fbpx
Wikipedia

Harmonic number

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:

The harmonic number with (red line) with its asymptotic limit (blue line) where is the Euler–Mascheroni constant.

Starting from n = 1, the sequence of harmonic numbers begins:

Harmonic numbers are related to the harmonic mean in that the n-th harmonic number is also n times the reciprocal of the harmonic mean of the first n positive integers.

Harmonic numbers have been studied since antiquity and are important in various branches of number theory. They are sometimes loosely termed harmonic series, are closely related to the Riemann zeta function, and appear in the expressions of various special functions.

The harmonic numbers roughly approximate the natural logarithm function[1]: 143  and thus the associated harmonic series grows without limit, albeit slowly. In 1737, Leonhard Euler used the divergence of the harmonic series to provide a new proof of the infinity of prime numbers. His work was extended into the complex plane by Bernhard Riemann in 1859, leading directly to the celebrated Riemann hypothesis about the distribution of prime numbers.

When the value of a large quantity of items has a Zipf's law distribution, the total value of the n most-valuable items is proportional to the n-th harmonic number. This leads to a variety of surprising conclusions regarding the long tail and the theory of network value.

The Bertrand-Chebyshev theorem implies that, except for the case n = 1, the harmonic numbers are never integers.[2]

Identities involving harmonic numbers

By definition, the harmonic numbers satisfy the recurrence relation

 

The harmonic numbers are connected to the Stirling numbers of the first kind by the relation

 

The functions

 
satisfy the property
 
In particular
 
is an integral of the logarithmic function.

The harmonic numbers satisfy the series identities

 
and
 
These two results are closely analogous to the corresponding integral results
 
and
 

Identities involving π

There are several infinite summations involving harmonic numbers and powers of π:[3][better source needed]

 
 
 
 

Calculation

An integral representation given by Euler[4] is

 

The equality above is straightforward by the simple algebraic identity

 

Using the substitution x = 1 − u, another expression for Hn is

 
 
Graph demonstrating a connection between harmonic numbers and the natural logarithm. The harmonic number Hn can be interpreted as a Riemann sum of the integral:  

The nth harmonic number is about as large as the natural logarithm of n. The reason is that the sum is approximated by the integral

 
whose value is ln n.

The values of the sequence Hn − ln n decrease monotonically towards the limit

 
where γ ≈ 0.5772156649 is the Euler–Mascheroni constant. The corresponding asymptotic expansion is
 
where Bk are the Bernoulli numbers.

Generating functions

A generating function for the harmonic numbers is

 
where ln(z) is the natural logarithm. An exponential generating function is
 
where Ein(z) is the entire exponential integral. The exponential integral may also be expressed as
 
where Γ(0, z) is the incomplete gamma function.

Arithmetic properties

The harmonic numbers have several interesting arithmetic properties. It is well-known that   is an integer if and only if  , a result often attributed to Taeisinger.[5] Indeed, using 2-adic valuation, it is not difficult to prove that for   the numerator of   is an odd number while the denominator of   is an even number. More precisely,

 
with some odd integers   and  .

As a consequence of Wolstenholme's theorem, for any prime number   the numerator of  is divisible by  . Furthermore, Eisenstein[6] proved that for all odd prime number   it holds

 
where   is a Fermat quotient, with the consequence that   divides the numerator of   if and only if   is a Wieferich prime.

In 1991, Eswarathasan and Levine[7] defined   as the set of all positive integers   such that the numerator of   is divisible by a prime number   They proved that

 
for all prime numbers   and they defined harmonic primes to be the primes   such that   has exactly 3 elements.

Eswarathasan and Levine also conjectured that   is a finite set for all primes   and that there are infinitely many harmonic primes. Boyd[8] verified that   is finite for all prime numbers up to   except 83, 127, and 397; and he gave a heuristic suggesting that the density of the harmonic primes in the set of all primes should be  . Sanna[9] showed that   has zero asymptotic density, while Bing-Ling Wu and Yong-Gao Chen[10] proved that the number of elements of   not exceeding   is at most  , for all  .

Applications

The harmonic numbers appear in several calculation formulas, such as the digamma function

 
This relation is also frequently used to define the extension of the harmonic numbers to non-integer n. The harmonic numbers are also frequently used to define γ using the limit introduced earlier:
 
although
 
converges more quickly.

In 2002, Jeffrey Lagarias proved[11] that the Riemann hypothesis is equivalent to the statement that

 
is true for every integer n ≥ 1 with strict inequality if n > 1; here σ(n) denotes the sum of the divisors of n.

The eigenvalues of the nonlocal problem

 
are given by  , where by convention  , and the corresponding eigenfunctions are given by the Legendre polynomials  .[12]

Generalizations

Generalized harmonic numbers

The nth generalized harmonic number of order m is given by

 

(In some sources, this may also be denoted by   or  )

The special case m = 0 gives   The special case m = 1 reduces to the usual harmonic number:

 

The limit of   as n → ∞ is finite if m > 1, with the generalized harmonic number bounded by and converging to the Riemann zeta function

 

The smallest natural number k such that kn does not divide the denominator of generalized harmonic number H(k, n) nor the denominator of alternating generalized harmonic number H′(k, n) is, for n=1, 2, ... :

77, 20, 94556602, 42, 444, 20, 104, 42, 76, 20, 77, 110, 3504, 20, 903, 42, 1107, 20, 104, 42, 77, 20, 2948, 110, 136, 20, 76, 42, 903, 20, 77, 42, 268, 20, 7004, 110, 1752, 20, 19203, 42, 77, 20, 104, 42, 76, 20, 370, 110, 1107, 20, ... (sequence A128670 in the OEIS)

The related sum   occurs in the study of Bernoulli numbers; the harmonic numbers also appear in the study of Stirling numbers.

