fbpx
Wikipedia

Subglacial lake

A subglacial lake is a lake that is found under a glacier, typically beneath an ice cap or ice sheet. Subglacial lakes form at the boundary between ice and the underlying bedrock, where gravitational pressure decreases the pressure melting point of ice.[1][2] Over time, the overlying ice gradually melts at a rate of a few millimeters per year.[3] Meltwater flows from regions of high to low hydraulic pressure under the ice and pools, creating a body of liquid water that can be isolated from the external environment for millions of years.[1][4]

Satellite image of subglacial Lake Vostok in Antarctica. Image credit: NASA

Since the first discoveries of subglacial lakes under the Antarctic Ice Sheet, more than 400 subglacial lakes have been discovered in Antarctica, beneath the Greenland Ice Sheet, and under Iceland's Vatnajökull ice cap.[5][6][7] Subglacial lakes contain a substantial proportion of Earth's liquid freshwater, with the volume of Antarctic subglacial lakes alone estimated to be about 10,000 km3, or about 15% of all liquid freshwater on Earth.[8]

As ecosystems isolated from Earth's atmosphere, subglacial lakes are influenced by interactions between ice, water, sediments, and organisms. They contain active biological communities of extremophilic microbes that are adapted to cold, low-nutrient conditions and facilitate biogeochemical cycles independent of energy inputs from the sun.[9] Subglacial lakes and their inhabitants are of particular interest in the field of astrobiology and the search for extraterrestrial life.[10][11]

Physical characteristics edit

The water in subglacial lakes remains liquid since geothermal heating balances the heat loss at the ice surface. The pressure from the overlying glacier causes the melting point of water to be below 0 °C. The ceiling of the subglacial lake will be at the level where the pressure melting point of water intersects with the temperature gradient. In Lake Vostok, the largest Antarctic subglacial lake, the ice over the lake is thus much thicker than the ice sheet around it. Hypersaline subglacial lakes remain liquid due to their salt content.[5]

Not all lakes with permanent ice cover can be called subglacial, as some are covered by regular lake ice. Some examples of perennially ice-covered lakes include Lake Bonney and Lake Hoare in Antarctica's McMurdo Dry Valleys as well as Lake Hodgson, a former subglacial lake.

Hydrostatic seals edit

The water in a subglacial lake can have a floating level much above the level of the ground threshold. In fact, theoretically a subglacial lake can even exist on the top of a hill, provided that the ice over it is thin enough to form the required hydrostatic seal. The floating level can be thought of as the water level in a hole drilled through the ice into the lake. It is equivalent to the level at which a piece of ice over it would float if it were a normal ice shelf. The ceiling can therefore be conceived as an ice shelf that is grounded along its entire perimeter, which explains why it has been called a captured ice shelf. As it moves over the lake, it enters the lake at the floating line, and it leaves the lake at the grounding line.

A hydrostatic seal is created when the ice is so much higher around the lake that the equipotential surface dips down into impermeable ground. Water from underneath this ice rim is then pressed back into the lake by the hydrostatic seal. The ice rim in Lake Vostok has been estimated to a mere 7 meters, while the floating level is about 3 kilometers above the lake ceiling.[5] If the hydrostatic seal is penetrated when the floating level is high, the water will start flowing out in a jökulhlaup. Due to melting of the channel the discharge increases exponentially, unless other processes allow the discharge to increase even faster. Due to the high hydraulic head that can be achieved in some subglacial lakes, jökulhlaups may reach very high rates of discharge.[7] Catastrophic drainage from subglacial lakes is a known hazard in Iceland, as volcanic activity can create enough meltwater to overwhelm ice dams and lake seals and cause glacial outburst flooding.[12]

Influence on glacier movement edit

The role of subglacial lakes on ice dynamics is unclear. Certainly on the Greenland Ice Sheet subglacial water acts to enhance basal ice motion in a complex manner.[13] The "Recovery Lakes" beneath Antarctica's Recovery Glacier lie at the head of a major ice stream and may influence the dynamics of the region.[14] A modest (10%) speed up of Byrd Glacier in East Antarctica may have been influenced by a subglacial drainage event. The flow of subglacial water is known in downstream areas where ice streams are known to migrate, accelerate or stagnate on centennial time scales and highlights that subglacial water may be discharged over the ice sheet grounding line.[15]

History and expeditions edit

Russian revolutionary and scientist Peter A. Kropotkin first proposed the idea of liquid freshwater under the Antarctic Ice Sheet at the end of the 19th century.[2][16] He suggested that due to the geothermal heating at the bottom of the ice sheets, the temperature beneath the ice could reach the ice melt temperature, which would be below zero. The notion of freshwater beneath ice sheets was further advanced by Russian glaciologist Igor A. Zotikov, who demonstrated via theoretical analysis the possibility of a decrease in Antarctic ice because of melting of ice at a lower surface.[5] As of 2019, there are over 400 subglacial lakes in Antarctica,[7] and it is suspected that there is a possibility of more.[5] Subglacial lakes have also been discovered in Greenland,[6] Iceland, and northern Canada.[17]

 
Russian scientist Peter Kropotkin first proposed the idea of fresh water under Antarctic ice.

Early exploration edit

Scientific advances in Antarctica can be attributed to several major periods of collaboration and cooperation, such as the four International Polar Years (IPY) in 1882-1883, 1932-1933, 1957-1958, and 2007-2008. The success of the 1957-1958 IPY led to the establishment of the Scientific Committee on Antarctic Research (SCAR) and the Antarctic Treaty System, paving the way to formulate a better methodology and process to observe subglacial lakes.

In 1959 and 1964, during two of his four Soviet Antarctic Expeditions, Russian geographer and explorer Andrey P. Kapitsa used seismic sounding to prepare a profile of the layers of the geology below Vostok Station in Antarctica. The original intent of this work was to conduct a broad survey of the Antarctic Ice Sheet. The data collected on these surveys, however, was used 30 years later and led to the discovery of Lake Vostok as a subglacial lake.[18]

Beginning in the late 1950s, English physicists Stan Evans and Gordon Robin began using the radioglaciology technique of radio-echo sounding (RES) to chart ice thickness.[19] Subglacial lakes are identified by (RES) data as continuous and specular reflectors which dip against the ice surface at around x10 of the surface slope angle, as this is required for hydrostatic stability. In the late 1960s, they were able to mount RES instruments on aircraft and acquire data for the Antarctic Ice Sheet.[20] Between 1971 and 1979, the Antarctic Ice Sheet was profiled extensively using RES equipment.[20] The technique of using RES is as follows: 50-meter deep holes are drilled to increase the signal-to-noise ratio in the ice. A small explosion sets off a sound wave, which travels through the ice.[7] This sound wave is reflected and then recorded by the instrument. The time it takes for the wave to travel down and back is noted and converted to a distance using the known speed of sound in ice.[20] RES records can identify subglacial lakes via three specific characteristics: 1) an especially strong reflection from the ice-sheet base, stronger than adjacent ice-bedrock reflections; 2) echoes of constant strength occurring along the track, which indicate that the surface is very smooth; and 3) a very flat and horizontal character with slopes less than 1%.[21][22] Using this approach, 17 subglacial lakes were documented[23] by Kapista and his team. RES also led to the discovery of the first subglacial lake in Greenland[1] and revealed that these lakes are interconnected.[3]

Systematic profiling, using RES, of the Antarctic Ice Sheet took place again between 1971–1979. During this time, a US-UK-Danish collaboration was able to survey about 40% of East Antarctica and 80% of West Antarctica – further defining the subglacial landscape and the behavior of ice flow over the lakes.[4]

Satellite exploration edit

In the early 1990s, radar altimeter data from the European Remote-Sensing Satellite (ERS-1) provided detailed mapping of Antarctica through 82 degrees south.[24] This imaging revealed a flat surface around the northern border of Lake Vostok, and the data collected from ERS-1 further built the geographical distribution of Antarctic subglacial lakes.

In 2005, Laurence Gray and a team of glaciologists began to interpret surface ice slumping and raising from RADARSAT data, which indicated there could be hydrologically “active” subglacial lakes subject to water movement.[25]

Between 2003 and 2009, a survey of long-track measurements of ice-surface elevation using the ICESat satellite as a part of NASA's Earth Observing System produced the first continental-scale map of the active subglacial lakes in Antarctica.[25] In 2009, it was revealed that Lake Cook is the most hydrologically active subglacial lake on the Antarctic continent. Other satellite imagery has been used to monitor and investigate this lake, including ICESat, CryoSat-2, the Advanced Spaceborne Thermal Emission and Reflection Radiometer, and SPOT5.[26][27]

Gray et al. (2005) interpreted ice surface slumping and raising from RADARSAT data as evidence for subglacial lakes filling and emptying - termed "active" lakes.[28] Wingham et al. (2006) used radar altimeter (ERS-1) data to show coincident uplift and subsidence, implying drainage between lakes.[29] NASA's ICESat satellite was key in developing this concept further and subsequent work demonstrated the pervasiveness of this phenomenon.[30][31] ICESat ceased measurements in 2007 and the detected "active" lakes were compiled by Smith et al. (2009) who identified 124 such lakes. The realisation that lakes were interconnected created new contamination concerns for plans to drill into lakes (see the Sampling expeditions section below).

Several lakes were delineated by the famous SPRI-NSF-TUD surveys undertaken until the mid-seventies. Since this original compilation several smaller surveys has discovered many more subglacial lakes throughout Antarctica, notably by Carter et al. (2007), who identified a spectrum of subglacial lake types based on their properties in (RES) datasets.

Sampling expeditions edit

In March 2010, the sixth international conference on subglacial lakes was held at the American Geophysical Union Chapman Conference in Baltimore. The conference allowed engineers and scientists to discuss the equipment and strategies used in ice drilling projects, such as the design of hot-water drills, equipment for water measurement and sampling and sediment recovery, and protocols for experimental cleanliness and environmental stewardship.[20] Following this meeting, SCAR drafted a code of conduct for ice drilling expeditions and in situ (on-site) measurements and sampling of subglacial lakes. This code of conduct was ratified at the Antarctic Treaty Consultative Meeting (ATCM) of 2011. By the end of 2011, three separate subglacial lake drilling exploration missions were scheduled to take place.

In February 2012, Russian ice-core drilling at Lake Vostok accessed the subglacial lake for the first time.[32] Lake water flooded the borehole and froze during the winter season, and the sample of re-frozen lake water (accretion ice) was recovered in the following summer season of 2013. In December 2012, scientists from the UK attempted to access Lake Ellsworth with a clean access hot-water drill;[33] however, the mission was called off because of equipment failure.[34] In January 2013, the US-led Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) expedition measured and sampled Lake Whillans in West Antarctica[35] for microbial life.[36] On 28 December 2018, the Subglacial Antarctic Lakes Scientific Access (SALSA) team announced they had reached Lake Mercer after melting their way through 1,067 m (3,501 ft) of ice with a high-pressure hot-water drill.[9] The team collected water samples and bottom sediment samples down to 6 meters deep.

Distribution edit

Antarctica edit

The majority of the nearly 400 Antarctic subglacial lakes are located in the vicinity of ice divides, where large subglacial drainage basins are overlain by ice sheets. The largest is Lake Vostok with other lakes notable for their size being Lake Concordia and Aurora Lake. An increasing number of lakes are also being identified near ice streams.[1] An altimeter survey by the ERS-2 satellite orbiting the East Antarctic Ice Sheet from 1995 to 2003 indicated clustered anomalies in ice sheet elevation[37] indicating that the East Antarctic lakes are fed by a subglacial system that transports basal meltwater through subglacial streams.

 
An artist's depiction of the subglacial lakes and rivers beneath the Antarctic Ice Sheet. Image credit: Zina Deretsky / US National Science Foundation

The largest Antarctic subglacial lakes are clustered in the Dome C-Vostok area of East Antarctica, possibly due to the thick insulating ice and rugged, tectonically influenced subglacial topography. In West Antarctica, subglacial Lake Ellsworth is situated within the Ellsworth Mountains and is relatively small and shallow.[38] The Siple Coast Ice Streams, also in West Antarctica, overlie numerous small subglacial lakes, including Lakes Whillans, Engelhardt, Mercer, Conway,[38][39] accompanied by their lower neighbours called Lower Conway (LSLC) and Lower Mercer (LSLM).[39]Glacial retreat at the margins of the Antarctic Ice Sheet has revealed several former subglacial lakes, including Progress Lake in East Antarctica and Hodgson Lake on southern Alexander Island near the Antarctic Peninsula.[40]

Greenland edit

The existence of subglacial lakes beneath the Greenland Ice Sheet has only become evident within the last decade.[when?] Radio-echo sounding measurements have revealed two subglacial lakes in the northwest section of the ice sheet.[1] These lakes are likely recharged with water from the drainage of nearby supraglacial lakes rather than from melting of basal ice.[41] Another potential subglacial lake has been identified near the southwestern margin of the ice sheet, where a circular depression beneath the ice sheet evidences recent drainage of the lake caused by climate warming.[42] Such drainage, coupled with heat transfer to the base of the ice sheet through the storage of supraglacial meltwater, is thought to influence the rate of ice flow and overall behavior of the Greenland Ice Sheet.[41]

Iceland edit

Much of Iceland is volcanically active, resulting in significant meltwater production beneath its two ice caps. This meltwater also accumulates in basins and ice cauldrons, forming subglacial lakes.[7] These lakes act as a transport mechanism for heat from geothermal vents to the bottom of the ice caps, which often results in melting of basal ice that replenishes any water lost from drainage.[43] The majority of Icelandic subglacial lakes are located beneath the Vatnajökull and Mýrdalsjökull ice caps, where melting from hydrothermal activity creates permanent depressions that fill with meltwater.[7] Catastrophic drainage from subglacial lakes is a known hazard in Iceland, as volcanic activity can create enough meltwater to overwhelm ice dams and lake seals and cause glacial outburst flooding.[44]

Grímsvötn is perhaps the best known subglacial lake beneath the Vatnajökull ice cap. Other lakes beneath the ice cap lie within the Skatfá, Pálsfjall and Kverkfjöll cauldrons.[7] Notably, subglacial lake Grímsvötn's hydraulic seal remained intact until 1996, when significant meltwater production from the Gjálp eruption resulted in uplift of Grímsvötn's ice dam.[45]

