fbpx
Wikipedia

Apennine Mountains

The Apennines[1] or Apennine Mountains (/ˈæpənn/; Greek: Ἀπέννινα ὄρη or Ἀπέννινον ὄρος;[2] Latin: Appenninus or Apenninus Mons – a singular with plural meaning;[note 1] Italian: Appennini [appenˈniːni])[3] are a mountain range consisting of parallel smaller chains extending c. 1,200 km (750 mi) along the length of peninsular Italy. In the northwest they join with the Ligurian Alps at Altare. In the southwest they end at Reggio di Calabria, the coastal city at the tip of the peninsula. Since 2000 the Environment Ministry of Italy, following the recommendations of the Apennines Park of Europe Project, has been defining the Apennines System to include the mountains of north Sicily, for a total distance of 1,500 kilometres (930 mi).[4] The system forms an arc enclosing the east side of the Ligurian and Tyrrhenian Seas.

Apennine Mountains
Highest point
PeakCorno Grande (Great Horn)
Elevation2,912 m (9,554 ft)
Coordinates42°28′9″N 13°33′57″E / 42.46917°N 13.56583°E / 42.46917; 13.56583
Dimensions
Length1,200 km (750 mi) northwest to southeast
Width250 km (160 mi) southwest to northeast
Naming
Native nameMonti Appennini (Italian)
Geography
Relief map of the Apennines
CountriesItaly and San Marino
Range coordinates43°16.9′N 12°34.9′E / 43.2817°N 12.5817°E / 43.2817; 12.5817Coordinates: 43°16.9′N 12°34.9′E / 43.2817°N 12.5817°E / 43.2817; 12.5817
Geology
Age of rockMesozoic for formation of rock,
Neogene-Quaternary for orogeny
Type of rockApennine fold and thrust belt

The Apennines conserve some intact ecosystems that have survived human intervention. In these are some of the best preserved forests and montane grasslands in Europe, now protected by national parks and, within them, a high diversity of flora and fauna. These mountains are one of the last refuges of the big European predators such as the Italian wolf and the Marsican brown bear, now extinct in the rest of Central Europe.

The mountains lend their name to the Apennine peninsula that forms the major part of Italy.[5] They are mostly verdant, although one side of the highest peak, Corno Grande, is partially covered by Calderone glacier, the only glacier in the Apennines.[6] The eastern slopes down to the Adriatic Sea are steep, while the western slopes form foothills on which most of peninsular Italy's cities are located. The mountains tend to be named from the province or provinces in which they are located; for example, the Ligurian Apennines are in Liguria.

Etymology

The etymology most frequently repeated, because of its semantic appropriateness, is that it derives from the Celtic penn, "mountain, summit":[3] A-penn-inus, which could have been assigned during the Celtic domination of north Italy in the 4th century BC or before. The name originally applied to the north Apennines. However, historical linguists have never found a derivation with which they all agree.[5] Wilhelm Deecke said: "[…] its etymology is doubtful but some derive it from the Ligurian-Celtish Pen or Ben, which means mountain peak."[7]

A large number of place names seem to reflect pen: Penarrig, Penbrynn, Pencoid, Penmon, Pentir, etc. or ben: Beanach, Benmore, Benabuird, Benan, Bencruachan, etc.[8] In one derivation Pen/Ben is cognate with Old Irish cenn "head", but an original *kwen- would be required, which is typologically not found in languages that feature labio-velars. Windisch and Brugmann reconstructed Indo-European *kwi-, deriving also the Greek Pindus Mountains from the same root, but *kwen- < *kwi- is not explained by any rule.[9] By some, English pin,[10] as well as pen and Latin pinna or penna "feather" (in the sense of the horn of the quill)[11] have been connected to the name. This view has the word originating in Latium inconsistently with the theory of the northern origin. None of these derivations are unquestionably accepted.

History

See Apennine culture.

Geography

The Apennines are divided into three sectors: northern (Appennino settentrionale), central (Appennino centrale), and southern (Appennino meridionale).[12]

A number of long hiking trails wind through the Apennines. Of note is European walking route E1 coming from northern Europe and traversing the lengths of the northern and central Apennines. The Grand Italian Trail begins in Trieste and after winding through the Alpine arc traverses the entire Apennine system, Sicily and Sardinia.

Northern Apennines

The northern Apennines consist of three subchains: the Ligurian (Appennino ligure), Tuscan-Emilian (Appennino tosco-emiliano), and Umbrian Apennines (Appennino umbro).[13]

Ligurian Apennines

 
The plaque marking the Bocchetta di Altare

The Ligurian Apennines border the Ligurian Sea in the Gulf of Genoa, from about Savona below the upper Bormida River valley to about La Spezia (La Cisa pass) below the upper Magra River valley. The range follows the Gulf of Genoa separating it from the upper Po Valley. The northwestern border follows the line of the Bormida River to Acqui Terme. There the river continues northeast to Alessandria in the Po Valley, but the mountains bend away to the southeast.

The upper Bormida can be reached by a number of roads proceeding inland at a right angle to the coast southwest of Savona, the chief one being the Autostrada Torino-Savona. They ascend to the Bocchetta di Altare, sometimes called Colle di Cadibona, 436 m (1,430 ft), the border between the Ligurian Alps along the coast to the west and the Ligurian Apennines. A bronze plaque fixed to a stone marks the top of the pass. In the vicinity are fragments of the old road and three ruins of former fortifications.

At Carcare, the main roads connect with the upper Bormida valley (Bormida di Mallare) before turning west. The Scrivia, the Trebbia and the Taro, tributaries of the Po River, drain the northeast slopes. The range contains dozens of peaks. Toward the southern end the Aveto Natural Regional Park includes Monte Penna. Nearby is the highest point of Ligurian Apennines, Monte Maggiorasca at 1,800 m (5,900 ft).[13]

The main and only feasible overland route connecting the coastal plain of Liguria to the north Italian plain runs through Bocchetta di Altare. It has always been of strategic importance. Defenders of north Italy have had to control it since ancient times, as the various fortifications placed there testify. Trenitalia, the state railway system, highly developed on the coastal plain, now traverses the mountains routinely through a number of railway tunnels, such as the one at Giovi Pass.

 
Monte Cimone (2165 m) in Emilia Romagna, is the highest mountain of the northern Apennines

The southeastern border of the Ligurian Apennines is the Fiume Magra, which projects into the Tyrrhenian Sea south of La Spezia, and the Fiume Taro, which runs in the opposite direction to join the Po. The divide between the two upper river valleys is the Cisa Pass. Under it (in two tunnels) runs the Autostrada della Cisa between Spezia and Parma.

Tuscan–Emilian Apennines

Starting at Cisa Pass, the mountain chain turns further to the southeast, to cross the peninsula along the border between the Emilia-Romagna and Tuscany regions. They are named the Tuscan–Emilian Apennines west of the Futa Pass and the Tuscan–Romagnol Apennines east of it, or just the Tuscan Apennines.[13] They extend to the upper Tiber River. The highest point is Monte Cimone at 2,165 m (7,103 ft).

A separate branch, the Apuan Alps, goes southwest, bordering the coast south of La Spezia. Whether they are to be considered part of the Apennines is a matter of opinion; certainly, they are part of the Apennine System. Topographically only the valley of the River Serchio, which running parallel to the coast turns and exits into the Tyrrhenian Sea north of Pisa, separates the Apuan Alps from the Apennines; geologically the rock is of a slightly different composition, marble. The Roman marble industry was centered at Luna, and is now active in Carrara.

As the Tuscan Apennines divide the peninsula between the Po Valley and the plains and hills of Tuscany and Lazio, transportation over them has been used to achieve political and economic unity. Historically the Romans used the Via Flaminia between Rome and Rimini. The montane distance between Florence in Tuscany and Bologna in Emilia-Romagna is shorter, but exploitation of it required the conquest of more rugged terrain, which was not feasible for the ancients. Railway lines were constructed over the mountains in the early 19th century but they were of low capacity and unimprovable.

Since 1856, a series of tunnels have been constructed to conduct "the Bologna-Florence rail line", which is neither a single line nor a single tunnel. The Porrettana Line went into service in 1864, the Direttissima in 1934 and the High Speed in 1996.[14] A few dozen tunnels support the three of them, the longest on the High-Speed Line being the Voglia Tunnel at 16.757 km (10.412 mi).[15] The longest is on the Direttissima, the Great Apennine Tunnel, which at 18.5 kilometres (11.5 miles) is the longest entirely within Italy, although the Simplon Tunnel, which connects Italy and Switzerland, is longer.[note 2] Automobile traffic is carried by the Autostrada del Sole, Route A1, which goes through numerous shorter tunnels, bypassing an old road, originally Roman, through Futa Pass. In December 2015, a new Route A1 called Variante di Valico was opened after many years of construction consisting of major tunnels (the longest being the new 8.6-kilometre (5.3-mile) 'Tunel Base') and new overpasses, shortening the traveling time between Florence and Bologna by road. The Foreste Casentinesi, Monte Falterona, Campigna National Park is in the southern part of the Tuscan–Romagnol Apennines. The southern limit of the Tuscan–Romagnol Apennines is the Bocca Serriola Pass in northern Umbria, which links Fano and Città di Castello.

