fbpx
Wikipedia

Series (mathematics)

In mathematics, a series is, roughly speaking, the operation of adding infinitely many quantities, one after the other, to a given starting quantity.[1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures (such as in combinatorics) through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.

For a long time, the idea that such a potentially infinite summation could produce a finite result was considered paradoxical. This paradox was resolved using the concept of a limit during the 17th century. Zeno's paradox of Achilles and the tortoise illustrates this counterintuitive property of infinite sums: Achilles runs after a tortoise, but when he reaches the position of the tortoise at the beginning of the race, the tortoise has reached a second position; when he reaches this second position, the tortoise is at a third position, and so on. Zeno concluded that Achilles could never reach the tortoise, and thus that movement does not exist. Zeno divided the race into infinitely many sub-races, each requiring a finite amount of time, so that the total time for Achilles to catch the tortoise is given by a series. The resolution of the paradox is that, although the series has an infinite number of terms, it has a finite sum, which gives the time necessary for Achilles to catch up with the tortoise.

In modern terminology, any (ordered) infinite sequence of terms (that is, numbers, functions, or anything that can be added) defines a series, which is the operation of adding the ai one after the other. To emphasize that there are an infinite number of terms, a series may be called an infinite series. Such a series is represented (or denoted) by an expression like

or, using the summation sign,

The infinite sequence of additions implied by a series cannot be effectively carried on (at least in a finite amount of time). However, if the set to which the terms and their finite sums belong has a notion of limit, it is sometimes possible to assign a value to a series, called the sum of the series. This value is the limit as n tends to infinity (if the limit exists) of the finite sums of the n first terms of the series, which are called the nth partial sums of the series. That is,

When this limit exists, one says that the series is convergent or summable, or that the sequence is summable. In this case, the limit is called the sum of the series. Otherwise, the series is said to be divergent.[2]

The notation denotes both the series—that is the implicit process of adding the terms one after the other indefinitely—and, if the series is convergent, the sum of the series—the result of the process. This is a generalization of the similar convention of denoting by both the addition—the process of adding—and its result—the sum of a and b.

Generally, the terms of a series come from a ring, often the field of the real numbers or the field of the complex numbers. In this case, the set of all series is itself a ring (and even an associative algebra), in which the addition consists of adding the series term by term, and the multiplication is the Cauchy product.

Basic properties Edit

An infinite series or simply a series is an infinite sum, represented by an infinite expression of the form[3]

 

where   is any ordered sequence of terms, such as numbers, functions, or anything else that can be added (an abelian group). This is an expression that is obtained from the list of terms   by laying them side by side, and conjoining them with the symbol "+". A series may also be represented by using summation notation, such as

 

If an abelian group A of terms has a concept of limit (e.g., if it is a metric space), then some series, the convergent series, can be interpreted as having a value in A, called the sum of the series. This includes the common cases from calculus, in which the group is the field of real numbers or the field of complex numbers. Given a series  , its kth partial sum is[2]

 

By definition, the series   converges to the limit L (or simply sums to L), if the sequence of its partial sums has a limit L.[3] In this case, one usually writes

 

A series is said to be convergent if it converges to some limit, or divergent when it does not. The value of this limit, if it exists, is then the value of the series.

Convergent series Edit

 
Illustration of 3 geometric series with partial sums from 1 to 6 terms. The dashed line represents the limit.

A series Σan is said to converge or to be convergent when the sequence (sk) of partial sums has a finite limit. If the limit of sk is infinite or does not exist, the series is said to diverge.[4][2] When the limit of partial sums exists, it is called the value (or sum) of the series

 

An easy way that an infinite series can converge is if all the an are zero for n sufficiently large. Such a series can be identified with a finite sum, so it is only infinite in a trivial sense.

Working out the properties of the series that converge, even if infinitely many terms are nonzero, is the essence of the study of series. Consider the example

 

It is possible to "visualize" its convergence on the real number line: we can imagine a line of length 2, with successive segments marked off of lengths 1, 1/2, 1/4, etc. There is always room to mark the next segment, because the amount of line remaining is always the same as the last segment marked: When we have marked off 1/2, we still have a piece of length 1/2 unmarked, so we can certainly mark the next 1/4. This argument does not prove that the sum is equal to 2 (although it is), but it does prove that it is at most 2. In other words, the series has an upper bound. Given that the series converges, proving that it is equal to 2 requires only elementary algebra. If the series is denoted S, it can be seen that

 

Therefore,

 

The idiom can be extended to other, equivalent notions of series. For instance, a recurring decimal, as in

 

encodes the series

 

Since these series always converge to real numbers (because of what is called the completeness property of the real numbers), to talk about the series in this way is the same as to talk about the numbers for which they stand. In particular, the decimal expansion 0.111... can be identified with 1/9. This leads to an argument that 9 × 0.111... = 0.999... = 1, which only relies on the fact that the limit laws for series preserve the arithmetic operations; for more detail on this argument, see 0.999....

Examples of numerical series Edit

  • A geometric series is one where each successive term is produced by multiplying the previous term by a constant number (called the common ratio in this context). For example:[2]
     

    In general, the geometric series

     

    converges if and only if  , in which case it converges to  .

  • The harmonic series is the series[5]
     

    The harmonic series is divergent.

  • An alternating series is a series where terms alternate signs. Examples:
     

    (alternating harmonic series) and

     
  • A telescoping series
     

    converges if the sequence bn converges to a limit L—as n goes to infinity. The value of the series is then b1L.

  • An arithmetico-geometric series is a generalization of the geometric series, which has coefficients of the common ratio equal to the terms in an arithmetic sequence. Example:
     
  • The p-series
     

    converges if p > 1 and diverges for p ≤ 1, which can be shown with the integral criterion described below in convergence tests. As a function of p, the sum of this series is Riemann's zeta function.

  • Hypergeometric series:
     

    and their generalizations (such as basic hypergeometric series and elliptic hypergeometric series) frequently appear in integrable systems and mathematical physics.[6]

  • There are some elementary series whose convergence is not yet known/proven. For example, it is unknown whether the Flint Hills series
     
    converges or not. The convergence depends on how well   can be approximated with rational numbers (which is unknown as of yet). More specifically, the values of n with large numerical contributions to the sum are the numerators of the continued fraction convergents of  , a sequence beginning with 1, 3, 22, 333, 355, 103993, ... (sequence A046947 in the OEIS). These are integers n that are close to   for some integer m, so that   is close to   and its reciprocal is large.

Pi Edit

 
 

Natural logarithm of 2 Edit

 
[2]
 
 
 
 
 
 

Natural logarithm base e Edit

 
 

Calculus and partial summation as an operation on sequences Edit

Partial summation takes as input a sequence, (an), and gives as output another sequence, (SN). It is thus a unary operation on sequences. Further, this function is linear, and thus is a linear operator on the vector space of sequences, denoted Σ. The inverse operator is the finite difference operator, denoted Δ. These behave as discrete analogues of integration and differentiation, only for series (functions of a natural number) instead of functions of a real variable. For example, the sequence (1, 1, 1, ...) has series (1, 2, 3, 4, ...) as its partial summation, which is analogous to the fact that  

In computer science, it is known as prefix sum.

Properties of series Edit

Series are classified not only by whether they converge or diverge, but also by the properties of the terms an (absolute or conditional convergence); type of convergence of the series (pointwise, uniform); the class of the term an (whether it is a real number, arithmetic progression, trigonometric function); etc.

Non-negative terms Edit

When an is a non-negative real number for every n, the sequence SN of partial sums is non-decreasing. It follows that a series Σan with non-negative terms converges if and only if the sequence SN of partial sums is bounded.

For example, the series

 

is convergent, because the inequality

 

and a telescopic sum argument implies that the partial sums are bounded by 2. The exact value of the original series is the Basel problem.

Grouping Edit

When you group a series reordering of the series does not happen, so Riemann series theorem does not apply. A new series will have its partial sums as subsequence of original series, which means if the original series converges, so does the new series. But for divergent series that is not true, for example 1-1+1-1+... grouped every two elements will create 0+0+0+... series, which is convergent. On the other hand, divergence of the new series means the original series can be only divergent which is sometimes useful, like in Oresme proof.

Absolute convergence Edit

A series

 

converges absolutely if the series of absolute values

 

converges. This is sufficient to guarantee not only that the original series converges to a limit, but also that any reordering of it converges to the same limit.

Conditional convergence Edit

A series of real or complex numbers is said to be conditionally convergent (or semi-convergent) if it is convergent but not absolutely convergent. A famous example is the alternating series

 

which is convergent (and its sum is equal to  ), but the series formed by taking the absolute value of each term is the divergent harmonic series. The Riemann series theorem says that any conditionally convergent series can be reordered to make a divergent series, and moreover, if the   are real and   is any real number, that one can find a reordering so that the reordered series converges with sum equal to  .

Abel's test is an important tool for handling semi-convergent series. If a series has the form

 

where the partial sums   are bounded,   has bounded variation, and   exists:

 

then the series   is convergent. This applies to the point-wise convergence of many trigonometric series, as in

 

with  . Abel's method consists in writing  , and in performing a transformation similar to integration by parts (called summation by parts), that relates the given series   to the absolutely convergent series

 

Evaluation of truncation errors Edit

The evaluation of truncation errors is an important procedure in numerical analysis (especially validated numerics and computer-assisted proof).

Alternating series Edit

When conditions of the alternating series test are satisfied by  , there is an exact error evaluation.[7] Set   to be the partial sum   of the given alternating series  . Then the next inequality holds:

 

Taylor series Edit

Taylor's theorem is a statement that includes the evaluation of the error term when the Taylor series is truncated.