Some integrals of generalized harmonic numbers are

 
and
 
where A is Apéry's constant ζ(3), and
 

Every generalized harmonic number of order m can be written as a function of harmonic numbers of order   using

 
  for example:  

A generating function for the generalized harmonic numbers is

 
where   is the polylogarithm, and |z| < 1. The generating function given above for m = 1 is a special case of this formula.

A fractional argument for generalized harmonic numbers can be introduced as follows:

For every   integer, and   integer or not, we have from polygamma functions:

 
where   is the Riemann zeta function. The relevant recurrence relation is
 
Some special values are
 
where G is Catalan's constant,
 
 
 
 
 

In the special case that  , we get

 
where   is the Hurwitz zeta function. This relationship is used to calculate harmonic numbers numerically.

Multiplication formulas

The multiplication theorem applies to harmonic numbers. Using polygamma functions, we obtain

 
 
or, more generally,
 

For generalized harmonic numbers, we have

 
 
where   is the Riemann zeta function.

Hyperharmonic numbers

The next generalization was discussed by J. H. Conway and R. K. Guy in their 1995 book The Book of Numbers.[1]: 258  Let

 
Then the nth hyperharmonic number of order r (r>0) is defined recursively as
 
In particular,   is the ordinary harmonic number  .

Harmonic numbers for real and complex values

The formulae given above,

 
are an integral and a series representation for a function that interpolates the harmonic numbers and, via analytic continuation, extends the definition to the complex plane other than the negative integers x. The interpolating function is in fact closely related to the digamma function
 
where ψ(x) is the digamma function, and γ is the Euler–Mascheroni constant. The integration process may be repeated to obtain
 

The Taylor series for the harmonic numbers is

 
which comes from the Taylor series for the digamma function (  is the Riemann zeta function).

Approximation using the Taylor series expansion

The harmonic number can be approximated using the first few terms of the Taylor series expansion:[13]

 
where   is the Euler–Mascheroni constant.

Alternative, asymptotic formulation

When seeking to approximate Hx for a complex number x, it is effective to first compute Hm for some large integer m. Use that as an approximation for the value of Hm+x. Then use the recursion relation Hn = Hn−1 + 1/n backwards m times, to unwind it to an approximation for Hx. Furthermore, this approximation is exact in the limit as m goes to infinity.

Specifically, for a fixed integer n, it is the case that

 

If n is not an integer then it is not possible to say whether this equation is true because we have not yet (in this section) defined harmonic numbers for non-integers. However, we do get a unique extension of the harmonic numbers to the non-integers by insisting that this equation continue to hold when the arbitrary integer n is replaced by an arbitrary complex number x.

 
Swapping the order of the two sides of this equation and then subtracting them from Hx gives
 

This infinite series converges for all complex numbers x except the negative integers, which fail because trying to use the recursion relation Hn = Hn−1 + 1/n backwards through the value n = 0 involves a division by zero. By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) H0 = 0, (2) Hx = Hx−1 + 1/x for all complex numbers x except the non-positive integers, and (3) limm→+∞ (Hm+xHm) = 0 for all complex values x.

Note that this last formula can be used to show that

 
where γ is the Euler–Mascheroni constant or, more generally, for every n we have:
 

Special values for fractional arguments

There are the following special analytic values for fractional arguments between 0 and 1, given by the integral

 

More values may be generated from the recurrence relation

 
or from the reflection relation
 

For example:

 
 
 
 
 
 
 
 

For positive integers p and q with p < q, we have:

 

Relation to the Riemann zeta function

Some derivatives of fractional harmonic numbers are given by

 

And using Maclaurin series, we have for x < 1 that

 

For fractional arguments between 0 and 1 and for a > 1,

 

See also

Notes

  1. ^ a b John H., Conway; Richard K., Guy (1995). The book of numbers. Copernicus.
  2. ^ Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren (1994). Concrete Mathematics. Addison-Wesley.
  3. ^ Sondow, Jonathan and Weisstein, Eric W. "Harmonic Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HarmonicNumber.html
  4. ^ Sandifer, C. Edward (2007), How Euler Did It, MAA Spectrum, Mathematical Association of America, p. 206, ISBN 9780883855638.
  5. ^ Weisstein, Eric W. (2003). CRC Concise Encyclopedia of Mathematics. Boca Raton, FL: Chapman & Hall/CRC. p. 3115. ISBN 978-1-58488-347-0.
  6. ^ Eisenstein, Ferdinand Gotthold Max (1850). "Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen ahhängen und durch gewisse lineare Funktional-Gleichungen definirt werden". Berichte Königl. Preuβ. Akad. Wiss. Berlin. 15: 36–42.
  7. ^ Eswarathasan, Arulappah; Levine, Eugene (1991). "p-integral harmonic sums". Discrete Mathematics. 91 (3): 249–257. doi:10.1016/0012-365X(90)90234-9.
  8. ^ Boyd, David W. (1994). "A p-adic study of the partial sums of the harmonic series". Experimental Mathematics. 3 (4): 287–302. CiteSeerX 10.1.1.56.7026. doi:10.1080/10586458.1994.10504298.
  9. ^ Sanna, Carlo (2016). "On the p-adic valuation of harmonic numbers" (PDF). Journal of Number Theory. 166: 41–46. doi:10.1016/j.jnt.2016.02.020. hdl:2318/1622121.
  10. ^ Chen, Yong-Gao; Wu, Bing-Ling (2017). "On certain properties of harmonic numbers". Journal of Number Theory. 175: 66–86. doi:10.1016/j.jnt.2016.11.027.
  11. ^ Jeffrey Lagarias (2002). "An Elementary Problem Equivalent to the Riemann Hypothesis". Amer. Math. Monthly. 109 (6): 534–543. arXiv:math.NT/0008177. doi:10.2307/2695443. JSTOR 2695443.
  12. ^ E.O. Tuck (1964). "Some methods for flows past blunt slender bodies". J. Fluid Mech. 18 (4): 619–635. Bibcode:1964JFM....18..619T. doi:10.1017/S0022112064000453. S2CID 123120978.
  13. ^ Claude Leibovici (https://math.stackexchange.com/users/82404/claude-leibovici), Harmonic series sum approximation, URL (version: 2018-11-11): https://math.stackexchange.com/q/2986766