 
Source of the Tiber, marked by a column with an eagle and wolves, part of the Apennine fauna and symbols of Rome

The Tiber River at Rome flows from Monte Fumaiolo in the Tuscan-Romagnol Apennine from northeast to southwest, projecting into the Tyrrhenian Sea at right angles to the shore. The upper Tiber, however, flows from northwest to southeast, gradually turning through one right angle clockwise. The northern Tiber valley is deep and separates the Apennines on the left bank from a lesser range, the Tuscan Anti-Apennines (Sub-Apennines) on its right.

Central Apennines

The Apennine System forms an irregular arc with centers of curvature located in the Tyrrhenian Sea. The northern and southern segments comprise parallel chains that can be viewed as single overall mountain ridges, such as the Ligurian Mountains. The center, being thicker and more complex, is geologically divided into an inner and an outer arc with regard to the centers of curvature. The geologic definition, however, is not the same as the geographic.

Based on rock type and orogenic incidents, the northern segment of the arc is divided into the Outer Northern Apennines (ONA) and the Inner Northern Apennines (INA).[16] The Central Apennines are divided into the Umbrian–Marchean (Appennino umbro-marchigiano) or Roman Apennines in the north and the Abruzzi Apennines (Appennino abruzzese) in the south. It extends from Bocca Serriola pass in the north to Forlì pass in the south.[13]

Umbria-Marche Apennines

The west border of the Umbria-Marche Apennines (or Appennino umbro-marchigiano)) runs through Cagli. They extend south to the Tronto River, the south border of the ONA. The highest peak, Monte Vettore, at 2,478 m (8,130 ft), is part of the Monti Sibillini, incorporated into Parco Nazionale dei Monti Sibillini. Further north is the parco naturale regionale della Gola della Rossa e di Frasassi [it], in which are the Gola della Rossa ("Red Gorge") and Frasassi Caves. Still further north is Parco Sasso Simone e Simoncello.[17] The Italian Park Service calls it the "green heart" of Italy. The region is heavily forested, such as the Riserva Naturale Statale Gola del Furlo, where Furlo Pass on the Via Flaminia is located. Both the Etruscans and the Romans constructed tunnels here.

Abruzzi Apennines

The Abruzzi Apennines, located in Abruzzo, Molise and southeastern Lazio, contain the highest peaks and most rugged terrain of the Apennines. They are known in history as the territory of the Italic peoples first defeated by the city of Rome. Coincidentally they exist in three parallel folds or chains surviving from the orogeny.[13] These extend in a northwest-southeast direction from the River Tronto to the River Sangro, which drain into the Adriatic. The coastal hills of the east extend between San Benedetto del Tronto in the north and Torino di Sangro in the south.

The eastern chain consists mainly of the southern part of the Monti Sibillini, the Monti della Laga, the Gran Sasso d'Italia Massif and the Majella Massif. Among them are two national parks: Gran Sasso e Monti della Laga National Park and Majella National Park; and the Regional Park of the Monti Simbruini. Gran Sasso contains Corno Grande, the highest peak of the Apennines (2912 m).

 
Majella massif

Other features between the western and central ranges are the plain of Rieti, the valley of the Salto, and the Lago Fucino; while between the central and eastern ranges are the valleys of Aquila and Sulmona. The chief rivers on the west are the Nera, with its tributaries the Velino and Salto, and the Aniene, both of which fall into the Tiber. On the east there is at first a succession of small rivers which flow into the Adriatic, from which the highest points of the chain are some 20 km distant, such as the Tronto, Tordino, Vomano and others. The Pescara, which receives the Aterno from the north-west and the Gizio from the south-east, is more important; and so is the Sangro.

The central Apennines are crossed by the railway from Rome to Pescara via Avezzano and Sulmona: the railway from Orte to Terni (and thence to Foligno) follows the Nera valley; while from Terni a line ascends to the plain of Rieti, and thence crosses the central chain to Aquila, whence it follows the valley of the Aterno to Sulmona. In ancient times the Via Salaria, Via Caecilia and Via Tiburtina all ran from Rome to the Adriatic coast. The volcanic mountains of the province of Rome are separated from the Apennines by the Tiber valley, and the Monti Lepini, part of the Volscian chain, by the valleys of the Sacco and Liri.

Southern Apennines

The southern Apennines can be divided into four major regions: (1) Samnite Apennines, (2) Campanian Apennines, (3) Lucan Apennines and (4) Calabrian Apennines (including the Sicilian Apennines). They extend from Forlì pass towards south.

Samnite and Campanian Apennines

 
The Monti Picentini, in the Campanian Apennines.

In the southern Apennines, to the south of the Sangro valley, the three parallel chains are broken up into smaller groups; among them may be named the Matese, the highest point of which is the Monte Miletto 2,050 metres (6,725 ft). The chief rivers on the south-west are the Liri or Garigliano with its tributary the Sacco, the Volturno, Sebeto, Sarno, on the north the Trigno, Biferno and Fortore.[18]

Daunian mountains, in Apulia, are connected with the Apennine range, and so are Cilento hills on the west. On the converse the promontory of Mount Gargano, on the east, is completely isolated, and so are the Campanian volcanic arc near Naples. The district is traversed from north-west to south-east by the railway from Sulmona to Benevento and on to Avellino, and from south-west to northeast by the railways from Caianello via Isernia to Campobasso and Termoli, from Caserta to Benevento and Foggia, and from Nocera Inferiore and Avellino to Rocchetta Sant'Antonio, the junction for Foggia, Spinazzola (for Barletta, Bari, and Taranto) and Potenza. Roman roads followed the same lines as the railways: the Via Appia ran from Capua to Benevento, whence the older road went to Venosa and Taranto and so to Brindisi, while the Via Traiana ran nearly to Troia (near Foggia) and thence to Bari.[18]

Lucan Apennines

The valley of the Ofanto, which runs into the Adriatic close to Barletta, marks the northern termination of the first range of the Lucanian Apennines (now Basilicata), which runs from east to west, while south of the valleys of the Sele (on the west) and Basento (on the east)—which form the line followed by the railway from Battipaglia via Potenza to Metaponto—the second range begins to run due north and south as far as the plain of Sibari. The highest point is the Monte Pollino 2,233 metres (7,325 ft). The chief rivers are the Sele—joined by the Negro and Calore—on the west, and the Bradano, Basento, Agri, Sinni on the east, which flow into the gulf of Taranto; to the south of the last-named river there are only unimportant streams flowing into the sea east and west, inasmuch as here the width of the peninsula diminishes to some 64 kilometres (40 mi).[18]

Calabrian and Sicilian Apennines

 
The Pizzo Carbonara, 6,493 feet (1,979 m), is the highest peak of the Sicilian Appenino siculo, which forms part of the Calabrian southern Apennines.

The railway running south from Sicignano to Lagonegro, ascending the valley of the Negro, is planned to extend to Cosenza, along the line followed by the ancient Via Popilia, which beyond Cosenza reached the west coast at Terina and thence followed it to Reggio. The Via Herculia, a branch of the Via Traiana, ran from Aequum Tuticum to the ancient Nerulum. At the narrowest point the plain of Sibari, through which the rivers Coscile and Crati flow to the sea, occurs on the east coast, extending halfway across the peninsula. Here the limestone Apennines proper cease and the granite mountains of Calabria begin.[18]

The first group extends as far as the isthmus formed by the gulfs of South Eufemia and Squillace; it is known as the Sila, and the highest point reached is 1,930 metres (6,330 ft) (the Botte Donato). The forests which covered it in ancient times supplied the Greeks and Sicilians with timber for shipbuilding. The railway from South Eufemia to Catanzaro and Catanzaro Marina crosses the isthmus, and an ancient road may have run from Squillace to Monteleone. The second group extends to the south end of the Italian Peninsula, culminating in the Aspromonte (1,960 metres (6,420 ft)) to the east of Reggio di Calabria. In both groups the rivers are quite unimportant.[18] Finally, the Calabrian southern Apennine Mountains extend along the northern coast of Sicily (the Sicilian Apennines, Italian Appennino siculo)—Pizzo Carbonara (6,493 feet (1,979 m)) being the highest peak.

Ecology

Vegetative zones

Ecoregions

The number of vascular plant species in the Apennines has been estimated at 5,599. Of these, 728 (23.6%) are in the treeline ecotone. Hemicryptophytes predominate in the entire Apennine chain.[19]

Alpine zone

The tree line ecotone is mainly grasslands of the Montane grasslands and shrublands biome; with Temperate broadleaf and mixed forests, and Mediterranean forests, woodlands, and scrub below it. The tree line in the Apennines can be found in the range 1,600 m (5,200 ft) to 2,000 m (6,600 ft).[20] About 5% of the map area covered by the Apennines is at or above the tree line—or in the treeline ecotone. The snow line is at about 3,200 m (10,500 ft), leaving the Apennines below it, except for the one remaining glacier. Snow may fall from October to May. Rainfall increases with latitude.[6] The range's climates, depending on elevation and latitude, are the Oceanic climate and Mediterranean climate.

