fbpx
Wikipedia

Decimal

The decimal numeral system (also called the base-ten positional numeral system and denary /ˈdnəri/[1] or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral system.[2] The way of denoting numbers in the decimal system is often referred to as decimal notation.[3]

Place value of number in decimal system

A decimal numeral (also often just decimal or, less correctly, decimal number), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or "," as in 25.9703 or 3,1415).[4] Decimal may also refer specifically to the digits after the decimal separator, such as in "3.14 is the approximation of π to two decimals". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value.

The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form a/10n, where a is an integer, and n is a non-negative integer.

The decimal system has been extended to infinite decimals for representing any real number, by using an infinite sequence of digits after the decimal separator (see decimal representation). In this context, the decimal numerals with a finite number of non-zero digits after the decimal separator are sometimes called terminating decimals. A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123144).[5] An infinite decimal represents a rational number, the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.

Origin

 
Ten digits on two hands, the possible origin of decimal counting

Many numeral systems of ancient civilizations use ten and its powers for representing numbers, possibly because there are ten fingers on two hands and people started counting by using their fingers. Examples are firstly the Egyptian numerals, then the Brahmi numerals, Greek numerals, Hebrew numerals, Roman numerals, and Chinese numerals. Very large numbers were difficult to represent in these old numeral systems, and only the best mathematicians were able to multiply or divide large numbers. These difficulties were completely solved with the introduction of the Hindu–Arabic numeral system for representing integers. This system has been extended to represent some non-integer numbers, called decimal fractions or decimal numbers, for forming the decimal numeral system.

Decimal notation

For writing numbers, the decimal system uses ten decimal digits, a decimal mark, and, for negative numbers, a minus sign "−". The decimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;[6] the decimal separator is the dot "." in many countries (mostly English-speaking),[7] and a comma "," in other countries.[4]

For representing a non-negative number, a decimal numeral consists of

  • either a (finite) sequence of digits (such as "2017"), where the entire sequence represents an integer,
     
  • or a decimal mark separating two sequences of digits (such as "20.70828")
 .

If m > 0, that is, if the first sequence contains at least two digits, it is generally assumed that the first digit am is not zero. In some circumstances it may be useful to have one or more 0's on the left; this does not change the value represented by the decimal: for example, 3.14 = 03.14 = 003.14. Similarly, if the final digit on the right of the decimal mark is zero—that is, if bn = 0—it may be removed; conversely, trailing zeros may be added after the decimal mark without changing the represented number; [note 1] for example, 15 = 15.0 = 15.00 and 5.2 = 5.20 = 5.200.

For representing a negative number, a minus sign is placed before am.

The numeral   represents the number

 .

The integer part or integral part of a decimal numeral is the integer written to the left of the decimal separator (see also truncation). For a non-negative decimal numeral, it is the largest integer that is not greater than the decimal. The part from the decimal separator to the right is the fractional part, which equals the difference between the numeral and its integer part.

When the integral part of a numeral is zero, it may occur, typically in computing, that the integer part is not written (for example, .1234, instead of 0.1234). In normal writing, this is generally avoided, because of the risk of confusion between the decimal mark and other punctuation.

In brief, the contribution of each digit to the value of a number depends on its position in the numeral. That is, the decimal system is a positional numeral system.

Decimal fractions

Decimal fractions (sometimes called decimal numbers, especially in contexts involving explicit fractions) are the rational numbers that may be expressed as a fraction whose denominator is a power of ten.[8] For example, the decimals   represent the fractions 4/5, 1489/100, 79/100000, +809/500 and +314159/100000, and are therefore decimal numbers.

More generally, a decimal with n digits after the separator (a point or comma) represents the fraction with denominator 10n, whose numerator is the integer obtained by removing the separator.

It follows that a number is a decimal fraction if and only if it has a finite decimal representation.

Expressed as a fully reduced fraction, the decimal numbers are those whose denominator is a product of a power of 2 and a power of 5. Thus the smallest denominators of decimal numbers are

 

Real number approximation

Decimal numerals do not allow an exact representation for all real numbers, e.g. for the real number π. Nevertheless, they allow approximating every real number with any desired accuracy, e.g., the decimal 3.14159 approximates the real π, being less than 10−5 off; so decimals are widely used in science, engineering and everyday life.

More precisely, for every real number x and every positive integer n, there are two decimals L and u with at most n digits after the decimal mark such that Lxu and (uL) = 10n.

Numbers are very often obtained as the result of measurement. As measurements are subject to measurement uncertainty with a known upper bound, the result of a measurement is well-represented by a decimal with n digits after the decimal mark, as soon as the absolute measurement error is bounded from above by 10n. In practice, measurement results are often given with a certain number of digits after the decimal point, which indicate the error bounds. For example, although 0.080 and 0.08 denote the same number, the decimal numeral 0.080 suggests a measurement with an error less than 0.001, while the numeral 0.08 indicates an absolute error bounded by 0.01. In both cases, the true value of the measured quantity could be, for example, 0.0803 or 0.0796 (see also significant figures).

Infinite decimal expansion

For a real number x and an integer n ≥ 0, let [x]n denote the (finite) decimal expansion of the greatest number that is not greater than x that has exactly n digits after the decimal mark. Let di denote the last digit of [x]i. It is straightforward to see that [x]n may be obtained by appending dn to the right of [x]n−1. This way one has

[x]n = [x]0.d1d2...dn−1dn,

and the difference of [x]n−1 and [x]n amounts to

 ,

which is either 0, if dn = 0, or gets arbitrarily small as n tends to infinity. According to the definition of a limit, x is the limit of [x]n when n tends to infinity. This is written as or

x = [x]0.d1d2...dn...,

which is called an infinite decimal expansion of x.

Conversely, for any integer [x]0 and any sequence of digits  the (infinite) expression [x]0.d1d2...dn... is an infinite decimal expansion of a real number x. This expansion is unique if neither all dn are equal to 9 nor all dn are equal to 0 for n large enough (for all n greater than some natural number N).

If all dn for n > N equal to 9 and [x]n = [x]0.d1d2...dn, the limit of the sequence  is the decimal fraction obtained by replacing the last digit that is not a 9, i.e.: dN, by dN + 1, and replacing all subsequent 9s by 0s (see 0.999...).

Any such decimal fraction, i.e.: dn = 0 for n > N, may be converted to its equivalent infinite decimal expansion by replacing dN by dN − 1 and replacing all subsequent 0s by 9s (see 0.999...).

In summary, every real number that is not a decimal fraction has a unique infinite decimal expansion. Each decimal fraction has exactly two infinite decimal expansions, one containing only 0s after some place, which is obtained by the above definition of [x]n, and the other containing only 9s after some place, which is obtained by defining [x]n as the greatest number that is less than x, having exactly n digits after the decimal mark.