Hypergeometric series Edit

By using the ratio, we can obtain the evaluation of the error term when the hypergeometric series is truncated.[8]

Matrix exponential Edit

For the matrix exponential:

 

the following error evaluation holds (scaling and squaring method):[9][10][11]

 

Convergence tests Edit

There exist many tests that can be used to determine whether particular series converge or diverge.

  • n-th term test: If  , then the series diverges; if  , then the test is inconclusive.
  • Comparison test 1 (see Direct comparison test): If   is an absolutely convergent series such that   for some number   and for sufficiently large  , then   converges absolutely as well. If   diverges, and   for all sufficiently large  , then   also fails to converge absolutely (though it could still be conditionally convergent, for example, if the   alternate in sign).
  • Comparison test 2 (see Limit comparison test): If   is an absolutely convergent series such that   for sufficiently large  , then   converges absolutely as well. If   diverges, and   for all sufficiently large  , then   also fails to converge absolutely (though it could still be conditionally convergent, for example, if the   alternate in sign).
  • Ratio test: If there exists a constant   such that   for all sufficiently large  , then   converges absolutely. When the ratio is less than  , but not less than a constant less than  , convergence is possible but this test does not establish it.
  • Root test: If there exists a constant   such that   for all sufficiently large  , then   converges absolutely.
  • Integral test: if   is a positive monotone decreasing function defined on the interval   with   for all  , then   converges if and only if the integral   is finite.
  • Cauchy's condensation test: If   is non-negative and non-increasing, then the two series   and   are of the same nature: both convergent, or both divergent.
  • Alternating series test: A series of the form   (with  ) is called alternating. Such a series converges if the sequence   is monotone decreasing and converges to  . The converse is in general not true.
  • For some specific types of series there are more specialized convergence tests, for instance for Fourier series there is the Dini test.

Series of functions Edit

A series of real- or complex-valued functions

 

converges pointwise on a set E, if the series converges for each x in E as an ordinary series of real or complex numbers. Equivalently, the partial sums

 

converge to ƒ(x) as N → ∞ for each x ∈ E.

A stronger notion of convergence of a series of functions is the uniform convergence. A series converges uniformly if it converges pointwise to the function ƒ(x), and the error in approximating the limit by the Nth partial sum,

 

can be made minimal independently of x by choosing a sufficiently large N.

Uniform convergence is desirable for a series because many properties of the terms of the series are then retained by the limit. For example, if a series of continuous functions converges uniformly, then the limit function is also continuous. Similarly, if the ƒn are integrable on a closed and bounded interval I and converge uniformly, then the series is also integrable on I and can be integrated term-by-term. Tests for uniform convergence include the Weierstrass' M-test, Abel's uniform convergence test, Dini's test, and the Cauchy criterion.

More sophisticated types of convergence of a series of functions can also be defined. In measure theory, for instance, a series of functions converges almost everywhere if it converges pointwise except on a certain set of measure zero. Other modes of convergence depend on a different metric space structure on the space of functions under consideration. For instance, a series of functions converges in mean on a set E to a limit function ƒ provided

 

as N → ∞.

Power series Edit

A power series is a series of the form

 

The Taylor series at a point c of a function is a power series that, in many cases, converges to the function in a neighborhood of c. For example, the series

 

is the Taylor series of   at the origin and converges to it for every x.

Unless it converges only at x=c, such a series converges on a certain open disc of convergence centered at the point c in the complex plane, and may also converge at some of the points of the boundary of the disc. The radius of this disc is known as the radius of convergence, and can in principle be determined from the asymptotics of the coefficients an. The convergence is uniform on closed and bounded (that is, compact) subsets of the interior of the disc of convergence: to wit, it is uniformly convergent on compact sets.

Historically, mathematicians such as Leonhard Euler operated liberally with infinite series, even if they were not convergent. When calculus was put on a sound and correct foundation in the nineteenth century, rigorous proofs of the convergence of series were always required.

Formal power series Edit

While many uses of power series refer to their sums, it is also possible to treat power series as formal sums, meaning that no addition operations are actually performed, and the symbol "+" is an abstract symbol of conjunction which is not necessarily interpreted as corresponding to addition. In this setting, the sequence of coefficients itself is of interest, rather than the convergence of the series. Formal power series are used in combinatorics to describe and study sequences that are otherwise difficult to handle, for example, using the method of generating functions. The Hilbert–Poincaré series is a formal power series used to study graded algebras.

Even if the limit of the power series is not considered, if the terms support appropriate structure then it is possible to define operations such as addition, multiplication, derivative, antiderivative for power series "formally", treating the symbol "+" as if it corresponded to addition. In the most common setting, the terms come from a commutative ring, so that the formal power series can be added term-by-term and multiplied via the Cauchy product. In this case the algebra of formal power series is the total algebra of the monoid of natural numbers over the underlying term ring.[12] If the underlying term ring is a differential algebra, then the algebra of formal power series is also a differential algebra, with differentiation performed term-by-term.

Laurent series Edit

Laurent series generalize power series by admitting terms into the series with negative as well as positive exponents. A Laurent series is thus any series of the form

 

If such a series converges, then in general it does so in an annulus rather than a disc, and possibly some boundary points. The series converges uniformly on compact subsets of the interior of the annulus of convergence.

Dirichlet series Edit

A Dirichlet series is one of the form

 

where s is a complex number. For example, if all an are equal to 1, then the Dirichlet series is the Riemann zeta function

 

Like the zeta function, Dirichlet series in general play an important role in analytic number theory. Generally a Dirichlet series converges if the real part of s is greater than a number called the abscissa of convergence. In many cases, a Dirichlet series can be extended to an analytic function outside the domain of convergence by analytic continuation. For example, the Dirichlet series for the zeta function converges absolutely when Re(s) > 1, but the zeta function can be extended to a holomorphic function defined on   with a simple pole at 1.

This series can be directly generalized to general Dirichlet series.

Trigonometric series Edit

A series of functions in which the terms are trigonometric functions is called a trigonometric series:

 

The most important example of a trigonometric series is the Fourier series of a function.

History of the theory of infinite series Edit

Development of infinite series Edit

Greek mathematician Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today. He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, and gave a remarkably accurate approximation of π.[13][14]

Mathematicians from the Kerala school were studying infinite series c. 1350 CE.[15]

In the 17th century, James Gregory worked in the new decimal system on infinite series and published several Maclaurin series. In 1715, a general method for constructing the Taylor series for all functions for which they exist was provided by Brook Taylor. Leonhard Euler in the 18th century, developed the theory of hypergeometric series and q-series.

Convergence criteria Edit

The investigation of the validity of infinite series is considered to begin with Gauss in the 19th century. Euler had already considered the hypergeometric series

 

on which Gauss published a memoir in 1812. It established simpler criteria of convergence, and the questions of remainders and the range of convergence.

Cauchy (1821) insisted on strict tests of convergence; he showed that if two series are convergent their product is not necessarily so, and with him begins the discovery of effective criteria. The terms convergence and divergence had been introduced long before by Gregory (1668). Leonhard Euler and Gauss had given various criteria, and Colin Maclaurin had anticipated some of Cauchy's discoveries. Cauchy advanced the theory of power series by his expansion of a complex function in such a form.

Abel (1826) in his memoir on the binomial series

 

corrected certain of Cauchy's conclusions, and gave a completely scientific summation of the series for complex values of   and  . He showed the necessity of considering the subject of continuity in questions of convergence.

Cauchy's methods led to special rather than general criteria, and the same may be said of Raabe (1832), who made the first elaborate investigation of the subject, of De Morgan (from 1842), whose logarithmic test DuBois-Reymond (1873) and Pringsheim (1889) have shown to fail within a certain region; of Bertrand (1842), Bonnet (1843), Malmsten (1846, 1847, the latter without integration); Stokes (1847), Paucker (1852), Chebyshev (1852), and Arndt (1853).

General criteria began with Kummer (1835), and have been studied by Eisenstein (1847), Weierstrass in his various contributions to the theory of functions, Dini (1867), DuBois-Reymond (1873), and many others. Pringsheim's memoirs (1889) present the most complete general theory.

Uniform convergence Edit

The theory of uniform convergence was treated by Cauchy (1821), his limitations being pointed out by Abel, but the first to attack it successfully were Seidel and Stokes (1847–48). Cauchy took up the problem again (1853), acknowledging Abel's criticism, and reaching the same conclusions which Stokes had already found. Thomae used the doctrine (1866), but there was great delay in recognizing the importance of distinguishing between uniform and non-uniform convergence, in spite of the demands of the theory of functions.

Semi-convergence Edit

A series is said to be semi-convergent (or conditionally convergent) if it is convergent but not absolutely convergent.

Semi-convergent series were studied by Poisson (1823), who also gave a general form for the remainder of the Maclaurin formula. The most important solution of the problem is due, however, to Jacobi (1834), who attacked the question of the remainder from a different standpoint and reached a different formula. This expression was also worked out, and another one given, by Malmsten (1847). Schlömilch (Zeitschrift, Vol.I, p. 192, 1856) also improved Jacobi's remainder, and showed the relation between the remainder and Bernoulli's function

 

Genocchi (1852) has further contributed to the theory.

Among the early writers was Wronski, whose "loi suprême" (1815) was hardly recognized until Cayley (1873) brought it into prominence.

