fbpx
Wikipedia

Interpolation

In the mathematical field of numerical analysis, interpolation is a type of estimation, a method of constructing (finding) new data points based on the range of a discrete set of known data points.[1][2]

In engineering and science, one often has a number of data points, obtained by sampling or experimentation, which represent the values of a function for a limited number of values of the independent variable. It is often required to interpolate; that is, estimate the value of that function for an intermediate value of the independent variable.

A closely related problem is the approximation of a complicated function by a simple function. Suppose the formula for some given function is known, but too complicated to evaluate efficiently. A few data points from the original function can be interpolated to produce a simpler function which is still fairly close to the original. The resulting gain in simplicity may outweigh the loss from interpolation error and give better performance in calculation process.

An interpolation of a finite set of points on an epitrochoid. The points in red are connected by blue interpolated spline curves deduced only from the red points. The interpolated curves have polynomial formulas much simpler than that of the original epitrochoid curve.

Example edit

This table gives some values of an unknown function  .

 
Plot of the data points as given in the table
   
0 0
1 0 . 8415
2 0 . 9093
3 0 . 1411
4 −0 . 7568
5 −0 . 9589
6 −0 . 2794

Interpolation provides a means of estimating the function at intermediate points, such as  

We describe some methods of interpolation, differing in such properties as: accuracy, cost, number of data points needed, and smoothness of the resulting interpolant function.

Piecewise constant interpolation edit

 
Piecewise constant interpolation, or nearest-neighbor interpolation

The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.

Linear interpolation edit

 
Plot of the data with linear interpolation superimposed

One of the simplest methods is linear interpolation (sometimes known as lerp). Consider the above example of estimating f(2.5). Since 2.5 is midway between 2 and 3, it is reasonable to take f(2.5) midway between f(2) = 0.9093 and f(3) = 0.1411, which yields 0.5252.

Generally, linear interpolation takes two data points, say (xa,ya) and (xb,yb), and the interpolant is given by:

 
 
 

This previous equation states that the slope of the new line between   and   is the same as the slope of the line between   and  

Linear interpolation is quick and easy, but it is not very precise. Another disadvantage is that the interpolant is not differentiable at the point xk.

The following error estimate shows that linear interpolation is not very precise. Denote the function which we want to interpolate by g, and suppose that x lies between xa and xb and that g is twice continuously differentiable. Then the linear interpolation error is

 

In words, the error is proportional to the square of the distance between the data points. The error in some other methods, including polynomial interpolation and spline interpolation (described below), is proportional to higher powers of the distance between the data points. These methods also produce smoother interpolants.

Polynomial interpolation edit

 
Plot of the data with polynomial interpolation applied

Polynomial interpolation is a generalization of linear interpolation. Note that the linear interpolant is a linear function. We now replace this interpolant with a polynomial of higher degree.

Consider again the problem given above. The following sixth degree polynomial goes through all the seven points:

 

Substituting x = 2.5, we find that f(2.5) = ~0.59678.

Generally, if we have n data points, there is exactly one polynomial of degree at most n−1 going through all the data points. The interpolation error is proportional to the distance between the data points to the power n. Furthermore, the interpolant is a polynomial and thus infinitely differentiable. So, we see that polynomial interpolation overcomes most of the problems of linear interpolation.

However, polynomial interpolation also has some disadvantages. Calculating the interpolating polynomial is computationally expensive (see computational complexity) compared to linear interpolation. Furthermore, polynomial interpolation may exhibit oscillatory artifacts, especially at the end points (see Runge's phenomenon).

Polynomial interpolation can estimate local maxima and minima that are outside the range of the samples, unlike linear interpolation. For example, the interpolant above has a local maximum at x ≈ 1.566, f(x) ≈ 1.003 and a local minimum at x ≈ 4.708, f(x) ≈ −1.003. However, these maxima and minima may exceed the theoretical range of the function; for example, a function that is always positive may have an interpolant with negative values, and whose inverse therefore contains false vertical asymptotes.