The Mýrdalsjökull ice cap, another key subglacial lake location, sits on top of an active volcano-caldera system in the southernmost part of the Katla volcanic system.[44] Hydrothermal activity beneath the Mýrdalsjökull ice cap is thought to have created at least 12 small depressions within an area constrained by three major subglacial drainage basins.[7] Many of these depressions are known to contain subglacial lakes that are subject to massive, catastrophic drainage events from volcanic eruptions, creating a significant hazard for nearby human populations.[44]

Canada edit

Until very recently, only former subglacial lakes from the last glacial period had been identified in Canada.[46] These paleo-subglacial lakes likely occupied valleys created before the advance of the Laurentide Ice Sheet during the Last Glacial Maximum.[47] However, two subglacial lakes were identified via RES in bedrock troughs under the Devon Ice Cap of Nunavut, Canada.[48] These lakes are thought to be hypersaline as a result of interaction with the underlying salt-bearing bedrock, and are much more isolated than the few identified saline subglacial lakes in Antarctica.[48]

Ecology edit

Unlike surface lakes, subglacial lakes are isolated from Earth's atmosphere and receive no sunlight. Their waters are thought to be ultra-oligotrophic, meaning they contain very low concentrations of the nutrients necessary for life. Despite the cold temperatures, low nutrients, high pressure, and total darkness in subglacial lakes, these ecosystems have been found to harbor thousands of different microbial species and some signs of higher life.[9][36][49] Professor John Priscu, a prominent scientist studying polar lakes, has called Antarctica's subglacial ecosystems "our planet's largest wetland.”[50]

Microorganisms and weathering processes drive a diverse set of chemical reactions that can drive a unique food-web and thus cycle nutrients and energy through subglacial lake ecosystems. No photosynthesis can occur in the darkness of subglacial lakes, so their food webs are instead driven by chemosynthesis and the consumption of ancient organic carbon deposited before glaciation.[36] Nutrients can enter subglacial lakes through the glacier ice-lake water interface, from hydrologic connections, and from the physical, chemical, and biological weathering of subglacial sediments.[9][51]

Biogeochemical cycles edit

 
An illustration of ice core drilling above subglacial Lake Vostok. These drilling efforts collected re-frozen lake water that has been analyzed to understand the lake's chemistry. Image credit: Nicolle Rager-Fuller / US National Science Foundation

Since few subglacial lakes have been directly sampled, much of the existing knowledge about subglacial lake biogeochemistry is based on a small number of samples, mostly from Antarctica. Inferences about solute concentrations, chemical processes, and biological diversity of unsampled subglacial lakes have also been drawn from analyses of accretion ice (re-frozen lake water) at the base of the overlying glaciers.[52][53] These inferences are based on the assumption that accretion ice will have similar chemical signatures as the lake water that formed it. Scientists have thus far discovered diverse chemical conditions in subglacial lakes, ranging from upper lake layers supersaturated in oxygen to bottom layers that are anoxic and sulfur-rich.[54] Despite their typically oligotrophic conditions, subglacial lakes and sediments are thought to contain regionally and globally significant amounts of nutrients, particularly carbon.[55][12][56][57][58]

At the lake-ice interface edit

Air clathrates trapped in glacial ice are the main source of oxygen entering otherwise enclosed subglacial lake systems. As the bottom layer of ice over the lake melts, clathrates are freed from the ice's crystalline structure and gases such as oxygen are made available to microbes for processes like aerobic respiration.[59] In some subglacial lakes, freeze-melt cycles at the lake-ice interface may enrich the upper lake water with oxygen concentrations that are 50 times higher than in typical surface waters.[60]

Melting of the layer of glacial ice above the subglacial lake also supplies underlying waters with iron, nitrogen, and phosphorus-containing minerals, in addition to some dissolved organic carbon and bacterial cells.[9][12][51]

In the water column edit

Because air clathrates from melting glacial ice are the primary source of oxygen to subglacial lake waters, the concentration of oxygen generally decreases with depth in the water column if turnover is slow.[61] Oxic or slightly suboxic waters often reside near the glacier-lake interface, while anoxia dominates in the lake interior and sediments due to respiration by microbes.[62] In some subglacial lakes, microbial respiration may consume all of the oxygen in the lake, creating an entirely anoxic environment until new oxygen-rich water flows in from connected subglacial environments.[63] The addition of oxygen from ice melt and the consumption of oxygen by microbes may create redox gradients in the subglacial lake water column, with aerobic microbial mediated processes like nitrification occurring in the upper waters and anaerobic processes occurring in the anoxic bottom waters.[51]

Concentrations of solutes in subglacial lakes, including major ions and nutrients like sodium, sulfate, and carbonates, are low compared to typical surface lakes.[51] These solutes enter the water column from glacial ice melting and from sediment weathering.[51][58] Despite their low solute concentrations, the large volume of subglacial waters make them important contributors of solutes, particularly iron, to their surrounding oceans.[64][58][65] Subglacial outflow from the Antarctic Ice Sheet, including outflow from subglacial lakes, is estimated to add a similar amount of solutes to the Southern Ocean as some of the world's largest rivers.[58]

The subglacial water column is influenced by the exchange of water between lakes and streams under ice sheets through the subglacial drainage system; this behavior likely plays an important role in biogeochemical processes, leading to changes in microbial habitat, particularly regarding oxygen and nutrient concentrations.[51][61] Hydrologic connectivity of subglacial lakes also alters water residence times, or amount of time that water stays within the subglacial lake reservoir. Longer residence times, such as those found beneath the interior Antarctic Ice Sheet, would lead to greater contact time between the water and solute sources, allowing for greater accumulation of solutes than in lakes with shorter residence times.[58][57] Estimated residence times of currently studied subglacial lakes range from about 13,000 years in Lake Vostok to just decades in Lake Whillans.[66][67]

The morphology of subglacial lakes has the potential to change their hydrology and circulation patterns. Areas with the thickest overlying ice experience greater rates of melting. The opposite occurs in areas where the ice sheet is thinnest, which allows re-freezing of lake water to occur.[22] These spatial variations in melting and freezing rates lead to internal convection of water and circulation of solutes, heat, and microbial communities throughout the subglacial lake, which will vary among subglacial lakes of different regions.[51][61]

In sediments edit

Subglacial sediments are primarily composed of glacial till that formed during physical weathering of subglacial bedrock.[51] Anoxic conditions prevail in these sediments due to oxygen consumption by microbes, particularly during sulfide oxidation.[51][17][58] Sulfide minerals are generated by weathering of bedrock by the overlying glacier, after which these sulfides are oxidized to sulfate by aerobic or anaerobic bacteria, which can use iron for respiration when oxygen is unavailable.[59]

The products of sulfide oxidation can enhance the chemical weathering of carbonate and silicate minerals in subglacial sediments, particularly in lakes with long residence times.[51][58] Weathering of carbonate and silicate minerals from lake sediments also releases other ions including potassium (K+), magnesium (Mg2+), sodium (Na+), and calcium (Ca2+) to lake waters.[58]

Other biogeochemical processes in anoxic subglacial sediments include denitrification, iron reduction, sulfate reduction, and methanogenesis (see Reservoirs of organic carbon below).[51]

Reservoirs of organic carbon edit

Subglacial sedimentary basins under the Antarctic Ice Sheet have accumulated an estimated ~21,000 petagrams of organic carbon, most of which comes from ancient marine sediments.[56] This is more than 10 times the amount of organic carbon contained in Arctic permafrost[68] and may rival the amount of reactive carbon in modern ocean sediments,[69] potentially making subglacial sediments an important but understudied component of the global carbon cycle.[57] In the event of ice sheet collapse, subglacial organic carbon could be more readily respired and thus released to the atmosphere and create a positive feedback on climate change.[70][56][57]

The microbial inhabitants of subglacial lakes likely play an important role in determining the form and fate of sediment organic carbon. In the anoxic sediments of subglacial lake ecosystems, organic carbon can be used by archaea for methanogenesis, potentially creating large pools of methane clathrate in the sediments that could be released during ice sheet collapse or when lake waters drain to ice sheet margins.[71] Methane has been detected in subglacial Lake Whillans,[72] and experiments have shown that methanogenic archaea can be active in sediments beneath both Antarctic and Arctic glaciers.[73]

Most of the methane that escapes storage in subglacial lake sediments appears to be consumed by methanotrophic bacteria in oxygenated upper waters. In subglacial Lake Whillans, scientists found that bacterial oxidation consumed 99% of the available methane.[72] There is also evidence for active methane production and consumption beneath the Greenland Ice Sheet.[74]

Antarctic subglacial waters are also thought to contain substantial amounts of organic carbon in the form of dissolved organic carbon and bacterial biomass.[12] At an estimated 1.03 x 10−2 petagrams, the amount of organic carbon in subglacial lake waters is far smaller than that contained in Antarctic subglacial sediments, but is only one order of magnitude smaller than the amount of organic carbon in all surface freshwaters (5.10 x 10−1 petagrams).[12] This relatively smaller, but potentially more reactive, reservoir of subglacial organic carbon may represent another gap in scientists’ understanding of the global carbon cycle.[12]

Biology edit

Subglacial lakes were originally assumed to be sterile,[75] but over the last thirty years, active microbial life and signs of higher life have been discovered in subglacial lake waters, sediments, and accreted ice.[9][61] Subglacial waters are now known to contain thousands of microbial species, including bacteria, archaea, and potentially some eukaryotes. These extremophilic organisms are adapted to below-freezing temperatures, high pressure, low nutrients, and unusual chemical conditions.[9][61] Researching microbial diversity and adaptations in subglacial lakes is of particular interest to scientists studying astrobiology, as well as the history and limits of life on Earth.

Food web structure and sources of energy edit

In most surface ecosystems, photosynthetic plants and microbes are the main primary producers that form the base of the lake food web. Photosynthesis is impossible in the permanent darkness of subglacial lakes, so these food webs are instead driven by chemosynthesis.[36] In subglacial ecosystems, chemosynthesis is mainly carried out by chemolithoautotrophic microbes.[76][63][77]

Like plants, chemolithoautotrophs fix carbon dioxide (CO2) into new organic carbon, making them the primary producers at the base of subglacial lake food webs. Rather than using sunlight as an energy source, chemolithoautotrophs get energy from chemical reactions in which inorganic elements from the lithosphere are oxidized or reduced . Common elements used by chemolithoautotrophs in subglacial ecosystems include sulfide, iron, and carbonates weathered from sediments.[9]

In addition to mobilizing elements from sediments, chemolithoautotrophs create enough new organic matter to support heterotrophic bacteria in subglacial ecosystems.[36][63] Heterotrophic bacteria consume the organic material produced by chemolithoautotrophs, as well as consuming organic matter from sediments or from melting glacial ice.[12][53] Despite the resources available to subglacial lake heterotrophs, these bacteria appear to be exceptionally slow-growing, potentially indicating that they dedicate most of their energy to survival rather than growth.[63] Slow heterotrophic growth rates could also be explained by the cold temperatures in subglacial lakes, which slow down microbial metabolism and reaction rates.[78]

The variable redox conditions and diverse elements available from sediments provide opportunities for many other metabolic strategies in subglacial lakes. Other metabolisms used by subglacial lake microbes include methanogenesis, methanotrophy, and chemolithoheterotrophy, in which bacteria consume organic matter while oxidizing inorganic elements.[72][79][36]

Some limited evidence for microbial eukaryotes and multicellular animals in subglacial lakes could expand current ideas of subglacial food webs.[49][80] If present, these organisms could survive by consuming bacteria and other microbes.

Nutrient limitation edit

Subglacial lake waters are considered to be ultra-oligotrophic and contain low concentrations of nutrients, particularly nitrogen and phosphorus.[51][81] In surface lake ecosystems, phosphorus has traditionally been thought of as the limiting nutrient that constrains growth in the ecosystem, although co-limitation by both nitrogen and phosphorus supply seems most common.[82][83] However, evidence from subglacial Lake Whillans suggests that nitrogen is the limiting nutrient in some subglacial waters, based on measurements showing that the ratio of nitrogen to phosphorus is very low compared to the Redfield ratio.[36] An experiment showed that bacteria from Lake Whillans grew slightly faster when supplied with phosphorus as well as nitrogen, potentially contradicting the idea that growth in these ecosystems is limited by nitrogen alone.[63]

Biological diversity in explored subglacial lakes edit

Biological exploration of subglacial lakes has focused on Antarctica, but the financial and logistical challenges of drilling through the Antarctic Ice Sheet for sample collection have limited successful direct samplings of Antarctic subglacial lake water to Lake Whillans and Lake Mercer. Volcanic subglacial lakes under Iceland's Vatnajökull ice cap have also been sampled.

Antarctica edit
 
The first view of the sediment at the bottom of subglacial Lake Whillans, captured by the WISSARD expedition. Image credit: NASA/JPL, California Institute of Technology

In subglacial Lake Whillans, the WISSARD expedition collected sediment cores and water samples, which contained 130,000 microbial cells per milliliter and 3,914 different bacterial species.[36] The team identified active bacteria that were metabolizing ammonia, methane, and sulfur from the 120,000-year-old sediments.[79] The most abundant bacteria identified were related to Thiobacillus, Sideroxyans, and pscyhrophilic Polaromonas species.[36][79]

In January 2019, the SALSA team collected sediment and water samples from subglacial Lake Mercer and found diatom shells and well-preserved carcasses from crustaceans and a tardigrade.[49] Although the animals were dead, the team also found bacterial concentrations of 10,000 cells per milliliter, suggesting the potential for animals to survive in the lake by consuming bacteria.[49] The team will continue analyzing the samples to further investigate the chemistry and biology of the lake.