Geology

 
The Pietra di Bismantova, Emilian Apennines, Emilia-Romagna
 
A pillow lava from an ophiolite sequence, Northern Apennines

The Apennines were created in the Apennine orogeny beginning in the early Neogene (about 20 mya, the middle Miocene) and continuing today.[21] Geographically they are partially (or appear to be) continuous with the Alpine system. Prior to the explosion of data on the topic from about the year 2000, many authors took the approach that the Apennines had the same origin as the Alps. Even today, some authors use the term Alpine-Apennine system. They are not, however, the same system and did not have the same origin. The Alps were millions of years old before the Apennines rose from the sea.

Both the Alps and the Apennines contain primarily sedimentary rock resulting from sedimentation of the ancient Tethys Sea in the Mesozoic.[citation needed] The northward movement of the African Plate and its collision with the European Plate then caused the Alpine Orogeny, beginning in the late Mesozoic. The band of mountains created extends from Spain to Turkey in a roughly east–west direction and includes the Alps. The Apennines are much younger, extend from northwest to southeast, and are not a displacement of the Alpine chain.

The key evidence of the difference is the geologic behavior of the Po Valley in northern Italy. Compressional forces have been acting from north to south in the Alps and from south to north in the Apennines, but instead of being squeezed into mountains the valley has been subsiding at 1 to 4 mm (0.16 in) per year since about 25 mya, before the Apennines existed.[22] It is now known to be not an erosional feature but is a filled portion of the Adriatic Trench, called the Adriatic foredeep after its function as a subduction zone was discovered. The Alps and the Apennines were always separated by this trench and were never part of the same system.[citation needed]

Apennine orogeny

The Apennine orogeny is a type of mountain-building in which two simpler types are combined in an apparently paradoxical configuration. Sometimes this is referred to as "syn-orogenic extension", but the term implies that the two processes occur simultaneously during time. Some scientists imagine that this is relatively rare but not unique in mountain building, whereas others imagine that this is fairly common in all mountain belts.

The RETREAT Project[note 3] have this specific feature as one of their focus points[23] In essence the east side of Italy features a fold and thrust belt raised by compressional forces acting under the Adriatic Sea. This side has been called the "Apennine-Adriatic Compressional Zone" or the "Apennines Convergence Zone." On the west side of Italy fault-block mountains prevail, created by a spreading or extension of the crust under the Tyrrhenian Sea. This side is called the "Tyrrhenian Extensional Zone." The mountains of Italy are of paradoxical provenience, having to derive from both compression and extension:

"The paradox of how contraction and extension can occur simultaneously in convergent mountain belts remains a fundamental and largely unresolved problem in continental dynamics."

Both the folded and the fault-block systems include parallel mountain chains. In the folded system anticlines erode into the highest and longest massifs of the Apennines.

According to the older theories (originating from the 1930s to 1970s) of Dutch geologists, including Van Bemmelen, compression and extension can and should occur simultaneously at different depths in a mountain belt. In these theories, these different levels are called Stockwerke. More recent work in geotectonics and geodynamics of the same school of geoscientists (Utrecht and Amsterdam University) by Vlaar, Wortel, and Cloetingh, and their disciples, extended these concepts even further into a temporal realm. They demonstrated that internal and external forces acting upon the mountain belt (e.g., slab pull and intra-plate stress field modulations due to large scale reorganisations of the tectonic plates) result in both longer episodes and shorter phases of general extension and compression acting both upon and inside mountain belts and tectonic arches (See e.g. for extensive reviews, bibliography and discussions on the literature: Van Dijk (1992),[24] Van Dijk and Okkes (1991),[25] Van Dijk & Scheepers (1995),[26] and Van Dijk et al. (2000a)[27]).

Compressional zone

The gradual subsidence of the Po Valley (including that of Venice) and the folding of the mountains of eastern Italy have been investigated using seismic wave analysis of the "Apennine Subduction System."[23] Along the Adriatic side of Italy the floor of the Adriatic Sea, referred to as the "Adriatic lithosphere" or the "Adriatic plate," terms whose precise meaning is the subject of ongoing research, is dipping under the slab on which the Apennines have been folded by compressional forces.

Subduction occurs along a fault, along which a hanging wall, or overriding slab is thrust over an overridden slab, also called the subducting slab. The fault that acts as the subduction interface is at the bottom of the Apennine wedge, characterized by a deep groove in the surface, typically filled with sediment, as sedimentation here occurs at a much faster rate than subduction.[citation needed] In north Italy the dip of this interface is 30° to 40° at a depth of 80–90 km.[28]

The strike of the Apennine subduction zone forms a long, irregular arc with centers of curvature in the Tyrrhenian Sea following the hanging wall over which the mountains have been raised; i.e., the eastern wall of the mountains. It runs from near the base of the Ligurian Apennines in the Po Valley along the margin of the mountains to the Adriatic, along the coastal deeps of the Adriatic shore, strikes inland at Monte Gargano cutting off Apulia, out to sea again through the Gulf of Taranto, widely around the rest of Italy and Sicily and across inland north Africa.[28] The upper mantle above 250 km (160 mi) deep is broken into the "Northern Apennines Arc" and the "Calabrian Arc", with compressional forces acting in different directions radially toward the arcs' centers of curvature. The overall plate tectonics of these events has been modeled in different ways but decisive data is still missing. The tectonics, however, are not the same as those which created the Alps.[citation needed]

Extensional zone

The west side of Italy is given to a fault-block system, where the crust – extended by the lengthening mantle below – thinned, broke along roughly parallel fault lines, and the blocks alternatively sank into grabens or were raised by isostasy into horsts. This system prevails from Corsica eastward to the valley of the Tiber River, the last rift valley in that direction. It runs approximately across the direction of extension. In the fault-block system, the ridges are lower and are more steep-sided, since the walls are formed by faults. Geographically they are not considered part of the Apennines proper but are termed Sub-Apennines (Subappennini) or Anti-Apennines (Antiappennini) or Pre-Apennines (Preappennini). These mountains are found mainly in Tuscany, Lazio and Campania.

Stability of terrain

The terrain of the Apennines (as well as that of the Alps) is to a large degree unstable due to various types of landslides, including falls and slides of rocks and debris, flows of earth and mud, and sink holes. The Institute for Environmental Protection and Research (Istituto Superiore per la Protezione e la Ricerca Ambientale), a government agency founded in 2008 by combining three older agencies, published in that year a special report, Landslides in Italy, summarizing the results of the IFFI Project (Il Progetto IFFI), the Italian Landslide Inventory (Inventario dei Fenomeni Franosi in Italia), an extensive survey of historical landslides in Italy undertaken by the government starting in 1997. On December 31, 2007, it had studied and mapped 482,272 landslides over 20,500 km2 (7,900 sq mi). Its major statistics are the Landslide Index (LI here), the ratio of the landslide area to the total area of a region, the Landslide Index in Mountainous-Hilly Areas (here LIMH) and the Density of Landslides, which is the number per 100 km2 (39 sq mi).

Italy as a whole has a LI of 6.8, a LIMH of 9.1 and a density of 160. Lombardia (LI of 13.9), Emilia-Romagna (11.4), Marches (19.4), Molise (14.0), Valle d'Aosta (16.0) and Piemonte (9.1) are significantly higher.[29] The most unstable terrain in the Apennines when the landslide sites are plotted on the map are in order from most unstable the eastern flanks of the Tuscan-Emilian Apennines, the Central Apennines and the eastern flank of the southern Apennines. Instability there is comparable to the Alps bordering the Po Valley. The most stable terrain is on the western side: Liguria, Tuscany, Umbria and Lazio. The Apennines are slumping away to the northeast into the Po Valley and the Adriatic foredeep; that is, the zone where the Adriatic floor is being subducted under Italy. Slides with large translational or rotational surface movements are most common; e.g., a whole slope slumps into its valley, placing the population there at risk.

Glacial ice

Glaciers no longer exist in the Apennines outside the Gran Sasso d'Italia massif. However, post-Pliocene moraines have been observed in Basilicata.