Fourier series Edit

Fourier series were being investigated as the result of physical considerations at the same time that Gauss, Abel, and Cauchy were working out the theory of infinite series. Series for the expansion of sines and cosines, of multiple arcs in powers of the sine and cosine of the arc had been treated by Jacob Bernoulli (1702) and his brother Johann Bernoulli (1701) and still earlier by Vieta. Euler and Lagrange simplified the subject, as did Poinsot, Schröter, Glaisher, and Kummer.

Fourier (1807) set for himself a different problem, to expand a given function of x in terms of the sines or cosines of multiples of x, a problem which he embodied in his Théorie analytique de la chaleur (1822). Euler had already given the formulas for determining the coefficients in the series; Fourier was the first to assert and attempt to prove the general theorem. Poisson (1820–23) also attacked the problem from a different standpoint. Fourier did not, however, settle the question of convergence of his series, a matter left for Cauchy (1826) to attempt and for Dirichlet (1829) to handle in a thoroughly scientific manner (see convergence of Fourier series). Dirichlet's treatment (Crelle, 1829), of trigonometric series was the subject of criticism and improvement by Riemann (1854), Heine, Lipschitz, Schläfli, and du Bois-Reymond. Among other prominent contributors to the theory of trigonometric and Fourier series were Dini, Hermite, Halphen, Krause, Byerly and Appell.

Generalizations Edit

Asymptotic series Edit

Asymptotic series, otherwise asymptotic expansions, are infinite series whose partial sums become good approximations in the limit of some point of the domain. In general they do not converge, but they are useful as sequences of approximations, each of which provides a value close to the desired answer for a finite number of terms. The difference is that an asymptotic series cannot be made to produce an answer as exact as desired, the way that convergent series can. In fact, after a certain number of terms, a typical asymptotic series reaches its best approximation; if more terms are included, most such series will produce worse answers.

Divergent series Edit

Under many circumstances, it is desirable to assign a limit to a series which fails to converge in the usual sense. A summability method is such an assignment of a limit to a subset of the set of divergent series which properly extends the classical notion of convergence. Summability methods include Cesàro summation, (C,k) summation, Abel summation, and Borel summation, in increasing order of generality (and hence applicable to increasingly divergent series).

A variety of general results concerning possible summability methods are known. The Silverman–Toeplitz theorem characterizes matrix summability methods, which are methods for summing a divergent series by applying an infinite matrix to the vector of coefficients. The most general method for summing a divergent series is non-constructive, and concerns Banach limits.

Summations over arbitrary index sets Edit

Definitions may be given for sums over an arbitrary index set  [16] There are two main differences with the usual notion of series: first, there is no specific order given on the set  ; second, this set   may be uncountable. The notion of convergence needs to be strengthened, because the concept of conditional convergence depends on the ordering of the index set.

If   is a function from an index set   to a set   then the "series" associated to   is the formal sum of the elements   over the index elements   denoted by the

 

When the index set is the natural numbers   the function   is a sequence denoted by   A series indexed on the natural numbers is an ordered formal sum and so we rewrite   as   in order to emphasize the ordering induced by the natural numbers. Thus, we obtain the common notation for a series indexed by the natural numbers

 

Families of non-negative numbers Edit

When summing a family   of non-negative real numbers, define

 

When the supremum is finite then the set of   such that   is countable. Indeed, for every   the cardinality   of the set   is finite because

 

If   is countably infinite and enumerated as   then the above defined sum satisfies

 
provided the value   is allowed for the sum of the series.

Any sum over non-negative reals can be understood as the integral of a non-negative function with respect to the counting measure, which accounts for the many similarities between the two constructions.

Abelian topological groups Edit

Let   be a map, also denoted by   from some non-empty set   into a Hausdorff abelian topological group   Let   be the collection of all finite subsets of   with   viewed as a directed set, ordered under inclusion   with union as join. The family   is said to be unconditionally summable if the following limit, which is denoted by   and is called the sum of   exists in  

 
Saying that the sum   is the limit of finite partial sums means that for every neighborhood   of the origin in   there exists a finite subset   of   such that
 

Because   is not totally ordered, this is not a limit of a sequence of partial sums, but rather of a net.[17][18]

For every neighborhood   of the origin in   there is a smaller neighborhood   such that   It follows that the finite partial sums of an unconditionally summable family   form a Cauchy net, that is, for every neighborhood   of the origin in   there exists a finite subset   of   such that

 
which implies that   for every   (by taking   and  ).

When   is complete, a family   is unconditionally summable in   if and only if the finite sums satisfy the latter Cauchy net condition. When   is complete and   is unconditionally summable in   then for every subset   the corresponding subfamily   is also unconditionally summable in  

When the sum of a family of non-negative numbers, in the extended sense defined before, is finite, then it coincides with the sum in the topological group  

If a family   in   is unconditionally summable then for every neighborhood   of the origin in   there is a finite subset   such that   for every index   not in   If   is a first-countable space then it follows that the set of   such that   is countable. This need not be true in a general abelian topological group (see examples below).

Unconditionally convergent series Edit

Suppose that   If a family   is unconditionally summable in a Hausdorff abelian topological group   then the series in the usual sense converges and has the same sum,

 

By nature, the definition of unconditional summability is insensitive to the order of the summation. When   is unconditionally summable, then the series remains convergent after any permutation   of the set   of indices, with the same sum,

 

Conversely, if every permutation of a series   converges, then the series is unconditionally convergent. When   is complete then unconditional convergence is also equivalent to the fact that all subseries are convergent; if   is a Banach space, this is equivalent to say that for every sequence of signs  , the series

 

converges in  

Series in topological vector spaces Edit

If   is a topological vector space (TVS) and   is a (possibly uncountable) family in   then this family is summable[19] if the limit   of the net   exists in   where   is the directed set of all finite subsets of   directed by inclusion   and  

It is called absolutely summable if in addition, for every continuous seminorm   on   the family   is summable. If   is a normable space and if   is an absolutely summable family in   then necessarily all but a countable collection of  ’s are zero. Hence, in normed spaces, it is usually only ever necessary to consider series with countably many terms.

Summable families play an important role in the theory of nuclear spaces.

Series in Banach and seminormed spaces Edit

The notion of series can be easily extended to the case of a seminormed space. If   is a sequence of elements of a normed space   and if   then the series   converges to   in   if the sequence of partial sums of the series   converges to   in  ; to wit,

 

More generally, convergence of series can be defined in any abelian Hausdorff topological group. Specifically, in this case,   converges to   if the sequence of partial sums converges to  

If   is a seminormed space, then the notion of absolute convergence becomes: A series   of vectors in   converges absolutely if

 

in which case all but at most countably many of the values   are necessarily zero.

If a countable series of vectors in a Banach space converges absolutely then it converges unconditionally, but the converse only holds in finite-dimensional Banach spaces (theorem of Dvoretzky & Rogers (1950)).

Well-ordered sums Edit

Conditionally convergent series can be considered if   is a well-ordered set, for example, an ordinal number   In this case, define by transfinite recursion:

 

and for a limit ordinal  

 

if this limit exists. If all limits exist up to   then the series converges.

Examples Edit

  1. Given a function   into an abelian topological group   define for every  
     

    a function whose support is a singleton   Then

     

    in the topology of pointwise convergence (that is, the sum is taken in the infinite product group  ).

  2. In the definition of partitions of unity, one constructs sums of functions over arbitrary index set  
     

    While, formally, this requires a notion of sums of uncountable series, by construction there are, for every given   only finitely many nonzero terms in the sum, so issues regarding convergence of such sums do not arise. Actually, one usually assumes more: the family of functions is locally finite, that is, for every   there is a neighborhood of   in which all but a finite number of functions vanish. Any regularity property of the   such as continuity, differentiability, that is preserved under finite sums will be preserved for the sum of any subcollection of this family of functions.

  3. On the first uncountable ordinal   viewed as a topological space in the order topology, the constant function   given by   satisfies
     

    (in other words,   copies of 1 is  ) only if one takes a limit over all countable partial sums, rather than finite partial sums. This space is not separable.

See also Edit

References Edit

  1. ^ Thompson, Silvanus; Gardner, Martin (1998). Calculus Made Easy. ISBN 978-0-312-18548-0.
  2. ^ a b c d e Weisstein, Eric W. "Series". mathworld.wolfram.com. Retrieved 2020-08-30.
  3. ^ a b Swokowski 1983, p. 501
  4. ^ Michael Spivak, Calculus
  5. ^ "Infinite Series". www.mathsisfun.com. Retrieved 2020-08-30.
  6. ^ Gasper, G., Rahman, M. (2004). Basic hypergeometric series. Cambridge University Press.
  7. ^ Positive and Negative Terms: Alternating Series
  8. ^ Johansson, F. (2016). Computing hypergeometric functions rigorously. arXiv preprint arXiv:1606.06977.
  9. ^ Higham, N. J. (2008). Functions of matrices: theory and computation. Society for Industrial and Applied Mathematics.
  10. ^ Higham, N. J. (2009). The scaling and squaring method for the matrix exponential revisited. SIAM review, 51(4), 747-764.
  11. ^ How and How Not to Compute the Exponential of a Matrix
  12. ^ Nicolas Bourbaki (1989), Algebra, Springer: §III.2.11.
  13. ^ O'Connor, J.J. & Robertson, E.F. (February 1996). "A history of calculus". University of St Andrews. Retrieved 2007-08-07.
  14. ^ K., Bidwell, James (30 November 1993). "Archimedes and Pi-Revisited". School Science and Mathematics. 94 (3).{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ "Indians predated Newton 'discovery' by 250 years". manchester.ac.uk.
  16. ^ Jean Dieudonné, Foundations of mathematical analysis, Academic Press
  17. ^ Bourbaki, Nicolas (1998). General Topology: Chapters 1–4. Springer. pp. 261–270. ISBN 978-3-540-64241-1.
  18. ^ Choquet, Gustave (1966). Topology. Academic Press. pp. 216–231. ISBN 978-0-12-173450-3.
  19. ^ Schaefer & Wolff 1999, pp. 179–180.