Lake Vostok is the best-studied Antarctic subglacial lake, but its waters have only been studied through analysis of accretion ice from the bottom of ice cores taken during Russian drilling efforts above the lake. Actively growing bacteria and thousands of unique DNA sequences from bacteria, archaea, and eukaryotes have been found in Lake Vostok's accretion ice.[84][52][80] Some DNA appeared to come from multicellular eukaryotes, including species seemingly related to freshwater Daphnia, tardigrades, and mollusks.[80] These species may have survived in the lake and slowly adapted to the changing conditions since Vostok was last exposed to the atmosphere millions of years ago. However, the samples were likely contaminated by drilling fluid while being collected, so some of the identified organisms probably did not live in the lake.[85]

 
A schematic cross-section of the subglacial pool beneath Taylor Glacier and its outflow, Blood Falls. Image credit: Zina Deretsky / US National Science Foundation

Other subglacial sampling efforts in Antarctica include the subglacial pool of anoxic, hypersaline water under Taylor Glacier, which harbors a microbial community that was sealed off from the atmosphere 1.5 to 2 million years ago.[86] Bacteria under Taylor Glacier appear to have a novel metabolic strategy that uses sulfate and ferric ions to decompose organic matter.[86]

Greenland edit

No direct sampling of subglacial lakes has been attempted on the Greenland Ice Sheet. However, subglacial outflow waters have been sampled and found to contain methanogenic and methanotrophic microbes.[74] Bacteria have also been discovered within the ice sheet itself, but they are unlikely to be active within the ice.[87]

Iceland edit

Subglacial lakes under Iceland's Vatnajökull ice cap provide unique habitats for microbial life because they receive heat and chemical inputs from subglacial volcanic activity, influencing the chemistry of lower lake waters and sediments.[88] Active psychrophilic, autotrophic bacteria have been discovered in the lake below the Grímsvötn volcanic caldera.[89] A low-diversity microbial community has also been found in the east Skaftárketill and Kverkfjallalón subglacial lakes, where bacteria include Geobacter and Desulfuosporosinus species that can use sulfur and iron for anaerobic respiration.[90] In the western Skaftá lake, the anoxic bottom waters appear to be dominated by acetate-producing bacteria rather than methanogens.[81]

Refugia for ancient life edit

In some cases, subglacial lake waters have been isolated for millions of years, and these “fossil waters” may harbor evolutionarily distinct microbial communities.[86] Some subglacial lakes in East Antarctica have existed for about 20 million years, but the interconnected subglacial drainage system between lakes under the Antarctic Ice Sheet implies that lake waters have probably not been isolated over the entire lifespan of the lake.[12]

During the proposed Snowball Earth period of the late Proterozoic, extensive glaciation could have completely covered Earth's surface in ice for 10 million years.[91] Life would have survived primarily in glacial and subglacial environments, making modern subglacial lakes an important study system for understanding this period in Earth's history. More recently, subglacial lakes in Iceland may have provided a refuge for subterranean amphipods during the Quaternary glacial period.[92]

Implications for extraterrestrial life edit

 
A view of the southern polar plain of Mars. The area where a subglacial lake has been detected is highlighted. Image credit: USGS Astrogeology Science Center, Arizona State University

Subglacial lakes are an analog environment for extraterrestrial ice-covered water bodies, making them an important study system in the field of astrobiology, which is the study of the potential for life to exist outside Earth. Discoveries of living extremophilic microbes in Earth's subglacial lakes could suggest that life may persist in similar environments on extraterrestrial bodies.[11][10] Subglacial lakes also provide study systems for planning research efforts in remote, logistically challenging locations that are sensitive to biological contamination.[93][94]

Jupiter's moon Europa and Saturn’s moon Enceladus are promising targets in the search for extraterrestrial life. Europa contains an extensive ocean covered by an icy crust, and Enceladus is also thought to harbor a subglacial ocean.[95][96] Satellite analysis of an icy water vapor plume escaping from fissures in Enceladus' surface reveals significant subsurface production of hydrogen, which may point towards the reduction of iron-bearing minerals and organic matter.[97]

A subglacial lake on Mars was discovered in 2018 using RES on the Mars Express spacecraft.[98] This body of water was found beneath Mars’ South Polar Layered Deposits, and is suggested to have formed as a result of geothermal heating causing melting beneath the ice cap.[99]