References

  • Arthur T. Benjamin; Gregory O. Preston; Jennifer J. Quinn (2002). (PDF). Mathematics Magazine. 75 (2): 95–103. CiteSeerX 10.1.1.383.722. doi:10.2307/3219141. JSTOR 3219141. Archived from the original (PDF) on 2009-06-17. Retrieved 2005-08-08.
  • Donald Knuth (1997). "Section 1.2.7: Harmonic Numbers". The Art of Computer Programming. Vol. 1: Fundamental Algorithms (Third ed.). Addison-Wesley. pp. 75–79. ISBN 978-0-201-89683-1.
  • Ed Sandifer, How Euler Did It — Estimating the Basel problem 2005-05-13 at the Wayback Machine (2003)
  • Paule, Peter; Schneider, Carsten (2003). "Computer Proofs of a New Family of Harmonic Number Identities" (PDF). Adv. Appl. Math. 31 (2): 359–378. doi:10.1016/s0196-8858(03)00016-2.
  • Wenchang Chu (2004). "A Binomial Coefficient Identity Associated with Beukers' Conjecture on Apery Numbers" (PDF). The Electronic Journal of Combinatorics. 11: N15. doi:10.37236/1856.
  • Ayhan Dil; István Mező (2008). "A Symmetric Algorithm for Hyperharmonic and Fibonacci Numbers". Applied Mathematics and Computation. 206 (2): 942–951. arXiv:0803.4388. doi:10.1016/j.amc.2008.10.013. S2CID 12130670.

External links

This article incorporates material from Harmonic number on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

