fbpx
Wikipedia

Mesozoic

The Mesozoic Era ( /ˌmɛzəˈz.ɪk, -z-, ˌmɛs-, ˌmz-, ˌm.s-/ mez-ə-ZOH-ik, mez-oh-, mess-, mee-z-, mee-s-)[1][2], also called the Age of Reptiles, the Age of Conifers,[3] and colloquially as the Age of the Dinosaurs is the second-to-last era of Earth's geological history, lasting from about 252 to 66 million years ago, comprising the Triassic, Jurassic and Cretaceous Periods. It is characterized by the dominance of archosaurian reptiles, like the dinosaurs; an abundance of conifers and ferns; a hot greenhouse climate; and the tectonic break-up of Pangaea. The Mesozoic is the middle of the three eras since complex life evolved: the Paleozoic, the Mesozoic, and the Cenozoic.

Mesozoic Era
251.902 ± 0.024 – 66.0 Ma
Chronology
Etymology
Name formalityFormal
Nickname(s)Age of Reptiles, Age of Conifers
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitEra
Stratigraphic unitErathem
Time span formalityFormal
Lower boundary definitionFirst appearance of the Conodont Hindeodus parvus.
Lower boundary GSSPMeishan, Zhejiang, China
31°04′47″N 119°42′21″E / 31.0798°N 119.7058°E / 31.0798; 119.7058
GSSP ratified2001
Upper boundary definitionIridium enriched layer associated with a major meteorite impact and subsequent K-Pg extinction event.
Upper boundary GSSPEl Kef Section, El Kef, Tunisia
36°09′13″N 8°38′55″E / 36.1537°N 8.6486°E / 36.1537; 8.6486
GSSP ratified1991

The era began in the wake of the Permian–Triassic extinction event, the largest well-documented mass extinction in Earth's history, and ended with the Cretaceous–Paleogene extinction event, another mass extinction whose victims included the non-avian dinosaurs, pterosaurs, mosasaurs, and plesiosaurs. The Mesozoic was a time of significant tectonic, climatic, and evolutionary activity. The era witnessed the gradual rifting of the supercontinent Pangaea into separate landmasses that would move into their current positions during the next era. The climate of the Mesozoic was varied, alternating between warming and cooling periods. Overall, however, the Earth was hotter than it is today. Dinosaurs first appeared in the Mid-Triassic, and became the dominant terrestrial vertebrates in the Late Triassic or Early Jurassic, occupying this position for about 150 or 135 million years until their demise at the end of the Cretaceous. Archaic birds appeared in the Jurassic, having evolved from a branch of theropod dinosaurs, then true toothless birds appeared in the Cretaceous. The first mammals also appeared during the Mesozoic, but would remain small—less than 15 kg (33 lb)—until the Cenozoic. The flowering plants appeared in the early Cretaceous Period and would rapidly diversify throughout the end of the era, replacing conifers and other gymnosperms as the dominant group of plants.

Naming

The phrase "Age of Reptiles" was introduced by the 19th century paleontologist Gideon Mantell who viewed it as dominated by diapsids such as Iguanodon, Megalosaurus, Plesiosaurus, and Pterodactylus.

The current name was proposed in 1840 by the British geologist John Phillips (1800–1874). "Mesozoic" literally means 'middle life', deriving from the Greek prefix meso- (μεσο- 'between') and zōon (ζῷον 'animal, living being').[4][5] In this way, the Mesozoic is comparable to the Cenozoic (lit.'new life') and Paleozoic ('old life') Eras as well as the Proterozoic ('earlier life') Eon.

The Mesozoic Era was originally described as the "secondary" era, following the "primary" (Paleozoic), and preceding the Tertiary.[6]

Geologic periods

Following the Paleozoic, the Mesozoic extended roughly 186 million years, from 251.902 to 66 million years ago when the Cenozoic Era began. This time frame is separated into three geologic periods. From oldest to youngest:

  • Triassic (251.902 to 201.3 million years ago)
  • Jurassic (201.3 to 145 million years ago)
  • Cretaceous (145 to 66 million years ago)

The lower boundary of the Mesozoic is set by the Permian–Triassic extinction event, during which it has been estimated that up to 90-96% of marine species became extinct[7] although those approximations have been brought into question with some paleontologists estimating the actual numbers as low as 81%.[8] It is also known as the "Great Dying" because it is considered the largest mass extinction in the Earth's history. The upper boundary of the Mesozoic is set at the Cretaceous–Paleogene extinction event (or K–Pg extinction event[9]), which may have been caused by an asteroid impactor that created Chicxulub Crater on the Yucatán Peninsula. Towards the Late Cretaceous, large volcanic eruptions are also believed to have contributed to the Cretaceous–Paleogene extinction event. Approximately 50% of all genera became extinct, including all of the non-avian dinosaurs.

Triassic

The Triassic ranges roughly from 252 million to 201 million years ago, preceding the Jurassic Period. The period is bracketed between the Permian–Triassic extinction event and the Triassic–Jurassic extinction event, two of the "big five", and it is divided into three major epochs: Early, Middle, and Late Triassic.[10]

The Early Triassic, about 252 to 247 million years ago, was dominated by deserts in the interior of the Pangaea supercontinent. The Earth had just witnessed a massive die-off in which 95% of all life became extinct, and the most common vertebrate life on land were Lystrosaurus, labyrinthodonts, and Euparkeria along with many other creatures that managed to survive the Permian extinction. Temnospondyls reached peak diversity during the early Triassic.[11]

The Middle Triassic, from 247 to 237 million years ago, featured the beginnings of the breakup of Pangaea and the opening of the Tethys Ocean. Ecosystems had recovered from the Permian extinction. Algae, sponge, corals, and crustaceans all had recovered, and new aquatic reptiles evolved, such as ichthyosaurs and nothosaurs. On land, pine forests flourished, as did groups of insects like mosquitoes and fruit flies. Reptiles began to get bigger and bigger, and the first crocodilians and dinosaurs evolved, which sparked competition with the large amphibians that had previously ruled the freshwater world, respectively mammal-like reptiles on land.[12]

Following the bloom of the Middle Triassic, the Late Triassic, from 237 to 201 million years ago, featured frequent heat spells and moderate precipitation (10–20 inches per year). The recent warming led to a boom of dinosaurian evolution on land as those one began to separate from each other (Nyasasaurus from 243 to 210 million years ago, approximately 235–30 ma, some of them separated into Sauropodomorphs, Theropods and Herrerasaurids), as well as the first pterosaurs. During the Late Triassic, some advanced cynodonts gave rise to the first Mammaliaformes. All this climatic change, however, resulted in a large die-out known as the Triassic–Jurassic extinction event, in which many archosaurs (excluding pterosaurs, dinosaurs and crocodylomorphs), most synapsids, and almost all large amphibians became extinct, as well as 34% of marine life, in the Earth's fourth mass extinction event. The cause is debatable;[13][14] flood basalt eruptions at the Central Atlantic magmatic province is cited as one possible cause.