Rational numbers

Long division allows computing the infinite decimal expansion of a rational number. If the rational number is a decimal fraction, the division stops eventually, producing a decimal numeral, which may be prolongated into an infinite expansion by adding infinitely many zeros. If the rational number is not a decimal fraction, the division may continue indefinitely. However, as all successive remainders are less than the divisor, there are only a finite number of possible remainders, and after some place, the same sequence of digits must be repeated indefinitely in the quotient. That is, one has a repeating decimal. For example,

1/81 = 0.012345679012... (with the group 012345679 indefinitely repeating).

The converse is also true: if, at some point in the decimal representation of a number, the same string of digits starts repeating indefinitely, the number is rational.

For example, if x is       0.4156156156...
then 10,000x is    4156.156156156...
and 10x is       4.156156156...
so 10,000x − 10x, i.e. 9,990x, is    4152.000000000...
and x is    4152/9990

or, dividing both numerator and denominator by 6, 692/1665.

Decimal computation

 
Diagram of the world's earliest known multiplica­tion table (c. 305 BCE) from the Warring States period

Most modern computer hardware and software systems commonly use a binary representation internally (although many early computers, such as the ENIAC or the IBM 650, used decimal representation internally).[9] For external use by computer specialists, this binary representation is sometimes presented in the related octal or hexadecimal systems.

For most purposes, however, binary values are converted to or from the equivalent decimal values for presentation to or input from humans; computer programs express literals in decimal by default. (123.1, for example, is written as such in a computer program, even though many computer languages are unable to encode that number precisely.)

Both computer hardware and software also use internal representations which are effectively decimal for storing decimal values and doing arithmetic. Often this arithmetic is done on data which are encoded using some variant of binary-coded decimal,[10][11] especially in database implementations, but there are other decimal representations in use (including decimal floating point such as in newer revisions of the IEEE 754 Standard for Floating-Point Arithmetic).[12]

Decimal arithmetic is used in computers so that decimal fractional results of adding (or subtracting) values with a fixed length of their fractional part always are computed to this same length of precision. This is especially important for financial calculations, e.g., requiring in their results integer multiples of the smallest currency unit for book keeping purposes. This is not possible in binary, because the negative powers of   have no finite binary fractional representation; and is generally impossible for multiplication (or division).[13][14] See Arbitrary-precision arithmetic for exact calculations.

History

 
The world's earliest decimal multiplication table was made from bamboo slips, dating from 305 BCE, during the Warring States period in China.

Many ancient cultures calculated with numerals based on ten, sometimes argued due to human hands typically having ten fingers/digits.[15] Standardized weights used in the Indus Valley civilization (c. 3300–1300 BCE) were based on the ratios: 1/20, 1/10, 1/5, 1/2, 1, 2, 5, 10, 20, 50, 100, 200, and 500, while their standardized ruler – the Mohenjo-daro ruler – was divided into ten equal parts.[16][17][18] Egyptian hieroglyphs, in evidence since around 3000 BCE, used a purely decimal system,[19] as did the Cretan hieroglyphs (c. 1625−1500 BCE) of the Minoans whose numerals are closely based on the Egyptian model.[20][21] The decimal system was handed down to the consecutive Bronze Age cultures of Greece, including Linear A (c. 18th century BCE−1450 BCE) and Linear B (c. 1375−1200 BCE) – the number system of classical Greece also used powers of ten, including, Roman numerals, an intermediate base of 5.[22] Notably, the polymath Archimedes (c. 287–212 BCE) invented a decimal positional system in his Sand Reckoner which was based on 108[22] and later led the German mathematician Carl Friedrich Gauss to lament what heights science would have already reached in his days if Archimedes had fully realized the potential of his ingenious discovery.[23] Hittite hieroglyphs (since 15th century BCE) were also strictly decimal.[24]

Some non-mathematical ancient texts such as the Vedas, dating back to 1700–900 BCE make use of decimals and mathematical decimal fractions.[25]

The Egyptian hieratic numerals, the Greek alphabet numerals, the Hebrew alphabet numerals, the Roman numerals, the Chinese numerals and early Indian Brahmi numerals are all non-positional decimal systems, and required large numbers of symbols. For instance, Egyptian numerals used different symbols for 10, 20 to 90, 100, 200 to 900, 1000, 2000, 3000, 4000, to 10,000.[26] The world's earliest positional decimal system was the Chinese rod calculus.[27]

 
The world's earliest positional decimal system
Upper row vertical form
Lower row horizontal form

History of decimal fractions

 
counting rod decimal fraction 1/7

Decimal fractions were first developed and used by the Chinese in the end of 4th century BCE,[28] and then spread to the Middle East and from there to Europe.[27][29] The written Chinese decimal fractions were non-positional.[29] However, counting rod fractions were positional.[27]

Qin Jiushao in his book Mathematical Treatise in Nine Sections (1247[30]) denoted 0.96644 by

           , meaning
096644

J. Lennart Berggren notes that positional decimal fractions appear for the first time in a book by the Arab mathematician Abu'l-Hasan al-Uqlidisi written in the 10th century.[31] The Jewish mathematician Immanuel Bonfils used decimal fractions around 1350, anticipating Simon Stevin, but did not develop any notation to represent them.[32] The Persian mathematician Jamshīd al-Kāshī claimed to have discovered decimal fractions himself in the 15th century.[31] Al Khwarizmi introduced fraction to Islamic countries in the early 9th century; a Chinese author has alleged that his fraction presentation was an exact copy of traditional Chinese mathematical fraction from Sunzi Suanjing.[27] This form of fraction with numerator on top and denominator at bottom without a horizontal bar was also used by al-Uqlidisi and by al-Kāshī in his work "Arithmetic Key".[27][33]

 

A forerunner of modern European decimal notation was introduced by Simon Stevin in the 16th century.[34]

John Napier introduced using the period (.) to separate the integer part of a decimal number from the fractional part in his book on constructing tables of logarithms, published posthumously in 1620.[35]: p. 8, archive p. 32) 

Natural languages

A method of expressing every possible natural number using a set of ten symbols emerged in India. Several Indian languages show a straightforward decimal system. Many Indo-Aryan and Dravidian languages have numbers between 10 and 20 expressed in a regular pattern of addition to 10.[36]

The Hungarian language also uses a straightforward decimal system. All numbers between 10 and 20 are formed regularly (e.g. 11 is expressed as "tizenegy" literally "one on ten"), as with those between 20 and 100 (23 as "huszonhárom" = "three on twenty").

A straightforward decimal rank system with a word for each order (10 , 100 , 1000 , 10,000 ), and in which 11 is expressed as ten-one and 23 as two-ten-three, and 89,345 is expressed as 8 (ten thousands) 9 (thousand) 3 (hundred) 4 (tens) 5 is found in Chinese, and in Vietnamese with a few irregularities. Japanese, Korean, and Thai have imported the Chinese decimal system. Many other languages with a decimal system have special words for the numbers between 10 and 20, and decades. For example, in English 11 is "eleven" not "ten-one" or "one-teen".