harmonic, number, other, uses, disambiguation, mathematics, harmonic, number, reciprocals, first, natural, numbers, harmonic, number, displaystyle, with, displaystyle, lfloor, rfloor, line, with, asymptotic, limit, displaystyle, gamma, blue, line, where, displ. For other uses see Harmonic number disambiguation In mathematics the n th harmonic number is the sum of the reciprocals of the first n natural numbers The harmonic number H n displaystyle H n with n x displaystyle n lfloor x rfloor red line with its asymptotic limit g ln x displaystyle gamma ln x blue line where g displaystyle gamma is the Euler Mascheroni constant H n 1 1 2 1 3 1 n k 1 n 1 k displaystyle H n 1 frac 1 2 frac 1 3 cdots frac 1 n sum k 1 n frac 1 k Starting from n 1 the sequence of harmonic numbers begins 1 3 2 11 6 25 12 137 60 displaystyle 1 frac 3 2 frac 11 6 frac 25 12 frac 137 60 dots Harmonic numbers are related to the harmonic mean in that the n th harmonic number is also n times the reciprocal of the harmonic mean of the first n positive integers Harmonic numbers have been studied since antiquity and are important in various branches of number theory They are sometimes loosely termed harmonic series are closely related to the Riemann zeta function and appear in the expressions of various special functions The harmonic numbers roughly approximate the natural logarithm function 1 143 and thus the associated harmonic series grows without limit albeit slowly In 1737 Leonhard Euler used the divergence of the harmonic series to provide a new proof of the infinity of prime numbers His work was extended into the complex plane by Bernhard Riemann in 1859 leading directly to the celebrated Riemann hypothesis about the distribution of prime numbers When the value of a large quantity of items has a Zipf s law distribution the total value of the n most valuable items is proportional to the n th harmonic number This leads to a variety of surprising conclusions regarding the long tail and the theory of network value The Bertrand Chebyshev theorem implies that except for the case n 1 the harmonic numbers are never integers 2 The first 40 harmonic numbers n Harmonic number Hnexpressed as a fraction decimal relative size1 1 1 1 2 3 2 1 5 1 5 3 11 6 1 83333 1 83333 4 25 12 2 08333 2 08333 5 137 60 2 28333 2 28333 6 49 20 2 45 2 45 7 363 140 2 59286 2 59286 8 761 280 2 71786 2 71786 9 7 129 2 520 2 82897 2 82897 10 7 381 2 520 2 92897 2 92897 11 83 711 27 720 3 01988 3 01988 12 86 021 27 720 3 10321 3 10321 13 1 145 993 360 360 3 18013 3 18013 14 1 171 733 360 360 3 25156 3 25156 15 1 195 757 360 360 3 31823 3 31823 16 2 436 559 720 720 3 38073 3 38073 17 42 142 223 12 252 240 3 43955 3 43955 18 14 274 301 4 084 080 3 49511 3 49511 19 275 295 799 77 597 520 3 54774 3 54774 20 55 835 135 15 519 504 3 59774 3 59774 21 18 858 053 5 173 168 3 64536 3 64536 22 19 093 197 5 173 168 3 69081 3 69081 23 444 316 699 118 982 864 3 73429 3 73429 24 1 347 822 955 356 948 592 3 77596 3 77596 25 34 052 522 467 8 923 714 800 3 81596 3 81596 26 34 395 742 267 8 923 714 800 3 85442 3 85442 27 312 536 252 003 80 313 433 200 3 89146 3 89146 28 315 404 588 903 80 313 433 200 3 92717 3 92717 29 9 227 046 511 387 2 329 089 562 800 3 96165 3 96165 30 9 304 682 830 147 2 329 089 562 800 3 99499 3 99499 31 290 774 257 297 357 72 201 776 446 800 4 02725 4 02725 32 586 061 125 622 639 144 403 552 893 600 4 05850 4 0585 33 53 676 090 078 349 13 127 595 717 600 4 08880 4 0888 34 54 062 195 834 749 13 127 595 717 600 4 11821 4 11821 35 54 437 269 998 109 13 127 595 717 600 4 14678 4 14678 36 54 801 925 434 709 13 127 595 717 600 4 17456 4 17456 37 2 040 798 836 801 833 485 721 041 551 200 4 20159 4 20159 38 2 053 580 969 474 233 485 721 041 551 200 4 22790 4 2279 39 2 066 035 355 155 033 485 721 041 551 200 4 25354 4 25354 40 2 078 178 381 193 813 485 721 041 551 200 4 27854 4 27854 Contents 1 Identities involving harmonic numbers 1 1 Identities involving p 2 Calculation 3 Generating functions 4 Arithmetic properties 5 Applications 6 Generalizations 6 1 Generalized harmonic numbers 6 2 Multiplication formulas 6 3 Hyperharmonic numbers 7 Harmonic numbers for real and complex values 7 1 Approximation using the Taylor series expansion 7 2 Alternative asymptotic formulation 7 3 Special values for fractional arguments 7 4 Relation to the Riemann zeta function 8 See also 9 Notes 10 References 11 External linksIdentities involving harmonic numbers EditBy definition the harmonic numbers satisfy the recurrence relationH n 1 H n 1 n 1 displaystyle H n 1 H n frac 1 n 1 The harmonic numbers are connected to the Stirling numbers of the first kind by the relationH n 1 n n 1 2 displaystyle H n frac 1 n left n 1 atop 2 right The functionsf n x x n n log x H n displaystyle f n x frac x n n log x H n satisfy the property f n x f n 1 x displaystyle f n x f n 1 x In particular f 1 x x log x 1 displaystyle f 1 x x log x 1 is an integral of the logarithmic function The harmonic numbers satisfy the series identities k 1 n H k n 1 H n n displaystyle sum k 1 n H k n 1 H n n and k 1 n H k 2 n 1 H n 2 2 n 1 H n 2 n displaystyle sum k 1 n H k 2 n 1 H n 2 2n 1 H n 2n These two results are closely analogous to the corresponding integral results 