital terrestrial television standards

History

Background

Digital television's roots are tied to the availability of inexpensive, high performance computers. It was not until the 1990s that digital TV became a real possibility.[7] Digital television was previously not practically feasible due to the impractically high bandwidth requirements of uncompressed video,[8][9] requiring around 200 Mbit/s for a standard-definition television (SDTV) signal,[8] and over 1 Gbit/s for high-definition television (HDTV).[9]

Development

In the mid-1980s, Toshiba released a television set with digital capabilities, using integrated circuit chips such as a microprocessor to convert analog television broadcast signals to digital video signals, enabling features such as freezing pictures and showing two channels at once. In 1986, Sony and NEC Home Electronics announced their own similar TV sets with digital video capabilities. However, they still relied on analog TV broadcast signals, with true digital TV broadcasts not yet being available at the time.[10][11]

A digital TV broadcast service was proposed in 1986 by Nippon Telegraph and Telephone (NTT) and the Ministry of Posts and Telecommunication (MPT) in Japan, where there were plans to develop an "Integrated Network System" service. However, it was not possible to practically implement such a digital TV service until the adoption of motion-compensated DCT video compression formats such as MPEG made it possible in the early 1990s.[8]

In the mid-1980s, as Japanese consumer electronics firms forged ahead with the development of HDTV technology, and as the MUSE analog format was proposed by Japan's public broadcaster NHK as a worldwide standard. Japanese advancements were seen as pacesetters that threatened to eclipse US electronics companies. Until June 1990, the Japanese MUSE standard—based on an analog system—was the front-runner among the more than 23 different technical concepts under consideration.

Between 1988 and 1991, several European organizations were working on DCT-based digital video coding standards for both SDTV and HDTV. The EU 256 project by the CMTT and ETSI, along with research by Italian broadcaster RAI, developed a DCT video codec that broadcast SDTV at 34 Mbit/s and near-studio-quality HDTV at about 70–140 Mbit/s. RAI demonstrated this with a 1990 FIFA World Cup broadcast in March 1990.[9][12] An American company, General Instrument, also demonstrated the feasibility of a digital television signal in 1990. This led to the FCC being persuaded to delay its decision on an advanced television (ATV) standard until a digitally based standard could be developed.

In March 1990, when it became clear that a digital standard was feasible, the FCC made a number of critical decisions. First, the Commission declared that the new TV standard must be more than an enhanced analog signal, but be able to provide a genuine HDTV signal with at least twice the resolution of existing television images. Then, to ensure that viewers who did not wish to buy a new digital television set could continue to receive conventional television broadcasts, it dictated that the new ATV standard must be capable of being simulcast on different channels. The new ATV standard also allowed the new DTV signal to be based on entirely new design principles. Although incompatible with the existing NTSC standard, the new DTV standard would be able to incorporate many improvements.[7]

The final standard adopted by the FCC did not produce a universal standard for scanning formats, aspect ratios, or lines of resolution. This outcome resulted from a dispute between the consumer electronics industry (joined by some broadcasters) and the computer industry (joined by the film industry and some public interest groups) over which of the two scanning processes—interlaced or progressive—is superior. Interlaced scanning, which is used in televisions worldwide, scans even-numbered lines first, then odd-numbered ones. Progressive scanning, which is the format used in computers, scans lines in sequences, from top to bottom. The computer industry argued that progressive scanning is superior because it does not flicker in the manner of interlaced scanning. It also argued that progressive scanning enables easier connections with the Internet, and is more cheaply converted to interlaced formats than vice versa. The film industry also supported progressive scanning because it offers a more efficient means of converting filmed programming into digital formats. For their part, the consumer electronics industry and broadcasters argued that interlaced scanning was the only technology that could transmit the highest quality pictures then (and currently) feasible, i.e., 1,080 lines per picture and 1,920 pixels per line. Broadcasters also favored interlaced scanning because their vast archive of interlaced programming is not readily compatible with a progressive format.[7]

Inaugural launches

DirecTV in the US launched the first commercial digital satellite platform in May 1994, using the Digital Satellite System (DSS) standard.[13][14] Digital cable broadcasts were tested and launched in the US in 1996 by TCI and Time Warner.[15][16] The first digital terrestrial platform was launched in November 1998 as ONdigital in the UK, using the DVB-T standard.[17]

Technical information

Formats and bandwidth

 
Comparison of image quality between ISDB-T (1080i broadcast, top) and NTSC (480i transmission, bottom)

Digital television supports many different picture formats defined by the broadcast television systems which are a combination of size and aspect ratio (width to height ratio).

With digital terrestrial television (DTT) broadcasting, the range of formats can be broadly divided into two categories: high-definition television (HDTV) for the transmission of high-definition video and standard-definition television (SDTV). These terms by themselves are not very precise, and many subtle intermediate cases exist.

One of several different HDTV formats that can be transmitted over DTV is: 1280 × 720 pixels in progressive scan mode (abbreviated 720p) or 1920 × 1080 pixels in interlaced video mode (1080i). Each of these uses a 16:9 aspect ratio. HDTV cannot be transmitted over analog television channels because of channel capacity issues.

SDTV, by comparison, may use one of several different formats taking the form of various aspect ratios depending on the technology used in the country of broadcast. NTSC can deliver a 640 × 480 resolution in 4:3 and 854 × 480 in 16:9, while PAL can give 768 × 576 in 4:3 and 1024 × 576 in 16:9. However, broadcasters may choose to reduce these resolutions to reduce bit rate (e.g., many DVB-T channels in the UK use a horizontal resolution of 544 or 704 pixels per line).[18]

Each commercial broadcasting terrestrial television DTV channel in North America is allocated enough bandwidth to broadcast up to 19 megabits per second. However, the broadcaster does not need to use this entire bandwidth for just one broadcast channel. Instead, the broadcast can use Program and System Information Protocol and subdivide across several video subchannels (a.k.a. feeds) of varying quality and compression rates, including non-video datacasting services.