Incan languages such as Quechua and Aymara have an almost straightforward decimal system, in which 11 is expressed as ten with one and 23 as two-ten with three.

Some psychologists suggest irregularities of the English names of numerals may hinder children's counting ability.[37]

Other bases

Some cultures do, or did, use other bases of numbers.

  • Pre-Columbian Mesoamerican cultures such as the Maya used a base-20 system (perhaps based on using all twenty fingers and toes).
  • The Yuki language in California and the Pamean languages[38] in Mexico have octal (base-8) systems because the speakers count using the spaces between their fingers rather than the fingers themselves.[39]
  • The existence of a non-decimal base in the earliest traces of the Germanic languages is attested by the presence of words and glosses meaning that the count is in decimal (cognates to "ten-count" or "tenty-wise"); such would be expected if normal counting is not decimal, and unusual if it were.[40][41] Where this counting system is known, it is based on the "long hundred" = 120, and a "long thousand" of 1200. The descriptions like "long" only appear after the "small hundred" of 100 appeared with the Christians. Gordon's Introduction to Old Norse 2016-04-15 at the Wayback Machine p. 293, gives number names that belong to this system. An expression cognate to 'one hundred and eighty' translates to 200, and the cognate to 'two hundred' translates to 240. Goodare details the use of the long hundred in Scotland in the Middle Ages, giving examples such as calculations where the carry implies i C (i.e. one hundred) as 120, etc. That the general population were not alarmed to encounter such numbers suggests common enough use. It is also possible to avoid hundred-like numbers by using intermediate units, such as stones and pounds, rather than a long count of pounds. Goodare gives examples of numbers like vii score, where one avoids the hundred by using extended scores. There is also a paper by W.H. Stevenson, on 'Long Hundred and its uses in England'.[42][43]
  • Many or all of the Chumashan languages originally used a base-4 counting system, in which the names for numbers were structured according to multiples of 4 and 16.[44]
  • Many languages[45] use quinary (base-5) number systems, including Gumatj, Nunggubuyu,[46] Kuurn Kopan Noot[47] and Saraveca. Of these, Gumatj is the only true 5–25 language known, in which 25 is the higher group of 5.
  • Some Nigerians use duodecimal systems.[48] So did some small communities in India and Nepal, as indicated by their languages.[49]
  • The Huli language of Papua New Guinea is reported to have base-15 numbers.[50] Ngui means 15, ngui ki means 15 × 2 = 30, and ngui ngui means 15 × 15 = 225.
  • Umbu-Ungu, also known as Kakoli, is reported to have base-24 numbers.[51] Tokapu means 24, tokapu talu means 24 × 2 = 48, and tokapu tokapu means 24 × 24 = 576.
  • Ngiti is reported to have a base-32 number system with base-4 cycles.[45]
  • The Ndom language of Papua New Guinea is reported to have base-6 numerals.[52] Mer means 6, mer an thef means 6 × 2 = 12, nif means 36, and nif thef means 36×2 = 72.

See also

Notes

  1. ^ Sometimes, the extra zeros are used for indicating the accuracy of a measurement. For example, "15.00 m" may indicate that the measurement error is less than one centimetre (0.01 m), while "15 m" may mean that the length is roughly fifteen metres and that the error may exceed 10 centimetres.