See also edit

References edit

  1. ^ a b c d e Palmer, Steven J.; Dowdeswell, Julian A.; Christoffersen, Poul; Young, Duncan A.; Blankenship, Donald D.; Greenbaum, Jamin S.; Benham, Toby; Bamber, Jonathan; Siegert, Martin J. (2013-12-16). "Greenland subglacial lakes detected by radar: GREENLAND SUBGLACIAL LAKES DISCOVERED". Geophysical Research Letters. 40 (23): 6154–6159. Bibcode:2013GeoRL..40.6154P. doi:10.1002/2013GL058383. hdl:10871/30231. S2CID 55286616.
  2. ^ a b Siegert, Martin John; Kennicutt, Mahlon C. (2018-09-12). "Governance of the Exploration of Subglacial Antarctica". Frontiers in Environmental Science. 6: 103. doi:10.3389/fenvs.2018.00103. hdl:10044/1/63886. ISSN 2296-665X.
  3. ^ a b Le Brocq, Anne M.; Ross, Neil; Griggs, Jennifer A.; Bingham, Robert G.; Corr, Hugh F. J.; Ferraccioli, Fausto; Jenkins, Adrian; Jordan, Tom A.; Payne, Antony J.; Rippin, David M.; Siegert, Martin J. (2013). "Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet". Nature Geoscience. 6 (11): 945–948. Bibcode:2013NatGe...6..945L. doi:10.1038/ngeo1977. ISSN 1752-0908.
  4. ^ a b Drewry, D (1983). "Antarctica: Glaciological and Geophysical Folio". University of Cambridge, Scott Polar Research Institute. 2.
  5. ^ a b c d e Davies, Bethan. "Antarctic Glaciers". AntarcticGlaciers.org. Retrieved 2019-12-16.
  6. ^ a b Bowling, J. S.; Livingstone, S. J.; Sole, A. J.; Chu, W. (2019-06-26). "Distribution and dynamics of Greenland subglacial lakes". Nature Communications. 10 (1): 2810. Bibcode:2019NatCo..10.2810B. doi:10.1038/s41467-019-10821-w. ISSN 2041-1723. PMC 6594964. PMID 31243282.
  7. ^ a b c d e f g h Björnsson, Helgi (2003-02-01). "Subglacial lakes and jökulhlaups in Iceland". Global and Planetary Change. Subglacial Lakes: A Planetary Perspective. 35 (3): 255–271. Bibcode:2003GPC....35..255B. doi:10.1016/S0921-8181(02)00130-3. ISSN 0921-8181.
  8. ^ Dowdeswell, Julian A; Siegert, Martin J (February 2003). "The physiography of modern Antarctic subglacial lakes". Global and Planetary Change. 35 (3–4): 221–236. Bibcode:2003GPC....35..221D. doi:10.1016/S0921-8181(02)00128-5.
  9. ^ a b c d e f g h Christner, Brent (2008). Bacteria in Subglacial Environments. Heidelberg, Berlin: Springer-Verlag. pp. 51–71.
  10. ^ a b Petit, Jean Robert; Alekhina, Irina; Bulat, Sergey (2005), Gargaud, Muriel; Barbier, Bernard; Martin, Hervé; Reisse, Jacques (eds.), "Lake Vostok, Antarctica: Exploring a Subglacial Lake and Searching for Life in an Extreme Environment", Lectures in Astrobiology: Volume I, Advances in Astrobiology and Biogeophysics, Springer Berlin Heidelberg, pp. 227–288, Bibcode:2005leas.book..227P, doi:10.1007/10913406_8, ISBN 978-3-540-26229-9
  11. ^ a b Rampelotto, Pabulo Henrique (2010). "Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology". Sustainability. 2 (6): 1602–1623. Bibcode:2010Sust....2.1602R. doi:10.3390/su2061602.
  12. ^ a b c d e f g h Priscu, John C.; Tulaczyk, Slawek; Studinger, Michael; Ii, Mahlon C. Kennicutt; Christner, Brent C.; Foreman, Christine M. (2008-09-11). Antarctic subglacial water: origin, evolution, and ecology. Oxford University Press. doi:10.1093/acprof:oso/9780199213887.001.0001. ISBN 978-0-19-170750-6.
  13. ^ Zwally, H. J. (2002-07-12). "Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow". Science. 297 (5579): 218–222. Bibcode:2002Sci...297..218Z. doi:10.1126/science.1072708. PMID 12052902. S2CID 37381126.
  14. ^ Bell, Robin E.; Studinger, Michael; Shuman, Christopher A.; Fahnestock, Mark A.; Joughin, Ian (February 2007). "Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams". Nature. 445 (7130): 904–907. Bibcode:2007Natur.445..904B. doi:10.1038/nature05554. ISSN 0028-0836. PMID 17314977. S2CID 4387826.
  15. ^ Fricker, Helen Amanda; Scambos, Ted (2009). "Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008". Journal of Glaciology. 55 (190): 303–315. Bibcode:2009JGlac..55..303F. doi:10.3189/002214309788608813. ISSN 0022-1430.
  16. ^ Kropotkin, Peter (1876). "Research on the Ice Age". Notices of the Imperial Russian Geographical Society.
  17. ^ a b Rutishauser, Anja; Blankenship, Donald D.; Sharp, Martin; Skidmore, Mark L.; Greenbaum, Jamin S.; Grima, Cyril; Schroeder, Dustin M.; Dowdeswell, Julian A.; Young, Duncan A. (2018-04-01). "Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic". Science Advances. 4 (4): eaar4353. Bibcode:2018SciA....4.4353R. doi:10.1126/sciadv.aar4353. ISSN 2375-2548. PMC 5895444. PMID 29651462.
  18. ^ Kapitsa, A. P.; Ridley, J. K.; de Q. Robin, G.; Siegert, M. J.; Zotikov, I. A. (1996). "A large deep freshwater lake beneath the ice of central East Antarctica". Nature. 381 (6584): 684–686. Bibcode:1996Natur.381..684K. doi:10.1038/381684a0. ISSN 1476-4687. S2CID 4335254.
  19. ^ Glen, J. W.; G., J. W. (1959). Swithinbank, Charles; Schytt, Valter; Robin, G. de Q. (eds.). "Glaciological Research by the Norwegian-British-Swedish Antarctic Expedition: Review". The Geographical Journal. 125 (2): 239–243. doi:10.2307/1790509. ISSN 0016-7398. JSTOR 1790509.
  20. ^ a b c d Siegert, Martin J. (2018-01-01). "A 60-year international history of Antarctic subglacial lake exploration". Geological Society, London, Special Publications. 461 (1): 7–21. Bibcode:2018GSLSP.461....7S. doi:10.1144/SP461.5. hdl:10044/1/44066. ISSN 0305-8719.
  21. ^ Davies, Bethan. "Antarctic subglacial lakes". AntarcticGlaciers.org. Retrieved 2019-11-13.
  22. ^ a b Siegert, M.J. (2000). "Antarctic subglacial lakes". Earth-Science Reviews. 50 (1): 29–50. Bibcode:2000ESRv...50...29S. doi:10.1016/S0012-8252(99)00068-9.
  23. ^ Oswald, G. K. A.; Robin, G. De Q. (1973). "Lakes Beneath the Antarctic Ice Sheet". Nature. 245 (5423): 251–254. Bibcode:1973Natur.245..251O. doi:10.1038/245251a0. ISSN 1476-4687. S2CID 4271414.
  24. ^ Ridley, Jeff K.; Cudlip, Wyn; Laxon, Seymour W. (1993). "Identification of subglacial lakes using ERS-1 radar altimeter". Journal of Glaciology. 39 (133): 625–634. Bibcode:1993JGlac..39..625R. doi:10.3189/S002214300001652X. ISSN 0022-1430.
  25. ^ a b Smith, Benjamin E.; Fricker, Helen A.; Joughin, Ian R.; Tulaczyk, Slawek (2009). "An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008)". Journal of Glaciology. 55 (192): 573–595. Bibcode:2009JGlac..55..573S. doi:10.3189/002214309789470879. ISSN 0022-1430.
  26. ^ McMillan, Malcolm; Corr, Hugh; Shepherd, Andrew; Ridout, Andrew; Laxon, Seymour; Cullen, Robert (2013). "Three-dimensional mapping by CryoSat-2 of subglacial lake volume changes" (PDF). Geophysical Research Letters. 40 (16): 4321–4327. Bibcode:2013GeoRL..40.4321M. doi:10.1002/grl.50689. ISSN 1944-8007.
  27. ^ Flament, T.; Berthier, E.; Rémy, F. (2014). "Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models". The Cryosphere. 8 (2): 673–687. Bibcode:2014TCry....8..673F. doi:10.5194/tc-8-673-2014. ISSN 1994-0416.
  28. ^ Gray, Laurence (2005). "Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry". Geophysical Research Letters. 32 (3): L03501. Bibcode:2005GeoRL..32.3501G. doi:10.1029/2004GL021387. ISSN 0094-8276. S2CID 129854069.
  29. ^ Wingham, Duncan J.; Siegert, Martin J.; Shepherd, Andrew; Muir, Alan S. (April 2006). "Rapid discharge connects Antarctic subglacial lakes". Nature. 440 (7087): 1033–1036. Bibcode:2006Natur.440.1033W. doi:10.1038/nature04660. ISSN 0028-0836. PMID 16625193. S2CID 4342795.
  30. ^ Fricker, H. A.; Scambos, T.; Bindschadler, R.; Padman, L. (2007-03-16). "An Active Subglacial Water System in West Antarctica Mapped from Space". Science. 315 (5818): 1544–1548. Bibcode:2007Sci...315.1544F. doi:10.1126/science.1136897. ISSN 0036-8075. PMID 17303716. S2CID 35995169.
  31. ^ Fricker, Helen Amanda; Scambos, Ted; Carter, Sasha; Davis, Curt; Haran, Terry; Joughin, Ian (2010). "Synthesizing multiple remote-sensing techniques for subglacial hydrologic mapping: application to a lake system beneath MacAyeal Ice Stream, West Antarctica". Journal of Glaciology. 56 (196) (2010 ed.): 187–199. Bibcode:2010JGlac..56..187F. doi:10.3189/002214310791968557. ISSN 0022-1430.
  32. ^ Lukin, Valery V.; Vasiliev, Nikolay I. (2014). "Technological aspects of the final phase of drilling borehole 5G and unsealing Vostok Subglacial Lake, East Antarctica". Annals of Glaciology. 55 (65): 83–89. Bibcode:2014AnGla..55...83L. doi:10.3189/2014AoG65A002. ISSN 0260-3055.
  33. ^ Siegert, Martin J.; Clarke, Rachel J.; Mowlem, Matt; Ross, Neil; Hill, Christopher S.; Tait, Andrew; Hodgson, Dominic; Parnell, John; Tranter, Martyn; Pearce, David; Bentley, Michael J. (2012-01-07). "Clean access, measurement, and sampling of Ellsworth Subglacial Lake: A method for exploring deep Antarctic subglacial lake environments" (PDF). Reviews of Geophysics. 50 (1): RG1003. Bibcode:2012RvGeo..50.1003S. doi:10.1029/2011RG000361. hdl:20.500.11820/8976cabf-cb97-4d9b-b1e8-7ef44081ad18. ISSN 8755-1209. S2CID 89606153.
  34. ^ Siegert, Martin J.; Makinson, Keith; Blake, David; Mowlem, Matt; Ross, Neil (2014). "An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: experience and lessons learned from the Lake Ellsworth field season 2012/13". Annals of Glaciology. 55 (65): 59–73. Bibcode:2014AnGla..55...59S. doi:10.3189/2014AoG65A008. ISSN 0260-3055.
  35. ^ Siegert, Martin J.; Priscu, John C.; Alekhina, Irina A.; Wadham, Jemma L.; Lyons, W. Berry (2016-01-28). "Antarctic subglacial lake exploration: first results and future plans". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374 (2059): 20140466. Bibcode:2016RSPTA.37440466S. doi:10.1098/rsta.2014.0466. PMC 4685969. PMID 26667917.
  36. ^ a b c d e f g h i Christner, Brent C.; Priscu, John C.; Achberger, Amanda M.; Barbante, Carlo; Carter, Sasha P.; Christianson, Knut; Michaud, Alexander B.; Mikucki, Jill A.; Mitchell, Andrew C.; Skidmore, Mark L.; Vick-Majors, Trista J. (2014). "A microbial ecosystem beneath the West Antarctic ice sheet". Nature. 512 (7514): 310–313. Bibcode:2014Natur.512..310.. doi:10.1038/nature13667. ISSN 1476-4687. PMID 25143114. S2CID 4470332.
  37. ^ Wingham, Duncan J.; Siegert, Martin J.; Shepherd, Andrew; Muir, Alan S. (2006). "Rapid discharge connects Antarctic subglacial lakes". Nature. 440 (7087): 1033–1036. Bibcode:2006Natur.440.1033W. doi:10.1038/nature04660. ISSN 0028-0836. PMID 16625193. S2CID 4342795.
  38. ^ a b Johanna Laybourn-Parry, Jemma Wadha (2014). Antarctic Lakes. doi:10.1002/lob.10025. ISBN 9780199670499. OCLC 879627701.
  39. ^ a b M. R. Siegfried, H. A. Fricker: Illuminating active subglacial lake processes with ICESat-2 laser altimetry. In: Geophysical Research Letters, 7 July 2021, e2020GL091089, doi:10.1029/2020GL091089. Along with:
    • Peter Dockrill: NASA Mission Uncovers Hidden Meltwater Lakes Under Antarctica's Ice. On: sciencealert, 12 July 2021
  40. ^ Hodgson, Dominic A.; Roberts, Stephen J.; Bentley, Michael J.; Smith, James A.; Johnson, Joanne S.; Verleyen, Elie; Vyverman, Wim; Hodson, Andy J.; Leng, Melanie J.; Cziferszky, Andreas; Fox, Adrian J. (2009). "Exploring former subglacial Hodgson Lake, Antarctica Paper I: site description, geomorphology and limnology". Quaternary Science Reviews. 28 (23–24): 2295–2309. Bibcode:2009QSRv...28.2295H. doi:10.1016/j.quascirev.2009.04.011.
  41. ^ a b Willis, Michael J.; Herried, Bradley G.; Bevis, Michael G.; Bell, Robin E. (2015). "Recharge of a subglacial lake by surface meltwater in northeast Greenland". Nature. 518 (7538): 223–227. Bibcode:2015Natur.518..223W. doi:10.1038/nature14116. ISSN 0028-0836. PMID 25607355. S2CID 4455698.
  42. ^ Howat, I. M.; Porter, C.; Noh, M. J.; Smith, B. E.; Jeong, S. (2015-01-15). "Brief Communication: Sudden drainage of a subglacial lake beneath the Greenland Ice Sheet". The Cryosphere. 9 (1): 103–108. Bibcode:2015TCry....9..103H. doi:10.5194/tc-9-103-2015. ISSN 1994-0424.
  43. ^ Jóhannesson, Tómas; Thorsteinsson, Thorsteinn; Stefánsson, Andri; Gaidos, Eric J.; Einarsson, Bergur (2007-10-02). "Circulation and thermodynamics in a subglacial geothermal lake under the Western Skaftá cauldron of the Vatnajökull ice cap, Iceland". Geophysical Research Letters. 34 (19): L19502. Bibcode:2007GeoRL..3419502J. doi:10.1029/2007GL030686. ISSN 0094-8276. S2CID 31272061.
  44. ^ a b c Björnsson, Helgi; Pálsson, Finnur; Guðmundsson (2000). "Surface and bedrock topography of the Mýrdalsjökull ice cap, Iceland: The Katla caldera, eruption sites and routes of jökulhlaups". Jökull. 49: 29–46. doi:10.33799/jokull2000.49.029. S2CID 204845366.
  45. ^ Magnússon, E.; Björnsson, H.; Rott, H.; Pálsson, F. (2010). "Reduced glacier sliding caused by persistent drainage from a subglacial lake". The Cryosphere. 4 (1): 13–20. Bibcode:2010TCry....4...13M. doi:10.5194/tc-4-13-2010. ISSN 1994-0416.
  46. ^ Livingstone, Stephen J.; Utting, Daniel J.; Ruffell, Alastair; Clark, Chris D.; Pawley, Steven; Atkinson, Nigel; Fowler, Andrew C. (2016). "Discovery of relict subglacial lakes and their geometry and mechanism of drainage". Nature Communications. 7 (1): ncomms11767. Bibcode:2016NatCo...711767L. doi:10.1038/ncomms11767. ISSN 2041-1723. PMC 4909952. PMID 27292049.
  47. ^ Munro-Stasiuk, Mandy J (2003). "Subglacial Lake McGregor, south-central Alberta, Canada". Sedimentary Geology. 160 (4): 325–350. Bibcode:2003SedG..160..325M. doi:10.1016/S0037-0738(03)00090-3.
  48. ^ a b Rutishauser, Anja; Blankenship, Donald D.; Sharp, Martin; Skidmore, Mark L.; Greenbaum, Jamin S.; Grima, Cyril; Schroeder, Dustin M.; Dowdeswell, Julian A.; Young, Duncan A. (2018). "Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic". Science Advances. 4 (4): eaar4353. Bibcode:2018SciA....4.4353R. doi:10.1126/sciadv.aar4353. ISSN 2375-2548. PMC 5895444. PMID 29651462.
  49. ^ a b c d Fox, Douglas (2019-01-18). "EXCLUSIVE: Tiny animal carcasses found in buried Antarctic lake". Nature. 565 (7740): 405–406. Bibcode:2019Natur.565..405F. doi:10.1038/d41586-019-00106-z. PMID 30670855.
  50. ^ Marlow, Jeffrey (2012-10-31). "The World's Largest Wetland Is Not Where You'd Expect". Wired. ISSN 1059-1028. Retrieved 2019-12-02.
  51. ^ a b c d e f g h i j k l Laybourn-Parry, Johanna; Wadham, Jemma L. (2014-08-14). Antarctic Lakes. Oxford University Press. doi:10.1093/acprof:oso/9780199670499.003.0006. ISBN 9780199670499.
  52. ^ a b Priscu, John C.; Adams, Edward E.; Lyons, W. Berry; Voytek, Mary A.; Mogk, David W.; Brown, Robert L.; McKay, Christopher P.; Takacs, Cristina D.; Welch, Kathy A.; Wolf, Craig F.; Kirshtein, Julie D. (1999-12-10). "Geomicrobiology of Subglacial Ice Above Lake Vostok, Antarctica". Science. 286 (5447): 2141–2144. doi:10.1126/science.286.5447.2141. ISSN 0036-8075. PMID 10591642. S2CID 20376311.
  53. ^ a b Christner, Brent C.; Royston-Bishop, George; Foreman, Christine M.; Arnold, Brianna R.; Tranter, Martyn; Welch, Kathleen A.; Lyons, W. Berry; Tsapin, Alexandre I.; Studinger, Michael; Priscu, John C. (2006). "Limnological conditions in Subglacial Lake Vostok, Antarctica". Limnology and Oceanography. 51 (6): 2485–2501. Bibcode:2006LimOc..51.2485C. doi:10.4319/lo.2006.51.6.2485. ISSN 1939-5590. S2CID 14039770.