0 x log y d y x log x x displaystyle int 0 x log y dy x log x x and 0 x log y 2 d y x log x 2 2 x log x 2 x displaystyle int 0 x log y 2 dy x log x 2 2x log x 2x Identities involving p Edit There are several infinite summations involving harmonic numbers and powers of p 3 better source needed n 1 H n n 2 n 1 12 p 2 displaystyle sum n 1 infty frac H n n cdot 2 n frac 1 12 pi 2 n 1 H n 2 n 1 2 11 360 p 4 displaystyle sum n 1 infty frac H n 2 n 1 2 frac 11 360 pi 4 n 1 H n 2 n 2 17 360 p 4 displaystyle sum n 1 infty frac H n 2 n 2 frac 17 360 pi 4 n 1 H n n 3 1 72 p 4 displaystyle sum n 1 infty frac H n n 3 frac 1 72 pi 4 Calculation EditAn integral representation given by Euler 4 isH n 0 1 1 x n 1 x d x displaystyle H n int 0 1 frac 1 x n 1 x dx The equality above is straightforward by the simple algebraic identity1 x n 1 x 1 x x n 1 displaystyle frac 1 x n 1 x 1 x cdots x n 1 Using the substitution x 1 u another expression for Hn isH n 0 1 1 x n 1 x d x 0 1 1 1 u n u d u 0 1 k 1 n 1 k n k u k 1 d u k 1 n 1 k n k 0 1 u k 1 d u k 1 n 1 k 1 k n k displaystyle begin aligned H n amp int 0 1 frac 1 x n 1 x dx int 0 1 frac 1 1 u n u du 6pt amp int 0 1 left sum k 1 n 1 k binom n k u k 1 right du sum k 1 n 1 k binom n k int 0 1 u k 1 du 6pt amp sum k 1 n 1 k frac 1 k binom n k end aligned Graph demonstrating a connection between harmonic numbers and the natural logarithm The harmonic number Hn can be interpreted as a Riemann sum of the integral 1 n 1 d x x ln n 1 displaystyle int 1 n 1 frac dx x ln n 1 The n th harmonic number is about as large as the natural logarithm of n The reason is that the sum is approximated by the integral 1 n 1 x d x displaystyle int 1 n frac 1 x dx whose value is ln n The values of the sequence Hn ln n decrease monotonically towards the limitlim n H n ln n g displaystyle lim n to infty left H n ln n right gamma where g 0 5772156649 is the Euler Mascheroni constant The corresponding asymptotic expansion is H n ln n g 1 2 n k 1 B 2 k 2 k n 2 k ln n g 1 2 n 1 12 n 2 1 120 n 4 displaystyle begin aligned H n amp sim ln n gamma frac 1 2n sum k 1 infty frac B 2k 2kn 2k amp ln n gamma frac 1 2n frac 1 12n 2 frac 1 120n 4 cdots end aligned where Bk are the Bernoulli numbers Generating functions EditA generating function for the harmonic numbers is n 1 z n H n ln 1 z 1 z displaystyle sum n 1 infty z n H n frac ln 1 z 1 z where ln z is the natural logarithm An exponential generating function is n 1 z n n H n e z k 1 1 k z k k e z Ein z displaystyle sum n 1 infty frac z n n H n e z sum k 1 infty frac 1 k frac z k k e z operatorname Ein z where Ein z is the entire exponential integral The exponential integral may also be expressed as Ein z E 1 z g ln z G 0 z g ln z displaystyle operatorname Ein z mathrm E 1 z gamma ln z Gamma 0 z gamma ln z where G 0 z is the incomplete gamma function Arithmetic properties EditThe harmonic numbers have several interesting arithmetic properties It is well known that H n textstyle H n is an integer if and only if n 1 textstyle n 1 a result often attributed to Taeisinger 5 Indeed using 2 adic valuation it is not difficult to prove that for n 2 textstyle n geq 2 the numerator of H n textstyle H n is an odd number while the denominator of H n textstyle H n is an even number More precisely H n 1 2 log 2 n a n b n displaystyle H n frac 1 2 lfloor log 2 n rfloor frac a n b n with some odd integers a n textstyle a n and b n textstyle b n As a consequence of Wolstenholme s theorem for any prime number p 5 displaystyle p geq 5 the numerator of H p 1 displaystyle H p 1 is divisible by p 2 textstyle p 2 Furthermore Eisenstein 6 proved that for all odd prime number p textstyle p it holdsH p 1 2 2 q p 2 mod p displaystyle H p 1 2 equiv 2q p 2 pmod p where q p 2 2 p 1 1 p textstyle q p 2 2 p 1 1 p is a Fermat quotient with the consequence that p textstyle p divides the numerator of H p 1 2 displaystyle H p 1 2 if and only if p textstyle p is a Wieferich prime In 1991 Eswarathasan and Levine 7 defined J p displaystyle J p as the set of all positive integers n displaystyle n such that the numerator of H n displaystyle H n is divisible by a prime number p displaystyle p They proved that p 1 p 2 p p 2 1 J p displaystyle p 1 p 2 p p 2 1 subseteq J p for all prime numbers p 5 displaystyle p geq 5 and they defined harmonic primes to be the primes p textstyle p such that J p displaystyle J p has exactly 3 elements Eswarathasan and Levine also conjectured that J p displaystyle J p is a finite set for all primes p displaystyle p and that there are infinitely many harmonic primes Boyd 8 verified that J p displaystyle J p is finite for all prime numbers up to p 547 displaystyle p 547 except 83 127 and 397 and he gave a heuristic suggesting that the density of the harmonic primes in the set of all primes should be 1 e displaystyle 1 e Sanna 9 showed that J p displaystyle J p has zero asymptotic density while Bing Ling Wu and Yong Gao Chen 10 proved that the number of elements of J p displaystyle J p not exceeding x displaystyle x is at most 3 x 2 3 1 25 log p displaystyle 3x frac 2 3 frac 1 25 log p for all x 1 displaystyle x geq 1 Applications EditThe harmonic numbers appear in several calculation formulas such as the digamma