References

  1. ^ "denary". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  2. ^ Cajori, Florian (Feb 1926). "The History of Arithmetic. Louis Charles Karpinski". Isis. University of Chicago Press. 8 (1): 231–232. doi:10.1086/358384. ISSN 0021-1753.
  3. ^ Yong, Lam Lay; Se, Ang Tian (April 2004). Fleeting Footsteps. World Scientific. 268. doi:10.1142/5425. ISBN 978-981-238-696-0. Retrieved March 17, 2022.
  4. ^ a b Weisstein, Eric W. (March 10, 2022). "Decimal Point". Wolfram MathWorld. Retrieved March 17, 2022.{{cite web}}: CS1 maint: url-status (link)
  5. ^ The vinculum (overline) in 5.123144 indicates that the '144' sequence repeats indefinitely, i.e. 5.123144144144144....
  6. ^ In some countries, such as Arab speaking ones, other glyphs are used for the digits
  7. ^ Weisstein, Eric W. "Decimal". mathworld.wolfram.com. Retrieved 2020-08-22.
  8. ^ "Decimal Fraction". Encyclopedia of Mathematics. Retrieved 2013-06-18.
  9. ^ "Fingers or Fists? (The Choice of Decimal or Binary Representation)", Werner Buchholz, Communications of the ACM, Vol. 2 #12, pp. 3–11, ACM Press, December 1959.
  10. ^ Schmid, Hermann (1983) [1974]. Decimal Computation (1 (reprint) ed.). Malabar, Florida: Robert E. Krieger Publishing Company. ISBN 0-89874-318-4.
  11. ^ Schmid, Hermann (1974). Decimal Computation (1st ed.). Binghamton, New York: John Wiley & Sons. ISBN 0-471-76180-X.
  12. ^ Decimal Floating-Point: Algorism for Computers, Cowlishaw, Mike F., Proceedings 16th IEEE Symposium on Computer Arithmetic, ISBN 0-7695-1894-X, pp. 104–11, IEEE Comp. Soc., 2003
  13. ^ Decimal Arithmetic – FAQ
  14. ^ Decimal Floating-Point: Algorism for Computers, Cowlishaw, M. F., Proceedings 16th IEEE Symposium on Computer Arithmetic (ARITH 16), ISBN 0-7695-1894-X, pp. 104–11, IEEE Comp. Soc., June 2003
  15. ^ Dantzig, Tobias (1954), Number / The Language of Science (4th ed.), The Free Press (Macmillan Publishing Co.), p. 12, ISBN 0-02-906990-4
  16. ^ Sergent, Bernard (1997), Genèse de l'Inde (in French), Paris: Payot, p. 113, ISBN 2-228-89116-9
  17. ^ Coppa, A.; et al. (2006). "Early Neolithic tradition of dentistry: Flint tips were surprisingly effective for drilling tooth enamel in a prehistoric population". Nature. 440 (7085): 755–56. Bibcode:2006Natur.440..755C. doi:10.1038/440755a. PMID 16598247. S2CID 6787162.
  18. ^ Bisht, R. S. (1982), "Excavations at Banawali: 1974–77", in Possehl, Gregory L. (ed.), Harappan Civilisation: A Contemporary Perspective, New Delhi: Oxford and IBH Publishing Co., pp. 113–24
  19. ^ Georges Ifrah: From One to Zero. A Universal History of Numbers, Penguin Books, 1988, ISBN 0-14-009919-0, pp. 200–13 (Egyptian Numerals)
  20. ^ Graham Flegg: Numbers: their history and meaning, Courier Dover Publications, 2002, ISBN 978-0-486-42165-0, p. 50
  21. ^ Georges Ifrah: From One to Zero. A Universal History of Numbers, Penguin Books, 1988, ISBN 0-14-009919-0, pp. 213–18 (Cretan numerals)
  22. ^ a b "Greek numbers". Retrieved 2019-07-21.
  23. ^ Menninger, Karl: Zahlwort und Ziffer. Eine Kulturgeschichte der Zahl, Vandenhoeck und Ruprecht, 3rd. ed., 1979, ISBN 3-525-40725-4, pp. 150–53
  24. ^ Georges Ifrah: From One to Zero. A Universal History of Numbers, Penguin Books, 1988, ISBN 0-14-009919-0, pp. 218f. (The Hittite hieroglyphic system)
  25. ^ (Atharva Veda 5.15, 1–11)
  26. ^ Lam Lay Yong et al. The Fleeting Footsteps pp. 137–39
  27. ^ a b c d e Lam Lay Yong, "The Development of Hindu–Arabic and Traditional Chinese Arithmetic", Chinese Science, 1996 p. 38, Kurt Vogel notation
  28. ^ "Ancient bamboo slips for calculation enter world records book". The Institute of Archaeology, Chinese Academy of Social Sciences. Retrieved 10 May 2017.
  29. ^ a b Joseph Needham (1959). "Decimal System". Science and Civilisation in China, Volume III, Mathematics and the Sciences of the Heavens and the Earth. Cambridge University Press.
  30. ^ Jean-Claude Martzloff, A History of Chinese Mathematics, Springer 1997 ISBN 3-540-33782-2
  31. ^ a b Berggren, J. Lennart (2007). "Mathematics in Medieval Islam". In Katz, Victor J. (ed.). The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook. Princeton University Press. p. 530. ISBN 978-0-691-11485-9.
  32. ^ Gandz, S.: The invention of the decimal fractions and the application of the exponential calculus by Immanuel Bonfils of Tarascon (c. 1350), Isis 25 (1936), 16–45.
  33. ^ Lay Yong, Lam. "A Chinese Genesis, Rewriting the history of our numeral system". Archive for History of Exact Sciences. 38: 101–08.
  34. ^ B. L. van der Waerden (1985). A History of Algebra. From Khwarizmi to Emmy Noether. Berlin: Springer-Verlag.
  35. ^ Napier, John (1889) [1620]. The Construction of the Wonderful Canon of Logarithms. Translated by Macdonald, William Rae. Edinburgh: Blackwood & Sons – via Internet Archive. In numbers distinguished thus by a period in their midst, whatever is written after the period is a fraction, the denominator of which is unity with as many cyphers after it as there are figures after the period.
  36. ^ . Ancient Indian mathematics. Archived from the original on 2007-09-29. Retrieved 2015-05-22.
  37. ^ Azar, Beth (1999). . American Psychological Association Monitor. 30 (4). Archived from the original on 2007-10-21.
  38. ^ Avelino, Heriberto (2006). "The typology of Pame number systems and the limits of Mesoamerica as a linguistic area" (PDF). Linguistic Typology. 10 (1): 41–60. doi:10.1515/LINGTY.2006.002. S2CID 20412558. (PDF) from the original on 2006-07-12.
  39. ^ Marcia Ascher. "Ethnomathematics: A Multicultural View of Mathematical Ideas". The College Mathematics Journal. JSTOR 2686959.
  40. ^ McClean, R. J. (July 1958), "Observations on the Germanic numerals", German Life and Letters, 11 (4): 293–99, doi:10.1111/j.1468-0483.1958.tb00018.x, Some of the Germanic languages appear to show traces of an ancient blending of the decimal with the vigesimal system.
  41. ^ Voyles, Joseph (October 1987), "The cardinal numerals in pre-and proto-Germanic", The Journal of English and Germanic Philology, 86 (4): 487–95, JSTOR 27709904.
  42. ^ Stevenson, W.H. (1890). "The Long Hundred and its uses in England". Archaeological Review. December 1889: 313–22.
  43. ^ Poole, Reginald Lane (2006). The Exchequer in the twelfth century : the Ford lectures delivered in the University of Oxford in Michaelmas term, 1911. Clark, NJ: Lawbook Exchange. ISBN 1-58477-658-7. OCLC 76960942.
  44. ^ There is a surviving list of Ventureño language number words up to 32 written down by a Spanish priest ca. 1819. "Chumashan Numerals" by Madison S. Beeler, in Native American Mathematics, edited by Michael P. Closs (1986), ISBN 0-292-75531-7.
  45. ^ a b Hammarström, Harald (17 May 2007). "Rarities in Numeral Systems". In Wohlgemuth, Jan; Cysouw, Michael (eds.). (PDF). Empirical Approaches to Language Typology. Vol. 45. Berlin: Mouton de Gruyter (published 2010). Archived from the original (PDF) on 19 August 2007.
  46. ^ Harris, John (1982). Hargrave, Susanne (ed.). (PDF). Work Papers of SIL-AAB Series B. 8: 153–81. Archived from the original (PDF) on 2007-08-31.
  47. ^ Dawson, J. "Australian Aborigines: The Languages and Customs of Several Tribes of Aborigines in the Western District of Victoria (1881), p. xcviii.
  48. ^ Matsushita, Shuji (1998). . 2nd Meeting of the AFLANG, October 1998, Tokyo. Archived from the original on 2008-10-05. Retrieved 2011-05-29.
  49. ^ Mazaudon, Martine (2002). "Les principes de construction du nombre dans les langues tibéto-birmanes". In François, Jacques (ed.). (PDF). Leuven: Peeters. pp. 91–119. ISBN 90-429-1295-2. Archived from the original (PDF) on 2016-03-28. Retrieved 2014-09-12.
  50. ^ Cheetham, Brian (1978). . Papua New Guinea Journal of Education. 14: 16–35. Archived from the original on 2007-09-28.
  51. ^ Bowers, Nancy; Lepi, Pundia (1975). (PDF). Journal of the Polynesian Society. 84 (3): 309–24. Archived from the original (PDF) on 2011-06-04.
  52. ^ Owens, Kay (2001), , Mathematics Education Research Journal, 13 (1): 47–71, Bibcode:2001MEdRJ..13...47O, doi:10.1007/BF03217098, S2CID 161535519, archived from the original on 2015-09-26