  54. ^ McKay, C. P.; Hand, K. P.; Doran, P. T.; Andersen, D. T.; Priscu, J. C. (2003). "Clathrate formation and the fate of noble and biologically useful gases in Lake Vostok, Antarctica". Geophysical Research Letters. 30 (13): 1702. Bibcode:2003GeoRL..30.1702M. doi:10.1029/2003GL017490. ISSN 1944-8007. S2CID 20136021.
  55. ^ Priscu, John C.; Christner, Brent C. (2004), "Earth's Icy Biosphere", Microbial Diversity and Bioprospecting, American Society of Microbiology, pp. 130–145, doi:10.1128/9781555817770.ch13, ISBN 978-1-55581-267-6, S2CID 35813189
  56. ^ a b c Wadham, J. L.; Arndt, S.; Tulaczyk, S.; Stibal, M.; Tranter, M.; Telling, J.; Lis, G. P.; Lawson, E.; Ridgwell, A.; Dubnick, A.; Sharp, M. J. (2012). "Potential methane reservoirs beneath Antarctica". Nature. 488 (7413): 633–637. Bibcode:2012Natur.488..633W. doi:10.1038/nature11374. ISSN 1476-4687. PMID 22932387. S2CID 4322761.
  57. ^ a b c d Wadham, J. L.; De'ath, R.; Monteiro, F. M.; Tranter, M.; Ridgwell, A.; Raiswell, R.; Tulaczyk, S. (2013). "The potential role of the Antarctic Ice Sheet in global biogeochemical cycles". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 104 (1): 55–67. Bibcode:2013EESTR.104...55W. doi:10.1017/S1755691013000108. ISSN 1755-6910. S2CID 130709276.
  58. ^ a b c d e f g h Wadham, J. L.; Tranter, M.; Skidmore, M.; Hodson, A. J.; Priscu, J.; Lyons, W. B.; Sharp, M.; Wynn, P.; Jackson, M. (2010). "Biogeochemical weathering under ice: Size matters". Global Biogeochemical Cycles. 24 (3): n/a. Bibcode:2010GBioC..24.3025W. doi:10.1029/2009gb003688. ISSN 0886-6236. S2CID 37744208.
  59. ^ a b Bottrell, Simon H.; Tranter, Martyn (2002). "Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d'Arolla, Switzerland". Hydrological Processes. 16 (12): 2363–2368. Bibcode:2002HyPr...16.2363B. doi:10.1002/hyp.1012. ISSN 0885-6087. S2CID 128691555.
  60. ^ McKay, C. P.; Hand, K. P.; Doran, P. T.; Andersen, D. T.; Priscu, J. C. (2003). "Clathrate formation and the fate of noble and biologically useful gases in Lake Vostok, Antarctica". Geophysical Research Letters. 30 (13): 1702. Bibcode:2003GeoRL..30.1702M. doi:10.1029/2003gl017490. ISSN 0094-8276. S2CID 20136021.
  61. ^ a b c d e Siegert, Martin J.; Ellis-Evans, J. Cynan; Tranter, Martyn; Mayer, Christoph; Petit, Jean-Robert; Salamatin, Andrey; Priscu, John C. (2001). "Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes". Nature. 414 (6864): 603–609. Bibcode:2001Natur.414..603S. doi:10.1038/414603a. ISSN 1476-4687. PMID 11740551. S2CID 4423510.
  62. ^ Michaud, Alexander B.; Skidmore, Mark L.; Mitchell, Andrew C.; Vick-Majors, Trista J.; Barbante, Carlo; Turetta, Clara; vanGelder, Will; Priscu, John C. (2016-03-30). "Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica". Geology. 44 (5): 347–350. Bibcode:2016Geo....44..347M. doi:10.1130/g37639.1. ISSN 0091-7613.
  63. ^ a b c d e Vick-Majors, Trista J.; Mitchell, Andrew C.; Achberger, Amanda M.; Christner, Brent C.; Dore, John E.; Michaud, Alexander B.; Mikucki, Jill A.; Purcell, Alicia M.; Skidmore, Mark L.; Priscu, John C. (2016-10-27). "Physiological Ecology of Microorganisms in Subglacial Lake Whillans". Frontiers in Microbiology. 7: 1705. doi:10.3389/fmicb.2016.01705. ISSN 1664-302X. PMC 5081474. PMID 27833599.
  64. ^ Death, R.; Wadham, J. L.; Monteiro, F.; Le Brocq, A. M.; Tranter, M.; Ridgwell, A.; Dutkiewicz, S.; Raiswell, R. (2014-05-19). "Antarctic ice sheet fertilises the Southern Ocean". Biogeosciences. 11 (10): 2635–2643. Bibcode:2014BGeo...11.2635D. doi:10.5194/bg-11-2635-2014. hdl:10871/18680. ISSN 1726-4189.
  65. ^ Raiswell, Rob; Tranter, Martyn; Benning, Liane G.; Siegert, Martin; De’ath, Ros; Huybrechts, Philippe; Payne, Tony (2006). "Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to the oceans" (PDF). Geochimica et Cosmochimica Acta. 70 (11): 2765–2780. Bibcode:2006GeCoA..70.2765R. doi:10.1016/j.gca.2005.12.027. ISSN 0016-7037.
  66. ^ Bell, Robin E.; Studinger, Michael; Tikku, Anahita A.; Clarke, Garry K. C.; Gutner, Michael M.; Meertens, Chuck (2002-03-21). "Origin and fate of Lake Vostok water frozen to the base of the East Antarctic ice sheet". Nature. 416 (6878): 307–310. Bibcode:2002Natur.416..307B. doi:10.1038/416307a. ISSN 0028-0836. PMID 11907573. S2CID 4330438.
  67. ^ Fricker, Helen Amanda; Scambos, Ted; Bindschadler, Robert; Padman, Laurie (16 Mar 2007). "An Active Subglacial Water System in West Antarctica Mapped from Space". Science. 315 (5818): 1544–1548. Bibcode:2007Sci...315.1544F. doi:10.1126/science.1136897. PMID 17303716. S2CID 35995169.
  68. ^ Tarnocai, C.; Canadell, J. G.; Schuur, E. a. G.; Kuhry, P.; Mazhitova, G.; Zimov, S. (2009). "Soil organic carbon pools in the northern circumpolar permafrost region". Global Biogeochemical Cycles. 23 (2): n/a. Bibcode:2009GBioC..23.2023T. doi:10.1029/2008GB003327. ISSN 1944-9224.
  69. ^ Houghton, R.A. (2007). "Balancing the Global Carbon Budget". Annual Review of Earth and Planetary Sciences. 35 (1): 313–347. Bibcode:2007AREPS..35..313H. doi:10.1146/annurev.earth.35.031306.140057. S2CID 54750990.
  70. ^ Wadham, J. L.; Tranter, M.; Tulaczyk, S.; Sharp, M. (2008). "Subglacial methanogenesis: A potential climatic amplifier?". Global Biogeochemical Cycles. 22 (2): n/a. Bibcode:2008GBioC..22.2021W. doi:10.1029/2007GB002951. ISSN 1944-9224. S2CID 55342841.
  71. ^ Weitemeyer, Karen A.; Buffett, Bruce A. (2006-09-01). "Accumulation and release of methane from clathrates below the Laurentide and Cordilleran ice sheets". Global and Planetary Change. 53 (3): 176–187. Bibcode:2006GPC....53..176W. doi:10.1016/j.gloplacha.2006.03.014. ISSN 0921-8181.
  72. ^ a b c Michaud, Alexander B.; Dore, John E.; Achberger, Amanda M.; Christner, Brent C.; Mitchell, Andrew C.; Skidmore, Mark L.; Vick-Majors, Trista J.; Priscu, John C. (2017). "Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet". Nature Geoscience. 10 (8): 582–586. Bibcode:2017NatGe..10..582M. doi:10.1038/ngeo2992. ISSN 1752-0908. S2CID 53387495.
  73. ^ Stibal, Marek; Wadham, Jemma L.; Lis, Grzegorz P.; Telling, Jon; Pancost, Richard D.; Dubnick, Ashley; Sharp, Martin J.; Lawson, Emily C.; Butler, Catriona E. H.; Hasan, Fariha; Tranter, Martyn (2012). "Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources". Global Change Biology. 18 (11): 3332–3345. Bibcode:2012GCBio..18.3332S. doi:10.1111/j.1365-2486.2012.02763.x. ISSN 1365-2486. S2CID 128610015.
  74. ^ a b Dieser, Markus; Broemsen, Erik L. J. E.; Cameron, Karen A.; King, Gary M.; Achberger, Amanda; Choquette, Kyla; Hagedorn, Birgit; Sletten, Ron; Junge, Karen; Christner, Brent C. (2014). "Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet". The ISME Journal. 8 (11): 2305–2316. Bibcode:2014ISMEJ...8.2305D. doi:10.1038/ismej.2014.59. ISSN 1751-7370. PMC 4992074. PMID 24739624.
  75. ^ Raiswell, R. (1984). "Chemical Models of Solute Acquisition in Glacial Melt Waters". Journal of Glaciology. 30 (104): 49–57. Bibcode:1984JGlac..30...49R. doi:10.3189/S0022143000008480. ISSN 0022-1430.
  76. ^ Boyd, Eric S.; Hamilton, Trinity L.; Havig, Jeff R.; Skidmore, Mark L.; Shock, Everett L. (2014-10-01). "Chemolithotrophic Primary Production in a Subglacial Ecosystem". Applied and Environmental Microbiology. 80 (19): 6146–6153. Bibcode:2014ApEnM..80.6146B. doi:10.1128/AEM.01956-14. ISSN 0099-2240. PMC 4178699. PMID 25085483.
  77. ^ Achberger, Amanda (2016). Structure and Functional Potential of Microbial Communities in Subglacial Lake Whillans and at the Ross Ice Shelf Grounding Zone, West Antarctica (PhD dissertation). Louisiana State University. doi:10.31390/gradschool_dissertations.4453. S2CID 133793401.
  78. ^ Price, P. Buford; Sowers, Todd (2004-03-30). "Temperature dependence of metabolic rates for microbial growth, maintenance, and survival". Proceedings of the National Academy of Sciences. 101 (13): 4631–4636. Bibcode:2004PNAS..101.4631P. doi:10.1073/pnas.0400522101. ISSN 0027-8424. PMC 384798. PMID 15070769.
  79. ^ a b c Purcell, Alicia M.; Mikucki, Jill A.; Achberger, Amanda M.; Alekhina, Irina A.; Barbante, Carlo; Christner, Brent C.; Ghosh, Dhritiman; Michaud, Alexander B.; Mitchell, Andrew C.; Priscu, John C.; Scherer, Reed (2014). "Microbial sulfur transformations in sediments from Subglacial Lake Whillans". Frontiers in Microbiology. 5: 594. doi:10.3389/fmicb.2014.00594. ISSN 1664-302X. PMC 4237127. PMID 25477865.
  80. ^ a b c Shtarkman, Yury M.; Koçer, Zeynep A.; Edgar, Robyn; Veerapaneni, Ram S.; D’Elia, Tom; Morris, Paul F.; Rogers, Scott O. (2013-07-03). "Subglacial Lake Vostok (Antarctica) Accretion Ice Contains a Diverse Set of Sequences from Aquatic, Marine and Sediment-Inhabiting Bacteria and Eukarya". PLOS ONE. 8 (7): e67221. Bibcode:2013PLoSO...867221S. doi:10.1371/journal.pone.0067221. ISSN 1932-6203. PMC 3700977. PMID 23843994.
  81. ^ a b Gaidos, Eric; Marteinsson, Viggo; Thorsteinsson, Thorsteinn; Jóhannesson, Tomas; Rúnarsson, Árni Rafn; Stefansson, Andri; Glazer, Brian; Lanoil, Brian; Skidmore, Mark; Han, Sukkyun; Miller, Mary (2009). "An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake". The ISME Journal. 3 (4): 486–497. Bibcode:2009ISMEJ...3..486G. doi:10.1038/ismej.2008.124. ISSN 1751-7370. PMID 19092861.
  82. ^ Sterner, Robert W. (2008). "On the Phosphorus Limitation Paradigm for Lakes". International Review of Hydrobiology. 93 (4–5): 433–445. Bibcode:2008IRH....93..433S. doi:10.1002/iroh.200811068. ISSN 1522-2632.
  83. ^ Elser, James J.; Bracken, Matthew E. S.; Cleland, Elsa E.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Ngai, Jacqueline T.; Seabloom, Eric W.; Shurin, Jonathan B.; Smith, Jennifer E. (2007). "Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems". Ecology Letters. 10 (12): 1135–1142. Bibcode:2007EcolL..10.1135E. doi:10.1111/j.1461-0248.2007.01113.x. hdl:1903/7447. ISSN 1461-0248. PMID 17922835. S2CID 12083235.
  84. ^ Karl, D. M.; Bird, D. F.; Björkman, K.; Houlihan, T.; Shackelford, R.; Tupas, L. (1999-12-10). "Microorganisms in the Accreted Ice of Lake Vostok, Antarctica". Science. 286 (5447): 2144–2147. doi:10.1126/science.286.5447.2144. ISSN 0036-8075. PMID 10591643. S2CID 12922364.
  85. ^ Bulat, Sergey A. (2016-01-28). "Microbiology of the subglacial Lake Vostok: first results of borehole-frozen lake water analysis and prospects for searching for lake inhabitants". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374 (2059): 20140292. Bibcode:2016RSPTA.37440292B. doi:10.1098/rsta.2014.0292. PMID 26667905.
  86. ^ a b c Mikucki, Jill A.; Pearson, Ann; Johnston, David T.; Turchyn, Alexandra V.; Farquhar, James; Schrag, Daniel P.; Anbar, Ariel D.; Priscu, John C.; Lee, Peter A. (2009-04-17). "A Contemporary Microbially Maintained Subglacial Ferrous "Ocean"". Science. 324 (5925): 397–400. Bibcode:2009Sci...324..397M. doi:10.1126/science.1167350. ISSN 0036-8075. PMID 19372431. S2CID 44802632.
  87. ^ Miteva, V. I.; Sheridan, P. P.; Brenchley, J. E. (2004-01-01). "Phylogenetic and Physiological Diversity of Microorganisms Isolated from a Deep Greenland Glacier Ice Core". Applied and Environmental Microbiology. 70 (1): 202–213. Bibcode:2004ApEnM..70..202M. doi:10.1128/AEM.70.1.202-213.2004. ISSN 0099-2240. PMC 321287. PMID 14711643.
  88. ^ Ágústsdóttir, Anna María; Brantley, Susan L. (1994). "Volatile fluxes integrated over four decades at Grímsvötn volcano, Iceland". Journal of Geophysical Research: Solid Earth. 99 (B5): 9505–9522. Bibcode:1994JGR....99.9505A. doi:10.1029/93JB03597. ISSN 2156-2202.
  89. ^ Gaidos, Eric; Lanoil, Brian; Thorsteinsson, Thorsteinn; Graham, Andrew; Skidmore, Mark; Han, Suk-Kyun; Rust, Terri; Popp, Brian (2004-09-01). "A Viable Microbial Community in a Subglacial Volcanic Crater Lake, Iceland". Astrobiology. 4 (3): 327–344. Bibcode:2004AsBio...4..327G. doi:10.1089/ast.2004.4.327. ISSN 1531-1074. PMID 15383238.
  90. ^ Thór Marteinsson, Viggó; Rúnarsson, Árni; Stefánsson, Andri; Thorsteinsson, Thorsteinn; Jóhannesson, Tómas; Magnússon, Sveinn H.; Reynisson, Eyjólfur; Einarsson, Bergur; Wade, Nicole; Morrison, Hilary G.; Gaidos, Eric (2013). "Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland". The ISME Journal. 7 (2): 427–437. Bibcode:2013ISMEJ...7..427T. doi:10.1038/ismej.2012.97. ISSN 1751-7370. PMC 3554413. PMID 22975882.
  91. ^ Hoffman, Paul F.; Kaufman, Alan J.; Halverson, Galen P.; Schrag, Daniel P. (1998-08-28). "A Neoproterozoic Snowball Earth". Science. 281 (5381): 1342–1346. Bibcode:1998Sci...281.1342H. doi:10.1126/science.281.5381.1342. ISSN 0036-8075. PMID 9721097. S2CID 13046760.
  92. ^ Kristjánsson, Bjarni K.; Svavarsson, Jörundur (2007-08-01). "Subglacial Refugia in Iceland Enabled Groundwater Amphipods to Survive Glaciations". The American Naturalist. 170 (2): 292–296. doi:10.1086/518951. ISSN 0003-0147. PMID 17874379. S2CID 39564223.
  93. ^ Bulat, S. A.; Alekhina, I. A.; Lipenkov, V. Ya; Petit, J.-R. (2004). "Searching for traces of life in subglacial Lake Vostok (Antarctica) in terms of forward contamination: the lessons for exploration of icy environments on Mars". Cosp. 35: 676. Bibcode:2004cosp...35..676B.
  94. ^ Race, M. S. (2003). "Research planning for subglacial lakes: Lessons learned from Astrobiology and planetary protection". EAEJA: 14673. Bibcode:2003EAEJA....14673R.
  95. ^ Cockell, Charles; Bagshaw, Elizabeth; Balme, Matt; Doran, Peter; Mckay, Christopher; Miljkovic, Katarina; Pearce, David; Siegert, Martin; Tranter, Martyn (2013-03-01), "Subglacial Environments and the Search for Life Beyond the Earth", Washington DC American Geophysical Union Geophysical Monograph Series, Geophysical Monograph Series, 192: 129–148, Bibcode:2011GMS...192..129C, doi:10.1029/2010GM000939, ISBN 978-0-87590-482-5, retrieved 2019-11-13
  96. ^ Konstantinidis, Konstantinos; Flores Martinez, Claudio L.; Dachwald, Bernd; Ohndorf, Andreas; Dykta, Paul; Bowitz, Pascal; Rudolph, Martin; Digel, Ilya; Kowalski, Julia; Voigt, Konstantin; Förstner, Roger (2015-01-01). "A lander mission to probe subglacial water on Saturn׳s moon Enceladus for life". Acta Astronautica. 106: 63–89. Bibcode:2015AcAau.106...63K. doi:10.1016/j.actaastro.2014.09.012. ISSN 0094-5765.
  97. ^ Waite, J. Hunter; Glein, Christopher R.; Perryman, Rebecca S.; Teolis, Ben D.; Magee, Brian A.; Miller, Greg; Grimes, Jacob; Perry, Mark E.; Miller, Kelly E.; Bouquet, Alexis; Lunine, Jonathan I. (2017-04-14). "Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes". Science. 356 (6334): 155–159. Bibcode:2017Sci...356..155W. doi:10.1126/science.aai8703. ISSN 0036-8075. PMID 28408597.
  98. ^ Orosei, R.; Lauro, S. E.; Pettinelli, E.; Cicchetti, A.; Coradini, M.; Cosciotti, B.; Di Paolo, F.; Flamini, E.; Mattei, E.; Pajola, M.; Soldovieri, F. (2018-07-25). "Radar evidence of subglacial liquid water on Mars". Science. 361 (6401): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. ISSN 0036-8075. PMID 30045881.
  99. ^ Arnold, N. S.; Conway, S. J.; Butcher, F. E. G.; Balme, M. R. (2019). "Modeled Subglacial Water Flow Routing Supports Localized Intrusive Heating as a Possible Cause of Basal Melting of Mars' South Polar Ice Cap" (PDF). Journal of Geophysical Research: Planets. 124 (8): 2101–2116. Bibcode:2019JGRE..124.2101A. doi:10.1029/2019JE006061. ISSN 2169-9100. S2CID 199414406.