Major peaks

The Apennines include about 21 peaks over 1,900 m (6,200 ft), the approximate tree line (counting only the top peak in each massif). Most of these peaks are located in the Central Apennines.[20]

 
Serra Dolcedorme, the highest summit in Southern Apennine
Name Height
Corno Grande
(Gran Sasso massif)
2,912 m (9,554 ft)
Monte Amaro
(Majella massif)
2,793 m (9,163 ft)
Monte Velino 2,486 m (8,156 ft)
Monte Vettore 2,476 m (8,123 ft)
Pizzo di Sevo 2,419 m (7,936 ft)
Serra Dolcedorme
(Pollino massif)
2,267 m (7,438 ft)
Monte Meta 2,241 m (7,352 ft)
Monte Terminillo 2,217 m (7,274 ft)
Monte Sibilla 2,173 m (7,129 ft)
Monte Cimone 2,165 m (7,103 ft)
Monte Viglio 2,156 m (7,073 ft)
Monte Cusna 2,121 m (6,959 ft)
Montagne del Morrone 2,061 m (6,762 ft)
Monte Prado 2,053 m (6,736 ft)
Monte Miletto
(Matese massif)
2,050 m (6,730 ft)
Alpe di Succiso 2,017 m (6,617 ft)
Monte Cotento
(Simbruini range)
2,015 m (6,611 ft)
Monte Sirino 2,005 m (6,578 ft)
Montalto
(Aspromonte massif)
1,955 m (6,414 ft)
Monte Pisanino 1,946 m (6,385 ft)
Monte Botte Donato
(Sila plateau)
1,928 m (6,325 ft)
Corno alle Scale 1,915 m (6,283 ft)
Monte Alto 1,904 m (6,247 ft)
Monte Cervati 1,898 m (6,227 ft)
La Nuda 1,894 m (6,214 ft)
Monte Maggio 1,853 m (6,079 ft)
Monte Maggiorasca 1,799 m (5,902 ft)
Monte Giovarello 1,760 m (5,770 ft)
Monte Catria 1,701 m (5,581 ft)
Monte Gottero 1,640 m (5,380 ft)
Monte Pennino 1,560 m (5,120 ft)
Monte Nerone 1,525 m (5,003 ft)
Monte San Vicino 1,480 m (4,856 ft)
Monte Fumaiolo 1,407 m (4,616 ft)

See also

Notes

  1. ^ Apenninus (Greek Ἀπέννινος or Ἀπέννινα) has the form of an adjective, which would be segmented Apenn-inus, often used with nouns such as mons ("mountain") or Greek ὄρος (óros), but Apenninus is just as often used alone as a noun. The ancient Greeks and Romans typically but not always used "mountain" in the singular to mean one or a range; thus, "the Apennine mountain" refers to the entire chain and is translated "the Apennine mountains". The ending can vary also by gender depending on the noun modified. The Italian singular refers to one of the constituent chains rather than to a single mountain, and the Italian plural refers to multiple chains rather than to multiple mountains.
  2. ^ Claims of being the longest or second-longest in the world have been soon outdated. See List of longest tunnels.
  3. ^ The Retreating-trench, extension and accretion (RETREAT) Project is a study conducted by a consortium of scientific organizations in different countries including in the US the National Science Foundation.

References

  1. ^ Entry Apennines, in Merriam-Webster Dictionary, on-line on www.merriam-webster.com.
  2. ^ Strabo, Geography, book 5.
  3. ^ a b Lewis, Charlton T.; Short, Charles (1879). "Apenninus". A Latin Dictionary. Oxford; Medford: Clarendon Press; Perseus Digital Library.
  4. ^ Gambino, Roberto; Romano, Bernardino (2000–2001). Territorial strategies and environmental continuity in mountain systems: The case of the Apennines (Italy) (PDF). World Commission on Protected Areas.
  5. ^ a b Lake 1911, p. 161.
  6. ^ a b Pedrotti & Gafta 2003, p. 75
  7. ^ Deecke 1904, p. 23
  8. ^ Blackie & Blackie 1887, pp. 21, 154
  9. ^ "ceann". MacBain's Dictionary.
  10. ^ "pin". Webster's Third New International Dictionary.
  11. ^ "*pet-". The American Heritage Dictionary of the English Language, Indo-European Roots.
  12. ^ Martini & Vai 2001, p. 3.
  13. ^ a b c d e Merriam-Webster 2001, p. 59.
  14. ^ Lunardi 2008, pp. 413–414.
  15. ^ Lunardi 2008, pp. 425–437.
  16. ^ Barchi et al. 2001, p. 216.
  17. ^ "Parks, Reserves and other Protected Areas in the Marches". Parks.it. 1995–2010. Retrieved 15 March 2010.
  18. ^ a b c d e Lake 1911, p. 162.
  19. ^ Pedrotti & Gafta 2003, p. 79.
  20. ^ a b Pedrotti & Gafta 2003, p. 73.
  21. ^ James, Kristen (2004), Determining the source for the magmas of Monte Amiata (Central Italy) using strontium, neodymium, and lead isotopes, Carleton Geology Department: Geology Comps Papers, pp. 3–4, S2CID 43061617, During the Neogene and into the Quaternary the region around Amiata underwent a general NNE contraction .... This compression also created the Apennine orogeny of east-central Italy .... This area was brought above sea level during a doming phase during the Middle Pliocene.
  22. ^ Ollier, Cliff; Pain, Colin (2000). The origin of mountains. London: Routledge. p. 77. Apennine thrusts move in from the south, and Southern Alps thrust in from the north, but instead of collisional compression there is subsidence and horizontal sedimentation.
  23. ^ a b Margheriti 2006, p. 1120.
  24. ^ van Dijk, J.P. (1992). "Late Neogene fore-arc basin evolution in the Calabrian Arc (Central Mediterranean). Tectonic sequence stratigraphy and dynamic geohistory. With special reference to the geology of Central Calabria". Geologica Ultraiectina. 92: 288.
  25. ^ van Dijk, J.P.; Okkes, F.W.M. (1991). "Neogene tectonostratigraphy and kinematics of Calabrian Basins. implications for the geodynamics of the Central Mediterranean". Tectonophysics. 196 (1–2): 23–60. Bibcode:1991Tectp.196...23V. doi:10.1016/0040-1951(91)90288-4.
  26. ^ van Dijk, J.P.; Scheepers, P.J.J. (1995). "Neogene rotations in the Calabrian Arc. Implications for a Pliocene-Recent geodynamic scenario for the Central Mediterranean". Earth-Science Reviews. 39 (3–4): 207–246. Bibcode:1995ESRv...39..207V. doi:10.1016/0012-8252(95)00009-7. hdl:1874/19084. S2CID 128811666.
  27. ^ van Dijk, J.P.; Bello, M.; Brancaleoni, G.P.; Cantarella, G.; Costa, V.; Frixa, A.; Golfetto, F.; Merlini, S.; Riva, M.; Toricelli, S.; Toscano, C.; Zerilli, A. (2000). "A new structural model for the northern sector of the Calabrian Arc". Tectonophysics. 324 (4): 267–320. Bibcode:2000Tectp.324..267V. doi:10.1016/S0040-1951(00)00139-6. S2CID 130289171.
  28. ^ a b Margheriti 2006, p. 1124.
  29. ^ Trigila, Alessandro; Iadanza, Carla (2008). (PDF). Rome: Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA). pp. 15–16. Archived from the original (PDF) on 2011-07-17.

Bibliography

  • "Apennines". Merriam-Webster's Geographical Dictionary (3rd ed.). Merriam-Webster, Incorporated. 2001.
  • Blackie, Christina; Blackie, John Stuart (1887). Geographical etymology, a dictionary of place-names giving their derivations. London: Murray.
  • Deecke, W (1904). Italy; a popular account of the country, its people, and its institutions (including Malta and Sardinia). Translated by Nesbitt, H A. London; New York: Macmillan Co.; S. Sonnenschein & Co.
  • Lunardi, Pietro (2008). Design and construction of tunnels: analysis of controlled deformation in rocks and soils (ADECO-RS). Berlin: Springer.
  • Margheriti, Lucia; et al. (August–October 2006). (PDF). Annals of Geophysics. 49 (4/5). Archived from the original (PDF) on 2010-06-19.
  • Martini, I. Peter; Vai, Gian Battista (2001). "Geomorphologic Setting". In Martini, I. Peter; Vai, Gian Battista (eds.). Anatomy of an orogen: the Apennines and adjacent Mediterranean basins. Dordrecht [u.a.]: Kluwer Academic Publishers. pp. 1–4..
  • Barchi, Massimiliano; Landuzzi, Alberto; Minelli, Giorgio; Pialli, Giampaolo (2001). "Inner Northern Apennines". In Martini, I. Peter; Vai, Gian Battista (eds.). Anatomy of an orogen: the Apennines and adjacent Mediterranean basins. Dordrecht [u.a.]: Kluwer Academic Publishers. pp. 215–254..
  • Pedrotti, F.; Gafta, D. (2003). "The High Mountain Flora and Vegetation of the Apennines and the Italian Alps". In Nagy, László; Grabherr, G.; Körner, Ch.; Thompson, D.B.A. (eds.). Alpine biodiversity in Europe. Ecological studies, 167. Berlin, Heidelberg [u.a.]: Springer-Verlag. pp. 73–84..
Attribution
  •   This article incorporates text from a publication now in the public domainLake, Philip (1911). "Apennines". In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 2 (11th ed.). Cambridge University Press. pp. 161–163.