Bibliography

series, mathematics, this, article, about, infinite, sums, finite, sums, summation, mathematics, series, roughly, speaking, operation, adding, infinitely, many, quantities, after, other, given, starting, quantity, study, series, major, part, calculus, generali. This article is about infinite sums For finite sums see Summation In mathematics a series is roughly speaking the operation of adding infinitely many quantities one after the other to a given starting quantity 1 The study of series is a major part of calculus and its generalization mathematical analysis Series are used in most areas of mathematics even for studying finite structures such as in combinatorics through generating functions In addition to their ubiquity in mathematics infinite series are also widely used in other quantitative disciplines such as physics computer science statistics and finance For a long time the idea that such a potentially infinite summation could produce a finite result was considered paradoxical This paradox was resolved using the concept of a limit during the 17th century Zeno s paradox of Achilles and the tortoise illustrates this counterintuitive property of infinite sums Achilles runs after a tortoise but when he reaches the position of the tortoise at the beginning of the race the tortoise has reached a second position when he reaches this second position the tortoise is at a third position and so on Zeno concluded that Achilles could never reach the tortoise and thus that movement does not exist Zeno divided the race into infinitely many sub races each requiring a finite amount of time so that the total time for Achilles to catch the tortoise is given by a series The resolution of the paradox is that although the series has an infinite number of terms it has a finite sum which gives the time necessary for Achilles to catch up with the tortoise In modern terminology any ordered infinite sequence a 1 a 2 a 3 displaystyle a 1 a 2 a 3 ldots of terms that is numbers functions or anything that can be added defines a series which is the operation of adding the ai one after the other To emphasize that there are an infinite number of terms a series may be called an infinite series Such a series is represented or denoted by an expression likea 1 a 2 a 3 displaystyle a 1 a 2 a 3 cdots or using the summation sign i 1 a i displaystyle sum i 1 infty a i The infinite sequence of additions implied by a series cannot be effectively carried on at least in a finite amount of time However if the set to which the terms and their finite sums belong has a notion of limit it is sometimes possible to assign a value to a series called the sum of the series This value is the limit as n tends to infinity if the limit exists of the finite sums of the n first terms of the series which are called the n th partial sums of the series That is i 1 a i lim n i 1 n a i displaystyle sum i 1 infty a i lim n to infty sum i 1 n a i When this limit exists one says that the series is convergent or summable or that the sequence a 1 a 2 a 3 displaystyle a 1 a 2 a 3 ldots is summable In this case the limit is called the sum of the series Otherwise the series is said to be divergent 2 The notation i 1 a i textstyle sum i 1 infty a i denotes both the series that is the implicit process of adding the terms one after the other indefinitely and if the series is convergent the sum of the series the result of the process This is a generalization of the similar convention of denoting by a b displaystyle a b both the addition the process of adding and its result the sum of a and b Generally the terms of a series come from a ring often the field R displaystyle mathbb R of the real numbers or the field C displaystyle mathbb C of the complex numbers In this case the set of all series is itself a ring and even an associative algebra in which the addition consists of adding the series term by term and the multiplication is the Cauchy product Contents 1 Basic properties 1 1 Convergent series 2 Examples of numerical series 2 1 Pi 2 2 Natural logarithm of 2 2 3 Natural logarithm base e 3 Calculus and partial summation as an operation on sequences 4 Properties of series 4 1 Non negative terms 4 2 Grouping 4 3 Absolute convergence 4 4 Conditional convergence 4 5 Evaluation of truncation errors 4 5 1 Alternating series 4 5 2 Taylor series 4 5 3 Hypergeometric series 4 5 4 Matrix exponential 5 Convergence tests 6 Series of functions 6 1 Power series 6 2 Formal power series 6 3 Laurent series 6 4 Dirichlet series 6 5 Trigonometric series 7 History of the theory of infinite series 7 1 Development of infinite series 7 2 Convergence criteria 7 3 Uniform convergence 7 4 Semi convergence 7 5 Fourier series 8 Generalizations 8 1 Asymptotic series 8 2 Divergent series 8 3 Summations over arbitrary index sets 8 3 1 Families of non negative numbers 8 3 2 Abelian topological groups 8 3 3 Unconditionally convergent series 8 3 4 Series in topological vector spaces 8 3 4 1 Series in Banach and seminormed spaces 8 3 5 Well ordered sums 8 3 6 Examples 9 See also 10 References 11 Bibliography 12 External linksBasic properties EditAn infinite series or simply a series is an infinite sum represented by an infinite expression of the form 3 a 0 a 1 a 2 displaystyle a 0 a 1 a 2 cdots nbsp where a n displaystyle a n nbsp is any ordered sequence of terms such as numbers functions or anything else that can be added an abelian group This is an expression that is obtained from the list of terms a 0 a 1 displaystyle a 0 a 1 dots nbsp by laying them side by side and conjoining them with the symbol A series may also be represented by using summation notation such as n 0 a n displaystyle sum n 0 infty a n nbsp If an abelian group A of terms has a concept of limit e g if it is a metric space then some series the convergent series can be interpreted as having a value in A called the sum of the series This includes the common cases from calculus in which the group is the field of real numbers or the field of complex numbers Given a series s n 0 a n textstyle s sum n 0 infty a n nbsp its k th partial sum is 2 s k n 0 k a n a 0 a 1 a k displaystyle s k sum n 0 k a n a 0 a 1 cdots a k nbsp By definition the series n 0 a n textstyle sum n 0 infty a n nbsp converges to the limit L or simply sums to L if the sequence of its partial sums has a limit L 3 In this case one usually writesL n 0 a n displaystyle L sum n 0 infty a n nbsp A series is said to be convergent if it converges to some limit or divergent when it does not The value of this limit if it exists is then the value of the series Convergent series Edit nbsp Illustration of 3 geometric series with partial sums from 1 to 6 terms The dashed line represents the limit A series San is said to converge or to be convergent when the sequence sk of partial sums has a finite limit If the limit of sk is infinite or does not exist the series is said to diverge 4 2 When the limit of partial sums exists it is called the value or sum of the series n 0 a n lim k s k lim k n 0 k a n displaystyle sum n 0 infty a n lim k to infty s k lim k to infty sum n 0 k a n nbsp An easy way that an infinite series can converge is if all the an are zero for n sufficiently large Such a series can be identified with a finite sum so it is only infinite in a trivial sense Working out the properties of the series that converge even if infinitely many terms are nonzero is the essence of the study of series Consider the example1 1 2 1 4 1 8 1 2 n displaystyle 1 frac 1 2 frac 1 4 frac 1 8 cdots frac 1 2 n cdots nbsp It is possible to visualize its convergence on the real number line we can imagine a line of length 2 with successive segments marked off of lengths 1 1 2 1 4 etc There is always room to mark the next segment because the amount of line remaining is always the same as the last segment marked When we have marked off 1 2 we still have a piece of length 1 2 unmarked so we can certainly mark the next 1 4 This argument does not prove that the sum is equal to 2 although it is but it does prove that it is at most 2 In other words the series has an upper bound Given that the series converges proving that it is equal to 2 requires only elementary algebra If the series is denoted S it can be seen thatS 2 1 1 2 1 4 1 8 2 1 2 1 4 1 8 1 16 displaystyle S 2 frac 1 frac 1 2 frac 1 4 frac 1 8 cdots 2 frac 1 2 frac 1 4 frac 1 8 frac 1 16 cdots nbsp Therefore S S 2 1 S 2 displaystyle S S 2 1 Rightarrow S 2 nbsp The idiom can be extended to other equivalent notions of series For instance a recurring decimal as inx 0 111 displaystyle x 0 111 dots nbsp encodes the series n 1 1 10 n displaystyle sum n 1 infty frac 1 10 n nbsp Since these series always converge to real numbers because of what is called the completeness property of the real numbers to talk about the series in this way is the same as to talk about the numbers for which they stand In particular the decimal expansion 0 111 can be identified with 1 9 This leads to an argument that 9 0 111 0 999 1 which only relies on the fact that the limit laws for series preserve the arithmetic operations for more detail on this argument see 0 999 Examples of numerical series EditFor other examples see List of mathematical series and Sums of reciprocals Infinitely many terms A geometric series is one where each successive term is produced by multiplying the previous term by a constant number called the common ratio in this context For example 2 1 1 2 1 4 1 8 1 16 n 0 1 2 n 2 displaystyle 1 1 over 2 1 over 4 1 over 8 1 over 16 cdots sum n 0 infty 1 over 2 n 2 nbsp In general the geometric series n 0 z n displaystyle sum n 0 infty z n nbsp converges if and only if z lt 1 textstyle z lt 1 nbsp in which case it converges to 1 1 z textstyle 1 over 1 z nbsp The harmonic series is the series 5 1 1 2 1 3 1 4 1 5 n 1 1 n displaystyle 1 1 over 2 1 over 3 1 over 4 1 over 5 cdots sum n 1 infty 1 over n nbsp The harmonic series is divergent An alternating series is a series where terms alternate signs Examples 1 1 2 1 3 1 4 1 5 n 1 1 n 1 n ln 2 displaystyle 1 1 over 2 1 over 3 1 over 4 1 over 5 cdots sum n 1 infty left 1 right n 1 over n ln 2 quad nbsp alternating harmonic series and 1 1 3 1 5 1 7 1 