subglacial, lake, subglacial, lake, lake, that, found, under, glacier, typically, beneath, sheet, form, boundary, between, underlying, bedrock, where, gravitational, pressure, decreases, pressure, melting, point, over, time, overlying, gradually, melts, rate, . A subglacial lake is a lake that is found under a glacier typically beneath an ice cap or ice sheet Subglacial lakes form at the boundary between ice and the underlying bedrock where gravitational pressure decreases the pressure melting point of ice 1 2 Over time the overlying ice gradually melts at a rate of a few millimeters per year 3 Meltwater flows from regions of high to low hydraulic pressure under the ice and pools creating a body of liquid water that can be isolated from the external environment for millions of years 1 4 Satellite image of subglacial Lake Vostok in Antarctica Image credit NASASince the first discoveries of subglacial lakes under the Antarctic Ice Sheet more than 400 subglacial lakes have been discovered in Antarctica beneath the Greenland Ice Sheet and under Iceland s Vatnajokull ice cap 5 6 7 Subglacial lakes contain a substantial proportion of Earth s liquid freshwater with the volume of Antarctic subglacial lakes alone estimated to be about 10 000 km3 or about 15 of all liquid freshwater on Earth 8 As ecosystems isolated from Earth s atmosphere subglacial lakes are influenced by interactions between ice water sediments and organisms They contain active biological communities of extremophilic microbes that are adapted to cold low nutrient conditions and facilitate biogeochemical cycles independent of energy inputs from the sun 9 Subglacial lakes and their inhabitants are of particular interest in the field of astrobiology and the search for extraterrestrial life 10 11 Contents 1 Physical characteristics 1 1 Hydrostatic seals 1 2 Influence on glacier movement 2 History and expeditions 2 1 Early exploration 2 2 Satellite exploration 2 3 Sampling expeditions 3 Distribution 3 1 Antarctica 3 2 Greenland 3 3 Iceland 3 4 Canada 4 Ecology 4 1 Biogeochemical cycles 4 1 1 At the lake ice interface 4 1 2 In the water column 4 1 3 In sediments 4 2 Reservoirs of organic carbon 4 3 Biology 4 3 1 Food web structure and sources of energy 4 3 2 Nutrient limitation 4 3 3 Biological diversity in explored subglacial lakes 4 3 3 1 Antarctica 4 3 3 2 Greenland 4 3 3 3 Iceland 4 3 4 Refugia for ancient life 5 Implications for extraterrestrial life 6 See also 7 ReferencesPhysical characteristics editThe water in subglacial lakes remains liquid since geothermal heating balances the heat loss at the ice surface The pressure from the overlying glacier causes the melting point of water to be below 0 C The ceiling of the subglacial lake will be at the level where the pressure melting point of water intersects with the temperature gradient In Lake Vostok the largest Antarctic subglacial lake the ice over the lake is thus much thicker than the ice sheet around it Hypersaline subglacial lakes remain liquid due to their salt content 5 Not all lakes with permanent ice cover can be called subglacial as some are covered by regular lake ice Some examples of perennially ice covered lakes include Lake Bonney and Lake Hoare in Antarctica s McMurdo Dry Valleys as well as Lake Hodgson a former subglacial lake Hydrostatic seals edit The water in a subglacial lake can have a floating level much above the level of the ground threshold In fact theoretically a subglacial lake can even exist on the top of a hill provided that the ice over it is thin enough to form the required hydrostatic seal The floating level can be thought of as the water level in a hole drilled through the ice into the lake It is equivalent to the level at which a piece of ice over it would float if it were a normal ice shelf The ceiling can therefore be conceived as an ice shelf that is grounded along its entire perimeter which explains why it has been called a captured ice shelf As it moves over the lake it enters the lake at the floating line and it leaves the lake at the grounding line A hydrostatic seal is created when the ice is so much higher around the lake that the equipotential surface dips down into impermeable ground Water from underneath this ice rim is then pressed back into the lake by the hydrostatic seal The ice rim in Lake Vostok has been estimated to a mere 7 meters while the floating level is about 3 kilometers above the lake ceiling 5 If the hydrostatic seal is penetrated when the floating level is high the water will start flowing out in a jokulhlaup Due to melting of the channel the discharge increases exponentially unless other processes allow the discharge to increase even faster Due to the high hydraulic head that can be achieved in some subglacial lakes jokulhlaups may reach very high rates of discharge 7 Catastrophic drainage from subglacial lakes is a known hazard in Iceland as volcanic activity can create enough meltwater to overwhelm ice dams and lake seals and cause glacial outburst flooding 12 Influence on glacier movement edit The role of subglacial lakes on ice dynamics is unclear Certainly on the Greenland Ice Sheet subglacial water acts to enhance basal ice motion in a complex manner 13 The Recovery Lakes beneath Antarctica s Recovery Glacier lie at the head of a major ice stream and may influence the dynamics of the region 14 A modest 10 speed up of Byrd Glacier in East Antarctica may have been influenced by a subglacial drainage event The flow of subglacial water is known in downstream areas where ice streams are known to migrate accelerate or stagnate on centennial time scales and highlights that subglacial water may be discharged over the ice sheet grounding line 15 History and expeditions editRussian revolutionary and scientist Peter A Kropotkin first proposed the idea of liquid freshwater under the Antarctic Ice Sheet at the end of the 19th century 2 16 He suggested that due to the geothermal heating at the bottom of the ice sheets the temperature beneath the ice could reach the ice melt temperature which would be below zero The notion of freshwater beneath ice sheets was further advanced by Russian glaciologist Igor A Zotikov who demonstrated via theoretical analysis the possibility of a decrease in Antarctic ice because of melting of ice at a lower surface 5 As of 2019 there are over 400 subglacial lakes in Antarctica 7 and it is suspected that there is a possibility of more 5 Subglacial lakes have also been discovered in Greenland 6 Iceland and northern Canada 17 nbsp Russian scientist Peter Kropotkin first proposed the idea of fresh water under Antarctic ice Early exploration edit Scientific advances in Antarctica can be attributed to several major periods of collaboration and cooperation such as the four International Polar Years IPY in 1882 1883 1932 1933 1957 1958 and 2007 2008 The success of the 1957 1958 IPY led to the establishment of the Scientific Committee on Antarctic Research SCAR and the Antarctic Treaty System paving the way to formulate a better methodology and process to observe subglacial lakes In 1959 and 1964 during two of his four Soviet Antarctic Expeditions Russian geographer and explorer Andrey P Kapitsa used seismic sounding to prepare a profile of the layers of the geology below Vostok Station in Antarctica The original intent of this work was to conduct a broad survey of the Antarctic Ice Sheet The data collected on these surveys however was used 30 years later and led to the discovery of Lake Vostok as a subglacial lake 18 Beginning in the late 1950s English physicists Stan Evans and Gordon Robin began using the radioglaciology technique of radio echo sounding RES to chart ice thickness 19 Subglacial lakes are identified by RES data as continuous and specular reflectors which dip against the ice surface at around x10 of the surface slope angle as this is required for hydrostatic stability In the late 1960s they were able to mount RES instruments on aircraft and acquire data for the Antarctic Ice Sheet 20 Between 1971 and 1979 the Antarctic Ice Sheet was profiled extensively using RES equipment 20 The technique of using RES is as follows 50 meter deep holes are drilled to increase the signal to noise ratio in the ice A small explosion sets off a sound wave which travels through the ice 7 This sound wave is reflected and then recorded by the instrument The time it takes for the wave to travel down and back is noted and converted to a distance using the known speed of sound in ice 20 RES records can identify subglacial lakes via three specific characteristics 1 an especially strong reflection from the ice sheet base stronger than adjacent ice bedrock reflections 2 echoes of constant strength occurring along the track which indicate that the surface is very smooth and 3 a very flat and horizontal character with slopes less than 1 21 22 Using this approach 17 subglacial lakes were documented 23 by Kapista and his team RES also led to the discovery of the first subglacial lake in Greenland 1 and revealed that these lakes are interconnected 3 Systematic profiling using RES of the Antarctic Ice Sheet took place again between 1971 1979 During this time a US UK Danish collaboration was able to survey about 40 of East Antarctica and 80 of West Antarctica further defining the subglacial landscape and the behavior of ice flow over the lakes 4 Satellite exploration edit In the early 1990s radar altimeter data from the European Remote Sensing Satellite ERS 1 provided detailed mapping of Antarctica through 82 degrees south 24 This imaging revealed a flat surface around the northern border of Lake Vostok and the data collected from ERS 1 further built the geographical distribution of Antarctic subglacial lakes In 2005 Laurence Gray and a team of glaciologists began to interpret surface ice slumping and raising from RADARSAT data which indicated there could be hydrologically active subglacial lakes subject to water movement 25 Between 2003 and 2009 a survey of long track measurements of ice surface elevation using the ICESat satellite as a part of NASA s Earth Observing System produced the first continental scale map of the active subglacial lakes in Antarctica 25 In 2009 it was revealed that Lake Cook is the most hydrologically active subglacial lake on the Antarctic continent Other satellite imagery has been used to monitor and investigate this lake including ICESat CryoSat 2 the Advanced Spaceborne Thermal Emission and Reflection Radiometer and SPOT5 26 27 Gray et al 2005 interpreted ice surface slumping and raising from RADARSAT data as evidence for subglacial lakes filling and emptying termed active lakes 28 Wingham et al 2006 used radar altimeter ERS 1 data to show coincident uplift and subsidence implying drainage between lakes 29 NASA s ICESat satellite was key in developing this concept further and subsequent work demonstrated the pervasiveness of this phenomenon 30 31 ICESat ceased measurements in 2007 and the detected active lakes were compiled by Smith et al 2009 who identified 124 such lakes The realisation that lakes were interconnected created new contamination concerns for plans to drill into lakes see the Sampling expeditions section below Several lakes were delineated by the famous SPRI NSF TUD surveys undertaken until the mid seventies Since this original compilation several smaller surveys has discovered many more subglacial lakes throughout Antarctica notably by Carter et al 2007 who identified a spectrum of subglacial lake types based on their properties in RES datasets Sampling expeditions edit In March 2010 the sixth international conference on subglacial lakes was held at the American Geophysical Union Chapman Conference in Baltimore The conference allowed engineers and scientists to discuss the equipment and strategies used in ice drilling projects such as the design of hot water drills equipment for water measurement and sampling and sediment recovery and protocols for experimental cleanliness and environmental stewardship 20 Following this meeting SCAR drafted a code of conduct for ice drilling expeditions and in situ on site measurements and sampling of subglacial lakes This code of conduct was ratified at the Antarctic Treaty Consultative Meeting ATCM of 2011 By the end of 2011 three separate subglacial lake drilling exploration missions were scheduled to take place In February 2012 Russian ice core drilling at Lake Vostok accessed the subglacial lake for the first time 32 Lake water flooded the borehole and froze during the winter season and the sample of re frozen lake water accretion ice was recovered in the following summer season of 2013 In December 2012 scientists from the UK attempted to access Lake Ellsworth with a clean access hot water drill 33 however the mission was called off because of equipment failure 34 In January 2013 the US led Whillans Ice Stream Subglacial Access Research Drilling WISSARD expedition measured and sampled Lake Whillans in West Antarctica 35 for microbial life 36 On 28 December 2018 the Subglacial Antarctic Lakes Scientific Access SALSA team announced they had reached Lake Mercer after melting their way through 1 067 m 3 501 ft of ice with a high pressure hot water drill 9 The team collected water samples and bottom sediment samples down to 6 meters deep Distribution editAntarctica edit The majority of the nearly 400 Antarctic subglacial lakes are located in the vicinity of ice divides where large subglacial drainage basins are overlain by ice sheets The largest is Lake Vostok with other lakes notable for their size being Lake Concordia and Aurora Lake An increasing number of lakes are also being identified near ice streams 1 An altimeter survey by the ERS 2 satellite orbiting the East Antarctic Ice Sheet from 1995 to 2003 indicated clustered anomalies in ice sheet elevation 37 indicating that the East Antarctic lakes are fed by a subglacial system that transports basal meltwater through subglacial streams nbsp An artist s depiction of the subglacial lakes and rivers beneath the Antarctic Ice Sheet Image credit Zina Deretsky US National Science FoundationThe largest Antarctic subglacial lakes are clustered in the Dome C Vostok area of East Antarctica possibly due to the thick insulating ice and rugged tectonically influenced subglacial topography In West Antarctica subglacial Lake Ellsworth is situated within the Ellsworth Mountains and is relatively small and shallow 38 The Siple Coast Ice Streams also in West Antarctica overlie numerous small subglacial lakes including Lakes Whillans Engelhardt Mercer Conway 38 39 accompanied by their lower neighbours called Lower Conway LSLC and Lower Mercer LSLM 39 Glacial retreat at the margins of the Antarctic Ice Sheet has revealed several former subglacial lakes including Progress Lake in East Antarctica and Hodgson Lake on southern Alexander Island near the Antarctic Peninsula 40 Greenland edit The existence of subglacial lakes beneath the Greenland Ice Sheet has only become evident within the last decade when Radio echo sounding measurements have revealed two subglacial lakes in the northwest section of the ice sheet 1 These lakes are likely recharged with water from the drainage of nearby supraglacial lakes rather than from melting of basal ice 41 Another potential subglacial lake has been identified near the southwestern margin of the ice sheet where a circular depression beneath the ice sheet evidences recent drainage of the lake caused by climate warming 42 Such drainage coupled with heat transfer to the base of the ice sheet through the storage of supraglacial meltwater is thought to influence the rate of ice flow and overall behavior of the Greenland Ice Sheet 41 Iceland edit Much of Iceland is volcanically active resulting in significant meltwater production beneath its two ice caps This meltwater also