A broadcaster may opt to use a standard-definition (SDTV) digital signal instead of an HDTV signal, because current convention allows the bandwidth of a DTV channel (or "multiplex") to be subdivided into multiple digital subchannels, (similar to what most FM radio stations offer with HD Radio), providing multiple feeds of entirely different television programming on the same channel. This ability to provide either a single HDTV feed or multiple lower-resolution feeds is often referred to as distributing one's bit budget or multicasting. This can sometimes be arranged automatically, using a statistical multiplexer. With some implementations, image resolution may be less directly limited by bandwidth; for example in DVB-T, broadcasters can choose from several different modulation schemes, giving them the option to reduce the transmission bit rate and make reception easier for more distant or mobile viewers.

Reception

There are several different ways to receive digital television. One of the oldest means of receiving DTV (and TV in general) is from terrestrial transmitters using an antenna (known as an aerial in some countries). This delivery method is known as digital terrestrial television (DTT). With DTT, viewers are limited to channels that have a terrestrial transmitter in range of their antenna.

Other delivery methods include digital cable and digital satellite. In some countries where transmissions of TV signals are normally achieved by microwaves, digital multichannel multipoint distribution service is used. Other standards, such as digital multimedia broadcasting (DMB) and digital video broadcasting - handheld (DVB-H), have been devised to allow handheld devices such as mobile phones to receive TV signals. Another way is Internet Protocol television (IPTV), which is the delivery of TV over a computer network. Finally, an alternative way is to receive digital TV signals via the open Internet (Internet television), whether from a central streaming service or a P2P (peer-to-peer) system.

Some signals carry encryption and specify use conditions (such as "may not be recorded" or "may not be viewed on displays larger than 1 m in diagonal measure") backed up with the force of law under the World Intellectual Property Organization Copyright Treaty (WIPO Copyright Treaty) and national legislation implementing it, such as the US Digital Millennium Copyright Act. Access to encrypted channels can be controlled by a removable smart card, for example via the Common Interface (DVB-CI) standard for Europe and via Point Of Deployment (POD) for IS or named differently CableCard.

Protection parameters

Digital television signals must not interfere with each other, and they must also coexist with analog television until it is phased out. The following table gives allowable signal-to-noise and signal-to-interference ratios for various interference scenarios. This table is a crucial regulatory tool for controlling the placement and power levels of stations. Digital TV is more tolerant of interference than analog TV, and this is the reason a smaller range of channels can carry an all-digital set of television stations.[19]

System Parameters
(protection ratios)
Canada [13] USA [5] EBU [9, 12]
ITU-mode M3
Japan & Brazil [36, 37][A]
C/N for AWGN Channel +19.5 dB
(16.5 dB[B])
+15.19 dB +19.3 dB +19.2 dB
Co-Channel DTV into Analog TV +33.8 dB +34.44 dB +34 ≈37 dB +38 dB
Co-Channel Analog TV into DTV +7.2 dB +1.81 dB +4 dB +4 dB
Co-Channel DTV into DTV +19.5 dB
(16.5 dB[B])
+15.27 dB +19 dB +19 dB
Lower Adjacent Channel DTV into Analog TV −16 dB −17.43 dB −5 ~ −11 dB[C] −6 dB
Upper Adjacent Channel DTV into Analog TV −12 dB −11.95 dB −1 ~ −10[C] −5 dB
Lower Adjacent Channel Analog TV into DTV −48 dB −47.33 dB −34 ~ −37 dB[C] −35 dB
Upper Adjacent Channel Analog TV into DTV −49 dB −48.71 dB −38 ~ −36 dB[C] −37 dB
Lower Adjacent Channel DTV into DTV −27 dB −28 dB −30 dB −28 dB
Upper Adjacent Channel DTV into DTV −27 dB −26 dB −30 dB −29 dB
  1. ^ ISDB-T (6 MHz, 64QAM, R=2/3), Analog TV (M/NTSC).
  2. ^ a b The Canadian parameter, C/(N+I) of noise plus co-channel DTV interface should be 16.5 dB.
  3. ^ a b c d Depending on analog TV systems used.

Interaction

People can interact with a DTV system in various ways. One can, for example, browse the electronic program guide. Modern DTV systems sometimes use a return path providing feedback from the end user to the broadcaster. This is possible with a coaxial or fiber optic cable, a dialup modem, or Internet connection but is not possible with a standard antenna.

Some of these systems support video on demand using a communication channel localized to a neighborhood rather than a city (terrestrial) or an even larger area (satellite).

1seg

1seg (1-segment) is a special form of ISDB. Each channel is further divided into 13 segments. Twelve are allocated for HDTV and the other for narrow-band receivers such as mobile televisions and cell phones.

Timeline of transition

Comparison to analog

DTV has several advantages over analog TV, the most significant being that digital channels take up less bandwidth, and the bandwidth needs are continuously variable, at a corresponding reduction in image quality depending on the level of compression as well as the resolution of the transmitted image. This means that digital broadcasters can provide more digital channels in the same space, provide high-definition television service, or provide other non-television services such as multimedia or interactivity. DTV also permits special services such as multiplexing (more than one program on the same channel), electronic program guides and additional languages (spoken or subtitled). The sale of non-television services may provide an additional revenue source.

Digital and analog signals react to interference differently. For example, common problems with analog television include ghosting of images, noise from weak signals, and many other potential problems which degrade the quality of the image and sound, although the program material may still be watchable. With digital television, the audio and video must be synchronized digitally, so reception of the digital signal must be very nearly complete; otherwise, neither audio nor video will be usable. Short of this complete failure, "blocky" video is seen when the digital signal experiences interference.