Jurassic

The Jurassic ranges from 200 million years to 145 million years ago and features three major epochs: The Early Jurassic, the Middle Jurassic, and the Late Jurassic.[15]

The Early Jurassic spans from 200 to 175 million years ago.[15] The climate was tropical and much more humid than the Triassic, as a result of the large seas appearing between the land masses. In the oceans, plesiosaurs, ichthyosaurs and ammonites were abundant. On land, dinosaurs and other archosaurs staked their claim as the dominant race, with theropods such as Dilophosaurus at the top of the food chain. The first true crocodiles evolved, pushing the large amphibians to near extinction. All-in-all, archosaurs rose to rule the world. Meanwhile, the first true mammals evolved, remaining relatively small but spreading widely; the Jurassic Castorocauda, for example, had adaptations for swimming, digging and catching fish. Fruitafossor, from the late Jurassic Period about 150 million years ago, was about the size of a chipmunk, and its teeth, forelimbs and back suggest that it dug open the nests of social insects (probably termites, as ants had not yet appeared) ; Volaticotherium was able to glide for short distances, like modern flying squirrels. The first multituberculates like Rugosodon evolved.

The Middle Jurassic spans from 175 to 163 million years ago.[15] During this epoch, dinosaurs flourished as huge herds of sauropods, such as Brachiosaurus and Diplodocus, filled the fern prairies, chased by many new predators such as Allosaurus. Conifer forests made up a large portion of the forests. In the oceans, plesiosaurs were quite common, and ichthyosaurs flourished. This epoch was the peak of the reptiles.[16][failed verification][self-published source]

The Late Jurassic spans from 163 to 145 million years ago.[15] During this epoch, the first avialans, like Archaeopteryx, evolved from small coelurosaurian dinosaurs. The increase in sea levels opened up the Atlantic seaway, which has grown continually larger until today. The further separation of the continents gave opportunity for the diversification of new dinosaurs.

Cretaceous

The Cretaceous is the longest period of the Mesozoic, but has only two epochs: Early and Late Cretaceous.[17]

The Early Cretaceous spans from 145 to 100 million years ago.[17] The Early Cretaceous saw the expansion of seaways and a decline in diversity of sauropods, stegosaurs, and other high-browsing groups, with sauropods particularly scarce in North America.[18] Some island-hopping dinosaurs, like Eustreptospondylus, evolved to cope with the coastal shallows and small islands of ancient Europe. Other dinosaurs rose up to fill the empty space that the Jurassic-Cretaceous extinction left behind, such as Carcharodontosaurus and Spinosaurus.[citation needed] Seasons came back into effect and the poles got seasonally colder, but some dinosaurs still inhabited the polar forests year round, such as Leaellynasaura and Muttaburrasaurus. The poles were too cold for crocodiles, and became the last stronghold for large amphibians like Koolasuchus. Pterosaurs got larger as genera like Tapejara and Ornithocheirus evolved. Mammals continued to expand their range: eutriconodonts produced fairly large, wolverine-like predators like Repenomamus and Gobiconodon, early therians began to expand into metatherians and eutherians, and cimolodont multituberculates went on to become common in the fossil record.

The Late Cretaceous spans from 100 to 66 million years ago. The Late Cretaceous featured a cooling trend that would continue in the Cenozoic Era. Eventually, tropics were restricted to the equator and areas beyond the tropic lines experienced extreme seasonal changes in weather. Dinosaurs still thrived, as new taxa such as Tyrannosaurus, Ankylosaurus, Triceratops and hadrosaurs dominated the food web. In the oceans, mosasaurs ruled, filling the role of the ichthyosaurs, which, after declining, had disappeared in the Cenomanian-Turonian boundary event. Though pliosaurs had gone extinct in the same event, long-necked plesiosaurs such as Elasmosaurus continued to thrive. Flowering plants, possibly appearing as far back as the Triassic, became truly dominant for the first time. Pterosaurs in the Late Cretaceous declined for poorly understood reasons, though this might be due to tendencies of the fossil record, as their diversity seems to be much higher than previously thought. Birds became increasingly common and diversified into a variety of enantiornithe and ornithurine forms. Though mostly small, marine hesperornithes became relatively large and flightless, adapted to life in the open sea. Metatherians and primitive eutherian also became common and even produced large and specialised genera like Didelphodon and Schowalteria. Still, the dominant mammals were multituberculates, cimolodonts in the north and gondwanatheres in the south. At the end of the Cretaceous, the Deccan traps and other volcanic eruptions were poisoning the atmosphere. As this continued, it is thought that a large meteor smashed into earth 66 million years ago, creating the Chicxulub Crater in an event known as the K-Pg Extinction (formerly K-T), the fifth and most recent mass extinction event, in which 75% of life became extinct, including all non-avian dinosaurs.[19][20][21]

Paleogeography and tectonics

Compared to the vigorous convergent plate mountain-building of the late Paleozoic, Mesozoic tectonic deformation was comparatively mild. The sole major Mesozoic orogeny occurred in what is now the Arctic,[citation needed] creating the Innuitian orogeny, the Brooks Range, the Verkhoyansk and Cherskiy Ranges in Siberia, and the Khingan Mountains in Manchuria.

This orogeny was related to the opening of the Arctic Ocean and suturing of the North China and Siberian cratons to Asia.[22] In contrast, the era featured the dramatic rifting of the supercontinent Pangaea, which gradually split into a northern continent, Laurasia, and a southern continent, Gondwana. This created the passive continental margin that characterizes most of the Atlantic coastline (such as along the U.S. East Coast) today.[23]

By the end of the era, the continents had rifted into nearly their present forms, though not their present positions. Laurasia became North America and Eurasia, while Gondwana split into South America, Africa, Australia, Antarctica and the Indian subcontinent, which collided with the Asian plate during the Cenozoic, giving rise to the Himalayas.