accumulates in basins and ice cauldrons forming subglacial lakes 7 These lakes act as a transport mechanism for heat from geothermal vents to the bottom of the ice caps which often results in melting of basal ice that replenishes any water lost from drainage 43 The majority of Icelandic subglacial lakes are located beneath the Vatnajokull and Myrdalsjokull ice caps where melting from hydrothermal activity creates permanent depressions that fill with meltwater 7 Catastrophic drainage from subglacial lakes is a known hazard in Iceland as volcanic activity can create enough meltwater to overwhelm ice dams and lake seals and cause glacial outburst flooding 44 Grimsvotn is perhaps the best known subglacial lake beneath the Vatnajokull ice cap Other lakes beneath the ice cap lie within the Skatfa Palsfjall and Kverkfjoll cauldrons 7 Notably subglacial lake Grimsvotn s hydraulic seal remained intact until 1996 when significant meltwater production from the Gjalp eruption resulted in uplift of Grimsvotn s ice dam 45 The Myrdalsjokull ice cap another key subglacial lake location sits on top of an active volcano caldera system in the southernmost part of the Katla volcanic system 44 Hydrothermal activity beneath the Myrdalsjokull ice cap is thought to have created at least 12 small depressions within an area constrained by three major subglacial drainage basins 7 Many of these depressions are known to contain subglacial lakes that are subject to massive catastrophic drainage events from volcanic eruptions creating a significant hazard for nearby human populations 44 Canada edit Until very recently only former subglacial lakes from the last glacial period had been identified in Canada 46 These paleo subglacial lakes likely occupied valleys created before the advance of the Laurentide Ice Sheet during the Last Glacial Maximum 47 However two subglacial lakes were identified via RES in bedrock troughs under the Devon Ice Cap of Nunavut Canada 48 These lakes are thought to be hypersaline as a result of interaction with the underlying salt bearing bedrock and are much more isolated than the few identified saline subglacial lakes in Antarctica 48 Ecology editUnlike surface lakes subglacial lakes are isolated from Earth s atmosphere and receive no sunlight Their waters are thought to be ultra oligotrophic meaning they contain very low concentrations of the nutrients necessary for life Despite the cold temperatures low nutrients high pressure and total darkness in subglacial lakes these ecosystems have been found to harbor thousands of different microbial species and some signs of higher life 9 36 49 Professor John Priscu a prominent scientist studying polar lakes has called Antarctica s subglacial ecosystems our planet s largest wetland 50 Microorganisms and weathering processes drive a diverse set of chemical reactions that can drive a unique food web and thus cycle nutrients and energy through subglacial lake ecosystems No photosynthesis can occur in the darkness of subglacial lakes so their food webs are instead driven by chemosynthesis and the consumption of ancient organic carbon deposited before glaciation 36 Nutrients can enter subglacial lakes through the glacier ice lake water interface from hydrologic connections and from the physical chemical and biological weathering of subglacial sediments 9 51 Biogeochemical cycles edit nbsp An illustration of ice core drilling above subglacial Lake Vostok These drilling efforts collected re frozen lake water that has been analyzed to understand the lake s chemistry Image credit Nicolle Rager Fuller US National Science FoundationSince few subglacial lakes have been directly sampled much of the existing knowledge about subglacial lake biogeochemistry is based on a small number of samples mostly from Antarctica Inferences about solute concentrations chemical processes and biological diversity of unsampled subglacial lakes have also been drawn from analyses of accretion ice re frozen lake water at the base of the overlying glaciers 52 53 These inferences are based on the assumption that accretion ice will have similar chemical signatures as the lake water that formed it Scientists have thus far discovered diverse chemical conditions in subglacial lakes ranging from upper lake layers supersaturated in oxygen to bottom layers that are anoxic and sulfur rich 54 Despite their typically oligotrophic conditions subglacial lakes and sediments are thought to contain regionally and globally significant amounts of nutrients particularly carbon 55 12 56 57 58 At the lake ice interface edit Air clathrates trapped in glacial ice are the main source of oxygen entering otherwise enclosed subglacial lake systems As the bottom layer of ice over the lake melts clathrates are freed from the ice s crystalline structure and gases such as oxygen are made available to microbes for processes like aerobic respiration 59 In some subglacial lakes freeze melt cycles at the lake ice interface may enrich the upper lake water with oxygen concentrations that are 50 times higher than in typical surface waters 60 Melting of the layer of glacial ice above the subglacial lake also supplies underlying waters with iron nitrogen and phosphorus containing minerals in addition to some dissolved organic carbon and bacterial cells 9 12 51 In the water column edit Because air clathrates from melting glacial ice are the primary source of oxygen to subglacial lake waters the concentration of oxygen generally decreases with depth in the water column if turnover is slow 61 Oxic or slightly suboxic waters often reside near the glacier lake interface while anoxia dominates in the lake interior and sediments due to respiration by microbes 62 In some subglacial lakes microbial respiration may consume all of the oxygen in the lake creating an entirely anoxic environment until new oxygen rich water flows in from connected subglacial environments 63 The addition of oxygen from ice melt and the consumption of oxygen by microbes may create redox gradients in the subglacial lake water column with aerobic microbial mediated processes like nitrification occurring in the upper waters and anaerobic processes occurring in the anoxic bottom waters 51 Concentrations of solutes in subglacial lakes including major ions and nutrients like sodium sulfate and carbonates are low compared to typical surface lakes 51 These solutes enter the water column from glacial ice melting and from sediment weathering 51 58 Despite their low solute concentrations the large volume of subglacial waters make them important contributors of solutes particularly iron to their surrounding oceans 64 58 65 Subglacial outflow from the Antarctic Ice Sheet including outflow from subglacial lakes is estimated to add a similar amount of solutes to the Southern Ocean as some of the world s largest rivers 58 The subglacial water column is influenced by the exchange of water between lakes and streams under ice sheets through the subglacial drainage system this behavior likely plays an important role in biogeochemical processes leading to changes in microbial habitat particularly regarding oxygen and nutrient concentrations 51 61 Hydrologic connectivity of subglacial lakes also alters water residence times or amount of time that water stays within the subglacial lake reservoir Longer residence times such as those found beneath the interior Antarctic Ice Sheet would lead to greater contact time between the water and solute sources allowing for greater accumulation of solutes than in lakes with shorter residence times 58 57 Estimated residence times of currently studied subglacial lakes range from about 13 000 years in Lake Vostok to just decades in Lake Whillans 66 67 The morphology of subglacial lakes has the potential to change their hydrology and circulation patterns Areas with the thickest overlying ice experience greater rates of melting The opposite occurs in areas where the ice sheet is thinnest which allows re freezing of lake water to occur 22 These spatial variations in melting and freezing rates lead to internal convection of water and circulation of solutes heat and microbial communities throughout the subglacial lake which will vary among subglacial lakes of different regions 51 61 In sediments edit Subglacial sediments are primarily composed of glacial till that formed during physical weathering of subglacial bedrock 51 Anoxic conditions prevail in these sediments due to oxygen consumption by microbes particularly during sulfide oxidation 51 17 58 Sulfide minerals are generated by weathering of bedrock by the overlying glacier after which these sulfides are oxidized to sulfate by aerobic or anaerobic bacteria which can use iron for respiration when oxygen is unavailable 59 The products of sulfide oxidation can enhance the chemical weathering of carbonate and silicate minerals in subglacial sediments particularly in lakes with long residence times 51 58 Weathering of carbonate and silicate minerals from lake sediments also releases other ions including potassium K magnesium Mg2 sodium Na and calcium Ca2 to lake waters 58 Other biogeochemical processes in anoxic subglacial sediments include denitrification iron reduction sulfate reduction and methanogenesis see Reservoirs of organic carbon below 51 Reservoirs of organic carbon edit Subglacial sedimentary basins under the Antarctic Ice Sheet have accumulated an estimated 21 000 petagrams of organic carbon most of which comes from ancient marine sediments 56 This is more than 10 times the amount of organic carbon contained in Arctic permafrost 68 and may rival the amount of reactive carbon in modern ocean sediments 69 potentially making subglacial sediments an important but understudied component of the global carbon cycle 57 In the event of ice sheet collapse subglacial organic carbon could be more readily respired and thus released to the atmosphere and create a positive feedback on climate change 70 56 57 The microbial inhabitants of subglacial lakes likely play an important role in determining the form and fate of sediment organic carbon In the anoxic sediments of subglacial lake ecosystems organic carbon can be used by archaea for methanogenesis potentially creating large pools of methane clathrate in the sediments that could be released during ice sheet collapse or when lake waters drain to ice sheet margins 71 Methane has been detected in subglacial Lake Whillans 72 and experiments have shown that methanogenic archaea can be active in sediments beneath both Antarctic and Arctic glaciers 73 Most of the methane that escapes storage in subglacial lake sediments appears to be consumed by methanotrophic bacteria in oxygenated upper waters In subglacial Lake Whillans scientists found that bacterial oxidation consumed 99 of the available methane 72 There is also evidence for active methane production and consumption beneath the Greenland Ice Sheet 74 Antarctic subglacial waters are also thought to contain substantial amounts of organic carbon in the form of dissolved organic carbon and bacterial biomass 12 At an estimated 1 03 x 10 2 petagrams the amount of organic carbon in subglacial lake waters is far smaller than that contained in Antarctic subglacial sediments but is only one order of magnitude smaller than the amount of organic carbon in all surface freshwaters 5 10 x 10 1 petagrams 12 This relatively smaller but potentially more reactive reservoir of subglacial organic carbon may represent another gap in scientists understanding of the global carbon cycle 12 Biology edit Subglacial lakes were originally assumed to be sterile 75 but over the last thirty years active microbial life and signs of higher life have been discovered in subglacial lake waters sediments and accreted ice 9 61 Subglacial waters are now known to contain thousands of microbial species including bacteria archaea and potentially some eukaryotes These extremophilic organisms are adapted to below freezing temperatures high pressure low nutrients and unusual chemical conditions 9 61 Researching microbial diversity and adaptations in subglacial lakes is of particular interest to scientists studying astrobiology as well as the history and limits of life on Earth Food web structure and sources of energy edit In most surface ecosystems photosynthetic plants and microbes are the main primary producers that form the base of the lake food web Photosynthesis is impossible in the permanent darkness of subglacial lakes so these food webs are instead driven by chemosynthesis 36 In subglacial ecosystems chemosynthesis is mainly carried out by chemolithoautotrophic microbes 76 63 77 Like plants chemolithoautotrophs fix carbon dioxide CO2 into new organic carbon making them the primary producers at the base of subglacial lake food webs Rather than using sunlight as an energy source chemolithoautotrophs get energy from chemical reactions in which inorganic elements from the lithosphere are oxidized or reduced Common elements used by chemolithoautotrophs in subglacial ecosystems include sulfide iron and carbonates weathered from sediments 9 In addition to mobilizing elements from sediments chemolithoautotrophs create enough new organic matter to support heterotrophic bacteria in subglacial ecosystems 36 63 Heterotrophic bacteria consume the organic material produced by chemolithoautotrophs as well as consuming organic matter from sediments or from melting glacial ice 12 53 Despite the resources available to subglacial lake heterotrophs these bacteria appear to be exceptionally slow growing potentially indicating that they dedicate most of their energy to survival rather than growth 63 Slow heterotrophic growth rates could also be explained by the cold temperatures in subglacial lakes which slow down microbial metabolism and reaction rates 78 The variable redox conditions and diverse elements available from sediments provide opportunities for many other metabolic strategies in subglacial lakes Other metabolisms used by subglacial lake microbes include methanogenesis methanotrophy and chemolithoheterotrophy in which bacteria consume organic matter while oxidizing inorganic elements 72 79 36 Some limited evidence for microbial eukaryotes and multicellular animals in subglacial lakes could expand current ideas of subglacial food webs 49 80 If present these organisms could survive by consuming bacteria and other microbes Nutrient limitation edit Subglacial lake waters are considered to be ultra oligotrophic and contain low concentrations of nutrients particularly nitrogen and phosphorus 51 81 In surface lake ecosystems phosphorus has traditionally been thought of as the limiting nutrient that constrains growth in the ecosystem although co limitation by both nitrogen and phosphorus supply seems most common 82 83 However evidence from subglacial Lake Whillans suggests that nitrogen is the limiting nutrient in some subglacial waters based on measurements showing that the ratio of nitrogen to phosphorus is very low compared to the Redfield ratio 36 An experiment showed that bacteria from Lake Whillans grew slightly faster when supplied with phosphorus as well as nitrogen potentially contradicting the idea that growth in these ecosystems is limited by nitrogen alone 63 Biological diversity in explored subglacial lakes edit Biological exploration of subglacial lakes has focused on Antarctica but the financial and logistical challenges of drilling through the Antarctic Ice Sheet for sample collection have limited successful direct samplings of Antarctic subglacial lake water to Lake Whillans and Lake Mercer Volcanic subglacial lakes under Iceland s Vatnajokull ice cap have also been sampled Antarctica edit nbsp The first view of the sediment at the bottom of subglacial Lake Whillans captured by the WISSARD expedition Image credit NASA JPL California Institute of