More generally, the shape of the resulting curve, especially for very high or low values of the independent variable, may be contrary to commonsense; that is, to what is known about the experimental system which has generated the data points. These disadvantages can be reduced by using spline interpolation or restricting attention to Chebyshev polynomials.

Spline interpolation edit

 
Plot of the data with spline interpolation applied

Linear interpolation uses a linear function for each of intervals [xk,xk+1]. Spline interpolation uses low-degree polynomials in each of the intervals, and chooses the polynomial pieces such that they fit smoothly together. The resulting function is called a spline.

For instance, the natural cubic spline is piecewise cubic and twice continuously differentiable. Furthermore, its second derivative is zero at the end points. The natural cubic spline interpolating the points in the table above is given by

 

In this case we get f(2.5) = 0.5972.

Like polynomial interpolation, spline interpolation incurs a smaller error than linear interpolation, while the interpolant is smoother and easier to evaluate than the high-degree polynomials used in polynomial interpolation. However, the global nature of the basis functions leads to ill-conditioning. This is completely mitigated by using splines of compact support, such as are implemented in Boost.Math and discussed in Kress.[3]

Mimetic interpolation edit

Depending on the underlying discretisation of fields, different interpolants may be required. In contrast to other interpolation methods, which estimate functions on target points, mimetic interpolation evaluates the integral of fields on target lines, areas or volumes, depending on the type of field (scalar, vector, pseudo-vector or pseudo-scalar).

A key feature of mimetic interpolation is that vector calculus identities are satisfied, including Stokes' theorem and the divergence theorem. As a result, mimetic interpolation conserves line, area and volume integrals.[4] Conservation of line integrals might be desirable when interpolating the electric field, for instance, since the line integral gives the electric potential difference at the endpoints of the integration path.[5] Mimetic interpolation ensures that the error of estimating the line integral of an electric field is the same as the error obtained by interpolating the potential at the end points of the integration path, regardless of the length of the integration path.

Linear, bilinear and trilinear interpolation are also considered mimetic, even if it is the field values that are conserved (not the integral of the field). Apart from linear interpolation, area weighted interpolation can be considered one of the first mimetic interpolation methods to have been developed.[6]

Function approximation edit

Interpolation is a common way to approximate functions. Given a function   with a set of points   one can form a function   such that   for   (that is, that   interpolates   at these points). In general, an interpolant need not be a good approximation, but there are well known and often reasonable conditions where it will. For example, if   (four times continuously differentiable) then cubic spline interpolation has an error bound given by   where   and   is a constant.[7]

Via Gaussian processes edit

Gaussian process is a powerful non-linear interpolation tool. Many popular interpolation tools are actually equivalent to particular Gaussian processes. Gaussian processes can be used not only for fitting an interpolant that passes exactly through the given data points but also for regression; that is, for fitting a curve through noisy data. In the geostatistics community Gaussian process regression is also known as Kriging.

Other forms edit

Other forms of interpolation can be constructed by picking a different class of interpolants. For instance, rational interpolation is interpolation by rational functions using Padé approximant, and trigonometric interpolation is interpolation by trigonometric polynomials using Fourier series. Another possibility is to use wavelets.

The Whittaker–Shannon interpolation formula can be used if the number of data points is infinite or if the function to be interpolated has compact support.

Sometimes, we know not only the value of the function that we want to interpolate, at some points, but also its derivative. This leads to Hermite interpolation problems.

When each data point is itself a function, it can be useful to see the interpolation problem as a partial advection problem between each data point. This idea leads to the displacement interpolation problem used in transportation theory.

In higher dimensions edit

 
Comparison of some 1- and 2-dimensional interpolations.
Black and red/yellow/green/blue dots correspond to the interpolated point and neighbouring samples, respectively.
Their heights above the ground correspond to their values.