Analog TV began with monophonic sound, and later developed multichannel television sound with two independent audio signal channels. DTV allows up to 5 audio signal channels plus a subwoofer bass channel, with broadcasts similar in quality to movie theaters and DVDs.[20]

Digital TV signals require less transmission power than analog TV signals to be broadcast and received satisfactorily.[21]

Compression artifacts, picture quality monitoring, and allocated bandwidth

DTV images have some picture defects that are not present on analog television or motion picture cinema, because of present-day limitations of bit rate and compression algorithms such as MPEG-2. This defect is sometimes referred to as "mosquito noise".[22]

Because of the way the human visual system works, defects in an image that are localized to particular features of the image or that come and go are more perceptible than defects that are uniform and constant. However, the DTV system is designed to take advantage of other limitations of the human visual system to help mask these flaws, e.g. by allowing more compression artifacts during fast motion where the eye cannot track and resolve them as easily and, conversely, minimizing artifacts in still backgrounds that may be closely examined in a scene (since time allows).

Broadcast, cable, satellite, and Internet DTV operators control the picture quality of television signal encodes using sophisticated, neuroscience-based algorithms, such as the structural similarity (SSIM) video quality measurement tool, which was accorded each of its inventors a Primetime Emmy because of its global use. Another tool, called Visual Information Fidelity (VIF), is a top-performing algorithm at the core of the Netflix VMAF video quality monitoring system, which accounts for about 35% of all US bandwidth consumption.

Effects of poor reception

Changes in signal reception from factors such as degrading antenna connections or changing weather conditions may gradually reduce the quality of analog TV. The nature of digital TV results in a perfectly decodable video initially, until the receiving equipment starts picking up interference that overpowers the desired signal or if the signal is too weak to decode. Some equipment will show a garbled picture with significant damage, while other devices may go directly from perfectly decodable video to no video at all or lock up.[23] This phenomenon is known as the digital cliff effect.

Block error may occur when transmission is done with compressed images. A block error in a single frame often results in black boxes in several subsequent frames, making viewing difficult.

For remote locations, distant channels that, as analog signals, were previously usable in a snowy and degraded state may, as digital signals, be perfectly decodable or may become completely unavailable. The use of higher frequencies will add to these problems, especially in cases where a clear line-of-sight from the receiving antenna to the transmitter is not available, because usually higher frequency signals can't pass through obstacles as easily.

Effect on old analog technology

Television sets with only analog tuners cannot decode digital transmissions. When analog broadcasting over the air ceases, users of sets with analog-only tuners may use other sources of programming (e.g. cable, recorded media) or may purchase set-top converter boxes to tune in the digital signals. In the United States, a government-sponsored coupon was available to offset the cost of an external converter box. Analog switch-off (of full-power stations) took place on December 11, 2006, in The Netherlands,[24] June 12, 2009 in the United States for full-power stations, and later for Class-A Stations on September 1, 2016,[25] July 24, 2011 in Japan,[26] August 31, 2011 in Canada,[27] February 13, 2012 in Arab states, May 1, 2012, in Germany, October 24, 2012, in the United Kingdom[28] and Ireland,[29] October 31, 2012 in selected Indian cities,[30] and December 10, 2013, in Australia.[31] Completion of analog switch-off is scheduled for December 31, 2017 in the whole of India,[30] December 2018 in Costa Rica and around 2023 for the Philippines.[citation needed]

Disappearance of TV-audio receivers

Prior to the conversion to digital TV, analog television broadcast audio for TV channels on a separate FM carrier signal from the video signal. This FM audio signal could be heard using standard radios equipped with the appropriate tuning circuits.

However, after the transition of many countries to digital TV, no portable radio manufacturer has yet developed an alternative method for portable radios to play just the audio signal of digital TV channels; DTV radio is not the same thing.

Environmental issues

The adoption of a broadcast standard incompatible with existing analog receivers has created the problem of large numbers of analog receivers being discarded during digital television transition. One superintendent of public works was quoted in 2009 saying; "some of the studies I’ve read in the trade magazines say up to a quarter of American households could be throwing a TV out in the next two years following the regulation change".[32] In 2009, an estimated 99 million analog TV receivers were sitting unused in homes in the US alone and, while some obsolete receivers are being retrofitted with converters, many more are simply dumped in landfills where they represent a source of toxic metals such as lead as well as lesser amounts of materials such as barium, cadmium and chromium.[33][34]

According to one campaign group, a CRT computer monitor or TV contains an average of 8 pounds (3.6 kg) of lead.[35] According to another source, the lead in glass of a CRT varies from 1.08 lb to 11.28 lb, depending on screen size and type, but the lead is in the form of "stable and immobile" lead oxide mixed into the glass.[36] It is claimed that the lead can have long-term negative effects on the environment if dumped as landfill.[37] However, the glass envelope can be recycled at suitably equipped facilities.[38] Other portions of the receiver may be subject to disposal as hazardous material.

Local restrictions on disposal of these materials vary widely; in some cases second-hand stores have refused to accept working color television receivers for resale due to the increasing costs of disposing of unsold TVs. Those thrift stores which are still accepting donated TVs have reported significant increases in good-condition working used television receivers abandoned by viewers who often expect them not to work after digital transition.[39]

In Michigan in 2009, one recycler estimated that as many as one household in four would dispose of or recycle a TV set in the following year.[40] The digital television transition, migration to high-definition television receivers and the replacement of CRTs with flatscreens are all factors in the increasing number of discarded analog CRT-based television receivers.