Climate

The Triassic was generally dry, a trend that began in the late Carboniferous, and highly seasonal, especially in the interior of Pangaea. Low sea levels may have also exacerbated temperature extremes. With its high specific heat capacity, water acts as a temperature-stabilizing heat reservoir, and land areas near large bodies of water—especially oceans—experience less variation in temperature. Because much of Pangaea's land was distant from its shores, temperatures fluctuated greatly, and the interior probably included expansive deserts. Abundant red beds and evaporites such as halite support these conclusions, but some evidence suggests the generally dry climate of was punctuated by episodes of increased rainfall.[24] The most important humid episodes were the Carnian Pluvial Event and one in the Rhaetian, a few million years before the Triassic–Jurassic extinction event.

Sea levels began to rise during the Jurassic, probably caused by an increase in seafloor spreading. The formation of new crust beneath the surface displaced ocean waters by as much as 200 m (656 ft) above today's sea level, flooding coastal areas. Furthermore, Pangaea began to rift into smaller divisions, creating new shoreline around the Tethys Ocean. Temperatures continued to increase, then began to stabilize. Humidity also increased with the proximity of water, and deserts retreated.

The climate of the Cretaceous is less certain and more widely disputed. Probably, higher levels of carbon dioxide in the atmosphere are thought to have almost eliminated the north–south temperature gradient: temperatures were about the same across the planet, and about 10°C higher than today. The circulation of oxygen to the deep ocean may also have been disrupted, preventing the decomposition of large volumes of organic matter, which was eventually deposited as "black shale".[25][26]

Different studies have come to different conclusions about the amount of oxygen in the atmosphere during different parts of the Mesozoic, with some concluding oxygen levels were lower than the current level (about 21%) throughout the Mesozoic,[27][28] some concluding they were lower in the Triassic and part of the Jurassic but higher in the Cretaceous,[29][30][31] and some concluding they were higher throughout most or all of the Triassic, Jurassic and Cretaceous.[32][33]

Life

Flora

 
Conifers were the dominant terrestrial plants for most of the Mesozoic, with grasses becoming widespread in the Late Cretaceous. Flowering plants appeared late in the era but did not become widespread until the Cenozoic.

The dominant land plant species of the time were gymnosperms, which are vascular, cone-bearing, non-flowering plants such as conifers that produce seeds without a coating. This contrasts with the earth's current flora, in which the dominant land plants in terms of number of species are angiosperms. The earliest members of the genus Ginkgo first appeared during the Middle Jurassic. This genus is represented today by a single species, Ginkgo biloba. The extant genus Sequoia is believed to have evolved in the Mesozoic.[34] Bennettitales, an extinct group of gymnosperms with foliage superficially resembling that of cycads gained a global distribution during the Late Triassic, and represented one of the most common groups of Mesozoic seed plants.[35]

Flowering plants radiated during the early Cretaceous, first in the tropics, but the even temperature gradient allowed them to spread toward the poles throughout the period. By the end of the Cretaceous, angiosperms dominated tree floras in many areas, although some evidence suggests that biomass was still dominated by cycads and ferns until after the Cretaceous–Paleogene extinction. Some plant species had distributions that were markedly different from succeeding periods; for example, the Schizeales, a fern order, were skewed to the Northern Hemisphere in the Mesozoic, but are now better represented in the Southern Hemisphere.[36]

Fauna

 
Dinosaurs were the dominant terrestrial vertebrates throughout much of the Mesozoic.

The extinction of nearly all animal species at the end of the Permian Period allowed for the radiation of many new lifeforms. In particular, the extinction of the large herbivorous pareiasaurs and carnivorous gorgonopsians left those ecological niches empty. Some were filled by the surviving cynodonts and dicynodonts, the latter of which subsequently became extinct.

Recent research indicates that it took much longer for the reestablishment of complex ecosystems with high biodiversity, complex food webs, and specialized animals in a variety of niches, beginning in the mid-Triassic 4 million to 6 million years after the extinction,[37] and not fully proliferated until 30 million years after the extinction.[38] Animal life was then dominated by various archosaurs: dinosaurs, pterosaurs, and aquatic reptiles such as ichthyosaurs, plesiosaurs, and mosasaurs.

The climatic changes of the late Jurassic and Cretaceous favored further adaptive radiation. The Jurassic was the height of archosaur diversity, and the first birds and eutherian mammals also appeared. Some have argued that insects diversified in symbiosis with angiosperms, because insect anatomy, especially the mouth parts, seems particularly well-suited for flowering plants. However, all major insect mouth parts preceded angiosperms, and insect diversification actually slowed when they arrived, so their anatomy originally must have been suited for some other purpose.[citation needed]