Multivariate interpolation is the interpolation of functions of more than one variable. Methods include bilinear interpolation and bicubic interpolation in two dimensions, and trilinear interpolation in three dimensions. They can be applied to gridded or scattered data. Mimetic interpolation generalizes to   dimensional spaces where  .[8][9]

In digital signal processing edit

In the domain of digital signal processing, the term interpolation refers to the process of converting a sampled digital signal (such as a sampled audio signal) to that of a higher sampling rate (Upsampling) using various digital filtering techniques (for example, convolution with a frequency-limited impulse signal). In this application there is a specific requirement that the harmonic content of the original signal be preserved without creating aliased harmonic content of the original signal above the original Nyquist limit of the signal (that is, above fs/2 of the original signal sample rate). An early and fairly elementary discussion on this subject can be found in Rabiner and Crochiere's book Multirate Digital Signal Processing.[10]

Related concepts edit

The term extrapolation is used to find data points outside the range of known data points.

In curve fitting problems, the constraint that the interpolant has to go exactly through the data points is relaxed. It is only required to approach the data points as closely as possible (within some other constraints). This requires parameterizing the potential interpolants and having some way of measuring the error. In the simplest case this leads to least squares approximation.

Approximation theory studies how to find the best approximation to a given function by another function from some predetermined class, and how good this approximation is. This clearly yields a bound on how well the interpolant can approximate the unknown function.

Generalization edit

If we consider   as a variable in a topological space, and the function   mapping to a Banach space, then the problem is treated as "interpolation of operators".[11] The classical results about interpolation of operators are the Riesz–Thorin theorem and the Marcinkiewicz theorem. There are also many other subsequent results.

See also edit

References edit

  1. ^ Sheppard, William Fleetwood (1911). "Interpolation" . In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 14 (11th ed.). Cambridge University Press. pp. 706–710.
  2. ^ Steffensen, J. F. (2006). Interpolation (Second ed.). Mineola, N.Y. ISBN 978-0-486-15483-1. OCLC 867770894.{{cite book}}: CS1 maint: location missing publisher (link)
  3. ^ Kress, Rainer (1998). Numerical Analysis. ISBN 9781461205999.
  4. ^ Pletzer, Alexander; Hayek, Wolfgang (2019-01-01). "Mimetic Interpolation of Vector Fields on Arakawa C/D Grids". Monthly Weather Review. 147 (1): 3–16. Bibcode:2019MWRv..147....3P. doi:10.1175/MWR-D-18-0146.1. ISSN 1520-0493. S2CID 125214770.
  5. ^ Stern, Ari; Tong, Yiying; Desbrun, Mathieu; Marsden, Jerrold E. (2015), Chang, Dong Eui; Holm, Darryl D.; Patrick, George; Ratiu, Tudor (eds.), "Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms", Geometry, Mechanics, and Dynamics, Fields Institute Communications, vol. 73, New York, NY: Springer New York, pp. 437–475, arXiv:0707.4470, doi:10.1007/978-1-4939-2441-7_19, ISBN 978-1-4939-2440-0, S2CID 15194760, retrieved 2022-06-15
  6. ^ Jones, Philip (1999). "First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates". Monthly Weather Review. 127 (9): 2204–2210. Bibcode:1999MWRv..127.2204J. doi:10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2. S2CID 122744293.
  7. ^ Hall, Charles A.; Meyer, Weston W. (1976). "Optimal Error Bounds for Cubic Spline Interpolation". Journal of Approximation Theory. 16 (2): 105–122. doi:10.1016/0021-9045(76)90040-X.
  8. ^ Whitney, Hassler (1957). Geometric Integration Theory. Dover Books on Mathematics. ISBN 978-0486445830.
  9. ^ Pletzer, Alexander; Fillmore, David (2015). "Conservative interpolation of edge and face data on n dimensional structured grids using differential forms". Journal of Computational Physics. 302: 21–40. Bibcode:2015JCoPh.302...21P. doi:10.1016/j.jcp.2015.08.029.
  10. ^ R.E. Crochiere and L.R. Rabiner. (1983). Multirate Digital Signal Processing. Englewood Cliffs, NJ: Prentice–Hall.
  11. ^ Colin Bennett, Robert C. Sharpley, Interpolation of Operators, Academic Press 1988