See also

References

  1. ^ Kruger, Lennard G. (2002). Digital Television: An Overview. New York: Nova Publishers. ISBN 1-59033-502-3.
  2. ^ "HDTV Set Top Boxes and Digital TV Broadcast Information". Archived from the original on 22 May 2016. Retrieved 28 June 2014.
  3. ^ Ong, C. Y., Song, J., Pan, C., & Li, Y.(2010, May). Technology and Standards of Digital Television Terrestrial Multimedia Broadcasting [Topics in Wireless Communications], IEEE Communications Magazine, 48(5),119-127
  4. ^ "Korea's Terrestrial DMB: Germany to begin broadcast this May". ZDNet Korea. 2006-04-06. Retrieved 2010-06-17.
  5. ^ . Textually.org. Archived from the original on 2010-08-09. Retrieved 2010-06-17.
  6. ^ . Reportworld.co.kr. Archived from the original on 2009-08-17. Retrieved 2010-06-17.
  7. ^ a b c "The Origins and Future Prospects of Digital Television". Benton Foundation. 2008-12-23.
  8. ^ a b c Lea, William (1994). Video on demand: Research Paper 94/68. House of Commons Library. Retrieved 20 September 2019.
  9. ^ a b c Barbero, M.; Hofmann, H.; Wells, N. D. (14 November 1991). "DCT source coding and current implementations for HDTV". EBU Technical Review. European Broadcasting Union (251): 22–33. Retrieved 4 November 2019.
  10. ^ Meigs, James B. (June 1986). "Home Video: Get set for digital". Popular Mechanics. Vol. 163, no. 6. Hearst Magazines. p. 52. ISSN 0032-4558.
  11. ^ Bateman, Selby (April 1986). "New Technologies: The Converging Digital Universe". Compute!. No. 71. pp. 21-29 (26-8).
  12. ^ Barbero, M.; Stroppiana, M. (October 1992). "Data compression for HDTV transmission and distribution". IEE Colloquium on Applications of Video Compression in Broadcasting: 10/1–10/5.
  13. ^ "History of U.S. Satellite Broadcasting Company, Inc. – FundingUniverse". www.fundinguniverse.com. Retrieved 9 August 2018.
  14. ^ "Business Insider: Digital satellite TV has Indy roots". Retrieved 9 August 2018.
  15. ^ "NextLevel signs cable deal - Dec. 17, 1997". money.cnn.com. Retrieved 9 August 2018.
  16. ^ "TCI faces big challenges - Aug. 15, 1996". money.cnn.com. Retrieved 9 August 2018.
  17. ^ "CANAL+ TECHNOLOGIES and the world's first digital terrestrial television service in the United Kingdom". Retrieved 9 August 2018.
  18. ^ Latest snapshots - Freeview/DTT bitrates 2007-11-22 at the Wayback Machine (Mendip transmitter, UK)
  19. ^ "Frequently Asked Questions -- What Is Digital TV?". ABC News. Retrieved 2020-09-30.
  20. ^ "Digital TV: A Cringley Crash Course — Digital Vs. Analog". Pbs.org. Retrieved 2014-01-13.
  21. ^ "Report ITU-R BT.2140-3 (05/2011)" (PDF). (PDF) from the original on 10 June 2020.
  22. ^ Le Dinh, Phuc-Tue; Patry, Jacques (February 24, 2006). . Video Imaging DesignLine. Archived from the original on March 14, 2006. Retrieved April 30, 2010.
  23. ^ "Digital TV Info". Antenna Direct. 2013-09-25. Retrieved 2022-07-22.
  24. ^ (PDF). Open Society Foundations September 2011. Archived from the original (PDF) on 2013-04-20. Retrieved 2013-02-04.
  25. ^ "The Digital TV Transition: Will You Be Affected?". FCC. Retrieved 2009-11-02.
  26. ^ "New DTV Hard Date: July 24, 2011?". B&C. Retrieved 2009-11-02. - dead link
  27. ^ "DTV Post-Transition Allotment Plan" (PDF). Spectrum Management and Telecommunications. (PDF) from the original on 2009-02-26. Retrieved 2009-11-02.
  28. ^ (PDF). Digital UK. Archived from the original (PDF) on 2013-06-03. Retrieved 2012-12-21.
  29. ^ "Analogue switch off has finally happened". SAORVIEW. Retrieved 2012-12-21.
  30. ^ a b "Find out when digital switch over is coming to you". Government of India Ministry of Information & Broadcasting. Retrieved 2012-12-21.
  31. ^ . Digital Ready AU. Archived from the original on 2013-01-29. Retrieved 2013-12-25.
  32. ^ North Tonawanda: council discusses future TV disposal 2009-01-31 at the Wayback Machine, Neale Gulley, Tonawanda News, January 27, 2009
  33. ^ Old Toxic TVs Cause Problems, USA TODAY, January 27, 2009
  34. ^ Unloading that old TV not quite so simple, Lee Bergquist, Milwaukee Journal-Sentinel, January 23, 2009
  35. ^ Campaigners highlight 'toxic TVs', Maggie Shiels, BBC News, 9 January 2009
  36. ^ (PDF). Electronic Industries Alliance. 2001-11-30. p. 1. Archived from the original (PDF) on 2011-05-20. Retrieved 2009-09-29.
  37. ^ Poon, C.S. (2008). "Management of CRT glass from discarded computer monitors and TV sets". Waste Management. 28 (9): 1499. doi:10.1016/j.wasman.2008.06.001. hdl:10397/24493. PMID 18571917. Retrieved 2009-09-29. number of studies have demonstrated that the neck and funnel glasses of CRT are hazardous wastes, while the panel glass exhibits little toxicity.
  38. ^ What To Do With Your Old TV's, Mike Webster, WCSH-TV, January 28, 2009 - dead link
  39. ^ Many people throwing out perfectly good TVs over digital confusion 2009-01-23 at the Wayback Machine, Daniel Vasquez, Sun-Sentinel, Florida, January 19, 2009
  40. ^ Trashing the tube: Digital conversion may spark glut of toxic waste, Jennifer Chambers, Detroit News, January 23, 2009