functionps n H n 1 g displaystyle psi n H n 1 gamma This relation is also frequently used to define the extension of the harmonic numbers to non integer n The harmonic numbers are also frequently used to define g using the limit introduced earlier g lim n H n ln n displaystyle gamma lim n rightarrow infty left H n ln n right although g lim n H n ln n 1 2 displaystyle gamma lim n to infty left H n ln left n frac 1 2 right right converges more quickly In 2002 Jeffrey Lagarias proved 11 that the Riemann hypothesis is equivalent to the statement thats n H n log H n e H n displaystyle sigma n leq H n log H n e H n is true for every integer n 1 with strict inequality if n gt 1 here s n denotes the sum of the divisors of n The eigenvalues of the nonlocal probleml f x 1 1 f x f y x y d y displaystyle lambda varphi x int 1 1 frac varphi x varphi y x y dy are given by l 2 H n displaystyle lambda 2H n where by convention H 0 0 displaystyle H 0 0 and the corresponding eigenfunctions are given by the Legendre polynomials f x P n x displaystyle varphi x P n x 12 Generalizations EditGeneralized harmonic numbers Edit The nth generalized harmonic number of order m is given byH n m k 1 n 1 k m displaystyle H n m sum k 1 n frac 1 k m In some sources this may also be denoted by H n m textstyle H n m or H m n textstyle H m n The special case m 0 gives H n 0 n displaystyle H n 0 n The special case m 1 reduces to the usual harmonic number H n 1 H n k 1 n 1 k displaystyle H n 1 H n sum k 1 n frac 1 k The limit of H n m textstyle H n m as n is finite if m gt 1 with the generalized harmonic number bounded by and converging to the Riemann zeta functionlim n H n m z m displaystyle lim n rightarrow infty H n m zeta m The smallest natural number k such that kn does not divide the denominator of generalized harmonic number H k n nor the denominator of alternating generalized harmonic number H k n is for n 1 2 77 20 94556602 42 444 20 104 42 76 20 77 110 3504 20 903 42 1107 20 104 42 77 20 2948 110 136 20 76 42 903 20 77 42 268 20 7004 110 1752 20 19203 42 77 20 104 42 76 20 370 110 1107 20 sequence A128670 in the OEIS The related sum k 1 n k m displaystyle sum k 1 n k m occurs in the study of Bernoulli numbers the harmonic numbers also appear in the study of Stirling numbers Some integrals of generalized harmonic numbers are 0 a H x 2 d x a p 2 6 H a displaystyle int 0 a H x 2 dx a frac pi 2 6 H a and 0 a H x 3 d x a A 1 2 H a 2 displaystyle int 0 a H x 3 dx aA frac 1 2 H a 2 where A is Apery s constant z 3 and k 1 n H k m n 1 H n m H n m 1 for m 0 displaystyle sum k 1 n H k m n 1 H n m H n m 1 text for m geq 0 Every generalized harmonic number of order m can be written as a function of harmonic numbers of order m 1 displaystyle m 1 usingH n m k 1 n 1 H k m 1 k k 1 H n m 1 n displaystyle H n m sum k 1 n 1 frac H k m 1 k k 1 frac H n m 1 n for example H 4 3 H 1 2 1 2 H 2 2 2 3 H 3 2 3 4 H 4 2 4 displaystyle H 4 3 frac H 1 2 1 cdot 2 frac H 2 2 2 cdot 3 frac H 3 2 3 cdot 4 frac H 4 2 4 A generating function for the generalized harmonic numbers is n 1 z n H n m Li m z 1 z displaystyle sum n 1 infty z n H n m frac operatorname Li m z 1 z where Li m z displaystyle operatorname Li m z is the polylogarithm and z lt 1 The generating function given above for m 1 is a special case of this formula A fractional argument for generalized harmonic numbers can be introduced as follows For every p q gt 0 displaystyle p q gt 0 integer and m gt 1 displaystyle m gt 1 integer or not we have from polygamma functions H q p m z m p m k 1 1 q p k m displaystyle H q p m zeta m p m sum k 1 infty frac 1 q pk m where z m displaystyle zeta m is the Riemann zeta function The relevant recurrence relation is H a m H a 1 m 1 a m displaystyle H a m H a 1 m frac 1 a m Some special values are H 1 4 2 16 8 G 5 6 p 2 displaystyle H frac 1 4 2 16 8G tfrac 5 6 pi 2 where G is Catalan s constant H 1 2 2 4 p 2 3 displaystyle H frac 1 2 2 4 tfrac pi 2 3 H 3 4 2 8 G 16 9 5 6 p 2 displaystyle H frac 3 4 2 8G tfrac 16 9 tfrac 5 6 pi 2 H 1 4 3 64 27 z 3 p 3 displaystyle H frac 1 4 3 64 27 zeta 3 pi 3 H 1 2 3 8 6 z 3 displaystyle H frac 1 2 3 8 6 zeta 3 H 3 4 3 4 3 3 27 z 3 p 3 displaystyle H frac 3 4 3 tfrac 4 3 3 27 zeta 3 pi 3 In the special case that p 1 displaystyle p 1 we getH n m z m 1 z m n 1 displaystyle H n m zeta m 1 zeta m n 1 where z m n displaystyle zeta m n is the Hurwitz zeta function This relationship is used to calculate harmonic numbers numerically Multiplication formulas Edit The multiplication theorem applies to harmonic numbers Using polygamma functions we obtainH 2 x 1 2 H x H x 1 2 ln 2 displaystyle H 2x frac 1 2 left H x H x frac 1 2 right ln 2 H 3 x 1 3 H x H x 1 3 H x 2 3 ln 3 displaystyle H 3x frac 1 3 left H x H x frac 1 3 H x frac 2 3 right ln 3 or more generally H n x 1 n H x H x 1 n H x 2 n H x n 1 n ln n displaystyle H nx frac 1 n left H x H x frac 1 n H x frac 2 n cdots H x frac n 1 n right ln n For generalized harmonic numbers we haveH 2 x 2 1 2 z 2 1 2 H x 2 H x 1 2 2 displaystyle H 2x 2 frac 1 2 left zeta 2 frac 1 2 left H x 2 H x frac 1 2 2 right right H 3 x 2 1 9 6 z 2 H x 2 H x 1 3 2 H x 2 3 2 displaystyle H 3x 2 frac 1 9 left 6 zeta 2 H x 2 H x frac 1 3 2 H x frac 2 3 2 right where