External links edit

  • Online tools for linear, quadratic, cubic spline, and polynomial interpolation with visualisation and JavaScript source code.
  • Sol Tutorials - Interpolation Tricks
  • Compactly Supported Cubic B-Spline interpolation in Boost.Math[permanent dead link]
  • Barycentric rational interpolation in Boost.Math
  • Interpolation via the Chebyshev transform in Boost.Math

interpolation, other, uses, disambiguation, confused, with, interpellation, this, article, includes, list, general, references, lacks, sufficient, corresponding, inline, citations, please, help, improve, this, article, introducing, more, precise, citations, oc. For other uses see Interpolation disambiguation Not to be confused with Interpellation This article includes a list of general references but it lacks sufficient corresponding inline citations Please help to improve this article by introducing more precise citations October 2016 Learn how and when to remove this message In the mathematical field of numerical analysis interpolation is a type of estimation a method of constructing finding new data points based on the range of a discrete set of known data points 1 2 In engineering and science one often has a number of data points obtained by sampling or experimentation which represent the values of a function for a limited number of values of the independent variable It is often required to interpolate that is estimate the value of that function for an intermediate value of the independent variable A closely related problem is the approximation of a complicated function by a simple function Suppose the formula for some given function is known but too complicated to evaluate efficiently A few data points from the original function can be interpolated to produce a simpler function which is still fairly close to the original The resulting gain in simplicity may outweigh the loss from interpolation error and give better performance in calculation process An interpolation of a finite set of points on an epitrochoid The points in red are connected by blue interpolated spline curves deduced only from the red points The interpolated curves have polynomial formulas much simpler than that of the original epitrochoid curve Contents 1 Example 1 1 Piecewise constant interpolation 1 2 Linear interpolation 1 3 Polynomial interpolation 1 4 Spline interpolation 1 5 Mimetic interpolation 2 Function approximation 3 Via Gaussian processes 4 Other forms 5 In higher dimensions 6 In digital signal processing 7 Related concepts 8 Generalization 9 See also 10 References 11 External linksExample editThis table gives some values of an unknown function f x displaystyle f x nbsp nbsp Plot of the data points as given in the table x displaystyle x nbsp f x displaystyle f x nbsp 0 0 1 0 8415 2 0 9093 3 0 1411 4 0 7568 5 0 9589 6 0 2794 Interpolation provides a means of estimating the function at intermediate points such as x 2 5 displaystyle x 2 5 nbsp We describe some methods of interpolation differing in such properties as accuracy cost number of data points needed and smoothness of the resulting interpolant function Piecewise constant interpolation edit nbsp Piecewise constant interpolation or nearest neighbor interpolation Further information Nearest neighbor interpolation The simplest interpolation method is to locate the nearest data value and assign the same value In simple problems this method is unlikely to be used as linear interpolation see below is almost as easy but in higher dimensional multivariate interpolation this could be a favourable choice for its speed and simplicity Linear interpolation edit nbsp Plot of the data with linear interpolation superimposed Main article Linear interpolation One of the simplest methods is linear interpolation sometimes known as lerp Consider the above example of estimating f 2 5 Since 2 5 is midway between 2 and 3 it is reasonable to take f 2 5 midway between f 2 0 9093 and f 3 0 1411 which yields 0 5252 Generally linear interpolation takes two data points say xa ya and xb yb and the interpolant is given by y y a y b y a x x a x b x a at the point x y displaystyle y y a left y b y a right frac x x a x b x a text at the point left x y right nbsp y y a y b y a x x a x b x a displaystyle frac y y a y b y a frac x x a x b x a nbsp y y a x x a y b y a x b x a displaystyle frac y y a x x a frac y b y a x b x a nbsp This previous equation states that the slope of the new line between x a y a displaystyle x a y a nbsp and x y displaystyle x y nbsp is the same as the slope of the line between x a y a displaystyle x a y a nbsp and x b y b displaystyle x