Further reading

External links

digital, television, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, 2010, . This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Digital television news newspapers books scholar JSTOR May 2010 Learn how and when to remove this template message Digital television DTV is the transmission of television signals using digital encoding in contrast to the earlier analog television technology which used analog signals At the time of its development it was considered an innovative advancement and represented the first significant evolution in television technology since color television in the 1950s 1 Modern digital television is transmitted in high definition television HDTV with greater resolution than analog TV It typically uses a widescreen aspect ratio commonly 16 9 in contrast to the narrower format of analog TV It makes more economical use of scarce radio spectrum space it can transmit up to seven channels in the same bandwidth as a single analog channel 2 and provides many new features that analog television cannot A transition from analog to digital broadcasting began around 2000 Different digital television broadcasting standards have been adopted in different parts of the world below are the more widely used standards Digital Video Broadcasting DVB uses coded orthogonal frequency division multiplexing OFDM modulation and supports hierarchical transmission This standard has been adopted in Europe Africa Asia and Australia for a total of approximately 60 countries Advanced Television System Committee ATSC standard uses eight level vestigial sideband 8VSB for terrestrial broadcasting This standard has been adopted by 9 countries the United States Canada Mexico South Korea Bahamas Jamaica the Dominican Republic Haiti and Suriname citation needed Integrated Services Digital Broadcasting ISDB is a system designed to provide good reception to fixed receivers and also portable or mobile receivers It utilizes OFDM and two dimensional interleaving It supports hierarchical transmission of up to three layers and uses MPEG 2 video and Advanced Audio Coding This standard has been adopted in Japan and the Philippines ISDB T International is an adaptation of this standard using H 264 MPEG 4 AVC which has been adopted in most of South America and Portuguese speaking African countries Digital Terrestrial Multimedia Broadcast DTMB adopts time domain synchronous TDS OFDM technology with a pseudo random signal frame to serve as the guard interval GI of the OFDM block and the training symbol The DTMB standard has been adopted in China including Hong Kong and Macau 3 Digital Multimedia Broadcasting DMB is a digital radio transmission technology developed in South Korea 4 5 6 as part of the national information technology project for sending multimedia such as TV radio and datacasting to mobile devices such as mobile phones laptops and GPS navigation systems A map depicting digital terrestrial television standards Contents 1 History 1 1 Background 1 2 Development 1 3 Inaugural launches 2 Technical information 2 1 Formats and bandwidth 2 2 Reception 2 3 Protection parameters 2 4 Interaction 2 5 1seg 3 Timeline of transition 4 Comparison to analog 4 1 Compression artifacts picture quality monitoring and allocated bandwidth 4 2 Effects of poor reception 4 3 Effect on old analog technology 4 4 Disappearance of TV audio receivers 4 5 Environmental issues 5 See also 6 References 7 Further reading 8 External linksHistory EditBackground Edit Digital television s roots are tied to the availability of inexpensive high performance computers It was not until the 1990s that digital TV became a real possibility 7 Digital television was previously not practically feasible due to the impractically high bandwidth requirements of uncompressed video 8 9 requiring around 200 Mbit s for a standard definition television SDTV signal 8 and over 1 Gbit s for high definition television HDTV 9 Development Edit In the mid 1980s Toshiba released a television set with digital capabilities using integrated circuit chips such as a microprocessor to convert analog television broadcast signals to digital video signals enabling features such as freezing pictures and showing two channels at once In 1986 Sony and NEC Home Electronics announced their own similar TV sets with digital video capabilities However they still relied on analog TV broadcast signals with true digital TV broadcasts not yet being available at the time 10 11 A digital TV broadcast service was proposed in 1986 by Nippon Telegraph and Telephone NTT and the Ministry of Posts and Telecommunication MPT in Japan where there were plans to develop an Integrated Network System service However it was not possible to practically implement such a digital TV service until the adoption of motion compensated DCT video compression formats such as MPEG made it possible in the early 1990s 8 In the mid 1980s as Japanese consumer electronics firms forged ahead with the development of HDTV technology and as the MUSE analog format was proposed by Japan s public broadcaster NHK as a worldwide standard Japanese advancements were seen as pacesetters that threatened to eclipse US electronics companies Until June 1990 the Japanese MUSE standard based on an analog system was the front runner among the more than 23 different technical concepts under consideration Between 1988 and 1991 several European organizations were working on DCT based digital video coding standards for both SDTV and HDTV The EU 256 project by the CMTT and ETSI along with research by Italian broadcaster RAI developed a DCT video codec that broadcast SDTV at 34 Mbit s and near studio quality HDTV at about 70 140 Mbit s RAI demonstrated this with a 1990 FIFA World Cup broadcast in March 1990 9 12 An American company General Instrument also demonstrated the feasibility of a digital television signal in 1990 This led to the FCC being persuaded to delay its decision on an advanced television ATV standard until a digitally based standard could be developed In March 1990 when it became clear that a digital standard was feasible the FCC made a number of critical decisions First the Commission declared that the new TV standard must be more than an enhanced analog signal but be able to provide a genuine HDTV signal with at least twice the resolution of existing television images Then to ensure that viewers who did not wish to buy a new digital television set could continue to receive conventional television broadcasts it dictated that the new ATV standard must be capable of being simulcast on different channels The new ATV standard also allowed the new DTV signal to be based on entirely new design principles Although incompatible with the existing NTSC standard the new DTV standard would be able to incorporate many improvements 7 The final standard adopted by the FCC did not produce a universal standard for scanning formats aspect ratios or lines of resolution This outcome resulted from a dispute between the consumer electronics industry joined by some broadcasters and the computer industry joined by the film industry and some public interest groups over which of the two scanning processes interlaced or progressive is superior Interlaced scanning which is used in televisions worldwide scans even numbered lines first then odd numbered ones Progressive scanning which is the format used in computers scans lines in sequences