See also

References

  1. ^ Jones, Daniel (2003) [1917], Peter Roach; James Hartmann; Jane Setter (eds.), English Pronouncing Dictionary, Cambridge: Cambridge University Press, ISBN 978-3-12-539683-8
  2. ^ "Mesozoic". Dictionary.com Unabridged (Online). n.d.
  3. ^ Dean, Dennis R. (1999). Gideon Mantell and the Discovery of Dinosaurs. Cambridge University Press. pp. 97–98. ISBN 978-0521420488.
  4. ^ See:
    • Phillips, John (1840). "Palæozoic series". Penny Cyclopaedia of the Society for the Diffusion of Useful Knowledge. Vol. 17. London: Charles Knight and Co. pp. 153–54. "As many systems or combinations of organic forms as are clearly traceable in the stratified crust of the globe, so many corresponding terms (as Palæozoic, Mesozoic, Kainozoic, &c.) may be made, … "
    • Wilmarth, Mary Grace (1925). Bulletin 769: The Geologic Time Classification of the United States Geological Survey Compared With Other Classifications, accompanied by the original definitions of era, period and epoch terms. Washington, D.C.: U.S. Government Printing Office. p. 9.
  5. ^ "Mesozoic". Online Etymology Dictionary.
  6. ^ Tang, Carol Marie. "Mesozoic Era". Encyclopædia Britannica. Encyclopædia Britannica. Retrieved 5 September 2019.
  7. ^ Benton M J (2005). "Chapter 8: Life's Biggest Challenge". When life nearly died: the greatest mass extinction of all time. London: Thames & Hudson. ISBN 978-0-500-28573-2.[page needed]
  8. ^ Stanley, Steven M. (3 October 2016). "Estimates of the magnitudes of major marine mass extinctions in earth history". Proceedings of the National Academy of Sciences. National Academy of Sciences. 113 (42): E6325–E6334. Bibcode:2016PNAS..113E6325S. doi:10.1073/pnas.1613094113. ISSN 1091-6490. PMC 5081622. PMID 27698119.
  9. ^ Gradstein F, Ogg J, Smith A. A Geologic Time Scale 2004.
  10. ^ Alan Logan. "Triassic Period". britannica.com.
  11. ^ Ruta, Marcello; Benton, Michael J. (November 2008). "Calibrated Diversity, Tree Topology and the Mother of Mass Extinctions: The Lesson of Temnospondyls". Palaeontology. 51 (6): 1261–1288. doi:10.1111/j.1475-4983.2008.00808.x. S2CID 85411546.
  12. ^ Rubidge. "Middle Triassic". palaeos.com.
  13. ^ Rampino, Michael R. & Haggerty, Bruce M. (1996). "Impact Crises and Mass Extinctions: A Working Hypothesis". In Ryder, Graham; Fastovsky, David & Gartner, Stefan (eds.). The Cretaceous-Tertiary event and other catastrophes in earth history. Geological Society of America. ISBN 978-0813723075.
  14. ^ Enchanted Learning. "Late Triassic life". Enchanted Learning.
  15. ^ a b c d Carol Marie Tang. "Jurassic Era". britannica.com.
  16. ^ Enchanted Learning. "Middle Jurassic". Enchanted Learning.
  17. ^ a b Carl Fred Koch. "Cretaceous". britannica.com.
  18. ^ Butler, R. J.; Barrett, P. M.; Kenrick, P.; Penn, M. G. (March 2009). "Diversity patterns amongst herbivorous dinosaurs and plants during the Cretaceous: implications for hypotheses of dinosaur/angiosperm co-evolution". Journal of Evolutionary Biology. 22 (3): 446–459. doi:10.1111/j.1420-9101.2008.01680.x. PMID 19210589. S2CID 26000791.
  19. ^ Becker, Luann (2002). "Repeated Blows". Scientific American. 286 (3): 76–83. Bibcode:2002SciAm.286c..76B. doi:10.1038/scientificamerican0302-76. PMID 11857903.
  20. ^ "Cretaceous". University of California.
  21. ^ Elizabeth Howell (3 February 2015). "K-T Extinction event". Universe Today.
  22. ^ Hughes, T. (August 1975). "The case for creation of the North Pacific Ocean during the Mesozoic Era". Palaeogeography, Palaeoclimatology, Palaeoecology. 18 (1): 1–43. Bibcode:1975PPP....18....1H. doi:10.1016/0031-0182(75)90015-2.
  23. ^ Stanley, Steven M. Earth System History. New York: W.H. Freeman and Company, 1999. ISBN 0-7167-2882-6
  24. ^ Preto, N.; Kustatscher, E.; Wignall, P.B. (2010). "Triassic climates – State of the art and perspectives". Palaeogeography, Palaeoclimatology, Palaeoecology. 290 (1–4): 1–10. Bibcode:2010PPP...290....1P. doi:10.1016/j.palaeo.2010.03.015.
  25. ^ Leckie, R. Mark; Bralower, Timothy J.; Cashman, Richard (September 2002). "Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous: OCEANIC ANOXIC EVENTS AND PLANKTON EVOLUTION". Paleoceanography. 17 (3): 13–1–13–29. doi:10.1029/2001PA000623.
  26. ^ Turgeon, Steven C.; Creaser, Robert A. (17 July 2008). "Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode". Nature. 454 (7202): 323–326. Bibcode:2008Natur.454..323T. doi:10.1038/nature07076. PMID 18633415. S2CID 4315155.
  27. ^ Robert A. Berner, John M. VandenBrooks and Peter D. Ward, 2007, Oxygen and Evolution. Science 27 April 2007, Vol. 316 no. 5824 pp. 557–58 . A graph showing the reconstruction from this paper can be found here, from the webpage Paleoclimate – The History of Climate Change.
  28. ^ Berner R. A. 2006 GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–64. See the dotted line in Fig. 1 of Atmospheric oxygen level and the evolution of insect body size by Jon F. Harrison, Alexander Kaiser and John M. VandenBrooks
  29. ^ Berner, Robert A., 2009, Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. Am. J. Sci. 309 no. 7, 603–06. A graph showing the reconstructed levels in this paper can be found on p. 31 of the book Living Dinosaurs by Gareth Dyke and Gary Kaiser.
  30. ^ Berner R. A., Canfield D. E. 1989 A new model for atmospheric oxygen over phanerozoic time. Am. J. Sci. 289, 333–61. See the solid line in Fig. 1 of Atmospheric oxygen level and the evolution of insect body size by Jon F. Harrison, Alexander Kaiser and John M. VandenBrooks
  31. ^ Berner, R, et al., 2003, Phanerozoic atmospheric oxygen, Annu. Rev. Earth Planet. Sci., V, 31, p. 105–34. See the graph near the bottom of the webpage Phanerozoic Eon 27 April 2013 at the Wayback Machine
  32. ^ Glasspool, I.J., Scott, A.C., 2010, Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal, Nature Geosciences, 3, 627–30
  33. ^ Bergman N. M., Lenton T. M., Watson A. J. 2004 COPSE: a new model of biogeochemical cycling over Phanaerozoic time. Am. J. Sci. 304, 397–437. See the dashed line in Fig. 1 of Atmospheric oxygen level and the evolution of insect body size by Jon F. Harrison, Alexander Kaiser and John M. VandenBrooks
  34. ^ Stan Baducci. Mesozoic Plants..
  35. ^ Blomenkemper, Patrick; Bäumer, Robert; Backer, Malte; Abu Hamad, Abdalla; Wang, Jun; Kerp, Hans; Bomfleur, Benjamin (26 March 2021). "Bennettitalean Leaves From the Permian of Equatorial Pangea—The Early Radiation of an Iconic Mesozoic Gymnosperm Group". Frontiers in Earth Science. 9: 652699. Bibcode:2021FrEaS...9..162B. doi:10.3389/feart.2021.652699. ISSN 2296-6463.
  36. ^ C.Michael Hogan. 2010. Fern. Encyclopedia of Earth. National council for Science and the Environment 9 November 2011 at the Wayback Machine. Washington, DC
  37. ^ Lehrmann, D. J.; Ramezan, J.; Bowring, S.A.; et al. (December 2006). "Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from south China". Geology. 34 (12): 1053–56. Bibcode:2006Geo....34.1053L. doi:10.1130/G22827A.1.
  38. ^ Sahney, S. & Benton, M. J. (2008). "Recovery from the most profound mass extinction of all time". Proceedings of the Royal Society B: Biological Sciences. 275 (1636): 759–65. doi:10.1098/rspb.2007.1370. PMC 2596898. PMID 18198148.
  • British Mesozoic Fossils, 1983, The Natural History Museum, London.