b y b nbsp Linear interpolation is quick and easy but it is not very precise Another disadvantage is that the interpolant is not differentiable at the point xk The following error estimate shows that linear interpolation is not very precise Denote the function which we want to interpolate by g and suppose that x lies between xa and xb and that g is twice continuously differentiable Then the linear interpolation error is f x g x C x b x a 2 where C 1 8 max r x a x b g r displaystyle f x g x leq C x b x a 2 quad text where quad C frac 1 8 max r in x a x b g r nbsp In words the error is proportional to the square of the distance between the data points The error in some other methods including polynomial interpolation and spline interpolation described below is proportional to higher powers of the distance between the data points These methods also produce smoother interpolants Polynomial interpolation edit nbsp Plot of the data with polynomial interpolation applied Main article Polynomial interpolation Polynomial interpolation is a generalization of linear interpolation Note that the linear interpolant is a linear function We now replace this interpolant with a polynomial of higher degree Consider again the problem given above The following sixth degree polynomial goes through all the seven points f x 0 0001521 x 6 0 003130 x 5 0 07321 x 4 0 3577 x 3 0 2255 x 2 0 9038 x displaystyle f x 0 0001521x 6 0 003130x 5 0 07321x 4 0 3577x 3 0 2255x 2 0 9038x nbsp Substituting x 2 5 we find that f 2 5 0 59678 Generally if we have n data points there is exactly one polynomial of degree at most n 1 going through all the data points The interpolation error is proportional to the distance between the data points to the power n Furthermore the interpolant is a polynomial and thus infinitely differentiable So we see that polynomial interpolation overcomes most of the problems of linear interpolation However polynomial interpolation also has some disadvantages Calculating the interpolating polynomial is computationally expensive see computational complexity compared to linear interpolation Furthermore polynomial interpolation may exhibit oscillatory artifacts especially at the end points see Runge s phenomenon Polynomial interpolation can estimate local maxima and minima that are outside the range of the samples unlike linear interpolation For example the interpolant above has a local maximum at x 1 566 f x 1 003 and a local minimum at x 4 708 f x 1 003 However these maxima and minima may exceed the theoretical range of the function for example a function that is always positive may have an interpolant with negative values and whose inverse therefore contains false vertical asymptotes More generally the shape of the resulting curve especially for very high or low values of the independent variable may be contrary to commonsense that is to what is known about the experimental system which has generated the data points These disadvantages can be reduced by using spline interpolation or restricting attention to Chebyshev polynomials Spline interpolation edit nbsp Plot of the data with spline interpolation applied Main article Spline interpolation Linear interpolation uses a linear function for each of intervals xk xk 1 Spline interpolation uses low degree polynomials in each of the intervals and chooses the polynomial pieces such that they fit smoothly together The resulting function is called a spline For instance the natural cubic spline is piecewise cubic and twice continuously differentiable Furthermore its second derivative is zero at the end points The natural cubic spline interpolating the points in the table above is given by f x 0 1522 x 3 0 9937 x if x 0 1 0 01258 x 3 0 4189 x 2 1 4126 x 0 1396 if x 1 2 0 1403 x 3 1 3359 x 2 3 2467 x 1 3623 if x 2 3 0 1579 x 3 1 4945 x 2 3 7225 x 1 8381 if x 3 4 0 05375 x 3 0 2450 x 2 1 2756 x 4 8259 if x 4 5 0 1871 x 3 3 3673 x 2 19 3370 x 34 9282 if x 5 6 displaystyle f x begin cases 0 1522x 3 0 9937x amp text if x in 0 1 0 01258x 3 0 4189x 2 1 4126x 0 1396 amp text if x in 1 2 0 1403x 3 1 3359x 2 3 2467x 1 3623 amp text if x in 2 3 0 1579x 3 1 4945x 2 3 7225x 1 8381 amp text if x in 3 4 0 05375x 3 0 2450x 2 1 2756x 4 8259 amp text if x in 4 5 0 1871x 3 3 3673x 2 19 3370x 34 9282 amp text if x in 5 6 end cases nbsp In this case we get f 2 5 0 5972 Like polynomial interpolation spline interpolation incurs a smaller error than linear interpolation while the interpolant is smoother and easier to evaluate than the high degree polynomials used in polynomial interpolation However the global nature of the basis functions leads to ill