decimal, other, uses, disambiguation, decimal, numeral, system, also, called, base, positional, numeral, system, denary, decanary, standard, system, denoting, integer, integer, numbers, extension, integer, numbers, hindu, arabic, numeral, system, denoting, num. For other uses see Decimal disambiguation The decimal numeral system also called the base ten positional numeral system and denary ˈ d iː n er i 1 or decanary is the standard system for denoting integer and non integer numbers It is the extension to non integer numbers of the Hindu Arabic numeral system 2 The way of denoting numbers in the decimal system is often referred to as decimal notation 3 Place value of number in decimal system A decimal numeral also often just decimal or less correctly decimal number refers generally to the notation of a number in the decimal numeral system Decimals may sometimes be identified by a decimal separator usually or as in 25 9703 or 3 1415 4 Decimal may also refer specifically to the digits after the decimal separator such as in 3 14 is the approximation of p to two decimals Zero digits after a decimal separator serve the purpose of signifying the precision of a value The numbers that may be represented in the decimal system are the decimal fractions That is fractions of the form a 10n where a is an integer and n is a non negative integer The decimal system has been extended to infinite decimals for representing any real number by using an infinite sequence of digits after the decimal separator see decimal representation In this context the decimal numerals with a finite number of non zero digits after the decimal separator are sometimes called terminating decimals A repeating decimal is an infinite decimal that after some place repeats indefinitely the same sequence of digits e g 5 123144144144144 5 123144 5 An infinite decimal represents a rational number the quotient of two integers if and only if it is a repeating decimal or has a finite number of non zero digits Contents 1 Origin 2 Decimal notation 3 Decimal fractions 4 Real number approximation 5 Infinite decimal expansion 5 1 Rational numbers 6 Decimal computation 7 History 7 1 History of decimal fractions 7 2 Natural languages 7 3 Other bases 8 See also 9 Notes 10 ReferencesOrigin EditThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed May 2022 Learn how and when to remove this template message Ten digits on two hands the possible origin of decimal counting Many numeral systems of ancient civilizations use ten and its powers for representing numbers possibly because there are ten fingers on two hands and people started counting by using their fingers Examples are firstly the Egyptian numerals then the Brahmi numerals Greek numerals Hebrew numerals Roman numerals and Chinese numerals Very large numbers were difficult to represent in these old numeral systems and only the best mathematicians were able to multiply or divide large numbers These difficulties were completely solved with the introduction of the Hindu Arabic numeral system for representing integers This system has been extended to represent some non integer numbers called decimal fractions or decimal numbers for forming the decimal numeral system Decimal notation EditFor writing numbers the decimal system uses ten decimal digits a decimal mark and for negative numbers a minus sign The decimal digits are 0 1 2 3 4 5 6 7 8 9 6 the decimal separator is the dot in many countries mostly English speaking 7 and a comma in other countries 4 For representing a non negative number a decimal numeral consists of either a finite sequence of digits such as 2017 where the entire sequence represents an integer a m a m 1 a 0 displaystyle a m a m 1 ldots a 0 or a decimal mark separating two sequences of digits such as 20 70828 a m a m 1 a 0 b 1 b 2 b n displaystyle a m a m 1 ldots a 0 b 1 b 2 ldots b n dd If m gt 0 that is if the first sequence contains at least two digits it is generally assumed that the first digit am is not zero In some circumstances it may be useful to have one or more 0 s on the left this does not change the value represented by the decimal for example 3 14 03 14 003 14 Similarly if the final digit on the right of the decimal mark is zero that is if bn 0 it may be removed conversely trailing zeros may be added after the decimal mark without changing the represented number note 1 for example 15 15 0 15 00 and 5 2 5 20 5 200 For representing a negative number a minus sign is placed before am The numeral a m a m 1 a 0 b 1 b 2 b n displaystyle a m a m 1 ldots a 0 b 1 b 2 ldots b n represents the number a m 10 m a m 1 10 m 1 a 0 10 0 b 1 10 1 b 2 10 2 b n 10 n displaystyle a m 10 m a m 1 10 m 1 cdots a 0 10 0 frac b 1 10 1 frac b 2 10 2 cdots frac b n 10 n The integer part or integral part of a decimal numeral is the integer written to the left of the decimal separator see also truncation For a non negative decimal numeral it is the largest integer that is not greater than the decimal The part from the decimal separator to the right is the fractional part which equals the difference between the numeral and its integer part When the integral part of a numeral is zero it may occur typically in computing that the integer part is not written for example 1234 instead of 0 1234 In normal writing this is generally avoided because of the risk of confusion between the decimal mark and other punctuation In brief the contribution of each digit to the value of a number depends on its position in the numeral That is the decimal system is a positional numeral system Decimal fractions EditDecimal fractions sometimes called decimal numbers especially in contexts involving explicit fractions are the rational numbers that may be expressed as a fraction whose denominator is a power of ten 8 For example the decimals 0 8 14 89 0 00079 1 618 3 14159 displaystyle 0 8 14 89 0 00079 1 618 3 14159 represent the fractions 4 5 1489 100 79 100000 809 500 and 314159 100000 and are therefore decimal numbers More generally a decimal with n digits after the separator a point or comma represents the fraction with denominator 10n whose numerator is the integer obtained by removing the separator It follows that a number is a decimal fraction if and only if it has a finite decimal representation Expressed as a fully reduced fraction the decimal numbers are those whose denominator is a product of a power of 2 and a power of 5 Thus the smallest denominators of decimal numbers are 1 2 0 5 0 2 2 1 5 0 4 2 2 5 0 5 2 0 5 1 8 2 3 5 0 10 2 1 5 1 16 2 4 5 0 20 2 2 5 1 25 2 0 5 2 displaystyle 1 2 0 cdot 5 0 2 2 1 cdot 5 0 4 2 2 cdot 5 0 5 2 0 cdot 5 1 8 2 3 cdot 5 0 10 2 1 cdot 5 1 16 2 4 cdot 5 0 20 2 2 cdot 5 1 25 2 0 cdot 5 2 ldots Real number approximation EditThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed April 2020 Learn how and when to remove this template message Decimal numerals do not allow an exact representation for all real numbers e g for the real number p Nevertheless they allow approximating every real number with any desired accuracy e g the decimal 3 14159 approximates the real p being less than 10 5 off so decimals are widely used in science engineering and everyday life More precisely for every real number x and every positive integer n there are two decimals L and u with at most n digits after the decimal mark such that L x u and u L 10 n Numbers are very