9 n 1 1 n 2 n 1 p 4 displaystyle 1 frac 1 3 frac 1 5 frac 1 7 frac 1 9 cdots sum n 1 infty frac left 1 right n 2n 1 frac pi 4 nbsp A telescoping series n 1 b n b n 1 displaystyle sum n 1 infty b n b n 1 nbsp converges if the sequence bn converges to a limit L as n goes to infinity The value of the series is then b1 L An arithmetico geometric series is a generalization of the geometric series which has coefficients of the common ratio equal to the terms in an arithmetic sequence Example 3 5 2 7 4 9 8 11 16 n 0 3 2 n 2 n displaystyle 3 5 over 2 7 over 4 9 over 8 11 over 16 cdots sum n 0 infty 3 2n over 2 n nbsp The p series n 1 1 n p displaystyle sum n 1 infty frac 1 n p nbsp converges if p gt 1 and diverges for p 1 which can be shown with the integral criterion described below in convergence tests As a function of p the sum of this series is Riemann s zeta function Hypergeometric series r F s a 1 a 2 a r b 1 b 2 b s z n 0 a 1 n a 2 n a r n b 1 n b 2 n b s n n z n displaystyle r F s left begin matrix a 1 a 2 dotsc a r b 1 b 2 dotsc b s end matrix z right sum n 0 infty frac a 1 n a 2 n dotsb a r n b 1 n b 2 n dotsb b s n n z n nbsp and their generalizations such as basic hypergeometric series and elliptic hypergeometric series frequently appear in integrable systems and mathematical physics 6 There are some elementary series whose convergence is not yet known proven For example it is unknown whether the Flint Hills series n 1 1 n 3 sin 2 n displaystyle sum n 1 infty frac 1 n 3 sin 2 n nbsp converges or not The convergence depends on how well p displaystyle pi nbsp can be approximated with rational numbers which is unknown as of yet More specifically the values of n with large numerical contributions to the sum are the numerators of the continued fraction convergents of p displaystyle pi nbsp a sequence beginning with 1 3 22 333 355 103993 sequence A046947 in the OEIS These are integers n that are close to m p displaystyle m pi nbsp for some integer m so that sin n displaystyle sin n nbsp is close to sin m p 0 displaystyle sin m pi 0 nbsp and its reciprocal is large Pi Edit Main articles Pi Infinite series Approximations of p and Harmonic number Identities involving p i 1 1 i 2 1 1 2 1 2 2 1 3 2 1 4 2 p 2 6 displaystyle sum i 1 infty frac 1 i 2 frac 1 1 2 frac 1 2 2 frac 1 3 2 frac 1 4 2 cdots frac pi 2 6 nbsp i 1 1 i 1 4 2 i 1 4 1 4 3 4 5 4 7 4 9 4 11 4 13 p displaystyle sum i 1 infty frac 1 i 1 4 2i 1 frac 4 1 frac 4 3 frac 4 5 frac 4 7 frac 4 9 frac 4 11 frac 4 13 cdots pi nbsp Natural logarithm of 2 Edit Main article Natural logarithm of 2 Series representations i 1 1 i 1 i ln 2 displaystyle sum i 1 infty frac 1 i 1 i ln 2 nbsp 2 i 0 1 2 i 1 2 i 2 ln 2 displaystyle sum i 0 infty frac 1 2i 1 2i 2 ln 2 nbsp i 0 1 i i 1 i 2 2 ln 2 1 displaystyle sum i 0 infty frac 1 i i 1 i 2 2 ln 2 1 nbsp i 1 1 i 4 i 2 1 2 ln 2 1 displaystyle sum i 1 infty frac 1 i left 4i 2 1 right 2 ln 2 1 nbsp i 1 1 2 i i ln 2 displaystyle sum i 1 infty frac 1 2 i i ln 2 nbsp i 1 1 3 i 1 4 i 1 i ln 2 displaystyle sum i 1 infty left frac 1 3 i frac 1 4 i right frac 1 i ln 2 nbsp i 1 1 2 i 2 i 1 ln 2 displaystyle sum i 1 infty frac 1 2i 2i 1 ln 2 nbsp Natural logarithm base e Edit Main article e mathematical constant i 0 1 i i 1 1 1 1 2 1 3 1 e displaystyle sum i 0 infty frac 1 i i 1 frac 1 1 frac 1 2 frac 1 3 cdots frac 1 e nbsp i 0 1 i 1 0 1 1 1 2 1 3 1 4 e displaystyle sum i 0 infty frac 1 i frac 1 0 frac 1 1 frac 1 2 frac 1 3 frac 1 4 cdots e nbsp Calculus and partial summation as an operation on sequences EditPartial summation takes as input a sequence an and gives as output another sequence SN It is thus a unary operation on sequences Further this function is linear and thus is a linear operator on the vector space of sequences denoted S The inverse operator is the finite difference operator denoted D These behave as discrete analogues of integration and differentiation only for series functions of a natural number instead of functions of a real variable For example the sequence 1 1 1 has series 1 2 3 4 as its partial summation which is analogous to the fact that 0 x 1 d t x textstyle int 0 x 1 dt x nbsp In computer science it is known as prefix sum Properties of series EditSeries are classified not only by whether they converge or diverge but also by the properties of the terms an absolute or conditional convergence type of convergence of the series pointwise uniform the class of the term an whether it is a real number arithmetic progression trigonometric function etc Non negative terms Edit When an is a non negative real number for every n the sequence SN of partial sums is non decreasing It follows that a series San with non negative terms converges if and only if the sequence SN of partial sums is bounded For example the series n 1 1 n 2 displaystyle sum n 1 infty frac 1 n 2 nbsp is convergent because the inequality1 n 2 1 n 1 1 n n 2 displaystyle frac 1 n 2 leq frac 1 n 1 frac 1 n quad n geq 2 nbsp and a telescopic sum argument implies that the partial sums are bounded by 2 The exact value of the original series is the Basel problem Grouping Edit When you group a series reordering of the series does not happen so Riemann series theorem does not apply A new series will have its partial sums as subsequence of original series which means if the original series converges so does the new series But for divergent series that is not true for example 1 1 1 1 grouped every two elements will create 0 0 0 series which is convergent On the other hand divergence of the new series means the original series can be only divergent which is sometimes useful like in Oresme proof Absolute convergence Edit Main article Absolute convergence A series n 0 a n displaystyle sum n 0 infty a n nbsp converges absolutely if the series of absolute values n 0 a n displaystyle sum n 0 infty left a n right nbsp converges This is sufficient to guarantee not only that the original series converges to a limit but also that any reordering of it converges to the same limit Conditional convergence Edit Main article Conditional convergence A series of real or complex numbers is said to be conditionally convergent or semi convergent if it is convergent but not absolutely convergent A famous example is the alternating series n 1 1 n 1 n 1 1 2 1 3 1 4 1 5 displaystyle sum limits n 1 infty 1 n 1 over n 1 1 over 2 1 over 3 1 over 4 1 over 5 cdots nbsp which is convergent and its sum is equal to ln 2 displaystyle ln 2 nbsp but the series formed by taking the absolute value of each term is the divergent harmonic series The Riemann series theorem says that any conditionally convergent series can be reordered to make a divergent series and moreover if the a n displaystyle a n nbsp are real and S displaystyle S nbsp is any real number that one can find a reordering so that the reordered series converges with sum equal to S displaystyle S nbsp Abel s test is an important tool for handling semi convergent series If a series has the form a n l n b n displaystyle sum a n sum lambda n b n nbsp where the partial sums B n b 0 b n displaystyle B n b 0 cdots b n nbsp are bounded l n displaystyle lambda n nbsp has bounded variation and lim l n b n displaystyle lim lambda n b n nbsp exists sup N n 0 N b n lt l n 1 l n lt and l n B n converges displaystyle sup N left sum n 0 N b n right lt infty sum left lambda n 1 lambda n right lt infty text and lambda n B n text converges nbsp then the series a n textstyle sum a n nbsp is convergent This applies to the point wise convergence of many trigonometric series as in n 2 sin n x ln n displaystyle sum n 2 infty frac sin nx ln n nbsp with 0 lt x lt 2 p displaystyle 0 lt x lt 2 pi nbsp Abel s method consists in writing b n 1 B n 1 B n displaystyle b n 1 B n 1 B n nbsp and in performing a transformation similar to integration by parts called summation by parts that relates the given series a n textstyle sum a n nbsp to the absolutely convergent series l n l n 1 B n displaystyle sum lambda n lambda n 1 B n nbsp Evaluation of truncation errors Edit The evaluation of truncation errors is an important procedure in numerical analysis especially validated numerics and computer assisted proof Alternating series Edit When conditions of the alternating series test are satisfied by S m 0 1 m u m textstyle S sum m 0 infty 1 m u m nbsp there is an exact error evaluation 7 Set s n displaystyle s n nbsp to be the partial sum s n m 0 n 1 m u m textstyle s n sum m 0 n 1 m u m nbsp of the given alternating series S displaystyle S nbsp Then the next inequality holds S s n u n 1 displaystyle S s n leq u n 1 nbsp Taylor series Edit Taylor s theorem is a statement that includes the evaluation of the error term when the Taylor series is truncated Hypergeometric series Edit By using the ratio we can obtain the evaluation of the error term when the hypergeometric series is truncated 8 Matrix exponential Edit For the matrix exponential exp X k 0 1 k X k X C n n displaystyle exp X sum k 0 infty frac 1 k X k quad X in mathbb C n times n nbsp the following error evaluation holds scaling and squaring method 9 10 11 T r s X j 0 r 1 j X s j s exp X T r s X X r 1 s r r 1 exp X displaystyle T r s X left sum j 0 r frac 1 j X s j right s quad exp X T r s X leq frac X r 1 s r r 1 exp X nbsp Convergence tests EditMain article Convergence tests There exist many tests that can be used to determine whether particular series converge or diverge n th term test If lim n a n 0 textstyle lim n to infty a n neq 0 nbsp then the series diverges if lim n a n 0 textstyle lim n to infty a n 0 nbsp then the test is inconclusive Comparison test 1 see Direct comparison test If b n textstyle sum b n nbsp is an absolutely convergent series such that a n C b n displaystyle left vert a n right vert leq C left vert b n right vert nbsp for some number C displaystyle C nbsp and for sufficiently large n displaystyle n nbsp then a n textstyle sum a n nbsp converges absolutely as well If b n textstyle sum left vert b n right vert nbsp diverges and a n b n displaystyle left vert a n right vert geq left vert b n right vert nbsp for all sufficiently large n displaystyle n nbsp then a n textstyle sum a n nbsp also fails to converge absolutely though it