External links

  • "Ligurian Apennine". Summit Post. 2006. Retrieved 16 February 2010.
  • . The ECL project. Archived from the original on 17 September 2007. Retrieved 16 February 2010.
  • "Appenine [sic] deciduous montane forests". Terrestrial Ecoregions. World Wildlife Fund. Retrieved 16 February 2010.
  • Irlam, Michael J. (2009). "The Great Apennine Tunnel". Mike's Railway History. Retrieved 16 February 2010.
  • "10th Mountain Division – The Formative World War II Years". Dartmouth College Class of 1965. 2008. Retrieved 16 February 2010.

apennine, mountains, this, article, about, italian, mountain, range, other, uses, apennine, apennine, disambiguation, confused, with, pennine, alps, pennines, apennines, greek, Ἀπέννινα, ὄρη, Ἀπέννινον, ὄρος, latin, appenninus, apenninus, mons, singular, with,. This article is about the Italian mountain range For other uses of Apennine see Apennine disambiguation Not to be confused with Pennine Alps or Pennines The Apennines 1 or Apennine Mountains ˈ ae p en aɪ n Greek Ἀpennina ὄrh or Ἀpenninon ὄros 2 Latin Appenninus or Apenninus Mons a singular with plural meaning note 1 Italian Appennini appenˈniːni 3 are a mountain range consisting of parallel smaller chains extending c 1 200 km 750 mi along the length of peninsular Italy In the northwest they join with the Ligurian Alps at Altare In the southwest they end at Reggio di Calabria the coastal city at the tip of the peninsula Since 2000 the Environment Ministry of Italy following the recommendations of the Apennines Park of Europe Project has been defining the Apennines System to include the mountains of north Sicily for a total distance of 1 500 kilometres 930 mi 4 The system forms an arc enclosing the east side of the Ligurian and Tyrrhenian Seas Apennine MountainsCorno Grande in Gran Sasso e Monti della Laga National Park AbruzzoHighest pointPeakCorno Grande Great Horn Elevation2 912 m 9 554 ft Coordinates42 28 9 N 13 33 57 E 42 46917 N 13 56583 E 42 46917 13 56583DimensionsLength1 200 km 750 mi northwest to southeastWidth250 km 160 mi southwest to northeastNamingNative nameMonti Appennini Italian GeographyRelief map of the ApenninesCountriesItaly and San MarinoRange coordinates43 16 9 N 12 34 9 E 43 2817 N 12 5817 E 43 2817 12 5817 Coordinates 43 16 9 N 12 34 9 E 43 2817 N 12 5817 E 43 2817 12 5817GeologyAge of rockMesozoic for formation of rock Neogene Quaternary for orogenyType of rockApennine fold and thrust beltThe Apennines conserve some intact ecosystems that have survived human intervention In these are some of the best preserved forests and montane grasslands in Europe now protected by national parks and within them a high diversity of flora and fauna These mountains are one of the last refuges of the big European predators such as the Italian wolf and the Marsican brown bear now extinct in the rest of Central Europe The mountains lend their name to the Apennine peninsula that forms the major part of Italy 5 They are mostly verdant although one side of the highest peak Corno Grande is partially covered by Calderone glacier the only glacier in the Apennines 6 The eastern slopes down to the Adriatic Sea are steep while the western slopes form foothills on which most of peninsular Italy s cities are located The mountains tend to be named from the province or provinces in which they are located for example the Ligurian Apennines are in Liguria Contents 1 Etymology 2 History 3 Geography 3 1 Northern Apennines 3 1 1 Ligurian Apennines 3 1 2 Tuscan Emilian Apennines 3 2 Central Apennines 3 2 1 Umbria Marche Apennines 3 2 2 Abruzzi Apennines 3 3 Southern Apennines 3 3 1 Samnite and Campanian Apennines 3 3 2 Lucan Apennines 3 3 3 Calabrian and Sicilian Apennines 4 Ecology 4 1 Vegetative zones 4 1 1 Ecoregions 4 1 2 Alpine zone 5 Geology 5 1 Apennine orogeny 5 1 1 Compressional zone 5 1 2 Extensional zone 5 2 Stability of terrain 5 3 Glacial ice 6 Major peaks 7 See also 8 Notes 9 References 10 Bibliography 11 External linksEtymology EditThe etymology most frequently repeated because of its semantic appropriateness is that it derives from the Celtic penn mountain summit 3 A penn inus which could have been assigned during the Celtic domination of north Italy in the 4th century BC or before The name originally applied to the north Apennines However historical linguists have never found a derivation with which they all agree 5 Wilhelm Deecke said its etymology is doubtful but some derive it from the Ligurian Celtish Pen or Ben which means mountain peak 7 A large number of place names seem to reflect pen Penarrig Penbrynn Pencoid Penmon Pentir etc or ben Beanach Benmore Benabuird Benan Bencruachan etc 8 In one derivation Pen Ben is cognate with Old Irish cenn head but an original kwen would be required which is typologically not found in languages that feature labio velars Windisch and Brugmann reconstructed Indo European kwi deriving also the Greek Pindus Mountains from the same root but kwen lt kwi is not explained by any rule 9 By some English pin 10 as well as pen and Latin pinna or penna feather in the sense of the horn of the quill 11 have been connected to the name This view has the word originating in Latium inconsistently with the theory of the northern origin None of these derivations are unquestionably accepted History EditSee Apennine culture This section needs expansion You can help by adding to it January 2022 Geography EditThe Apennines are divided into three sectors northern Appennino settentrionale central Appennino centrale and southern Appennino meridionale 12 A number of long hiking trails wind through the Apennines Of note is European walking route E1 coming from northern Europe and traversing the lengths of the northern and central Apennines The Grand Italian Trail begins in Trieste and after winding through the Alpine arc traverses the entire Apennine system Sicily and Sardinia Northern Apennines Edit The northern Apennines consist of three subchains the Ligurian Appennino ligure Tuscan Emilian Appennino tosco emiliano and Umbrian Apennines Appennino umbro 13 Ligurian Apennines Edit The plaque marking the Bocchetta di Altare The Ligurian Apennines border the Ligurian Sea in the Gulf of Genoa from about Savona below the upper Bormida River valley to about La Spezia La Cisa pass below the upper Magra River valley The range follows the Gulf of Genoa separating it from the upper Po Valley The northwestern border follows the line of the Bormida River to Acqui Terme There the river continues northeast to Alessandria in the Po Valley but the mountains bend away to the southeast The upper Bormida can be reached by a number of roads proceeding inland at a right angle to the coast southwest of Savona the chief one being the Autostrada Torino Savona They ascend to the Bocchetta di Altare sometimes called Colle di Cadibona 436 m 1 430 ft the border between the Ligurian Alps along the coast to the west and the Ligurian Apennines A bronze plaque fixed to a stone marks the top of the pass In the vicinity are fragments of the old road and three ruins of former fortifications At Carcare the main roads connect with the upper Bormida valley Bormida di Mallare before turning west The Scrivia the Trebbia and the Taro tributaries of the Po River drain the northeast slopes The range contains dozens of peaks Toward the southern end the Aveto Natural Regional Park includes Monte Penna Nearby is the highest point of Ligurian Apennines Monte Maggiorasca at 1 800 m 5 900 ft 13 The main and only feasible overland route connecting the coastal plain of Liguria to the north Italian plain runs through Bocchetta di Altare It has always been of strategic importance Defenders of north Italy have had to control it since ancient times as the various fortifications placed there testify Trenitalia the state railway system highly developed on the coastal plain now traverses the mountains routinely through a number of railway tunnels such as the one at Giovi Pass Monte Cimone 2165 m in Emilia Romagna is the highest mountain of the northern Apennines The southeastern border of the Ligurian Apennines is the Fiume Magra which projects into the Tyrrhenian Sea south of La Spezia and the Fiume Taro which runs in the opposite direction to join the Po The divide between the two upper river valleys is the Cisa Pass Under it in two tunnels runs the Autostrada della Cisa between Spezia and Parma Tuscan Emilian Apennines Edit Starting at Cisa Pass the mountain chain turns further to the southeast to cross the peninsula along the border between the Emilia Romagna and Tuscany regions They are named the Tuscan Emilian Apennines west of the Futa Pass and the Tuscan Romagnol Apennines east of it or just the Tuscan Apennines 13 They extend to the upper Tiber River The highest point is Monte Cimone at 2 165 m 7 103 ft A separate branch the Apuan Alps goes southwest bordering the coast south of La Spezia Whether they are to be considered part of the Apennines is a matter of opinion certainly they are part of the Apennine System Topographically only the valley of the River Serchio which running parallel to the coast turns and exits into the Tyrrhenian Sea north of Pisa separates the Apuan Alps from the Apennines geologically the rock is of a slightly different composition marble The Roman marble industry was centered at Luna and is now active in Carrara As the Tuscan Apennines divide the peninsula between the Po Valley and the plains and hills of Tuscany and Lazio transportation over them has been used to achieve political and economic unity Historically the Romans used the Via Flaminia between Rome and Rimini The