often obtained as the result of measurement As measurements are subject to measurement uncertainty with a known upper bound the result of a measurement is well represented by a decimal with n digits after the decimal mark as soon as the absolute measurement error is bounded from above by 10 n In practice measurement results are often given with a certain number of digits after the decimal point which indicate the error bounds For example although 0 080 and 0 08 denote the same number the decimal numeral 0 080 suggests a measurement with an error less than 0 001 while the numeral 0 08 indicates an absolute error bounded by 0 01 In both cases the true value of the measured quantity could be for example 0 0803 or 0 0796 see also significant figures Infinite decimal expansion EditThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed April 2020 Learn how and when to remove this template message Main article Decimal representation For a real number x and an integer n 0 let x n denote the finite decimal expansion of the greatest number that is not greater than x that has exactly n digits after the decimal mark Let di denote the last digit of x i It is straightforward to see that x n may be obtained by appending dn to the right of x n 1 This way one has x n x 0 d1d2 dn 1dn and the difference of x n 1 and x n amounts to x n x n 1 d n 10 n lt 10 n 1 displaystyle left vert left x right n left x right n 1 right vert d n cdot 10 n lt 10 n 1 which is either 0 if dn 0 or gets arbitrarily small as n tends to infinity According to the definition of a limit x is the limit of x n when n tends to infinity This is written asx lim n x n textstyle x lim n rightarrow infty x n or x x 0 d1d2 dn which is called an infinite decimal expansion of x Conversely for any integer x 0 and any sequence of digits d n n 1 textstyle d n n 1 infty the infinite expression x 0 d1d2 dn is an infinite decimal expansion of a real number x This expansion is unique if neither all dn are equal to 9 nor all dn are equal to 0 for n large enough for all n greater than some natural number N If all dn for n gt N equal to 9 and x n x 0 d1d2 dn the limit of the sequence x n n 1 textstyle x n n 1 infty is the decimal fraction obtained by replacing the last digit that is not a 9 i e dN by dN 1 and replacing all subsequent 9s by 0s see 0 999 Any such decimal fraction i e dn 0 for n gt N may be converted to its equivalent infinite decimal expansion by replacing dN by dN 1 and replacing all subsequent 0s by 9s see 0 999 In summary every real number that is not a decimal fraction has a unique infinite decimal expansion Each decimal fraction has exactly two infinite decimal expansions one containing only 0s after some place which is obtained by the above definition of x n and the other containing only 9s after some place which is obtained by defining x n as the greatest number that is less than x having exactly n digits after the decimal mark Rational numbers Edit Main article Repeating decimal Long division allows computing the infinite decimal expansion of a rational number If the rational number is a decimal fraction the division stops eventually producing a decimal numeral which may be prolongated into an infinite expansion by adding infinitely many zeros If the rational number is not a decimal fraction the division may continue indefinitely However as all successive remainders are less than the divisor there are only a finite number of possible remainders and after some place the same sequence of digits must be repeated indefinitely in the quotient That is one has a repeating decimal For example 1 81 0 012345679 012 with the group 012345679 indefinitely repeating The converse is also true if at some point in the decimal representation of a number the same string of digits starts repeating indefinitely the number is rational For example if x is 0 4156156156 then 10 000x is 4156 156156156 and 10x is 4 156156156 so 10 000x 10x i e 9 990x is 4152 000000000 and x is 4152 9990or dividing both numerator and denominator by 6 692 1665 Decimal computation Edit Diagram of the world s earliest known multiplica tion table c 305 BCE from the Warring States period Most modern computer hardware and software systems commonly use a binary representation internally although many early computers such as the ENIAC or the IBM 650 used decimal representation internally 9 For external use by computer specialists this binary representation is sometimes presented in the related octal or hexadecimal systems For most purposes however binary values are converted to or from the equivalent decimal values for presentation to or input from humans computer programs express literals in decimal by default 123 1 for example is written as such in a computer program even though many computer languages are unable to encode that number precisely Both computer hardware and software also use internal representations which are effectively decimal for storing decimal values and doing arithmetic Often this arithmetic is done on data which are encoded using some variant of binary coded decimal 10 11 especially in database implementations but there are other decimal representations in use including decimal floating point such as in newer revisions of the IEEE 754 Standard for Floating Point Arithmetic 12 Decimal arithmetic is used in computers so that decimal fractional results of adding or subtracting values with a fixed length of their fractional part always are computed to this same length of precision This is especially important for financial calculations e g requiring in their results integer multiples of the smallest currency unit for book keeping purposes This is not possible in binary because the negative powers of 10 displaystyle 10 have no finite binary fractional representation and is generally impossible for multiplication or division 13 14 See Arbitrary precision arithmetic for exact calculations History Edit The world s earliest decimal multiplication table was made from bamboo slips dating from 305 BCE during the Warring States period in China Many ancient cultures calculated with numerals based on ten sometimes argued due to human hands typically having ten fingers digits 15 Standardized weights used in the Indus Valley civilization c 3300 1300 BCE were based on the ratios 1 20 1 10 1 5 1 2 1 2 5 10 20 50 100 200 and 500 while their standardized ruler the Mohenjo daro ruler was divided into ten equal parts 16 17 18 Egyptian hieroglyphs in evidence since around 3000 BCE used a purely decimal system 19 as did the Cretan hieroglyphs c 1625 1500 BCE of the Minoans whose numerals are closely based on the Egyptian model 20 21 The decimal system was handed down to the consecutive Bronze Age cultures of Greece including Linear A c 18th century BCE 1450 BCE and Linear B c 1375 1200 BCE the number system of classical Greece also used powers of ten including Roman numerals an intermediate base of 5 22 Notably the polymath Archimedes c 287 212 BCE invented a decimal positional system in his Sand Reckoner which was based on 108 22 and later led the German mathematician Carl Friedrich Gauss to lament what heights science would have already reached in his days if Archimedes had fully realized the potential of his ingenious discovery 23 Hittite hieroglyphs since 15th century BCE were also strictly decimal 24 Some non mathematical ancient texts such as the