External links

  • Mesozoic (chronostratigraphy scale)

mesozoic, mess, also, called, reptiles, conifers, colloquially, dinosaurs, second, last, earth, geological, history, lasting, from, about, million, years, comprising, triassic, jurassic, cretaceous, periods, characterized, dominance, archosaurian, reptiles, li. The Mesozoic Era ˌ m ɛ z e ˈ z oʊ ɪ k z oʊ ˌ m ɛ s ˌ m iː z ˌ m iː s mez e ZOH ik mez oh mess mee z mee s 1 2 also called the Age of Reptiles the Age of Conifers 3 and colloquially as the Age of the Dinosaurs is the second to last era of Earth s geological history lasting from about 252 to 66 million years ago comprising the Triassic Jurassic and Cretaceous Periods It is characterized by the dominance of archosaurian reptiles like the dinosaurs an abundance of conifers and ferns a hot greenhouse climate and the tectonic break up of Pangaea The Mesozoic is the middle of the three eras since complex life evolved the Paleozoic the Mesozoic and the Cenozoic Mesozoic Era251 902 0 024 66 0 Ma Pha Proterozoic Archean Had nChronology 260 240 220 200 180 160 140 120 100 80 60 P h a n e r o z o i cPaleozoicMesozoicCenozoicTriassicJurassicCretaceous An approximate timescale of key Mesozoic events Axis scale millions of years ago EtymologyName formalityFormalNickname s Age of Reptiles Age of ConifersUsage informationCelestial bodyEarthRegional usageGlobal ICS Time scale s usedICS Time ScaleDefinitionChronological unitEraStratigraphic unitErathemTime span formalityFormalLower boundary definitionFirst appearance of the Conodont Hindeodus parvus Lower boundary GSSPMeishan Zhejiang China31 04 47 N 119 42 21 E 31 0798 N 119 7058 E 31 0798 119 7058GSSP ratified2001Upper boundary definitionIridium enriched layer associated with a major meteorite impact and subsequent K Pg extinction event Upper boundary GSSPEl Kef Section El Kef Tunisia36 09 13 N 8 38 55 E 36 1537 N 8 6486 E 36 1537 8 6486GSSP ratified1991The era began in the wake of the Permian Triassic extinction event the largest well documented mass extinction in Earth s history and ended with the Cretaceous Paleogene extinction event another mass extinction whose victims included the non avian dinosaurs pterosaurs mosasaurs and plesiosaurs The Mesozoic was a time of significant tectonic climatic and evolutionary activity The era witnessed the gradual rifting of the supercontinent Pangaea into separate landmasses that would move into their current positions during the next era The climate of the Mesozoic was varied alternating between warming and cooling periods Overall however the Earth was hotter than it is today Dinosaurs first appeared in the Mid Triassic and became the dominant terrestrial vertebrates in the Late Triassic or Early Jurassic occupying this position for about 150 or 135 million years until their demise at the end of the Cretaceous Archaic birds appeared in the Jurassic having evolved from a branch of theropod dinosaurs then true toothless birds appeared in the Cretaceous The first mammals also appeared during the Mesozoic but would remain small less than 15 kg 33 lb until the Cenozoic The flowering plants appeared in the early Cretaceous Period and would rapidly diversify throughout the end of the era replacing conifers and other gymnosperms as the dominant group of plants Contents 1 Naming 2 Geologic periods 2 1 Triassic 2 2 Jurassic 2 3 Cretaceous 3 Paleogeography and tectonics 4 Climate 5 Life 5 1 Flora 5 2 Fauna 6 See also 7 References 8 External linksNaming EditThe phrase Age of Reptiles was introduced by the 19th century paleontologist Gideon Mantell who viewed it as dominated by diapsids such as Iguanodon Megalosaurus Plesiosaurus and Pterodactylus The current name was proposed in 1840 by the British geologist John Phillips 1800 1874 Mesozoic literally means middle life deriving from the Greek prefix meso meso between and zōon zῷon animal living being 4 5 In this way the Mesozoic is comparable to the Cenozoic lit new life and Paleozoic old life Eras as well as the Proterozoic earlier life Eon The Mesozoic Era was originally described as the secondary era following the primary Paleozoic and preceding the Tertiary 6 Geologic periods EditFollowing the Paleozoic the Mesozoic extended roughly 186 million years from 251 902 to 66 million years ago when the Cenozoic Era began This time frame is separated into three geologic periods From oldest to youngest Triassic 251 902 to 201 3 million years ago Jurassic 201 3 to 145 million years ago Cretaceous 145 to 66 million years ago The lower boundary of the Mesozoic is set by the Permian Triassic extinction event during which it has been estimated that up to 90 96 of marine species became extinct 7 although those approximations have been brought into question with some paleontologists estimating the actual numbers as low as 81 8 It is also known as the Great Dying because it is considered the largest mass extinction in the Earth s history The upper boundary of the Mesozoic is set at the Cretaceous Paleogene extinction event or K Pg extinction event 9 which may have been caused by an asteroid impactor that created Chicxulub Crater on the Yucatan Peninsula Towards the Late Cretaceous large volcanic eruptions are also believed to have contributed to the Cretaceous Paleogene extinction event Approximately 50 of all genera became extinct including all of the non avian dinosaurs Triassic Edit The Triassic ranges roughly from 252 million to 201 million years ago preceding the Jurassic Period The period is bracketed between the Permian Triassic extinction event and the Triassic Jurassic extinction event two of the big five and it is divided into three major epochs Early Middle and Late Triassic 10 The Early Triassic about 252 to 247 million years ago was dominated by deserts in the interior of the Pangaea supercontinent The Earth had just witnessed a massive die off in which 95 of all life became extinct and the most common vertebrate life on land were Lystrosaurus labyrinthodonts and Euparkeria along with many other creatures that managed to survive the Permian extinction Temnospondyls reached peak diversity during the early Triassic 11 Plateosaurus a prosauropod The Middle Triassic from 247 to 237 million years ago featured the beginnings of the breakup of Pangaea and the opening of the Tethys Ocean Ecosystems had recovered from the Permian extinction Algae sponge corals and crustaceans all had recovered and new aquatic reptiles evolved such as ichthyosaurs and nothosaurs On land pine forests flourished as did groups of insects like mosquitoes and fruit flies Reptiles began to get bigger and bigger and the first crocodilians and