montane distance between Florence in Tuscany and Bologna in Emilia Romagna is shorter but exploitation of it required the conquest of more rugged terrain which was not feasible for the ancients Railway lines were constructed over the mountains in the early 19th century but they were of low capacity and unimprovable Since 1856 a series of tunnels have been constructed to conduct the Bologna Florence rail line which is neither a single line nor a single tunnel The Porrettana Line went into service in 1864 the Direttissima in 1934 and the High Speed in 1996 14 A few dozen tunnels support the three of them the longest on the High Speed Line being the Voglia Tunnel at 16 757 km 10 412 mi 15 The longest is on the Direttissima the Great Apennine Tunnel which at 18 5 kilometres 11 5 miles is the longest entirely within Italy although the Simplon Tunnel which connects Italy and Switzerland is longer note 2 Automobile traffic is carried by the Autostrada del Sole Route A1 which goes through numerous shorter tunnels bypassing an old road originally Roman through Futa Pass In December 2015 a new Route A1 called Variante di Valico was opened after many years of construction consisting of major tunnels the longest being the new 8 6 kilometre 5 3 mile Tunel Base and new overpasses shortening the traveling time between Florence and Bologna by road The Foreste Casentinesi Monte Falterona Campigna National Park is in the southern part of the Tuscan Romagnol Apennines The southern limit of the Tuscan Romagnol Apennines is the Bocca Serriola Pass in northern Umbria which links Fano and Citta di Castello Source of the Tiber marked by a column with an eagle and wolves part of the Apennine fauna and symbols of Rome The Tiber River at Rome flows from Monte Fumaiolo in the Tuscan Romagnol Apennine from northeast to southwest projecting into the Tyrrhenian Sea at right angles to the shore The upper Tiber however flows from northwest to southeast gradually turning through one right angle clockwise The northern Tiber valley is deep and separates the Apennines on the left bank from a lesser range the Tuscan Anti Apennines Sub Apennines on its right Central Apennines Edit The Apennine System forms an irregular arc with centers of curvature located in the Tyrrhenian Sea The northern and southern segments comprise parallel chains that can be viewed as single overall mountain ridges such as the Ligurian Mountains The center being thicker and more complex is geologically divided into an inner and an outer arc with regard to the centers of curvature The geologic definition however is not the same as the geographic Based on rock type and orogenic incidents the northern segment of the arc is divided into the Outer Northern Apennines ONA and the Inner Northern Apennines INA 16 The Central Apennines are divided into the Umbrian Marchean Appennino umbro marchigiano or Roman Apennines in the north and the Abruzzi Apennines Appennino abruzzese in the south It extends from Bocca Serriola pass in the north to Forli pass in the south 13 Umbria Marche Apennines Edit The west border of the Umbria Marche Apennines or Appennino umbro marchigiano runs through Cagli They extend south to the Tronto River the south border of the ONA The highest peak Monte Vettore at 2 478 m 8 130 ft is part of the Monti Sibillini incorporated into Parco Nazionale dei Monti Sibillini Further north is the parco naturale regionale della Gola della Rossa e di Frasassi it in which are the Gola della Rossa Red Gorge and Frasassi Caves Still further north is Parco Sasso Simone e Simoncello 17 The Italian Park Service calls it the green heart of Italy The region is heavily forested such as the Riserva Naturale Statale Gola del Furlo where Furlo Pass on the Via Flaminia is located Both the Etruscans and the Romans constructed tunnels here Abruzzi Apennines Edit Gran Sasso and Campo Imperatore The Abruzzi Apennines located in Abruzzo Molise and southeastern Lazio contain the highest peaks and most rugged terrain of the Apennines They are known in history as the territory of the Italic peoples first defeated by the city of Rome Coincidentally they exist in three parallel folds or chains surviving from the orogeny 13 These extend in a northwest southeast direction from the River Tronto to the River Sangro which drain into the Adriatic The coastal hills of the east extend between San Benedetto del Tronto in the north and Torino di Sangro in the south The eastern chain consists mainly of the southern part of the Monti Sibillini the Monti della Laga the Gran Sasso d Italia Massif and the Majella Massif Among them are two national parks Gran Sasso e Monti della Laga National Park and Majella National Park and the Regional Park of the Monti Simbruini Gran Sasso contains Corno Grande the highest peak of the Apennines 2912 m Majella massif Other features between the western and central ranges are the plain of Rieti the valley of the Salto and the Lago Fucino while between the central and eastern ranges are the valleys of Aquila and Sulmona The chief rivers on the west are the Nera with its tributaries the Velino and Salto and the Aniene both of which fall into the Tiber On the east there is at first a succession of small rivers which flow into the Adriatic from which the highest points of the chain are some 20 km distant such as the Tronto Tordino Vomano and others The Pescara which receives the Aterno from the north west and the Gizio from the south east is more important and so is the Sangro The central Apennines are crossed by the railway from Rome to Pescara via Avezzano and Sulmona the railway from Orte to Terni and thence to Foligno follows the Nera valley while from Terni a line ascends to the plain of Rieti and thence crosses the central chain to Aquila whence it follows the valley of the Aterno to Sulmona In ancient times the Via Salaria Via Caecilia and Via Tiburtina all ran from Rome to the Adriatic coast The volcanic mountains of the province of Rome are separated from the Apennines by the Tiber valley and the Monti Lepini part of the Volscian chain by the valleys of the Sacco and Liri Southern Apennines Edit The southern Apennines can be divided into four major regions 1 Samnite Apennines 2 Campanian Apennines 3 Lucan Apennines and 4 Calabrian Apennines including the Sicilian Apennines They extend from Forli pass towards south Samnite and Campanian Apennines Edit The Monti Picentini in the Campanian Apennines In the southern Apennines to the south of the Sangro valley the three parallel chains are broken up into smaller groups among them may be named the Matese the highest point of which is the Monte Miletto 2 050 metres 6 725 ft The chief rivers on the south west are the Liri or Garigliano with its tributary the Sacco the Volturno Sebeto Sarno on the north the Trigno Biferno and Fortore 18 Daunian mountains in Apulia are connected with the Apennine range and so are Cilento hills on the west On the converse the promontory of Mount Gargano on the east is completely isolated and so are the Campanian volcanic arc near Naples The district is traversed from north west to south east by the railway from Sulmona to Benevento and on to Avellino and from south west to northeast by the railways from Caianello via Isernia to Campobasso and Termoli from Caserta to Benevento and Foggia and from Nocera Inferiore and Avellino to Rocchetta Sant Antonio the junction for Foggia Spinazzola for Barletta Bari and Taranto and Potenza Roman roads followed the same lines as the railways the Via Appia ran from Capua to Benevento whence the older road went to Venosa and Taranto and so to Brindisi while the Via Traiana ran nearly to Troia near Foggia and thence to Bari 18 Lucan Apennines Edit The valley of the Ofanto which runs into the Adriatic close to Barletta marks the northern termination of the first range of the Lucanian Apennines now Basilicata which runs from east to west while south of the valleys of the Sele on the west and Basento on the east which form the line followed by the railway from Battipaglia via Potenza to Metaponto the second range begins to run due north and south as far as the plain of Sibari The highest point is the Monte Pollino 2 233 metres 7 325 ft The chief rivers are the Sele joined by the Negro and Calore on the west and the Bradano Basento Agri Sinni on the east which flow into the gulf of Taranto to the south of the last named river there are only unimportant streams flowing into the sea east and west inasmuch as here the width of the peninsula diminishes to some 64 kilometres 40 mi 18 Calabrian and Sicilian Apennines Edit The Pizzo Carbonara 6 493 feet 1 979 m is the highest peak of the Sicilian Appenino siculo which forms part of the Calabrian southern Apennines The railway running south from Sicignano to Lagonegro ascending the valley of the Negro is planned to extend to Cosenza along the line followed by the ancient Via Popilia which beyond Cosenza reached the west coast at Terina and thence followed it to Reggio The Via Herculia a branch of the Via Traiana ran from Aequum Tuticum to the ancient Nerulum At the narrowest point the plain of Sibari through which the rivers Coscile and Crati flow to the sea occurs on the east coast extending halfway across the peninsula Here the limestone Apennines proper cease and the granite mountains of Calabria begin 18 The first group extends as far as the isthmus formed by the gulfs of South Eufemia and Squillace it is known as the Sila and the highest point reached is 1 930 metres 6 330 ft the Botte Donato The forests which covered it in ancient times supplied the Greeks and Sicilians with timber