could still be conditionally convergent for example if the a n displaystyle a n nbsp alternate in sign Comparison test 2 see Limit comparison test If b n textstyle sum b n nbsp is an absolutely convergent series such that a n 1 a n b n 1 b n displaystyle left vert frac a n 1 a n right vert leq left vert frac b n 1 b n right vert nbsp for sufficiently large n displaystyle n nbsp then a n textstyle sum a n nbsp converges absolutely as well If b n textstyle sum left b n right nbsp diverges and a n 1 a n b n 1 b n displaystyle left vert frac a n 1 a n right vert geq left vert frac b n 1 b n right vert nbsp for all sufficiently large n displaystyle n nbsp then a n textstyle sum a n nbsp also fails to converge absolutely though it could still be conditionally convergent for example if the a n displaystyle a n nbsp alternate in sign Ratio test If there exists a constant C lt 1 displaystyle C lt 1 nbsp such that a n 1 a n lt C displaystyle left vert frac a n 1 a n right vert lt C nbsp for all sufficiently large n displaystyle n nbsp then a n textstyle sum a n nbsp converges absolutely When the ratio is less than 1 displaystyle 1 nbsp but not less than a constant less than 1 displaystyle 1 nbsp convergence is possible but this test does not establish it Root test If there exists a constant C lt 1 displaystyle C lt 1 nbsp such that a n 1 n C displaystyle left vert a n right vert frac 1 n leq C nbsp for all sufficiently large n displaystyle n nbsp then a n textstyle sum a n nbsp converges absolutely Integral test if f x displaystyle f x nbsp is a positive monotone decreasing function defined on the interval 1 displaystyle 1 infty nbsp with f n a n displaystyle f n a n nbsp for all n displaystyle n nbsp then a n textstyle sum a n nbsp converges if and only if the integral 1 f x d x textstyle int 1 infty f x dx nbsp is finite Cauchy s condensation test If a n displaystyle a n nbsp is non negative and non increasing then the two series a n textstyle sum a n nbsp and 2 k a 2 k textstyle sum 2 k a 2 k nbsp are of the same nature both convergent or both divergent Alternating series test A series of the form 1 n a n textstyle sum 1 n a n nbsp with a n gt 0 displaystyle a n gt 0 nbsp is called alternating Such a series converges if the sequence a n displaystyle a n nbsp is monotone decreasing and converges to 0 displaystyle 0 nbsp The converse is in general not true For some specific types of series there are more specialized convergence tests for instance for Fourier series there is the Dini test Series of functions EditMain article Function series A series of real or complex valued functions n 0 f n x displaystyle sum n 0 infty f n x nbsp converges pointwise on a set E if the series converges for each x in E as an ordinary series of real or complex numbers Equivalently the partial sumss N x n 0 N f n x displaystyle s N x sum n 0 N f n x nbsp converge to ƒ x as N for each x E A stronger notion of convergence of a series of functions is the uniform convergence A series converges uniformly if it converges pointwise to the function ƒ x and the error in approximating the limit by the Nth partial sum s N x f x displaystyle s N x f x nbsp can be made minimal independently of x by choosing a sufficiently large N Uniform convergence is desirable for a series because many properties of the terms of the series are then retained by the limit For example if a series of continuous functions converges uniformly then the limit function is also continuous Similarly if the ƒn are integrable on a closed and bounded interval I and converge uniformly then the series is also integrable on I and can be integrated term by term Tests for uniform convergence include the Weierstrass M test Abel s uniform convergence test Dini s test and the Cauchy criterion More sophisticated types of convergence of a series of functions can also be defined In measure theory for instance a series of functions converges almost everywhere if it converges pointwise except on a certain set of measure zero Other modes of convergence depend on a different metric space structure on the space of functions under consideration For instance a series of functions converges in mean on a set E to a limit function ƒ provided E s N x f x 2 d x 0 displaystyle int E left s N x f x right 2 dx to 0 nbsp as N Power series Edit Main article Power seriesA power series is a series of the form n 0 a n x c n displaystyle sum n 0 infty a n x c n nbsp The Taylor series at a point c of a function is a power series that in many cases converges to the function in a neighborhood of c For example the series n 0 x n n displaystyle sum n 0 infty frac x n n nbsp is the Taylor series of e x displaystyle e x nbsp at the origin and converges to it for every x Unless it converges only at x c such a series converges on a certain open disc of convergence centered at the point c in the complex plane and may also converge at some of the points of the boundary of the disc The radius of this disc is known as the radius of convergence and can in principle be determined from the asymptotics of the coefficients an The convergence is uniform on closed and bounded that is compact subsets of the interior of the disc of convergence to wit it is uniformly convergent on compact sets Historically mathematicians such as Leonhard Euler operated liberally with infinite series even if they were not convergent When calculus was put on a sound and correct foundation in the nineteenth century rigorous proofs of the convergence of series were always required Formal power series Edit Main article Formal power series While many uses of power series refer to their sums it is also possible to treat power series as formal sums meaning that no addition operations are actually performed and the symbol is an abstract symbol of conjunction which is not necessarily interpreted as corresponding to addition In this setting the sequence of coefficients itself is of interest rather than the convergence of the series Formal power series are used in combinatorics to describe and study sequences that are otherwise difficult to handle for example using the method of generating functions The Hilbert Poincare series is a formal power series used to study graded algebras Even if the limit of the power series is not considered if the terms support appropriate structure then it is possible to define operations such as addition multiplication derivative antiderivative for power series formally treating the symbol as if it corresponded to addition In the most common setting the terms come from a commutative ring so that the formal power series can be added term by term and multiplied via the Cauchy product In this case the algebra of formal power series is the total algebra of the monoid of natural numbers over the underlying term ring 12 If the underlying term ring is a differential algebra then the algebra of formal power series is also a differential algebra with differentiation performed term by term Laurent series Edit Main article Laurent series Laurent series generalize power series by admitting terms into the series with negative as well as positive exponents A Laurent series is thus any series of the form n a n x n displaystyle sum n infty infty a n x n nbsp If such a series converges then in general it does so in an annulus rather than a disc and possibly some boundary points The series converges uniformly on compact subsets of the interior of the annulus of convergence Dirichlet series Edit Main article Dirichlet seriesA Dirichlet series is one of the form n 1 a n n s displaystyle sum n 1 infty a n over n s nbsp where s is a complex number For example if all an are equal to 1 then the Dirichlet series is the Riemann zeta functionz s n 1 1 n s displaystyle zeta s sum n 1 infty frac 1 n s nbsp Like the zeta function Dirichlet series in general play an important role in analytic number theory Generally a Dirichlet series converges if the real part of s is greater than a number called the abscissa of convergence In many cases a Dirichlet series can be extended to an analytic function outside the domain of convergence by analytic continuation For example the Dirichlet series for the zeta function converges absolutely when Re s gt 1 but the zeta function can be extended to a holomorphic function defined on C 1 displaystyle mathbb C setminus 1 nbsp with a simple pole at 1 This series can be directly generalized to general Dirichlet series Trigonometric series Edit Main article Trigonometric series A series of functions in which the terms are trigonometric functions is called a trigonometric series 1 2 A 0 n 1 A n cos n x B n sin n x displaystyle frac 1 2 A 0 sum n 1 infty left A n cos nx B n sin nx right nbsp The most important example of a trigonometric series is the Fourier series of a function History of the theory of infinite series EditDevelopment of infinite series Edit Greek mathematician Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series and gave a remarkably accurate approximation of p 13 14 Mathematicians from the Kerala school were studying infinite series c 1350 CE 15 In the 17th century James Gregory worked in the new decimal system on infinite series and published several Maclaurin series In 1715 a general method for constructing the Taylor series for all functions for which they exist was provided by Brook Taylor Leonhard Euler in the 18th century developed the theory of hypergeometric series and q series Convergence criteria Edit The investigation of the validity of infinite series is considered to begin with Gauss in the 19th century Euler had already considered the hypergeometric series1 a b 1 g x a a 1 b b 1 1 2 g g 1 x 2 displaystyle 1 frac alpha beta 1 cdot gamma x frac alpha alpha 1 beta beta 1 1 cdot 2 cdot gamma gamma 1 x 2 cdots nbsp on which Gauss published a memoir in 1812 It established simpler criteria of convergence and the questions of remainders and the range of convergence Cauchy 1821 insisted on strict tests of convergence he showed that if two series are convergent their product is not necessarily so and with him begins the discovery of effective criteria The terms convergence and divergence had been introduced long before by Gregory 1668 Leonhard