from top to bottom The computer industry argued that progressive scanning is superior because it does not flicker in the manner of interlaced scanning It also argued that progressive scanning enables easier connections with the Internet and is more cheaply converted to interlaced formats than vice versa The film industry also supported progressive scanning because it offers a more efficient means of converting filmed programming into digital formats For their part the consumer electronics industry and broadcasters argued that interlaced scanning was the only technology that could transmit the highest quality pictures then and currently feasible i e 1 080 lines per picture and 1 920 pixels per line Broadcasters also favored interlaced scanning because their vast archive of interlaced programming is not readily compatible with a progressive format 7 Inaugural launches Edit DirecTV in the US launched the first commercial digital satellite platform in May 1994 using the Digital Satellite System DSS standard 13 14 Digital cable broadcasts were tested and launched in the US in 1996 by TCI and Time Warner 15 16 The first digital terrestrial platform was launched in November 1998 as ONdigital in the UK using the DVB T standard 17 Technical information EditFormats and bandwidth Edit Comparison of image quality between ISDB T 1080i broadcast top and NTSC 480i transmission bottom Digital television supports many different picture formats defined by the broadcast television systems which are a combination of size and aspect ratio width to height ratio With digital terrestrial television DTT broadcasting the range of formats can be broadly divided into two categories high definition television HDTV for the transmission of high definition video and standard definition television SDTV These terms by themselves are not very precise and many subtle intermediate cases exist One of several different HDTV formats that can be transmitted over DTV is 1280 720 pixels in progressive scan mode abbreviated 720p or 1920 1080 pixels in interlaced video mode 1080i Each of these uses a 16 9 aspect ratio HDTV cannot be transmitted over analog television channels because of channel capacity issues SDTV by comparison may use one of several different formats taking the form of various aspect ratios depending on the technology used in the country of broadcast NTSC can deliver a 640 480 resolution in 4 3 and 854 480 in 16 9 while PAL can give 768 576 in 4 3 and 1024 576 in 16 9 However broadcasters may choose to reduce these resolutions to reduce bit rate e g many DVB T channels in the UK use a horizontal resolution of 544 or 704 pixels per line 18 Each commercial broadcasting terrestrial television DTV channel in North America is allocated enough bandwidth to broadcast up to 19 megabits per second However the broadcaster does not need to use this entire bandwidth for just one broadcast channel Instead the broadcast can use Program and System Information Protocol and subdivide across several video subchannels a k a feeds of varying quality and compression rates including non video datacasting services A broadcaster may opt to use a standard definition SDTV digital signal instead of an HDTV signal because current convention allows the bandwidth of a DTV channel or multiplex to be subdivided into multiple digital subchannels similar to what most FM radio stations offer with HD Radio providing multiple feeds of entirely different television programming on the same channel This ability to provide either a single HDTV feed or multiple lower resolution feeds is often referred to as distributing one s bit budget or multicasting This can sometimes be arranged automatically using a statistical multiplexer With some implementations image resolution may be less directly limited by bandwidth for example in DVB T broadcasters can choose from several different modulation schemes giving them the option to reduce the transmission bit rate and make reception easier for more distant or mobile viewers Reception Edit There are several different ways to receive digital television One of the oldest means of receiving DTV and TV in general is from terrestrial transmitters using an antenna known as an aerial in some countries This delivery method is known as digital terrestrial television DTT With DTT viewers are limited to channels that have a terrestrial transmitter in range of their antenna Other delivery methods include digital cable and digital satellite In some countries where transmissions of TV signals are normally achieved by microwaves digital multichannel multipoint distribution service is used Other standards such as digital multimedia broadcasting DMB and digital video broadcasting handheld DVB H have been devised to allow handheld devices such as mobile phones to receive TV signals Another way is Internet Protocol television IPTV which is the delivery of TV over a computer network Finally an alternative way is to receive digital TV signals via the open Internet Internet television whether from a central streaming service or a P2P peer to peer system Some signals carry encryption and specify use conditions such as may not be recorded or may not be viewed on displays larger than 1 m in diagonal measure backed up with the force of law under the World Intellectual Property Organization Copyright Treaty WIPO Copyright Treaty and national legislation implementing it such as the US Digital Millennium Copyright Act Access to encrypted channels can be controlled by a removable smart card for example via the Common Interface DVB CI standard for Europe and via Point Of Deployment POD for IS or named differently CableCard Protection parameters Edit Digital television signals must not interfere with each other and they must also coexist with analog television until it is phased out The following table gives allowable signal to noise and signal to interference ratios for various interference scenarios This table is a crucial regulatory tool for controlling the placement and power levels of stations Digital TV is more tolerant of interference than analog TV and this is the reason a smaller range of channels can carry an all digital set of television stations 19 System Parameters protection ratios Canada 13 USA 5 EBU 9 12 ITU mode M3 Japan amp Brazil 36 37 A C N for AWGN Channel 19 5 dB 16 5 dB B 15 19 dB 19 3 dB 19 2 dBCo Channel DTV into Analog TV 33 8 dB 34 44 dB 34 37 dB 38 dBCo Channel Analog TV into DTV 7 2 dB 1 81 dB 4 dB 4 dBCo Channel DTV into DTV 19 5 dB 16 5 dB B 15 27 dB 19 dB 19 dBLower Adjacent Channel DTV into Analog TV 16 dB 17 43 dB 5 11 dB C 6 dBUpper Adjacent Channel DTV into Analog TV 12 dB 11 95 dB 1 10 C 5 dBLower Adjacent Channel Analog TV into DTV 48 dB 47 33 dB 34 37 dB C 35 dBUpper Adjacent Channel Analog TV into DTV 49 dB 48 71 dB 38 36 dB C 37 dBLower Adjacent Channel DTV into DTV 27 dB 28 dB 30 dB 28 dBUpper Adjacent Channel DTV into DTV 27 dB 26 dB 30 dB 29 dB ISDB T 6 MHz 64QAM R 2 3 Analog TV M NTSC a b The Canadian parameter C N I of noise plus co channel DTV interface should be 16 5 dB a b c d Depending on analog TV systems used Interaction Edit People can interact with a DTV system in various ways One can for example browse the electronic program guide Modern DTV systems sometimes use a return path providing feedback from the end user to the broadcaster This is possible with a coaxial or fiber optic cable a dialup modem or Internet