for shipbuilding The railway from South Eufemia to Catanzaro and Catanzaro Marina crosses the isthmus and an ancient road may have run from Squillace to Monteleone The second group extends to the south end of the Italian Peninsula culminating in the Aspromonte 1 960 metres 6 420 ft to the east of Reggio di Calabria In both groups the rivers are quite unimportant 18 Finally the Calabrian southern Apennine Mountains extend along the northern coast of Sicily the Sicilian Apennines Italian Appennino siculo Pizzo Carbonara 6 493 feet 1 979 m being the highest peak Ecology EditVegetative zones Edit Ecoregions Edit north and central Apennine deciduous montane forests temperate broadleaf and mixed forests biome north through south Italian sclerophyllous and semi deciduous forests Mediterranean forests woodlands and scrub biome south South Apennine mixed montane forests also a Mediterranean biome The number of vascular plant species in the Apennines has been estimated at 5 599 Of these 728 23 6 are in the treeline ecotone Hemicryptophytes predominate in the entire Apennine chain 19 Alpine zone Edit The tree line ecotone is mainly grasslands of the Montane grasslands and shrublands biome with Temperate broadleaf and mixed forests and Mediterranean forests woodlands and scrub below it The tree line in the Apennines can be found in the range 1 600 m 5 200 ft to 2 000 m 6 600 ft 20 About 5 of the map area covered by the Apennines is at or above the tree line or in the treeline ecotone The snow line is at about 3 200 m 10 500 ft leaving the Apennines below it except for the one remaining glacier Snow may fall from October to May Rainfall increases with latitude 6 The range s climates depending on elevation and latitude are the Oceanic climate and Mediterranean climate Geology Edit The Pietra di Bismantova Emilian Apennines Emilia Romagna A pillow lava from an ophiolite sequence Northern Apennines The Apennines were created in the Apennine orogeny beginning in the early Neogene about 20 mya the middle Miocene and continuing today 21 Geographically they are partially or appear to be continuous with the Alpine system Prior to the explosion of data on the topic from about the year 2000 many authors took the approach that the Apennines had the same origin as the Alps Even today some authors use the term Alpine Apennine system They are not however the same system and did not have the same origin The Alps were millions of years old before the Apennines rose from the sea Both the Alps and the Apennines contain primarily sedimentary rock resulting from sedimentation of the ancient Tethys Sea in the Mesozoic citation needed The northward movement of the African Plate and its collision with the European Plate then caused the Alpine Orogeny beginning in the late Mesozoic The band of mountains created extends from Spain to Turkey in a roughly east west direction and includes the Alps The Apennines are much younger extend from northwest to southeast and are not a displacement of the Alpine chain The key evidence of the difference is the geologic behavior of the Po Valley in northern Italy Compressional forces have been acting from north to south in the Alps and from south to north in the Apennines but instead of being squeezed into mountains the valley has been subsiding at 1 to 4 mm 0 16 in per year since about 25 mya before the Apennines existed 22 It is now known to be not an erosional feature but is a filled portion of the Adriatic Trench called the Adriatic foredeep after its function as a subduction zone was discovered The Alps and the Apennines were always separated by this trench and were never part of the same system citation needed Apennine orogeny Edit The Apennine orogeny is a type of mountain building in which two simpler types are combined in an apparently paradoxical configuration Sometimes this is referred to as syn orogenic extension but the term implies that the two processes occur simultaneously during time Some scientists imagine that this is relatively rare but not unique in mountain building whereas others imagine that this is fairly common in all mountain belts The RETREAT Project note 3 have this specific feature as one of their focus points 23 In essence the east side of Italy features a fold and thrust belt raised by compressional forces acting under the Adriatic Sea This side has been called the Apennine Adriatic Compressional Zone or the Apennines Convergence Zone On the west side of Italy fault block mountains prevail created by a spreading or extension of the crust under the Tyrrhenian Sea This side is called the Tyrrhenian Extensional Zone The mountains of Italy are of paradoxical provenience having to derive from both compression and extension The paradox of how contraction and extension can occur simultaneously in convergent mountain belts remains a fundamental and largely unresolved problem in continental dynamics Both the folded and the fault block systems include parallel mountain chains In the folded system anticlines erode into the highest and longest massifs of the Apennines According to the older theories originating from the 1930s to 1970s of Dutch geologists including Van Bemmelen compression and extension can and should occur simultaneously at different depths in a mountain belt In these theories these different levels are called Stockwerke More recent work in geotectonics and geodynamics of the same school of geoscientists Utrecht and Amsterdam University by Vlaar Wortel and Cloetingh and their disciples extended these concepts even further into a temporal realm They demonstrated that internal and external forces acting upon the mountain belt e g slab pull and intra plate stress field modulations due to large scale reorganisations of the tectonic plates result in both longer episodes and shorter phases of general extension and compression acting both upon and inside mountain belts and tectonic arches See e g for extensive reviews bibliography and discussions on the literature Van Dijk 1992 24 Van Dijk and Okkes 1991 25 Van Dijk amp Scheepers 1995 26 and Van Dijk et al 2000a 27 Compressional zone Edit The gradual subsidence of the Po Valley including that of Venice and the folding of the mountains of eastern Italy have been investigated using seismic wave analysis of the Apennine Subduction System 23 Along the Adriatic side of Italy the floor of the Adriatic Sea referred to as the Adriatic lithosphere or the Adriatic plate terms whose precise meaning is the subject of ongoing research is dipping under the slab on which the Apennines have been folded by compressional forces Subduction occurs along a fault along which a hanging wall or overriding slab is thrust over an overridden slab also called the subducting slab The fault that acts as the subduction interface is at the bottom of the Apennine wedge characterized by a deep groove in the surface typically filled with sediment as sedimentation here occurs at a much faster rate than subduction citation needed In north Italy the dip of this interface is 30 to 40 at a depth of 80 90 km 28 The strike of the Apennine subduction zone forms a long irregular arc with centers of curvature in the Tyrrhenian Sea following the hanging wall over which the mountains have been raised i e the eastern wall of the mountains It runs from near the base of the Ligurian Apennines in the Po Valley along the margin of the mountains to the Adriatic along the coastal deeps of the Adriatic shore strikes inland at Monte Gargano cutting off Apulia out to sea again through the Gulf of Taranto widely around the rest of Italy and Sicily and across inland north Africa 28 The upper mantle above 250 km 160 mi deep is broken into the Northern Apennines Arc and the Calabrian Arc with compressional forces acting in different directions radially toward the arcs centers of curvature The overall plate tectonics of these events has been modeled in different ways but decisive data is still missing The tectonics however are not the same as those which created the Alps citation needed Extensional zone Edit The west side of Italy is given to a fault block system where the crust extended by the lengthening mantle below thinned broke along roughly parallel fault lines and the blocks alternatively sank into grabens or were raised by isostasy into horsts This system prevails from Corsica eastward to the valley of the Tiber River the last rift valley in that direction It runs approximately across the direction of extension In the fault block system the ridges are lower and are more steep sided since the walls are formed by faults Geographically they are not considered part of the Apennines proper but are termed Sub Apennines Subappennini or Anti Apennines Antiappennini or Pre Apennines Preappennini These mountains are found mainly in Tuscany Lazio and Campania Stability of terrain Edit The terrain of the Apennines as well as that of the Alps is to a large degree unstable due to various types of landslides including falls and slides of rocks and debris flows of earth and mud and sink holes The Institute for Environmental Protection and Research Istituto Superiore per la Protezione e la Ricerca Ambientale a government agency founded in 2008 by combining three older agencies published in that year a special report Landslides in Italy summarizing the results of the IFFI Project Il Progetto IFFI the Italian Landslide Inventory Inventario dei Fenomeni Franosi in Italia an extensive survey of historical landslides in Italy undertaken by the government starting in 1997 On December 31 2007 it had studied and mapped 482 272 landslides over 20 500 km2 7 900 sq