dinosaurs evolved which sparked competition with the large amphibians that had previously ruled the freshwater world respectively mammal like reptiles on land 12 Following the bloom of the Middle Triassic the Late Triassic from 237 to 201 million years ago featured frequent heat spells and moderate precipitation 10 20 inches per year The recent warming led to a boom of dinosaurian evolution on land as those one began to separate from each other Nyasasaurus from 243 to 210 million years ago approximately 235 30 ma some of them separated into Sauropodomorphs Theropods and Herrerasaurids as well as the first pterosaurs During the Late Triassic some advanced cynodonts gave rise to the first Mammaliaformes All this climatic change however resulted in a large die out known as the Triassic Jurassic extinction event in which many archosaurs excluding pterosaurs dinosaurs and crocodylomorphs most synapsids and almost all large amphibians became extinct as well as 34 of marine life in the Earth s fourth mass extinction event The cause is debatable 13 14 flood basalt eruptions at the Central Atlantic magmatic province is cited as one possible cause Jurassic Edit SericipterusThe Jurassic ranges from 200 million years to 145 million years ago and features three major epochs The Early Jurassic the Middle Jurassic and the Late Jurassic 15 The Early Jurassic spans from 200 to 175 million years ago 15 The climate was tropical and much more humid than the Triassic as a result of the large seas appearing between the land masses In the oceans plesiosaurs ichthyosaurs and ammonites were abundant On land dinosaurs and other archosaurs staked their claim as the dominant race with theropods such as Dilophosaurus at the top of the food chain The first true crocodiles evolved pushing the large amphibians to near extinction All in all archosaurs rose to rule the world Meanwhile the first true mammals evolved remaining relatively small but spreading widely the Jurassic Castorocauda for example had adaptations for swimming digging and catching fish Fruitafossor from the late Jurassic Period about 150 million years ago was about the size of a chipmunk and its teeth forelimbs and back suggest that it dug open the nests of social insects probably termites as ants had not yet appeared Volaticotherium was able to glide for short distances like modern flying squirrels The first multituberculates like Rugosodon evolved The Middle Jurassic spans from 175 to 163 million years ago 15 During this epoch dinosaurs flourished as huge herds of sauropods such as Brachiosaurus and Diplodocus filled the fern prairies chased by many new predators such as Allosaurus Conifer forests made up a large portion of the forests In the oceans plesiosaurs were quite common and ichthyosaurs flourished This epoch was the peak of the reptiles 16 failed verification self published source Stegosaurus The Late Jurassic spans from 163 to 145 million years ago 15 During this epoch the first avialans like Archaeopteryx evolved from small coelurosaurian dinosaurs The increase in sea levels opened up the Atlantic seaway which has grown continually larger until today The further separation of the continents gave opportunity for the diversification of new dinosaurs Cretaceous EditThe Cretaceous is the longest period of the Mesozoic but has only two epochs Early and Late Cretaceous 17 Tylosaurus a mosasaur hunting Xiphactinus The Early Cretaceous spans from 145 to 100 million years ago 17 The Early Cretaceous saw the expansion of seaways and a decline in diversity of sauropods stegosaurs and other high browsing groups with sauropods particularly scarce in North America 18 Some island hopping dinosaurs like Eustreptospondylus evolved to cope with the coastal shallows and small islands of ancient Europe Other dinosaurs rose up to fill the empty space that the Jurassic Cretaceous extinction left behind such as Carcharodontosaurus and Spinosaurus citation needed Seasons came back into effect and the poles got seasonally colder but some dinosaurs still inhabited the polar forests year round such as Leaellynasaura and Muttaburrasaurus The poles were too cold for crocodiles and became the last stronghold for large amphibians like Koolasuchus Pterosaurs got larger as genera like Tapejara and Ornithocheirus evolved Mammals continued to expand their range eutriconodonts produced fairly large wolverine like predators like Repenomamus and Gobiconodon early therians began to expand into metatherians and eutherians and cimolodont multituberculates went on to become common in the fossil record The Late Cretaceous spans from 100 to 66 million years ago The Late Cretaceous featured a cooling trend that would continue in the Cenozoic Era Eventually tropics were restricted to the equator and areas beyond the tropic lines experienced extreme seasonal changes in weather Dinosaurs still thrived as new taxa such as Tyrannosaurus Ankylosaurus Triceratops and hadrosaurs dominated the food web In the oceans mosasaurs ruled filling the role of the ichthyosaurs which after declining had disappeared in the Cenomanian Turonian boundary event Though pliosaurs had gone extinct in the same event long necked plesiosaurs such as Elasmosaurus continued to thrive Flowering plants possibly appearing as far back as the Triassic became truly dominant for the first time Pterosaurs in the Late Cretaceous declined for poorly understood reasons though this might be due to tendencies of the fossil record as their diversity seems to be much higher than previously thought Birds became increasingly common and diversified into a variety of enantiornithe and ornithurine forms Though mostly small marine hesperornithes became relatively large and flightless adapted to life in the open sea Metatherians and primitive eutherian also became common and even produced large and specialised genera like Didelphodon and Schowalteria Still the dominant mammals were multituberculates cimolodonts in the north and gondwanatheres in the south At the end of the Cretaceous the Deccan traps and other volcanic eruptions were poisoning the atmosphere As this continued it is thought that a large meteor smashed into earth 66 million years ago creating the Chicxulub Crater in an event known as the K Pg Extinction formerly K T the fifth and most recent mass extinction event in which 75 of life became extinct including all non avian dinosaurs 19 20 21 Paleogeography and tectonics EditCompared to the vigorous convergent plate mountain building of the late Paleozoic Mesozoic tectonic deformation was comparatively mild The sole major Mesozoic orogeny occurred in what is now the