Vedas dating back to 1700 900 BCE make use of decimals and mathematical decimal fractions 25 The Egyptian hieratic numerals the Greek alphabet numerals the Hebrew alphabet numerals the Roman numerals the Chinese numerals and early Indian Brahmi numerals are all non positional decimal systems and required large numbers of symbols For instance Egyptian numerals used different symbols for 10 20 to 90 100 200 to 900 1000 2000 3000 4000 to 10 000 26 The world s earliest positional decimal system was the Chinese rod calculus 27 The world s earliest positional decimal system Upper row vertical form Lower row horizontal form History of decimal fractions Edit counting rod decimal fraction 1 7 Decimal fractions were first developed and used by the Chinese in the end of 4th century BCE 28 and then spread to the Middle East and from there to Europe 27 29 The written Chinese decimal fractions were non positional 29 However counting rod fractions were positional 27 Qin Jiushao in his book Mathematical Treatise in Nine Sections 1247 30 denoted 0 96644 by 寸 meaning 寸 096644 dd dd dd dd J Lennart Berggren notes that positional decimal fractions appear for the first time in a book by the Arab mathematician Abu l Hasan al Uqlidisi written in the 10th century 31 The Jewish mathematician Immanuel Bonfils used decimal fractions around 1350 anticipating Simon Stevin but did not develop any notation to represent them 32 The Persian mathematician Jamshid al Kashi claimed to have discovered decimal fractions himself in the 15th century 31 Al Khwarizmi introduced fraction to Islamic countries in the early 9th century a Chinese author has alleged that his fraction presentation was an exact copy of traditional Chinese mathematical fraction from Sunzi Suanjing 27 This form of fraction with numerator on top and denominator at bottom without a horizontal bar was also used by al Uqlidisi and by al Kashi in his work Arithmetic Key 27 33 A forerunner of modern European decimal notation was introduced by Simon Stevin in the 16th century 34 John Napier introduced using the period to separate the integer part of a decimal number from the fractional part in his book on constructing tables of logarithms published posthumously in 1620 35 p 8 archive p 32 Natural languages Edit A method of expressing every possible natural number using a set of ten symbols emerged in India Several Indian languages show a straightforward decimal system Many Indo Aryan and Dravidian languages have numbers between 10 and 20 expressed in a regular pattern of addition to 10 36 The Hungarian language also uses a straightforward decimal system All numbers between 10 and 20 are formed regularly e g 11 is expressed as tizenegy literally one on ten as with those between 20 and 100 23 as huszonharom three on twenty A straightforward decimal rank system with a word for each order 10 十 100 百 1000 千 10 000 万 and in which 11 is expressed as ten one and 23 as two ten three and 89 345 is expressed as 8 ten thousands 万 9 thousand 千 3 hundred 百 4 tens 十 5 is found in Chinese and in Vietnamese with a few irregularities Japanese Korean and Thai have imported the Chinese decimal system Many other languages with a decimal system have special words for the numbers between 10 and 20 and decades For example in English 11 is eleven not ten one or one teen Incan languages such as Quechua and Aymara have an almost straightforward decimal system in which 11 is expressed as ten with one and 23 as two ten with three Some psychologists suggest irregularities of the English names of numerals may hinder children s counting ability 37 Other bases Edit Main article Positional notation Some cultures do or did use other bases of numbers Pre Columbian Mesoamerican cultures such as the Maya used a base 20 system perhaps based on using all twenty fingers and toes The Yuki language in California and the Pamean languages 38 in Mexico have octal base 8 systems because the speakers count using the spaces between their fingers rather than the fingers themselves 39 The existence of a non decimal base in the earliest traces of the Germanic languages is attested by the presence of words and glosses meaning that the count is in decimal cognates to ten count or tenty wise such would be expected if normal counting is not decimal and unusual if it were 40 41 Where this counting system is known it is based on the long hundred 120 and a long thousand of 1200 The descriptions like long only appear after the small hundred of 100 appeared with the Christians Gordon s Introduction to Old Norse Archived 2016 04 15 at the Wayback Machine p 293 gives number names that belong to this system An expression cognate to one hundred and eighty translates to 200 and the cognate to two hundred translates to 240 Goodare details the use of the long hundred in Scotland in the Middle Ages giving examples such as calculations where the carry implies i C i e one hundred as 120 etc That the general population were not alarmed to encounter such numbers suggests common enough use It is also possible to avoid hundred like numbers by using intermediate units such as stones and pounds rather than a long count of pounds Goodare gives examples of numbers like vii score where one avoids the hundred by using extended scores There is also a paper by W H Stevenson on Long Hundred and its uses in England 42 43 Many or all of the Chumashan languages originally used a base 4 counting system in which the names for numbers were structured according to multiples of 4 and 16 44 Many languages 45 use quinary base 5 number systems including Gumatj Nunggubuyu 46 Kuurn Kopan Noot 47 and Saraveca Of these Gumatj is the only true 5 25 language known in which 25 is the higher group of 5 Some Nigerians use duodecimal systems 48 So did some small communities in India and Nepal as indicated by their languages 49 The Huli language of Papua New Guinea is reported to have base 15 numbers 50 Ngui means 15 ngui ki means 15 2 30 and ngui ngui means 15 15 225 Umbu Ungu also known as Kakoli is reported to have base 24 numbers 51 Tokapu means 24 tokapu talu means 24 2 48 and tokapu tokapu means 24 24 576 Ngiti is reported to have a base 32 number system with base 4 cycles 45 The Ndom language of Papua New Guinea is reported to have base 6 numerals 52 Mer means 6 mer an thef means 6 2 12 nif means 36 and nif thef means 36 2 72 See also EditAlgorism Binary coded decimal BCD Decimal classification Decimal computer Decimal time Decimal representation Decimal section numbering Decimal separator Decimalisation Densely packed decimal DPD Duodecimal Octal Scientific notation Serial decimal SI prefixNotes Edit Sometimes the extra zeros are used for indicating the accuracy of a measurement For example 15 00 m may indicate that the measurement error is less than one centimetre 0 01 m while 15 m may mean that the length is roughly fifteen metres and that the error may exceed 10 centimetres References Edit denary Oxford English Dictionary Online ed Oxford University Press Subscription or participating institution membership required Cajori Florian Feb 1926 The History of Arithmetic Louis Charles Karpinski Isis University of Chicago Press 8 1 231 232 doi 10 1086 358384 ISSN 0021 1753 Yong Lam Lay Se Ang Tian April 2004 Fleeting Footsteps World Scientific 268 doi 10 1142 5425 ISBN 978 981 238 696 0 Retrieved March 17 2022 a b Weisstein Eric W