mi Its major statistics are the Landslide Index LI here the ratio of the landslide area to the total area of a region the Landslide Index in Mountainous Hilly Areas here LIMH and the Density of Landslides which is the number per 100 km2 39 sq mi Italy as a whole has a LI of 6 8 a LIMH of 9 1 and a density of 160 Lombardia LI of 13 9 Emilia Romagna 11 4 Marches 19 4 Molise 14 0 Valle d Aosta 16 0 and Piemonte 9 1 are significantly higher 29 The most unstable terrain in the Apennines when the landslide sites are plotted on the map are in order from most unstable the eastern flanks of the Tuscan Emilian Apennines the Central Apennines and the eastern flank of the southern Apennines Instability there is comparable to the Alps bordering the Po Valley The most stable terrain is on the western side Liguria Tuscany Umbria and Lazio The Apennines are slumping away to the northeast into the Po Valley and the Adriatic foredeep that is the zone where the Adriatic floor is being subducted under Italy Slides with large translational or rotational surface movements are most common e g a whole slope slumps into its valley placing the population there at risk Glacial ice Edit Glaciers no longer exist in the Apennines outside the Gran Sasso d Italia massif However post Pliocene moraines have been observed in Basilicata Major peaks EditThe Apennines include about 21 peaks over 1 900 m 6 200 ft the approximate tree line counting only the top peak in each massif Most of these peaks are located in the Central Apennines 20 Corno Grande Monte Vettore Serra Dolcedorme the highest summit in Southern Apennine Name HeightCorno Grande Gran Sasso massif 2 912 m 9 554 ft Monte Amaro Majella massif 2 793 m 9 163 ft Monte Velino 2 486 m 8 156 ft Monte Vettore 2 476 m 8 123 ft Pizzo di Sevo 2 419 m 7 936 ft Serra Dolcedorme Pollino massif 2 267 m 7 438 ft Monte Meta 2 241 m 7 352 ft Monte Terminillo 2 217 m 7 274 ft Monte Sibilla 2 173 m 7 129 ft Monte Cimone 2 165 m 7 103 ft Monte Viglio 2 156 m 7 073 ft Monte Cusna 2 121 m 6 959 ft Montagne del Morrone 2 061 m 6 762 ft Monte Prado 2 053 m 6 736 ft Monte Miletto Matese massif 2 050 m 6 730 ft Alpe di Succiso 2 017 m 6 617 ft Monte Cotento Simbruini range 2 015 m 6 611 ft Monte Sirino 2 005 m 6 578 ft Montalto Aspromonte massif 1 955 m 6 414 ft Monte Pisanino 1 946 m 6 385 ft Monte Botte Donato Sila plateau 1 928 m 6 325 ft Corno alle Scale 1 915 m 6 283 ft Monte Alto 1 904 m 6 247 ft Monte Cervati 1 898 m 6 227 ft La Nuda 1 894 m 6 214 ft Monte Maggio 1 853 m 6 079 ft Monte Maggiorasca 1 799 m 5 902 ft Monte Giovarello 1 760 m 5 770 ft Monte Catria 1 701 m 5 581 ft Monte Gottero 1 640 m 5 380 ft Monte Pennino 1 560 m 5 120 ft Monte Nerone 1 525 m 5 003 ft Monte San Vicino 1 480 m 4 856 ft Monte Fumaiolo 1 407 m 4 616 ft See also EditMonti Simbruini Apennines plants and animals list Geography of Italy List of national parks of Italy List of longest tunnels List of highest paved roads in Europe List of mountain passes TaskForceMajellaNotes Edit Apenninus Greek Ἀpenninos or Ἀpennina has the form of an adjective which would be segmented Apenn inus often used with nouns such as mons mountain or Greek ὄros oros but Apenninus is just as often used alone as a noun The ancient Greeks and Romans typically but not always used mountain in the singular to mean one or a range thus the Apennine mountain refers to the entire chain and is translated the Apennine mountains The ending can vary also by gender depending on the noun modified The Italian singular refers to one of the constituent chains rather than to a single mountain and the Italian plural refers to multiple chains rather than to multiple mountains Claims of being the longest or second longest in the world have been soon outdated See List of longest tunnels The Retreating trench extension and accretion RETREAT Project is a study conducted by a consortium of scientific organizations in different countries including in the US the National Science Foundation References Edit Entry Apennines in Merriam Webster Dictionary on line on www merriam webster com Strabo Geography book 5 a b Lewis Charlton T Short Charles 1879 Apenninus A Latin Dictionary Oxford Medford Clarendon Press Perseus Digital Library Gambino Roberto Romano Bernardino 2000 2001 Territorial strategies and environmental continuity in mountain systems The case of the Apennines Italy PDF World Commission on Protected Areas a b Lake 1911 p 161 a b Pedrotti amp Gafta 2003 p 75 Deecke 1904 p 23 Blackie amp Blackie 1887 pp 21 154 ceann MacBain s Dictionary pin Webster s Third New International Dictionary pet The American Heritage Dictionary of the English Language Indo European Roots Martini amp Vai 2001 p 3 a b c d e Merriam Webster 2001 p 59 Lunardi 2008 pp 413 414 Lunardi 2008 pp 425 437 Barchi et al 2001 p 216 Parks Reserves and other Protected Areas in the Marches Parks it 1995 2010 Retrieved 15 March 2010 a b c d e Lake 1911 p 162 Pedrotti amp Gafta 2003 p 79 a b Pedrotti amp Gafta 2003 p 73 James Kristen 2004 Determining the source for the magmas of Monte Amiata Central Italy using strontium neodymium and lead isotopes Carleton Geology Department Geology Comps Papers pp 3 4 S2CID 43061617 During the Neogene and into the Quaternary the region around Amiata underwent a general NNE contraction This compression also created the Apennine orogeny of east central Italy This area was brought above sea level during a doming phase during the Middle Pliocene Ollier Cliff Pain Colin 2000 The origin of mountains London Routledge p 77 Apennine thrusts move in from the south and Southern Alps thrust in from the north but instead of collisional compression there is subsidence and horizontal sedimentation a b Margheriti 2006 p 1120 van Dijk J P 1992 Late Neogene fore arc basin evolution in the Calabrian Arc Central Mediterranean Tectonic sequence stratigraphy and dynamic geohistory With special reference to the geology of Central Calabria Geologica Ultraiectina 92 288 van Dijk J P Okkes F W M 1991 Neogene tectonostratigraphy and kinematics of Calabrian Basins implications for the geodynamics of the Central Mediterranean Tectonophysics 196 1 2 23 60 Bibcode 1991Tectp 196 23V doi 10 1016 0040 1951 91 90288 4 van Dijk J P Scheepers P J J 1995 Neogene rotations in the Calabrian Arc Implications for a Pliocene Recent geodynamic scenario for the Central Mediterranean Earth Science Reviews 39 3 4 207 246 Bibcode 1995ESRv 39 207V doi 10 1016 0012 8252 95 00009 7 hdl 1874 19084 S2CID 128811666 van Dijk J P Bello M Brancaleoni G P Cantarella G Costa V Frixa A Golfetto F Merlini S Riva M Toricelli S Toscano C Zerilli A 2000 A new structural model for the northern sector of the Calabrian Arc Tectonophysics 324 4 267 320 Bibcode 2000Tectp 324 267V doi 10 1016 S0040 1951 00 00139 6 S2CID 130289171 a b Margheriti 2006 p 1124 Trigila Alessandro Iadanza Carla 2008 Landslides in Italy Special Report 2008 PDF Rome Istituto Superiore per la Protezione e la Ricerca Ambientale ISPRA pp 15 16 Archived from the original PDF on 2011 07 17 Bibliography Edit Apennines Merriam Webster s Geographical Dictionary 3rd ed Merriam Webster Incorporated 2001 Blackie Christina Blackie John Stuart 1887 Geographical etymology a dictionary of place names giving their derivations London Murray Deecke W 1904 Italy a popular account of the country its people and its institutions including Malta and Sardinia Translated by Nesbitt H A London New York Macmillan Co S Sonnenschein amp Co Lunardi Pietro 2008 Design and construction of tunnels analysis of controlled deformation in rocks and soils ADECO RS Berlin Springer Margheriti Lucia et al August October 2006 The subduction structure of the Northern Apennines results for the RETREAT seismic deployment PDF Annals of Geophysics 49 4 5 Archived from the original PDF on 2010 06 19 Martini I Peter Vai Gian Battista 2001 Geomorphologic Setting In Martini I Peter Vai Gian Battista eds Anatomy of an orogen the Apennines and adjacent Mediterranean basins Dordrecht u a Kluwer Academic Publishers pp 1 4 Barchi Massimiliano Landuzzi Alberto Minelli Giorgio Pialli Giampaolo 2001 Inner Northern Apennines In Martini I Peter Vai Gian Battista eds Anatomy of an orogen the Apennines and adjacent Mediterranean basins Dordrecht u a Kluwer Academic Publishers pp 215 254 Pedrotti F Gafta D 2003 The High Mountain Flora and Vegetation of the Apennines and the Italian Alps In Nagy Laszlo Grabherr G Korner Ch Thompson D B A eds Alpine biodiversity in Europe Ecological studies 167 Berlin Heidelberg u a Springer Verlag pp 73 84 Attribution This article incorporates text from a publication now in the public domain Lake Philip 1911 Apennines In Chisholm Hugh ed Encyclopaedia Britannica Vol 2 11th ed Cambridge University Press pp 161 163 External links Edit Wikimedia Commons has media related to Apennine Mountains Look up Apennines in Wiktionary the free dictionary Ligurian Apennine Summit Post 2006 Retrieved 16 February 2010 Italian Cultural Landscapes wood pasture and wood meadow in the Ligurian Tuscan Aemilian Apennines Italy The ECL project Archived from the original on 17 September 2007 Retrieved 16 February 2010 Appenine sic deciduous montane forests Terrestrial Ecoregions World Wildlife Fund Retrieved 16 February 2010 Irlam Michael J 2009 The Great Apennine Tunnel Mike s Railway History Retrieved 16 February 2010 10th Mountain Division The Formative World War II Years Dartmouth College Class of 1965 2008 Retrieved 16 February 2010 Retrieved from https en wikipedia org w index php title Apennine Mountains amp oldid 1149227670, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.