Euler and Gauss had given various criteria and Colin Maclaurin had anticipated some of Cauchy s discoveries Cauchy advanced the theory of power series by his expansion of a complex function in such a form Abel 1826 in his memoir on the binomial series1 m 1 x m m 1 2 x 2 displaystyle 1 frac m 1 x frac m m 1 2 x 2 cdots nbsp corrected certain of Cauchy s conclusions and gave a completely scientific summation of the series for complex values of m displaystyle m nbsp and x displaystyle x nbsp He showed the necessity of considering the subject of continuity in questions of convergence Cauchy s methods led to special rather than general criteria and the same may be said of Raabe 1832 who made the first elaborate investigation of the subject of De Morgan from 1842 whose logarithmic test DuBois Reymond 1873 and Pringsheim 1889 have shown to fail within a certain region of Bertrand 1842 Bonnet 1843 Malmsten 1846 1847 the latter without integration Stokes 1847 Paucker 1852 Chebyshev 1852 and Arndt 1853 General criteria began with Kummer 1835 and have been studied by Eisenstein 1847 Weierstrass in his various contributions to the theory of functions Dini 1867 DuBois Reymond 1873 and many others Pringsheim s memoirs 1889 present the most complete general theory Uniform convergence Edit The theory of uniform convergence was treated by Cauchy 1821 his limitations being pointed out by Abel but the first to attack it successfully were Seidel and Stokes 1847 48 Cauchy took up the problem again 1853 acknowledging Abel s criticism and reaching the same conclusions which Stokes had already found Thomae used the doctrine 1866 but there was great delay in recognizing the importance of distinguishing between uniform and non uniform convergence in spite of the demands of the theory of functions Semi convergence Edit A series is said to be semi convergent or conditionally convergent if it is convergent but not absolutely convergent Semi convergent series were studied by Poisson 1823 who also gave a general form for the remainder of the Maclaurin formula The most important solution of the problem is due however to Jacobi 1834 who attacked the question of the remainder from a different standpoint and reached a different formula This expression was also worked out and another one given by Malmsten 1847 Schlomilch Zeitschrift Vol I p 192 1856 also improved Jacobi s remainder and showed the relation between the remainder and Bernoulli s functionF x 1 n 2 n x 1 n displaystyle F x 1 n 2 n cdots x 1 n nbsp Genocchi 1852 has further contributed to the theory Among the early writers was Wronski whose loi supreme 1815 was hardly recognized until Cayley 1873 brought it into prominence Fourier series Edit Fourier series were being investigated as the result of physical considerations at the same time that Gauss Abel and Cauchy were working out the theory of infinite series Series for the expansion of sines and cosines of multiple arcs in powers of the sine and cosine of the arc had been treated by Jacob Bernoulli 1702 and his brother Johann Bernoulli 1701 and still earlier by Vieta Euler and Lagrange simplified the subject as did Poinsot Schroter Glaisher and Kummer Fourier 1807 set for himself a different problem to expand a given function of x in terms of the sines or cosines of multiples of x a problem which he embodied in his Theorie analytique de la chaleur 1822 Euler had already given the formulas for determining the coefficients in the series Fourier was the first to assert and attempt to prove the general theorem Poisson 1820 23 also attacked the problem from a different standpoint Fourier did not however settle the question of convergence of his series a matter left for Cauchy 1826 to attempt and for Dirichlet 1829 to handle in a thoroughly scientific manner see convergence of Fourier series Dirichlet s treatment Crelle 1829 of trigonometric series was the subject of criticism and improvement by Riemann 1854 Heine Lipschitz Schlafli and du Bois Reymond Among other prominent contributors to the theory of trigonometric and Fourier series were Dini Hermite Halphen Krause Byerly and Appell Generalizations EditAsymptotic series Edit Asymptotic series otherwise asymptotic expansions are infinite series whose partial sums become good approximations in the limit of some point of the domain In general they do not converge but they are useful as sequences of approximations each of which provides a value close to the desired answer for a finite number of terms The difference is that an asymptotic series cannot be made to produce an answer as exact as desired the way that convergent series can In fact after a certain number of terms a typical asymptotic series reaches its best approximation if more terms are included most such series will produce worse answers Divergent series Edit Main article Divergent series Under many circumstances it is desirable to assign a limit to a series which fails to converge in the usual sense A summability method is such an assignment of a limit to a subset of the set of divergent series which properly extends the classical notion of convergence Summability methods include Cesaro summation C k summation Abel summation and Borel summation in increasing order of generality and hence applicable to increasingly divergent series A variety of general results concerning possible summability methods are known The Silverman Toeplitz theorem characterizes matrix summability methods which are methods for summing a divergent series by applying an infinite matrix to the vector of coefficients The most general method for summing a divergent series is non constructive and concerns Banach limits Summations over arbitrary index sets Edit Definitions may be given for sums over an arbitrary index set I displaystyle I nbsp 16 There are two main differences with the usual notion of series first there is no specific order given on the set I displaystyle I nbsp second this set I displaystyle I nbsp may be uncountable The notion of convergence needs to be strengthened because the concept of conditional convergence depends on the ordering of the index set If a I G displaystyle a I mapsto G nbsp is a function from an index set I displaystyle I nbsp to a set G displaystyle G nbsp then the series associated to a displaystyle a nbsp is the formal sum of the elements a x G displaystyle a x in G nbsp over the index elements x I displaystyle x in I nbsp denoted by the x I a x displaystyle sum x in I a x nbsp When the index set is the natural numbers I N displaystyle I mathbb N nbsp the function a N G displaystyle a mathbb N mapsto G nbsp is a sequence denoted by a n a n displaystyle a n a n nbsp A series indexed on the natural numbers is an ordered formal sum and so we rewrite n N textstyle sum n in mathbb N nbsp as n 0 textstyle sum n 0 infty nbsp in order to emphasize the ordering induced by the natural numbers Thus we obtain the common notation for a series indexed by the natural numbers n 0 a n a 0 a 1 a 2 displaystyle sum n 0 infty a n a 0 a 1 a 2 cdots nbsp Families of non negative numbers Edit When summing a family a i i I displaystyle left a i i in I right nbsp of non negative real numbers define i I a i sup i A a i A I A finite 0 displaystyle sum i in I a i sup left sum i in A a i A subseteq I A text finite right in 0 infty nbsp When the supremum is finite then the set of i I displaystyle i in I nbsp such that a i gt 0 displaystyle a i gt 0 nbsp is countable Indeed for every n 1 displaystyle n geq 1 nbsp the cardinality A n displaystyle left A n right nbsp of the set A n i I a i gt 1 n displaystyle A n left i in I a i gt 1 n right nbsp is finite because1 n A n i A n 1 n i A n a i i I a i lt displaystyle frac 1 n left A n right sum i in A n frac 1 n leq sum i in A n a i leq sum i in I a i lt infty nbsp If I displaystyle I nbsp is countably infinite and enumerated as I i 0 i 1 displaystyle I left i 0 i 1 ldots right nbsp then the above defined sum satisfies i I a i k 0 a i k displaystyle sum i in I a i sum k 0 infty a i k nbsp provided the value displaystyle infty nbsp is allowed for the sum of the series Any sum over non negative reals can be understood as the integral of a non negative function with respect to the counting measure which accounts for the many similarities between the two constructions Abelian topological groups Edit Let a I X displaystyle a I to X nbsp be a map also denoted by a i i I displaystyle left a i right i in I nbsp from some non empty set I displaystyle I nbsp into a Hausdorff abelian topological group X displaystyle X nbsp Let Finite I displaystyle operatorname Finite I nbsp be the collection of all finite subsets of I displaystyle I nbsp with Finite I displaystyle operatorname Finite I nbsp viewed as a directed set ordered under inclusion displaystyle subseteq nbsp with union as join The family a i i I displaystyle left a i right i in I nbsp is said to be unconditionally summable if the following limit which is denoted by i I a i displaystyle sum i in I a i nbsp and is called the sum of a i i I displaystyle left a i right i in I nbsp exists in X displaystyle X nbsp i I a i lim A Finite I i A a i lim i A a i A I A finite displaystyle sum i in I a i lim A in operatorname Finite I sum i in A a i lim left sum i in A a i A subseteq I A text finite right nbsp Saying that the sum S i I a i displaystyle S sum i in I a i nbsp is the limit of finite partial sums means that for every neighborhood V displaystyle V nbsp of the origin in X displaystyle X nbsp there exists a finite subset A 0 displaystyle A 0 nbsp of I displaystyle I nbsp such that S i A a i V for every finite superset A A 0 displaystyle S sum i in A a i in V qquad text for every finite superset A supseteq A 0 nbsp Because Finite I displaystyle operatorname Finite I nbsp is not totally ordered this is not a limit of a sequence of partial sums but rather of a net 17 18 For every neighborhood W displaystyle W nbsp of the origin in X displaystyle X nbsp there is a smaller neighborhood V displaystyle V nbsp such that V V W displaystyle V V subseteq W nbsp It follows that the finite partial sums of an unconditionally summable family a i i I displaystyle left a i right i in I nbsp form a Cauchy net that