conditioning This is completely mitigated by using splines of compact support such as are implemented in Boost Math and discussed in Kress 3 Mimetic interpolation edit Main article Mimetic interpolation Depending on the underlying discretisation of fields different interpolants may be required In contrast to other interpolation methods which estimate functions on target points mimetic interpolation evaluates the integral of fields on target lines areas or volumes depending on the type of field scalar vector pseudo vector or pseudo scalar A key feature of mimetic interpolation is that vector calculus identities are satisfied including Stokes theorem and the divergence theorem As a result mimetic interpolation conserves line area and volume integrals 4 Conservation of line integrals might be desirable when interpolating the electric field for instance since the line integral gives the electric potential difference at the endpoints of the integration path 5 Mimetic interpolation ensures that the error of estimating the line integral of an electric field is the same as the error obtained by interpolating the potential at the end points of the integration path regardless of the length of the integration path Linear bilinear and trilinear interpolation are also considered mimetic even if it is the field values that are conserved not the integral of the field Apart from linear interpolation area weighted interpolation can be considered one of the first mimetic interpolation methods to have been developed 6 Function approximation editInterpolation is a common way to approximate functions Given a function f a b R displaystyle f a b to mathbb R nbsp with a set of points x 1 x 2 x n a b displaystyle x 1 x 2 dots x n in a b nbsp one can form a function s a b R displaystyle s a b to mathbb R nbsp such that f x i s x i displaystyle f x i s x i nbsp for i 1 2 n displaystyle i 1 2 dots n nbsp that is that s displaystyle s nbsp interpolates f displaystyle f nbsp at these points In general an interpolant need not be a good approximation but there are well known and often reasonable conditions where it will For example if f C 4 a b displaystyle f in C 4 a b nbsp four times continuously differentiable then cubic spline interpolation has an error bound given by f s C f 4 h 4 displaystyle f s infty leq C f 4 infty h 4 nbsp where h max i 1 2 n 1 x i 1 x i displaystyle h max i 1 2 dots n 1 x i 1 x i nbsp and C displaystyle C nbsp is a constant 7 Via Gaussian processes editGaussian process is a powerful non linear interpolation tool Many popular interpolation tools are actually equivalent to particular Gaussian processes Gaussian processes can be used not only for fitting an interpolant that passes exactly through the given data points but also for regression that is for fitting a curve through noisy data In the geostatistics community Gaussian process regression is also known as Kriging Other forms editOther forms of interpolation can be constructed by picking a different class of interpolants For instance rational interpolation is interpolation by rational functions using Pade approximant and trigonometric interpolation is interpolation by trigonometric polynomials using Fourier series Another possibility is to use wavelets The Whittaker Shannon interpolation formula can be used if the number of data points is infinite or if the function to be interpolated has compact support Sometimes we know not only the value of the function that we want to interpolate at some points but also its derivative This leads to Hermite interpolation problems When each data point is itself a function it can be useful to see the interpolation problem as a partial advection problem between each data point This idea leads to the displacement interpolation problem used in transportation theory In higher dimensions edit nbsp Comparison of some 1 and 2 dimensional interpolations Black and red yellow green blue dots correspond to the interpolated point and neighbouring samples respectively Their heights above the ground correspond to their values Main article Multivariate interpolation Multivariate interpolation is the interpolation of functions of more than one variable Methods include bilinear interpolation and bicubic interpolation in two dimensions and trilinear interpolation in three dimensions They can be applied to gridded or scattered data Mimetic interpolation generalizes to n displaystyle n nbsp dimensional spaces where n gt 3 displaystyle n gt 3 nbsp 8 9 nbsp Nearest neighbor nbsp Bilinear nbsp BicubicIn digital signal processing editIn the domain of digital signal processing the term interpolation