connection but is not possible with a standard antenna Some of these systems support video on demand using a communication channel localized to a neighborhood rather than a city terrestrial or an even larger area satellite 1seg Edit Main article 1seg 1seg 1 segment is a special form of ISDB Each channel is further divided into 13 segments Twelve are allocated for HDTV and the other for narrow band receivers such as mobile televisions and cell phones Timeline of transition EditFurther information Digital television transitionComparison to analog EditSee also Analog television DTV has several advantages over analog TV the most significant being that digital channels take up less bandwidth and the bandwidth needs are continuously variable at a corresponding reduction in image quality depending on the level of compression as well as the resolution of the transmitted image This means that digital broadcasters can provide more digital channels in the same space provide high definition television service or provide other non television services such as multimedia or interactivity DTV also permits special services such as multiplexing more than one program on the same channel electronic program guides and additional languages spoken or subtitled The sale of non television services may provide an additional revenue source Digital and analog signals react to interference differently For example common problems with analog television include ghosting of images noise from weak signals and many other potential problems which degrade the quality of the image and sound although the program material may still be watchable With digital television the audio and video must be synchronized digitally so reception of the digital signal must be very nearly complete otherwise neither audio nor video will be usable Short of this complete failure blocky video is seen when the digital signal experiences interference Analog TV began with monophonic sound and later developed multichannel television sound with two independent audio signal channels DTV allows up to 5 audio signal channels plus a subwoofer bass channel with broadcasts similar in quality to movie theaters and DVDs 20 Digital TV signals require less transmission power than analog TV signals to be broadcast and received satisfactorily 21 Compression artifacts picture quality monitoring and allocated bandwidth Edit DTV images have some picture defects that are not present on analog television or motion picture cinema because of present day limitations of bit rate and compression algorithms such as MPEG 2 This defect is sometimes referred to as mosquito noise 22 Because of the way the human visual system works defects in an image that are localized to particular features of the image or that come and go are more perceptible than defects that are uniform and constant However the DTV system is designed to take advantage of other limitations of the human visual system to help mask these flaws e g by allowing more compression artifacts during fast motion where the eye cannot track and resolve them as easily and conversely minimizing artifacts in still backgrounds that may be closely examined in a scene since time allows Broadcast cable satellite and Internet DTV operators control the picture quality of television signal encodes using sophisticated neuroscience based algorithms such as the structural similarity SSIM video quality measurement tool which was accorded each of its inventors a Primetime Emmy because of its global use Another tool called Visual Information Fidelity VIF is a top performing algorithm at the core of the Netflix VMAF video quality monitoring system which accounts for about 35 of all US bandwidth consumption Effects of poor reception Edit Changes in signal reception from factors such as degrading antenna connections or changing weather conditions may gradually reduce the quality of analog TV The nature of digital TV results in a perfectly decodable video initially until the receiving equipment starts picking up interference that overpowers the desired signal or if the signal is too weak to decode Some equipment will show a garbled picture with significant damage while other devices may go directly from perfectly decodable video to no video at all or lock up 23 This phenomenon is known as the digital cliff effect Block error may occur when transmission is done with compressed images A block error in a single frame often results in black boxes in several subsequent frames making viewing difficult For remote locations distant channels that as analog signals were previously usable in a snowy and degraded state may as digital signals be perfectly decodable or may become completely unavailable The use of higher frequencies will add to these problems especially in cases where a clear line of sight from the receiving antenna to the transmitter is not available because usually higher frequency signals can t pass through obstacles as easily Effect on old analog technology Edit This section needs to be updated Please help update this article to reflect recent events or newly available information February 2017 Television sets with only analog tuners cannot decode digital transmissions When analog broadcasting over the air ceases users of sets with analog only tuners may use other sources of programming e g cable recorded media or may purchase set top converter boxes to tune in the digital signals In the United States a government sponsored coupon was available to offset the cost of an external converter box Analog switch off of full power stations took place on December 11 2006 in The Netherlands 24 June 12 2009 in the United States for full power stations and later for Class A Stations on September 1 2016 25 July 24 2011 in Japan 26 August 31 2011 in Canada 27 February 13 2012 in Arab states May 1 2012 in Germany October 24 2012 in the United Kingdom 28 and Ireland 29 October 31 2012 in selected Indian cities 30 and December 10 2013 in Australia 31 Completion of analog switch off is scheduled for December 31 2017 in the whole of India 30 December 2018 in Costa Rica and around 2023 for the Philippines citation needed Disappearance of TV audio receivers Edit Prior to the conversion to digital TV analog television broadcast audio for TV channels on a separate FM carrier signal from the video signal This FM audio signal could be heard using standard radios equipped with the appropriate tuning circuits However after the transition of many countries to digital TV no portable radio manufacturer has yet developed an alternative method for portable radios to play just the audio signal of digital TV channels DTV radio is not the same thing Environmental issues Edit The adoption of a broadcast standard incompatible with existing analog receivers has created the problem of large numbers of analog receivers being discarded during digital television transition One superintendent of public works was quoted in 2009 saying some of the studies I ve read in the trade magazines say up to a quarter of American households could be throwing a TV out in the next two years following the regulation change 32 In 2009 an estimated 99 million analog TV receivers were sitting unused in homes in the US alone and while some obsolete receivers are being retrofitted with converters many more are simply dumped in landfills where they represent a source of toxic metals such as lead as well as lesser amounts