March 10 2022 Decimal Point Wolfram MathWorld Retrieved March 17 2022 a href Template Cite web html title Template Cite web cite web a CS1 maint url status link The vinculum overline in 5 123144 indicates that the 144 sequence repeats indefinitely i e 5 123144 144 144 144 In some countries such as Arab speaking ones other glyphs are used for the digits Weisstein Eric W Decimal mathworld wolfram com Retrieved 2020 08 22 Decimal Fraction Encyclopedia of Mathematics Retrieved 2013 06 18 Fingers or Fists The Choice of Decimal or Binary Representation Werner Buchholz Communications of the ACM Vol 2 12 pp 3 11 ACM Press December 1959 Schmid Hermann 1983 1974 Decimal Computation 1 reprint ed Malabar Florida Robert E Krieger Publishing Company ISBN 0 89874 318 4 Schmid Hermann 1974 Decimal Computation 1st ed Binghamton New York John Wiley amp Sons ISBN 0 471 76180 X Decimal Floating Point Algorism for Computers Cowlishaw Mike F Proceedings 16th IEEE Symposium on Computer Arithmetic ISBN 0 7695 1894 X pp 104 11 IEEE Comp Soc 2003 Decimal Arithmetic FAQ Decimal Floating Point Algorism for Computers Cowlishaw M F Proceedings 16th IEEE Symposium on Computer Arithmetic ARITH 16 ISBN 0 7695 1894 X pp 104 11 IEEE Comp Soc June 2003 Dantzig Tobias 1954 Number The Language of Science 4th ed The Free Press Macmillan Publishing Co p 12 ISBN 0 02 906990 4 Sergent Bernard 1997 Genese de l Inde in French Paris Payot p 113 ISBN 2 228 89116 9 Coppa A et al 2006 Early Neolithic tradition of dentistry Flint tips were surprisingly effective for drilling tooth enamel in a prehistoric population Nature 440 7085 755 56 Bibcode 2006Natur 440 755C doi 10 1038 440755a PMID 16598247 S2CID 6787162 Bisht R S 1982 Excavations at Banawali 1974 77 in Possehl Gregory L ed Harappan Civilisation A Contemporary Perspective New Delhi Oxford and IBH Publishing Co pp 113 24 Georges Ifrah From One to Zero A Universal History of Numbers Penguin Books 1988 ISBN 0 14 009919 0 pp 200 13 Egyptian Numerals Graham Flegg Numbers their history and meaning Courier Dover Publications 2002 ISBN 978 0 486 42165 0 p 50 Georges Ifrah From One to Zero A Universal History of Numbers Penguin Books 1988 ISBN 0 14 009919 0 pp 213 18 Cretan numerals a b Greek numbers Retrieved 2019 07 21 Menninger Karl Zahlwort und Ziffer Eine Kulturgeschichte der Zahl Vandenhoeck und Ruprecht 3rd ed 1979 ISBN 3 525 40725 4 pp 150 53 Georges Ifrah From One to Zero A Universal History of Numbers Penguin Books 1988 ISBN 0 14 009919 0 pp 218f The Hittite hieroglyphic system Atharva Veda 5 15 1 11 Lam Lay Yong et al The Fleeting Footsteps pp 137 39 a b c d e Lam Lay Yong The Development of Hindu Arabic and Traditional Chinese Arithmetic Chinese Science 1996 p 38 Kurt Vogel notation Ancient bamboo slips for calculation enter world records book The Institute of Archaeology Chinese Academy of Social Sciences Retrieved 10 May 2017 a b Joseph Needham 1959 Decimal System Science and Civilisation in China Volume III Mathematics and the Sciences of the Heavens and the Earth Cambridge University Press Jean Claude Martzloff A History of Chinese Mathematics Springer 1997 ISBN 3 540 33782 2 a b Berggren J Lennart 2007 Mathematics in Medieval Islam In Katz Victor J ed The Mathematics of Egypt Mesopotamia China India and Islam A Sourcebook Princeton University Press p 530 ISBN 978 0 691 11485 9 Gandz S The invention of the decimal fractions and the application of the exponential calculus by Immanuel Bonfils of Tarascon c 1350 Isis 25 1936 16 45 Lay Yong Lam A Chinese Genesis Rewriting the history of our numeral system Archive for History of Exact Sciences 38 101 08 B L van der Waerden 1985 A History of Algebra From Khwarizmi to Emmy Noether Berlin Springer Verlag Napier John 1889 1620 The Construction of the Wonderful Canon of Logarithms Translated by Macdonald William Rae Edinburgh Blackwood amp Sons via Internet Archive In numbers distinguished thus by a period in their midst whatever is written after the period is a fraction the denominator of which is unity with as many cyphers after it as there are figures after the period Indian numerals Ancient Indian mathematics Archived from the original on 2007 09 29 Retrieved 2015 05 22 Azar Beth 1999 English words may hinder math skills development American Psychological Association Monitor 30 4 Archived from the original on 2007 10 21 Avelino Heriberto 2006 The typology of Pame number systems and the limits of Mesoamerica as a linguistic area PDF Linguistic Typology 10 1 41 60 doi 10 1515 LINGTY 2006 002 S2CID 20412558 Archived PDF from the original on 2006 07 12 Marcia Ascher Ethnomathematics A Multicultural View of Mathematical Ideas The College Mathematics Journal JSTOR 2686959 McClean R J July 1958 Observations on the Germanic numerals German Life and Letters 11 4 293 99 doi 10 1111 j 1468 0483 1958 tb00018 x Some of the Germanic languages appear to show traces of an ancient blending of the decimal with the vigesimal system Voyles Joseph October 1987 The cardinal numerals in pre and proto Germanic The Journal of English and Germanic Philology 86 4 487 95 JSTOR 27709904 Stevenson W H 1890 The Long Hundred and its uses in England Archaeological Review December 1889 313 22 Poole Reginald Lane 2006 The Exchequer in the twelfth century the Ford lectures delivered in the University of Oxford in Michaelmas term 1911 Clark NJ Lawbook Exchange ISBN 1 58477 658 7 OCLC 76960942 There is a surviving list of Ventureno language number words up to 32 written down by a Spanish priest ca 1819 Chumashan Numerals by Madison S Beeler in Native American Mathematics edited by Michael P Closs 1986 ISBN 0 292 75531 7 a b Hammarstrom Harald 17 May 2007 Rarities in Numeral Systems In Wohlgemuth Jan Cysouw Michael eds Rethinking Universals How rarities affect linguistic theory PDF Empirical Approaches to Language Typology Vol 45 Berlin Mouton de Gruyter published 2010 Archived from the original PDF on 19 August 2007 Harris John 1982 Hargrave Susanne ed Facts and fallacies of aboriginal number systems PDF Work Papers of SIL AAB Series B 8 153 81 Archived from the original PDF on 2007 08 31 Dawson J Australian Aborigines The Languages and Customs of Several Tribes of Aborigines in the Western District of Victoria 1881 p xcviii Matsushita Shuji 1998 Decimal vs Duodecimal An interaction between two systems of numeration 2nd Meeting of the AFLANG October 1998 Tokyo Archived from the original on 2008 10 05 Retrieved 2011 05 29 Mazaudon Martine 2002 Les principes de construction du nombre dans les langues tibeto birmanes In Francois Jacques ed La Pluralite PDF Leuven Peeters pp 91 119 ISBN 90 429 1295 2 Archived from the original PDF on 2016 03 28 Retrieved 2014 09 12 Cheetham Brian 1978 Counting and Number in Huli Papua New Guinea Journal of Education 14 16 35 Archived from the original on 2007 09 28 Bowers Nancy Lepi Pundia 1975 Kaugel Valley systems of reckoning PDF Journal of the Polynesian Society 84 3 309 24 Archived from the original PDF on 2011 06 04 Owens Kay 2001 The Work of Glendon Lean on the Counting Systems of Papua New Guinea and Oceania Mathematics Education Research Journal 13 1 47 71 Bibcode 2001MEdRJ 13 47O doi 10 1007 BF03217098 S2CID 161535519 archived from the original on 2015 09 26 Retrieved from https en wikipedia org w index php title Decimal amp oldid 1135661175, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.