z n displaystyle zeta n is the Riemann zeta function Hyperharmonic numbers Edit The next generalization was discussed by J H Conway and R K Guy in their 1995 book The Book of Numbers 1 258 LetH n 0 1 n displaystyle H n 0 frac 1 n Then the nth hyperharmonic number of order r r gt 0 is defined recursively as H n r k 1 n H k r 1 displaystyle H n r sum k 1 n H k r 1 In particular H n 1 displaystyle H n 1 is the ordinary harmonic number H n displaystyle H n Harmonic numbers for real and complex values EditThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed May 2019 Learn how and when to remove this template message The formulae given above H x 0 1 1 t x 1 t d t k 1 x k 1 k k displaystyle H x int 0 1 frac 1 t x 1 t dt sum k 1 infty x choose k frac 1 k k are an integral and a series representation for a function that interpolates the harmonic numbers and via analytic continuation extends the definition to the complex plane other than the negative integers x The interpolating function is in fact closely related to the digamma function H x ps x 1 g displaystyle H x psi x 1 gamma where ps x is the digamma function and g is the Euler Mascheroni constant The integration process may be repeated to obtain H x 2 k 1 1 k k x k H k displaystyle H x 2 sum k 1 infty frac 1 k k x choose k H k The Taylor series for the harmonic numbers isH x k 2 1 k z k x k 1 for x lt 1 displaystyle H x sum k 2 infty 1 k zeta k x k 1 quad text for x lt 1 which comes from the Taylor series for the digamma function z displaystyle zeta is the Riemann zeta function Approximation using the Taylor series expansion Edit The harmonic number can be approximated using the first few terms of the Taylor series expansion 13 H n g ln n 1 2 n O 1 n 2 g ln n 1 2 n displaystyle H n gamma ln n frac 1 2n O left frac 1 n 2 right simeq gamma ln n frac 1 2n where g 0 57721 displaystyle gamma 0 57721 is the Euler Mascheroni constant Alternative asymptotic formulation Edit When seeking to approximate Hx for a complex number x it is effective to first compute Hm for some large integer m Use that as an approximation for the value of Hm x Then use the recursion relation Hn Hn 1 1 n backwards m times to unwind it to an approximation for Hx Furthermore this approximation is exact in the limit as m goes to infinity Specifically for a fixed integer n it is the case thatlim m H m n H m 0 displaystyle lim m rightarrow infty left H m n H m right 0 If n is not an integer then it is not possible to say whether this equation is true because we have not yet in this section defined harmonic numbers for non integers However we do get a unique extension of the harmonic numbers to the non integers by insisting that this equation continue to hold when the arbitrary integer n is replaced by an arbitrary complex number x lim m H m x H m 0 displaystyle lim m rightarrow infty left H m x H m right 0 Swapping the order of the two sides of this equation and then subtracting them from Hx gives H x lim m H m H m x H x lim m k 1 m 1 k k 1 m 1 x k lim m k 1 m 1 k 1 x k x k 1 1 k x k displaystyle begin aligned H x amp lim m rightarrow infty left H m H m x H x right 6pt amp lim m rightarrow infty left left sum k 1 m frac 1 k right left sum k 1 m frac 1 x k right right 6pt amp lim m rightarrow infty sum k 1 m left frac 1 k frac 1 x k right x sum k 1 infty frac 1 k x k end aligned This infinite series converges for all complex numbers x except the negative integers which fail because trying to use the recursion relation Hn Hn 1 1 n backwards through the value n 0 involves a division by zero By this construction the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies 1 H0 0 2 Hx Hx 1 1 x for all complex numbers x except the non positive integers and 3 limm Hm x Hm 0 for all complex values x Note that this last formula can be used to show that 0 1 H x d x g displaystyle int 0 1 H x dx gamma where g is the Euler Mascheroni constant or more generally for every n we have 0 n H x d x n g ln n displaystyle int 0 n H x dx n gamma ln n Special values for fractional arguments Edit There are the following special analytic values for fractional arguments between 0 and 1 given by the integralH a 0 1 1 x a 1 x d x displaystyle H alpha int 0 1 frac 1 x alpha 1 x dx More values may be generated from the recurrence relationH a H a 1 1 a displaystyle H alpha H alpha 1 frac 1 alpha or from the reflection relation H 1 a H a p cot p a 1 a 1 1 a displaystyle H 1 alpha H alpha pi cot pi alpha frac 1 alpha frac 1 1 alpha For example H 1 2 2 2 ln 2 displaystyle H frac 1 2 2 2 ln 2 H 1 3 3 p 2 3 3 2 ln 3 displaystyle H frac 1 3 3 tfrac pi 2 sqrt 3 tfrac 3 2 ln 3 H 2 3 3 2 1 ln 3 3 p 6 displaystyle H frac 2 3 tfrac 3 2 1 ln 3 sqrt 3 tfrac pi 6 H 1 4 4 p 2 3 ln 2 displaystyle H frac 1 4 4 tfrac pi 2 3 ln 2 H 3 4 4 3 3 ln 2 p 2 displaystyle H frac 3 4 tfrac 4 3 3 ln 2 tfrac pi 2 H 1 6 6 p 2 3 2 ln 2 3 2 ln 3 displaystyle H frac 1 6 6 tfrac pi 2 sqrt 3 2 ln 2 tfrac 3 2 ln 3 H 1 8 8 p 2 4 ln 2 1 2 p ln 2 2 ln 2 2 displaystyle H frac 1 8 8 tfrac pi 2 4 ln 2 tfrac 1 sqrt 2 left pi ln left 2 sqrt 2 right ln left 2 sqrt 2 right right H 1 12 12 3 ln 2 ln 3 2 p 1 3 2 2 3 ln 2 3 displaystyle H frac 1 12 12 3 left ln 2 tfrac ln 3 2 right pi left 1 tfrac sqrt 3 2 