of materials such as barium cadmium and chromium 33 34 According to one campaign group a CRT computer monitor or TV contains an average of 8 pounds 3 6 kg of lead 35 According to another source the lead in glass of a CRT varies from 1 08 lb to 11 28 lb depending on screen size and type but the lead is in the form of stable and immobile lead oxide mixed into the glass 36 It is claimed that the lead can have long term negative effects on the environment if dumped as landfill 37 However the glass envelope can be recycled at suitably equipped facilities 38 Other portions of the receiver may be subject to disposal as hazardous material Local restrictions on disposal of these materials vary widely in some cases second hand stores have refused to accept working color television receivers for resale due to the increasing costs of disposing of unsold TVs Those thrift stores which are still accepting donated TVs have reported significant increases in good condition working used television receivers abandoned by viewers who often expect them not to work after digital transition 39 In Michigan in 2009 one recycler estimated that as many as one household in four would dispose of or recycle a TV set in the following year 40 The digital television transition migration to high definition television receivers and the replacement of CRTs with flatscreens are all factors in the increasing number of discarded analog CRT based television receivers See also EditAutoroll Broadcast television systems Digital television in the United Kingdom Digital television in the United States Digital terrestrial television Text to Speech in Digital TelevisionReferences Edit Kruger Lennard G 2002 Digital Television An Overview New York Nova Publishers ISBN 1 59033 502 3 HDTV Set Top Boxes and Digital TV Broadcast Information Archived from the original on 22 May 2016 Retrieved 28 June 2014 Ong C Y Song J Pan C amp Li Y 2010 May Technology and Standards of Digital Television Terrestrial Multimedia Broadcasting Topics in Wireless Communications IEEE Communications Magazine 48 5 119 127 Korea s Terrestrial DMB Germany to begin broadcast this May ZDNet Korea 2006 04 06 Retrieved 2010 06 17 picturephoning com DMB Textually org Archived from the original on 2010 08 09 Retrieved 2010 06 17 South Korea Social Media 답변 내용 악어새 리포트월드 Reportworld co kr Archived from the original on 2009 08 17 Retrieved 2010 06 17 a b c The Origins and Future Prospects of Digital Television Benton Foundation 2008 12 23 a b c Lea William 1994 Video on demand Research Paper 94 68 House of Commons Library Retrieved 20 September 2019 a b c Barbero M Hofmann H Wells N D 14 November 1991 DCT source coding and current implementations for HDTV EBU Technical Review European Broadcasting Union 251 22 33 Retrieved 4 November 2019 Meigs James B June 1986 Home Video Get set for digital Popular Mechanics Vol 163 no 6 Hearst Magazines p 52 ISSN 0032 4558 Bateman Selby April 1986 New Technologies The Converging Digital Universe Compute No 71 pp 21 29 26 8 Barbero M Stroppiana M October 1992 Data compression for HDTV transmission and distribution IEE Colloquium on Applications of Video Compression in Broadcasting 10 1 10 5 History of U S Satellite Broadcasting Company Inc FundingUniverse www fundinguniverse com Retrieved 9 August 2018 Business Insider Digital satellite TV has Indy roots Retrieved 9 August 2018 NextLevel signs cable deal Dec 17 1997 money cnn com Retrieved 9 August 2018 TCI faces big challenges Aug 15 1996 money cnn com Retrieved 9 August 2018 CANAL TECHNOLOGIES and the world s first digital terrestrial television service in the United Kingdom Retrieved 9 August 2018 Latest snapshots Freeview DTT bitrates Archived 2007 11 22 at the Wayback Machine Mendip transmitter UK Frequently Asked Questions What Is Digital TV ABC News Retrieved 2020 09 30 Digital TV A Cringley Crash Course Digital Vs Analog Pbs org Retrieved 2014 01 13 Report ITU R BT 2140 3 05 2011 PDF Archived PDF from the original on 10 June 2020 Le Dinh Phuc Tue Patry Jacques February 24 2006 Video compression artifacts and MPEG noise reduction Video Imaging DesignLine Archived from the original on March 14 2006 Retrieved April 30 2010 Digital TV Info Antenna Direct 2013 09 25 Retrieved 2022 07 22 How Television went Digital in The Netherlands PDF Open Society Foundations September 2011 Archived from the original PDF on 2013 04 20 Retrieved 2013 02 04 The Digital TV Transition Will You Be Affected FCC Retrieved 2009 11 02 New DTV Hard Date July 24 2011 B amp C Retrieved 2009 11 02 dead link DTV Post Transition Allotment Plan PDF Spectrum Management and Telecommunications Archived PDF from the original on 2009 02 26 Retrieved 2009 11 02 End of analogue TV era as switchover completes in the UK PDF Digital UK Archived from the original PDF on 2013 06 03 Retrieved 2012 12 21 Analogue switch off has finally happened SAORVIEW Retrieved 2012 12 21 a b Find out when digital switch over is coming to you Government of India Ministry of Information amp Broadcasting Retrieved 2012 12 21 Australia s ready for digital TV Digital Ready AU Archived from the original on 2013 01 29 Retrieved 2013 12 25 North Tonawanda council discusses future TV disposal Archived 2009 01 31 at the Wayback Machine Neale Gulley Tonawanda News January 27 2009 Old Toxic TVs Cause Problems USA TODAY January 27 2009 Unloading that old TV not quite so simple Lee Bergquist Milwaukee Journal Sentinel January 23 2009 Campaigners highlight toxic TVs Maggie Shiels BBC News 9 January 2009 Lead in Cathode Ray Tubes CRTs Information Sheet PDF Electronic Industries Alliance 2001 11 30 p 1 Archived from the original PDF on 2011 05 20 Retrieved 2009 09 29 Poon C S 2008 Management of CRT glass from discarded computer monitors and TV sets Waste Management 28 9 1499 doi 10 1016 j wasman 2008 06 001 hdl 10397 24493 PMID 18571917 Retrieved 2009 09 29 number of studies have demonstrated that the neck and funnel glasses of CRT are hazardous wastes while the panel glass exhibits little toxicity What To Do With Your Old TV s Mike Webster WCSH TV January 28 2009 dead link Many people throwing out perfectly good TVs over digital confusion Archived 2009 01 23 at the Wayback Machine Daniel Vasquez Sun Sentinel Florida January 19 2009 Trashing the tube Digital conversion may spark glut of toxic waste Jennifer Chambers Detroit News January 23 2009Further reading EditHart Jeffrey A Television technology and competition HDTV and digital TV in the United States Western Europe and Japan New York Cambridge University Press 2004 ISBN 0 521 82624 1External links Edit Wikimedia Commons has media related to Digital television Overview of Digital Television Development Worldwide Proceedings of the IEEE VOL 94 NO 1 JANUARY 2006 University of Texas at San Antonio The FCC s US consumer oriented DTV website Archived 2011 07 23 at the Wayback Machine Digital TV Consumer test reports UK Government funded website to support Digital Switchover How to Set up a DTV Digital Converter Box and Antenna a how to article from wikiHow How to Scan for DTV Channels Using a Digital TV Converter Box and why this must be done 11 June 2009 in US a how to article from wikiHow How to Use Your Older VCR TiVo or DVR With a DTV Converter Box a how to article from wikiHow Retrieved from https en wikipedia org w index php title Digital television amp oldid 1137502185, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.