Arctic citation needed creating the Innuitian orogeny the Brooks Range the Verkhoyansk and Cherskiy Ranges in Siberia and the Khingan Mountains in Manchuria This orogeny was related to the opening of the Arctic Ocean and suturing of the North China and Siberian cratons to Asia 22 In contrast the era featured the dramatic rifting of the supercontinent Pangaea which gradually split into a northern continent Laurasia and a southern continent Gondwana This created the passive continental margin that characterizes most of the Atlantic coastline such as along the U S East Coast today 23 By the end of the era the continents had rifted into nearly their present forms though not their present positions Laurasia became North America and Eurasia while Gondwana split into South America Africa Australia Antarctica and the Indian subcontinent which collided with the Asian plate during the Cenozoic giving rise to the Himalayas Climate EditThe Triassic was generally dry a trend that began in the late Carboniferous and highly seasonal especially in the interior of Pangaea Low sea levels may have also exacerbated temperature extremes With its high specific heat capacity water acts as a temperature stabilizing heat reservoir and land areas near large bodies of water especially oceans experience less variation in temperature Because much of Pangaea s land was distant from its shores temperatures fluctuated greatly and the interior probably included expansive deserts Abundant red beds and evaporites such as halite support these conclusions but some evidence suggests the generally dry climate of was punctuated by episodes of increased rainfall 24 The most important humid episodes were the Carnian Pluvial Event and one in the Rhaetian a few million years before the Triassic Jurassic extinction event Sea levels began to rise during the Jurassic probably caused by an increase in seafloor spreading The formation of new crust beneath the surface displaced ocean waters by as much as 200 m 656 ft above today s sea level flooding coastal areas Furthermore Pangaea began to rift into smaller divisions creating new shoreline around the Tethys Ocean Temperatures continued to increase then began to stabilize Humidity also increased with the proximity of water and deserts retreated The climate of the Cretaceous is less certain and more widely disputed Probably higher levels of carbon dioxide in the atmosphere are thought to have almost eliminated the north south temperature gradient temperatures were about the same across the planet and about 10 C higher than today The circulation of oxygen to the deep ocean may also have been disrupted preventing the decomposition of large volumes of organic matter which was eventually deposited as black shale 25 26 Different studies have come to different conclusions about the amount of oxygen in the atmosphere during different parts of the Mesozoic with some concluding oxygen levels were lower than the current level about 21 throughout the Mesozoic 27 28 some concluding they were lower in the Triassic and part of the Jurassic but higher in the Cretaceous 29 30 31 and some concluding they were higher throughout most or all of the Triassic Jurassic and Cretaceous 32 33 Life EditFlora Edit Conifers were the dominant terrestrial plants for most of the Mesozoic with grasses becoming widespread in the Late Cretaceous Flowering plants appeared late in the era but did not become widespread until the Cenozoic The dominant land plant species of the time were gymnosperms which are vascular cone bearing non flowering plants such as conifers that produce seeds without a coating This contrasts with the earth s current flora in which the dominant land plants in terms of number of species are angiosperms The earliest members of the genus Ginkgo first appeared during the Middle Jurassic This genus is represented today by a single species Ginkgo biloba The extant genus Sequoia is believed to have evolved in the Mesozoic 34 Bennettitales an extinct group of gymnosperms with foliage superficially resembling that of cycads gained a global distribution during the Late Triassic and represented one of the most common groups of Mesozoic seed plants 35 Flowering plants radiated during the early Cretaceous first in the tropics but the even temperature gradient allowed them to spread toward the poles throughout the period By the end of the Cretaceous angiosperms dominated tree floras in many areas although some evidence suggests that biomass was still dominated by cycads and ferns until after the Cretaceous Paleogene extinction Some plant species had distributions that were markedly different from succeeding periods for example the Schizeales a fern order were skewed to the Northern Hemisphere in the Mesozoic but are now better represented in the Southern Hemisphere 36 Fauna Edit Dinosaurs were the dominant terrestrial vertebrates throughout much of the Mesozoic The extinction of nearly all animal species at the end of the Permian Period allowed for the radiation of many new lifeforms In particular the extinction of the large herbivorous pareiasaurs and carnivorous gorgonopsians left those ecological niches empty Some were filled by the surviving cynodonts and dicynodonts the latter of which subsequently became extinct Recent research indicates that it took much longer for the reestablishment of complex ecosystems with high biodiversity complex food webs and specialized animals in a variety of niches beginning in the mid Triassic 4 million to 6 million years after the extinction 37 and not fully proliferated until 30 million years after the extinction 38 Animal life was then dominated by various archosaurs dinosaurs pterosaurs and aquatic reptiles such as ichthyosaurs plesiosaurs and mosasaurs The climatic changes of the late Jurassic and Cretaceous favored further adaptive radiation The Jurassic was the height of archosaur diversity and the first birds and eutherian mammals also appeared Some have argued that insects diversified in symbiosis with angiosperms because insect anatomy especially the mouth parts seems particularly well suited for flowering plants However all major insect mouth parts preceded angiosperms and insect diversification actually slowed when they arrived so their anatomy originally must have been suited for some other purpose citation needed See also Edit Mesozoic portalReferences Edit Jones Daniel 2003 1917 Peter Roach James Hartmann Jane Setter eds English Pronouncing Dictionary Cambridge Cambridge University Press ISBN 978 3 12 539683 8 Mesozoic Dictionary com Unabridged Online n d Dean Dennis R 1999 Gideon Mantell and the Discovery of