right 2 sqrt 3 ln left sqrt 2 sqrt 3 right For positive integers p and q with p lt q we have H p q q p 2 k 1 q 1 2 cos 2 p p k q ln sin p k q p 2 cot p p q ln 2 q displaystyle H frac p q frac q p 2 sum k 1 lfloor frac q 1 2 rfloor cos left frac 2 pi pk q right ln left sin left frac pi k q right right frac pi 2 cot left frac pi p q right ln left 2q right Relation to the Riemann zeta function Edit Some derivatives of fractional harmonic numbers are given byd n H x d x n 1 n 1 n z n 1 H x n 1 d n H x 2 d x n 1 n 1 n 1 z n 2 H x n 2 d n H x 3 d x n 1 n 1 1 2 n 2 z n 3 H x n 3 displaystyle begin aligned frac d n H x dx n amp 1 n 1 n left zeta n 1 H x n 1 right 6pt frac d n H x 2 dx n amp 1 n 1 n 1 left zeta n 2 H x n 2 right 6pt frac d n H x 3 dx n amp 1 n 1 frac 1 2 n 2 left zeta n 3 H x n 3 right end aligned And using Maclaurin series we have for x lt 1 thatH x n 1 1 n 1 x n z n 1 H x 2 n 1 1 n 1 n 1 x n z n 2 H x 3 1 2 n 1 1 n 1 n 1 n 2 x n z n 3 displaystyle begin aligned H x amp sum n 1 infty 1 n 1 x n zeta n 1 5pt H x 2 amp sum n 1 infty 1 n 1 n 1 x n zeta n 2 5pt H x 3 amp frac 1 2 sum n 1 infty 1 n 1 n 1 n 2 x n zeta n 3 end aligned For fractional arguments between 0 and 1 and for a gt 1 H 1 a 1 a z 2 1 a z 3 1 a 2 z 4 1 a 3 z 5 H 1 a 2 1 a 2 z 3 3 a z 4 4 a 2 z 5 5 a 3 z 6 H 1 a 3 1 2 a 2 3 z 4 3 4 a z 5 4 5 a 2 z 6 5 6 a 3 z 7 displaystyle begin aligned H 1 a amp frac 1 a left zeta 2 frac 1 a zeta 3 frac 1 a 2 zeta 4 frac 1 a 3 zeta 5 cdots right 6pt H 1 a 2 amp frac 1 a left 2 zeta 3 frac 3 a zeta 4 frac 4 a 2 zeta 5 frac 5 a 3 zeta 6 cdots right 6pt H 1 a 3 amp frac 1 2a left 2 cdot 3 zeta 4 frac 3 cdot 4 a zeta 5 frac 4 cdot 5 a 2 zeta 6 frac 5 cdot 6 a 3 zeta 7 cdots right end aligned See also EditWatterson estimator Tajima s D Coupon collector s problem Jeep problem 100 prisoners problem Riemann zeta function List of sums of reciprocals False discovery rate Benjamini Yekutieli procedureNotes Edit a b John H Conway Richard K Guy 1995 The book of numbers Copernicus Graham Ronald L Knuth Donald E Patashnik Oren 1994 Concrete Mathematics Addison Wesley Sondow Jonathan and Weisstein Eric W Harmonic Number From MathWorld A Wolfram Web Resource http mathworld wolfram com HarmonicNumber html Sandifer C Edward 2007 How Euler Did It MAA Spectrum Mathematical Association of America p 206 ISBN 9780883855638 Weisstein Eric W 2003 CRC Concise Encyclopedia of Mathematics Boca Raton FL Chapman amp Hall CRC p 3115 ISBN 978 1 58488 347 0 Eisenstein Ferdinand Gotthold Max 1850 Eine neue Gattung zahlentheoretischer Funktionen welche von zwei Elementen ahhangen und durch gewisse lineare Funktional Gleichungen definirt werden Berichte Konigl Preub Akad Wiss Berlin 15 36 42 Eswarathasan Arulappah Levine Eugene 1991 p integral harmonic sums Discrete Mathematics 91 3 249 257 doi 10 1016 0012 365X 90 90234 9 Boyd David W 1994 A p adic study of the partial sums of the harmonic series Experimental Mathematics 3 4 287 302 CiteSeerX 10 1 1 56 7026 doi 10 1080 10586458 1994 10504298 Sanna Carlo 2016 On the p adic valuation of harmonic numbers PDF Journal of Number Theory 166 41 46 doi 10 1016 j jnt 2016 02 020 hdl 2318 1622121 Chen Yong Gao Wu Bing Ling 2017 On certain properties of harmonic numbers Journal of Number Theory 175 66 86 doi 10 1016 j jnt 2016 11 027 Jeffrey Lagarias 2002 An Elementary Problem Equivalent to the Riemann Hypothesis Amer Math Monthly 109 6 534 543 arXiv math NT 0008177 doi 10 2307 2695443 JSTOR 2695443 E O Tuck 1964 Some methods for flows past blunt slender bodies J Fluid Mech 18 4 619 635 Bibcode 1964JFM 18 619T doi 10 1017 S0022112064000453 S2CID 123120978 Claude Leibovici https math stackexchange com users 82404 claude leibovici Harmonic series sum approximation URL version 2018 11 11 https math stackexchange com q 2986766References EditArthur T Benjamin Gregory O Preston Jennifer J Quinn 2002 A Stirling Encounter with Harmonic Numbers PDF Mathematics Magazine 75 2 95 103 CiteSeerX 10 1 1 383 722 doi 10 2307 3219141 JSTOR 3219141 Archived from the original PDF on 2009 06 17 Retrieved 2005 08 08 Donald Knuth 1997 Section 1 2 7 Harmonic Numbers The Art of Computer Programming Vol 1 Fundamental Algorithms Third ed Addison Wesley pp 75 79 ISBN 978 0 201 89683 1 Ed Sandifer How Euler Did It Estimating the Basel problem Archived 2005 05 13 at the Wayback Machine 2003 Paule Peter Schneider Carsten 2003 Computer Proofs of a New Family of Harmonic Number Identities PDF Adv Appl Math 31 2 359 378 doi 10 1016 s0196 8858 03 00016 2 Wenchang Chu 2004 A Binomial Coefficient Identity Associated with Beukers Conjecture on Apery Numbers PDF The Electronic Journal of Combinatorics 11 N15 doi 10 37236 1856 Ayhan Dil Istvan Mezo 2008 A Symmetric Algorithm for Hyperharmonic and Fibonacci Numbers Applied Mathematics and Computation 206 2 942 951 arXiv 0803 4388 doi 10 1016 j amc 2008 10 013 S2CID 12130670 External links EditWeisstein Eric W Harmonic Number MathWorld This article incorporates material from Harmonic number on PlanetMath which is licensed under the Creative Commons Attribution Share Alike License Retrieved from https en wikipedia org w index php title Harmonic number amp oldid 1143523285, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.