refers to the process of converting a sampled digital signal such as a sampled audio signal to that of a higher sampling rate Upsampling using various digital filtering techniques for example convolution with a frequency limited impulse signal In this application there is a specific requirement that the harmonic content of the original signal be preserved without creating aliased harmonic content of the original signal above the original Nyquist limit of the signal that is above fs 2 of the original signal sample rate An early and fairly elementary discussion on this subject can be found in Rabiner and Crochiere s book Multirate Digital Signal Processing 10 Related concepts editThe term extrapolation is used to find data points outside the range of known data points In curve fitting problems the constraint that the interpolant has to go exactly through the data points is relaxed It is only required to approach the data points as closely as possible within some other constraints This requires parameterizing the potential interpolants and having some way of measuring the error In the simplest case this leads to least squares approximation Approximation theory studies how to find the best approximation to a given function by another function from some predetermined class and how good this approximation is This clearly yields a bound on how well the interpolant can approximate the unknown function Generalization editIf we consider x displaystyle x nbsp as a variable in a topological space and the function f x displaystyle f x nbsp mapping to a Banach space then the problem is treated as interpolation of operators 11 The classical results about interpolation of operators are the Riesz Thorin theorem and the Marcinkiewicz theorem There are also many other subsequent results See also editBarycentric coordinates for interpolating within on a triangle or tetrahedron Brahmagupta s interpolation formula Fractal interpolation Imputation statistics Lagrange interpolation Missing data Newton Cotes formulas Radial basis function interpolation Simple rational approximationReferences edit Sheppard William Fleetwood 1911 Interpolation In Chisholm Hugh ed Encyclopaedia Britannica Vol 14 11th ed Cambridge University Press pp 706 710 Steffensen J F 2006 Interpolation Second ed Mineola N Y ISBN 978 0 486 15483 1 OCLC 867770894 a href Template Cite book html title Template Cite book cite book a CS1 maint location missing publisher link Kress Rainer 1998 Numerical Analysis ISBN 9781461205999 Pletzer Alexander Hayek Wolfgang 2019 01 01 Mimetic Interpolation of Vector Fields on Arakawa C D Grids Monthly Weather Review 147 1 3 16 Bibcode 2019MWRv 147 3P doi 10 1175 MWR D 18 0146 1 ISSN 1520 0493 S2CID 125214770 Stern Ari Tong Yiying Desbrun Mathieu Marsden Jerrold E 2015 Chang Dong Eui Holm Darryl D Patrick George Ratiu Tudor eds Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms Geometry Mechanics and Dynamics Fields Institute Communications vol 73 New York NY Springer New York pp 437 475 arXiv 0707 4470 doi 10 1007 978 1 4939 2441 7 19 ISBN 978 1 4939 2440 0 S2CID 15194760 retrieved 2022 06 15 Jones Philip 1999 First and Second Order Conservative Remapping Schemes for Grids in Spherical Coordinates Monthly Weather Review 127 9 2204 2210 Bibcode 1999MWRv 127 2204J doi 10 1175 1520 0493 1999 127 lt 2204 FASOCR gt 2 0 CO 2 S2CID 122744293 Hall Charles A Meyer Weston W 1976 Optimal Error Bounds for Cubic Spline Interpolation Journal of Approximation Theory 16 2 105 122 doi 10 1016 0021 9045 76 90040 X Whitney Hassler 1957 Geometric Integration Theory Dover Books on Mathematics ISBN 978 0486445830 Pletzer Alexander Fillmore David 2015 Conservative interpolation of edge and face data on n dimensional structured grids using differential forms Journal of Computational Physics 302 21 40 Bibcode 2015JCoPh 302 21P doi 10 1016 j jcp 2015 08 029 R E Crochiere and L R Rabiner 1983 Multirate Digital Signal Processing Englewood Cliffs NJ Prentice Hall Colin Bennett Robert C Sharpley Interpolation of Operators Academic Press 1988External links edit nbsp Wikimedia Commons has media related to Interpolation Online tools for linear quadratic cubic spline and polynomial interpolation with visualisation and JavaScript source code Sol Tutorials Interpolation Tricks Compactly Supported Cubic B Spline interpolation in Boost Math permanent dead link Barycentric rational interpolation in Boost Math Interpolation via the Chebyshev transform in Boost Math Retrieved from https en wikipedia org w index php title Interpolation amp oldid 1204053811, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.