is for every neighborhood W displaystyle W nbsp of the origin in X displaystyle X nbsp there exists a finite subset A 0 displaystyle A 0 nbsp of I displaystyle I nbsp such that i A 1 a i i A 2 a i W for all finite supersets A 1 A 2 A 0 displaystyle sum i in A 1 a i sum i in A 2 a i in W qquad text for all finite supersets A 1 A 2 supseteq A 0 nbsp which implies that a i W displaystyle a i in W nbsp for every i I A 0 displaystyle i in I setminus A 0 nbsp by taking A 1 A 0 i displaystyle A 1 A 0 cup i nbsp and A 2 A 0 displaystyle A 2 A 0 nbsp When X displaystyle X nbsp is complete a family a i i I displaystyle left a i right i in I nbsp is unconditionally summable in X displaystyle X nbsp if and only if the finite sums satisfy the latter Cauchy net condition When X displaystyle X nbsp is complete and a i i I displaystyle left a i right i in I nbsp is unconditionally summable in X displaystyle X nbsp then for every subset J I displaystyle J subseteq I nbsp the corresponding subfamily a j j J displaystyle left a j right j in J nbsp is also unconditionally summable in X displaystyle X nbsp When the sum of a family of non negative numbers in the extended sense defined before is finite then it coincides with the sum in the topological group X R displaystyle X mathbb R nbsp If a family a i i I displaystyle left a i right i in I nbsp in X displaystyle X nbsp is unconditionally summable then for every neighborhood W displaystyle W nbsp of the origin in X displaystyle X nbsp there is a finite subset A 0 I displaystyle A 0 subseteq I nbsp such that a i W displaystyle a i in W nbsp for every index i displaystyle i nbsp not in A 0 displaystyle A 0 nbsp If X displaystyle X nbsp is a first countable space then it follows that the set of i I displaystyle i in I nbsp such that a i 0 displaystyle a i neq 0 nbsp is countable This need not be true in a general abelian topological group see examples below Unconditionally convergent series Edit Suppose that I N displaystyle I mathbb N nbsp If a family a n n N displaystyle a n n in mathbb N nbsp is unconditionally summable in a Hausdorff abelian topological group X displaystyle X nbsp then the series in the usual sense converges and has the same sum n 0 a n n N a n displaystyle sum n 0 infty a n sum n in mathbb N a n nbsp By nature the definition of unconditional summability is insensitive to the order of the summation When a n displaystyle sum a n nbsp is unconditionally summable then the series remains convergent after any permutation s N N displaystyle sigma mathbb N to mathbb N nbsp of the set N displaystyle mathbb N nbsp of indices with the same sum n 0 a s n n 0 a n displaystyle sum n 0 infty a sigma n sum n 0 infty a n nbsp Conversely if every permutation of a series a n displaystyle sum a n nbsp converges then the series is unconditionally convergent When X displaystyle X nbsp is complete then unconditional convergence is also equivalent to the fact that all subseries are convergent if X displaystyle X nbsp is a Banach space this is equivalent to say that for every sequence of signs e n 1 displaystyle varepsilon n pm 1 nbsp the series n 0 e n a n displaystyle sum n 0 infty varepsilon n a n nbsp converges in X displaystyle X nbsp Series in topological vector spaces Edit If X displaystyle X nbsp is a topological vector space TVS and x i i I displaystyle left x i right i in I nbsp is a possibly uncountable family in X displaystyle X nbsp then this family is summable 19 if the limit lim A Finite I x A displaystyle lim A in operatorname Finite I x A nbsp of the net x A A Finite I displaystyle left x A right A in operatorname Finite I nbsp exists in X displaystyle X nbsp where Finite I displaystyle operatorname Finite I nbsp is the directed set of all finite subsets of I displaystyle I nbsp directed by inclusion displaystyle subseteq nbsp and x A i A x i textstyle x A sum i in A x i nbsp It is called absolutely summable if in addition for every continuous seminorm p displaystyle p nbsp on X displaystyle X nbsp the family p x i i I displaystyle left p left x i right right i in I nbsp is summable If X displaystyle X nbsp is a normable space and if x i i I displaystyle left x i right i in I nbsp is an absolutely summable family in X displaystyle X nbsp then necessarily all but a countable collection of x i displaystyle x i nbsp s are zero Hence in normed spaces it is usually only ever necessary to consider series with countably many terms Summable families play an important role in the theory of nuclear spaces Series in Banach and seminormed spaces Edit The notion of series can be easily extended to the case of a seminormed space If x n displaystyle x n nbsp is a sequence of elements of a normed space X displaystyle X nbsp and if x X displaystyle x in X nbsp then the series x n displaystyle sum x n nbsp converges to x displaystyle x nbsp in X displaystyle X nbsp if the sequence of partial sums of the series n 0 N x n N 1 textstyle left sum n 0 N x n right N 1 infty nbsp converges to x displaystyle x nbsp in X displaystyle X nbsp to wit x n 0 N x n 0 as N displaystyle left x sum n 0 N x n right to 0 quad text as N to infty nbsp More generally convergence of series can be defined in any abelian Hausdorff topological group Specifically in this case x n displaystyle sum x n nbsp converges to x displaystyle x nbsp if the sequence of partial sums converges to x displaystyle x nbsp If X displaystyle X cdot nbsp is a seminormed space then the notion of absolute convergence becomes A series i I x i textstyle sum i in I x i nbsp of vectors in X displaystyle X nbsp converges absolutely if i I x i lt displaystyle sum i in I left x i right lt infty nbsp in which case all but at most countably many of the values x i displaystyle left x i right nbsp are necessarily zero If a countable series of vectors in a Banach space converges absolutely then it converges unconditionally but the converse only holds in finite dimensional Banach spaces theorem of Dvoretzky amp Rogers 1950 Well ordered sums Edit Conditionally convergent series can be considered if I displaystyle I nbsp is a well ordered set for example an ordinal number a 0 displaystyle alpha 0 nbsp In this case define by transfinite recursion b lt a 1 a b a a b lt a a b displaystyle sum beta lt alpha 1 a beta a alpha sum beta lt alpha a beta nbsp and for a limit ordinal a displaystyle alpha nbsp b lt a a b lim g a b lt g a b displaystyle sum beta lt alpha a beta lim gamma to alpha sum beta lt gamma a beta nbsp if this limit exists If all limits exist up to a 0 displaystyle alpha 0 nbsp then the series converges Examples Edit Given a function f X Y displaystyle f X to Y nbsp into an abelian topological group Y displaystyle Y nbsp define for every a X displaystyle a in X nbsp f a x 0 x a f a x a displaystyle f a x begin cases 0 amp x neq a f a amp x a end cases nbsp a function whose support is a singleton a displaystyle a nbsp Then f a X f a displaystyle f sum a in X f a nbsp in the topology of pointwise convergence that is the sum is taken in the infinite product group Y X displaystyle Y X nbsp In the definition of partitions of unity one constructs sums of functions over arbitrary index set I displaystyle I nbsp i I f i x 1 displaystyle sum i in I varphi i x 1 nbsp While formally this requires a notion of sums of uncountable series by construction there are for every given x displaystyle x nbsp only finitely many nonzero terms in the sum so issues regarding convergence of such sums do not arise Actually one usually assumes more the family of functions is locally finite that is for every x displaystyle x nbsp there is a neighborhood of x displaystyle x nbsp in which all but a finite number of functions vanish Any regularity property of the f i displaystyle varphi i nbsp such as continuity differentiability that is preserved under finite sums will be preserved for the sum of any subcollection of this family of functions On the first uncountable ordinal w 1 displaystyle omega 1 nbsp viewed as a topological space in the order topology the constant function f 0 w 1 0 w 1 displaystyle f left 0 omega 1 right to left 0 omega 1 right nbsp given by f a 1 displaystyle f alpha 1 nbsp satisfies a 0 w 1 f a w 1 displaystyle sum alpha in 0 omega 1 f alpha omega 1 nbsp in other words w 1 displaystyle omega 1 nbsp copies of 1 is w 1 displaystyle omega 1 nbsp only if one takes a limit over all countable partial sums rather than finite partial sums This space is not separable See also EditContinued fraction Convergence tests Convergent series Divergent series Infinite compositions of analytic functions Infinite expression Infinite product Iterated binary operation List of mathematical series Prefix sum Sequence transformation Series expansionReferences Edit Thompson Silvanus Gardner Martin 1998 Calculus Made Easy ISBN 978 0 312 18548 0 a b c d e Weisstein Eric W Series mathworld wolfram com Retrieved 2020 08 30 a b Swokowski 1983 p 501 Michael Spivak Calculus Infinite Series www mathsisfun com Retrieved 2020 08 30 Gasper G Rahman M 2004 Basic hypergeometric series Cambridge University Press Positive and Negative Terms Alternating Series Johansson F 2016 Computing hypergeometric functions rigorously arXiv preprint arXiv 1606 06977 Higham N J 2008 Functions of matrices theory and computation Society for Industrial and Applied Mathematics Higham N J 2009 The scaling and squaring method for the matrix exponential revisited SIAM review 51 4 747 764 How and How Not to Compute the Exponential of a Matrix Nicolas Bourbaki 1989 Algebra Springer III 2 11 O Connor J J amp Robertson E F February 1996 A history of calculus University of St Andrews Retrieved 2007 08 07 K Bidwell James 30 November 1993 Archimedes and Pi Revisited School Science and Mathematics 94 3 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Indians predated Newton discovery by 250 years manchester ac uk Jean Dieudonne Foundations of mathematical analysis Academic Press Bourbaki Nicolas 1998 General Topology Chapters 1 4 Springer pp 261 270 ISBN 978 3 540 64241 1 Choquet Gustave 1966 Topology Academic Press pp 216 231 ISBN 978 0 12 173450 3 Schaefer amp Wolff 1999 pp 179 180 Bibliography, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.