Dinosaurs Cambridge University Press pp 97 98 ISBN 978 0521420488 See Phillips John 1840 Palaeozoic series Penny Cyclopaedia of the Society for the Diffusion of Useful Knowledge Vol 17 London Charles Knight and Co pp 153 54 As many systems or combinations of organic forms as are clearly traceable in the stratified crust of the globe so many corresponding terms as Palaeozoic Mesozoic Kainozoic amp c may be made Wilmarth Mary Grace 1925 Bulletin 769 The Geologic Time Classification of the United States Geological Survey Compared With Other Classifications accompanied by the original definitions of era period and epoch terms Washington D C U S Government Printing Office p 9 Mesozoic Online Etymology Dictionary Tang Carol Marie Mesozoic Era Encyclopaedia Britannica Encyclopaedia Britannica Retrieved 5 September 2019 Benton M J 2005 Chapter 8 Life s Biggest Challenge When life nearly died the greatest mass extinction of all time London Thames amp Hudson ISBN 978 0 500 28573 2 page needed Stanley Steven M 3 October 2016 Estimates of the magnitudes of major marine mass extinctions in earth history Proceedings of the National Academy of Sciences National Academy of Sciences 113 42 E6325 E6334 Bibcode 2016PNAS 113E6325S doi 10 1073 pnas 1613094113 ISSN 1091 6490 PMC 5081622 PMID 27698119 Gradstein F Ogg J Smith A A Geologic Time Scale 2004 Alan Logan Triassic Period britannica com Ruta Marcello Benton Michael J November 2008 Calibrated Diversity Tree Topology and the Mother of Mass Extinctions The Lesson of Temnospondyls Palaeontology 51 6 1261 1288 doi 10 1111 j 1475 4983 2008 00808 x S2CID 85411546 Rubidge Middle Triassic palaeos com Rampino Michael R amp Haggerty Bruce M 1996 Impact Crises and Mass Extinctions A Working Hypothesis In Ryder Graham Fastovsky David amp Gartner Stefan eds The Cretaceous Tertiary event and other catastrophes in earth history Geological Society of America ISBN 978 0813723075 Enchanted Learning Late Triassic life Enchanted Learning a b c d Carol Marie Tang Jurassic Era britannica com Enchanted Learning Middle Jurassic Enchanted Learning a b Carl Fred Koch Cretaceous britannica com Butler R J Barrett P M Kenrick P Penn M G March 2009 Diversity patterns amongst herbivorous dinosaurs and plants during the Cretaceous implications for hypotheses of dinosaur angiosperm co evolution Journal of Evolutionary Biology 22 3 446 459 doi 10 1111 j 1420 9101 2008 01680 x PMID 19210589 S2CID 26000791 Becker Luann 2002 Repeated Blows Scientific American 286 3 76 83 Bibcode 2002SciAm 286c 76B doi 10 1038 scientificamerican0302 76 PMID 11857903 Cretaceous University of California Elizabeth Howell 3 February 2015 K T Extinction event Universe Today Hughes T August 1975 The case for creation of the North Pacific Ocean during the Mesozoic Era Palaeogeography Palaeoclimatology Palaeoecology 18 1 1 43 Bibcode 1975PPP 18 1H doi 10 1016 0031 0182 75 90015 2 Stanley Steven M Earth System History New York W H Freeman and Company 1999 ISBN 0 7167 2882 6 Preto N Kustatscher E Wignall P B 2010 Triassic climates State of the art and perspectives Palaeogeography Palaeoclimatology Palaeoecology 290 1 4 1 10 Bibcode 2010PPP 290 1P doi 10 1016 j palaeo 2010 03 015 Leckie R Mark Bralower Timothy J Cashman Richard September 2002 Oceanic anoxic events and plankton evolution Biotic response to tectonic forcing during the mid Cretaceous OCEANIC ANOXIC EVENTS AND PLANKTON EVOLUTION Paleoceanography 17 3 13 1 13 29 doi 10 1029 2001PA000623 Turgeon Steven C Creaser Robert A 17 July 2008 Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode Nature 454 7202 323 326 Bibcode 2008Natur 454 323T doi 10 1038 nature07076 PMID 18633415 S2CID 4315155 Robert A Berner John M VandenBrooks and Peter D Ward 2007 Oxygen and Evolution Science 27 April 2007 Vol 316 no 5824 pp 557 58 A graph showing the reconstruction from this paper can be found here from the webpage Paleoclimate The History of Climate Change Berner R A 2006 GEOCARBSULF a combined model for Phanerozoic atmospheric O2 and CO2 Geochim Cosmochim Acta 70 5653 64 See the dotted line in Fig 1 of Atmospheric oxygen level and the evolution of insect body size by Jon F Harrison Alexander Kaiser and John M VandenBrooks Berner Robert A 2009 Phanerozoic atmospheric oxygen New results using the GEOCARBSULF model Am J Sci 309 no 7 603 06 A graph showing the reconstructed levels in this paper can be found on p 31 of the book Living Dinosaurs by Gareth Dyke and Gary Kaiser Berner R A Canfield D E 1989 A new model for atmospheric oxygen over phanerozoic time Am J Sci 289 333 61 See the solid line in Fig 1 of Atmospheric oxygen level and the evolution of insect body size by Jon F Harrison Alexander Kaiser and John M VandenBrooks Berner R et al 2003 Phanerozoic atmospheric oxygen Annu Rev Earth Planet Sci V 31 p 105 34 See the graph near the bottom of the webpage Phanerozoic Eon Archived 27 April 2013 at the Wayback Machine Glasspool I J Scott A C 2010 Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal Nature Geosciences 3 627 30 Bergman N M Lenton T M Watson A J 2004 COPSE a new model of biogeochemical cycling over Phanaerozoic time Am J Sci 304 397 437 See the dashed line in Fig 1 of Atmospheric oxygen level and the evolution of insect body size by Jon F Harrison Alexander Kaiser and John M VandenBrooks Stan Baducci Mesozoic Plants Blomenkemper Patrick Baumer Robert Backer Malte Abu Hamad Abdalla Wang Jun Kerp Hans Bomfleur Benjamin 26 March 2021 Bennettitalean Leaves From the Permian of Equatorial Pangea The Early Radiation of an Iconic Mesozoic Gymnosperm Group Frontiers in Earth Science 9 652699 Bibcode 2021FrEaS 9 162B doi 10 3389 feart 2021 652699 ISSN 2296 6463 C Michael Hogan 2010 Fern Encyclopedia of Earth National council for Science and the Environment Archived 9 November 2011 at the Wayback Machine Washington DC Lehrmann D J Ramezan J Bowring S A et al December 2006 Timing of recovery from the end Permian extinction Geochronologic and biostratigraphic constraints from south China Geology 34 12 1053 56 Bibcode 2006Geo 34 1053L doi 10 1130 G22827A 1 Sahney S amp Benton M J 2008 Recovery from the most profound mass extinction of all time Proceedings of the Royal Society B Biological Sciences 275 1636 759 65 doi 10 1098 rspb 2007 1370 PMC 2596898 PMID 18198148 British Mesozoic Fossils 1983 The Natural History Museum London External links EditMesozoic chronostratigraphy scale Wikisource has original works on the topic Mesozoic Wikimedia Commons has media related to Mesozoic Retrieved from https en wikipedia org w index php title Mesozoic amp oldid 1129359472, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.