TechnologyIn subglacial Lake Whillans the WISSARD expedition collected sediment cores and water samples which contained 130 000 microbial cells per milliliter and 3 914 different bacterial species 36 The team identified active bacteria that were metabolizing ammonia methane and sulfur from the 120 000 year old sediments 79 The most abundant bacteria identified were related to Thiobacillus Sideroxyans and pscyhrophilic Polaromonas species 36 79 In January 2019 the SALSA team collected sediment and water samples from subglacial Lake Mercer and found diatom shells and well preserved carcasses from crustaceans and a tardigrade 49 Although the animals were dead the team also found bacterial concentrations of 10 000 cells per milliliter suggesting the potential for animals to survive in the lake by consuming bacteria 49 The team will continue analyzing the samples to further investigate the chemistry and biology of the lake Lake Vostok is the best studied Antarctic subglacial lake but its waters have only been studied through analysis of accretion ice from the bottom of ice cores taken during Russian drilling efforts above the lake Actively growing bacteria and thousands of unique DNA sequences from bacteria archaea and eukaryotes have been found in Lake Vostok s accretion ice 84 52 80 Some DNA appeared to come from multicellular eukaryotes including species seemingly related to freshwater Daphnia tardigrades and mollusks 80 These species may have survived in the lake and slowly adapted to the changing conditions since Vostok was last exposed to the atmosphere millions of years ago However the samples were likely contaminated by drilling fluid while being collected so some of the identified organisms probably did not live in the lake 85 nbsp A schematic cross section of the subglacial pool beneath Taylor Glacier and its outflow Blood Falls Image credit Zina Deretsky US National Science FoundationOther subglacial sampling efforts in Antarctica include the subglacial pool of anoxic hypersaline water under Taylor Glacier which harbors a microbial community that was sealed off from the atmosphere 1 5 to 2 million years ago 86 Bacteria under Taylor Glacier appear to have a novel metabolic strategy that uses sulfate and ferric ions to decompose organic matter 86 Greenland edit No direct sampling of subglacial lakes has been attempted on the Greenland Ice Sheet However subglacial outflow waters have been sampled and found to contain methanogenic and methanotrophic microbes 74 Bacteria have also been discovered within the ice sheet itself but they are unlikely to be active within the ice 87 Iceland edit Subglacial lakes under Iceland s Vatnajokull ice cap provide unique habitats for microbial life because they receive heat and chemical inputs from subglacial volcanic activity influencing the chemistry of lower lake waters and sediments 88 Active psychrophilic autotrophic bacteria have been discovered in the lake below the Grimsvotn volcanic caldera 89 A low diversity microbial community has also been found in the east Skaftarketill and Kverkfjallalon subglacial lakes where bacteria include Geobacter and Desulfuosporosinus species that can use sulfur and iron for anaerobic respiration 90 In the western Skafta lake the anoxic bottom waters appear to be dominated by acetate producing bacteria rather than methanogens 81 Refugia for ancient life edit In some cases subglacial lake waters have been isolated for millions of years and these fossil waters may harbor evolutionarily distinct microbial communities 86 Some subglacial lakes in East Antarctica have existed for about 20 million years but the interconnected subglacial drainage system between lakes under the Antarctic Ice Sheet implies that lake waters have probably not been isolated over the entire lifespan of the lake 12 During the proposed Snowball Earth period of the late Proterozoic extensive glaciation could have completely covered Earth s surface in ice for 10 million years 91 Life would have survived primarily in glacial and subglacial environments making modern subglacial lakes an important study system for understanding this period in Earth s history More recently subglacial lakes in Iceland may have provided a refuge for subterranean amphipods during the Quaternary glacial period 92 Implications for extraterrestrial life edit nbsp A view of the southern polar plain of Mars The area where a subglacial lake has been detected is highlighted Image credit USGS Astrogeology Science Center Arizona State UniversitySubglacial lakes are an analog environment for extraterrestrial ice covered water bodies making them an important study system in the field of astrobiology which is the study of the potential for life to exist outside Earth Discoveries of living extremophilic microbes in Earth s subglacial lakes could suggest that life may persist in similar environments on extraterrestrial bodies 11 10 Subglacial lakes also provide study systems for planning research efforts in remote logistically challenging locations that are sensitive to biological contamination 93 94 Jupiter s moon Europa and Saturn s moon Enceladus are promising targets in the search for extraterrestrial life Europa contains an extensive ocean covered by an icy crust and Enceladus is also thought to harbor a subglacial ocean 95 96 Satellite analysis of an icy water vapor plume escaping from fissures in Enceladus surface reveals significant subsurface production of hydrogen which may point towards the reduction of iron bearing minerals and organic matter 97 A subglacial lake on Mars was discovered in 2018 using RES on the Mars Express spacecraft 98 This body of water was found beneath Mars South Polar Layered Deposits and is suggested to have formed as a result of geothermal heating causing melting beneath the ice cap 99 See also edit nbsp Lakes portalEuropean Remote Sensing Satellite RADARSAT Advanced Space Borne Thermal Emission and Reflection Radiometer ASTER ICESat NASA Earth Observing SCAR CryoSat List of Antarctic Subglacial Lakes Glacial Lake Lake Vostok Lake Whillans Lake Ellsworth Lake Untersee Lake Hodgson Supraglacial lake Underground lakeReferences edit a b c d e Palmer Steven J Dowdeswell Julian A Christoffersen Poul Young Duncan A Blankenship Donald D Greenbaum Jamin S Benham Toby Bamber Jonathan Siegert Martin J 2013 12 16 Greenland subglacial lakes detected by radar GREENLAND SUBGLACIAL LAKES DISCOVERED Geophysical Research Letters 40 23 6154 6159 Bibcode 2013GeoRL 40 6154P doi 10 1002 2013GL058383 hdl 10871 30231 S2CID 55286616 a b Siegert Martin John Kennicutt Mahlon C 2018 09 12 Governance of the Exploration of Subglacial Antarctica Frontiers in Environmental Science 6 103 doi 10 3389 fenvs 2018 00103 hdl 10044 1 63886 ISSN 2296 665X a b Le Brocq Anne M Ross Neil Griggs Jennifer A Bingham Robert G Corr Hugh F J Ferraccioli Fausto Jenkins Adrian Jordan Tom A Payne Antony J Rippin David M Siegert Martin J 2013 Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet Nature Geoscience 6 11 945 948 Bibcode 2013NatGe 6 945L doi 10 1038 ngeo1977 ISSN 1752 0908 a b Drewry D 1983 Antarctica Glaciological and Geophysical Folio University of Cambridge Scott Polar Research Institute 2 a b c d e Davies Bethan Antarctic Glaciers AntarcticGlaciers org Retrieved 2019 12 16 a b Bowling J S Livingstone S J Sole A J Chu W 2019 06 26 Distribution and dynamics of Greenland subglacial lakes Nature Communications 10 1 2810 Bibcode 2019NatCo 10 2810B doi 10 1038 s41467 019 10821 w ISSN 2041 1723 PMC 6594964 PMID 31243282 a b c d e f g h Bjornsson Helgi 2003 02 01 Subglacial lakes and jokulhlaups in Iceland Global and Planetary Change Subglacial Lakes A Planetary Perspective 35 3 255 271 Bibcode 2003GPC 35 255B doi 10 1016 S0921 8181 02 00130 3 ISSN 0921 8181 Dowdeswell Julian A Siegert Martin J February 2003 The physiography of modern Antarctic subglacial lakes Global and Planetary Change 35 3 4 221 236 Bibcode 2003GPC 35 221D doi 10 1016 S0921 8181 02 00128 5 a b c d e f g h Christner Brent 2008 Bacteria in Subglacial Environments Heidelberg Berlin Springer Verlag pp 51 71 a b Petit Jean Robert Alekhina Irina Bulat Sergey 2005 Gargaud Muriel Barbier Bernard Martin Herve Reisse Jacques eds Lake Vostok Antarctica Exploring a Subglacial Lake and Searching for Life in an Extreme Environment Lectures in Astrobiology Volume I Advances in Astrobiology and Biogeophysics Springer Berlin Heidelberg pp 227 288 Bibcode 2005leas book 227P doi 10 1007 10913406 8 ISBN 978 3 540 26229 9 a b Rampelotto Pabulo Henrique 2010 Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology Sustainability 2 6 1602 1623 Bibcode 2010Sust 2 1602R doi 10 3390 su2061602 a b c d e f g h Priscu John C Tulaczyk Slawek Studinger Michael Ii Mahlon C Kennicutt Christner Brent C Foreman Christine M 2008 09 11 Antarctic subglacial water origin evolution and ecology Oxford University Press doi 10 1093 acprof oso 9780199213887 001 0001 ISBN 978 0 19 170750 6 Zwally H J 2002 07 12 Surface Melt Induced Acceleration of Greenland Ice Sheet Flow Science 297 5579 218 222 Bibcode 2002Sci 297 218Z doi 10 1126 science 1072708 PMID 12052902 S2CID 37381126 Bell Robin E Studinger Michael Shuman Christopher A Fahnestock Mark A Joughin Ian February 2007 Large subglacial lakes in East Antarctica at the onset of fast flowing ice streams Nature 445 7130 904 907 Bibcode 2007Natur 445 904B doi 10 1038 nature05554 ISSN 0028 0836 PMID 17314977 S2CID 4387826 Fricker Helen Amanda Scambos Ted 2009 Connected subglacial lake activity on lower Mercer and Whillans Ice Streams West Antarctica 2003 2008 Journal of Glaciology 55 190 303 315 Bibcode 2009JGlac 55 303F doi 10 3189 002214309788608813 ISSN 0022 1430 Kropotkin Peter 1876 Research on the Ice Age Notices of the Imperial Russian Geographical Society a b Rutishauser Anja Blankenship Donald D Sharp Martin Skidmore Mark L Greenbaum Jamin S Grima Cyril Schroeder Dustin M Dowdeswell Julian A Young Duncan A 2018 04 01 Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap Canadian Arctic Science Advances 4 4 eaar4353 Bibcode 2018SciA 4 4353R doi 10 1126 sciadv aar4353 ISSN 2375 2548 PMC 5895444 PMID 29651462 Kapitsa A P Ridley J K de Q Robin G Siegert M J Zotikov I A 1996 A large deep freshwater lake beneath the ice of central East Antarctica Nature 381 6584 684 686 Bibcode 1996Natur 381 684K doi 10 1038 381684a0 ISSN 1476 4687 S2CID 4335254 Glen J W G J W 1959 Swithinbank Charles Schytt Valter Robin G de Q eds Glaciological Research by the Norwegian British Swedish Antarctic Expedition Review The Geographical Journal 125 2 239 243 doi 10 2307 1790509 ISSN 0016 7398 JSTOR 1790509 a b c d Siegert Martin J 2018 01 01 A 60 year international history of Antarctic subglacial lake exploration Geological Society London Special Publications 461 1 7 21 Bibcode 2018GSLSP 461 7S doi 10 1144 SP461 5 hdl 10044 1 44066 ISSN 0305 8719 Davies Bethan Antarctic subglacial lakes AntarcticGlaciers org Retrieved 2019 11 13 a b Siegert M J 2000 Antarctic subglacial lakes Earth Science Reviews 50 1 29 50 Bibcode 2000ESRv 50 29S doi 10 1016 S0012 8252 99 00068 9 Oswald G K A Robin G De Q 1973 Lakes Beneath the Antarctic Ice Sheet Nature 245 5423 251 254 Bibcode 1973Natur 245 251O doi 10 1038 245251a0 ISSN 1476 4687 S2CID 4271414 Ridley Jeff K Cudlip Wyn Laxon Seymour W 1993 Identification of subglacial lakes using ERS 1 radar altimeter Journal of Glaciology 39 133 625 634 Bibcode 1993JGlac 39 625R doi 10 3189 S002214300001652X ISSN 0022 1430 a b Smith Benjamin E Fricker Helen A Joughin Ian R Tulaczyk Slawek 2009 An inventory of active subglacial lakes in Antarctica detected by ICESat 2003 2008 Journal of Glaciology 55 192 573 595 Bibcode 2009JGlac 55 573S doi 10 3189 002214309789470879 ISSN 0022 1430 McMillan Malcolm Corr Hugh Shepherd Andrew Ridout Andrew Laxon Seymour Cullen Robert 2013 Three dimensional mapping by CryoSat 2 of subglacial lake volume changes PDF Geophysical Research Letters 40 16 4321 4327 Bibcode 2013GeoRL 40 4321M doi 10 1002 grl 50689 ISSN 1944 8007 Flament T Berthier E Remy F 2014 Cascading water underneath Wilkes Land East Antarctic ice sheet observed using altimetry and digital elevation models The Cryosphere 8 2 673 687 Bibcode 2014TCry 8 673F doi 10 5194 tc 8 673 2014 ISSN 1994 0416 Gray Laurence 2005 Evidence for subglacial water transport in the West Antarctic Ice Sheet through three dimensional satellite radar interferometry Geophysical Research Letters 32 3 L03501 Bibcode 2005GeoRL 32 3501G doi 10 1029 2004GL021387 ISSN 0094 8276 S2CID 129854069 Wingham Duncan J Siegert Martin J Shepherd Andrew Muir Alan S April 2006 Rapid discharge connects Antarctic subglacial lakes Nature 440 7087 1033 1036 Bibcode 2006Natur 440 1033W doi 10 1038 nature04660 ISSN 0028 0836 PMID 16625193 S2CID 4342795 Fricker H A Scambos T Bindschadler R Padman L 2007 03 16 An Active Subglacial Water System in West Antarctica Mapped from Space Science 315 5818 1544 1548 Bibcode 2007Sci 315 1544F doi 10 1126 science 1136897 ISSN 0036 8075 PMID 17303716 S2CID 35995169 Fricker Helen Amanda Scambos Ted Carter Sasha Davis Curt Haran Terry Joughin Ian 2010 Synthesizing multiple remote sensing techniques for subglacial hydrologic mapping application to a lake system beneath MacAyeal Ice Stream West Antarctica Journal of Glaciology 56 196 2010 ed 187 199 Bibcode 2010JGlac 56 187F doi 10 3189 002214310791968557 ISSN 0022 1430 Lukin Valery V Vasiliev Nikolay I 2014 Technological aspects of the final phase of drilling borehole 5G and unsealing Vostok Subglacial Lake East Antarctica Annals of Glaciology 55 65 83 89 Bibcode 2014AnGla 55 83L doi 10 3189 2014AoG65A002 ISSN 0260 3055 Siegert Martin J Clarke Rachel J Mowlem Matt Ross Neil Hill Christopher S Tait Andrew Hodgson Dominic Parnell John Tranter Martyn Pearce David Bentley Michael J 2012 01 07 Clean access measurement and sampling of Ellsworth Subglacial Lake A method for exploring deep Antarctic subglacial lake environments PDF Reviews of Geophysics 50 1 RG1003 Bibcode 2012RvGeo 50 1003S doi 10 1029 2011RG000361 hdl 20 500 11820 8976cabf cb97 4d9b b1e8 7ef44081ad18 ISSN 8755 1209 S2CID 89606153 Siegert Martin J Makinson Keith Blake David Mowlem Matt Ross Neil 2014 An assessment of deep hot water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes experience and lessons learned from the Lake Ellsworth field season 2012 13 Annals of Glaciology 55 65 59 73 Bibcode 2014AnGla 55 59S doi 10 3189 2014AoG65A008 ISSN 0260 3055 Siegert Martin J Priscu John C Alekhina Irina A Wadham Jemma L Lyons W Berry 2016 01 28 Antarctic subglacial lake exploration first results and future plans Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 374 2059 20140466 Bibcode 2016RSPTA 37440466S doi 10 1098 rsta 2014 0466 PMC 4685969 PMID 26667917 a b c d e f g h i Christner Brent C Priscu John C Achberger Amanda M Barbante Carlo Carter Sasha P Christianson Knut Michaud Alexander B Mikucki Jill A Mitchell Andrew C Skidmore Mark L Vick Majors Trista J 2014 A microbial ecosystem beneath the West Antarctic ice sheet Nature 512 7514 310 313 Bibcode 2014Natur 512 310 doi 10 1038 nature13667 ISSN 1476 4687 PMID 25143114 S2CID 4470332 Wingham Duncan J Siegert Martin J Shepherd Andrew Muir Alan S 2006 Rapid discharge connects Antarctic subglacial lakes Nature 440 7087 1033 1036 Bibcode 2006Natur 440 1033W doi 10 1038 nature04660 ISSN 0028 0836 PMID 16625193 S2CID 4342795 a b Johanna Laybourn Parry Jemma Wadha 2014 Antarctic Lakes doi 10 1002 lob 10025 ISBN 9780199670499 OCLC 879627701 a b M R Siegfried H A Fricker Illuminating active subglacial lake processes with ICESat 2 laser altimetry In Geophysical Research Letters 7 July 2021 e2020GL091089 doi 10 1029 2020GL091089 Along with Peter Dockrill NASA Mission Uncovers Hidden Meltwater Lakes Under Antarctica s Ice On sciencealert 12 July 2021 Hodgson Dominic A Roberts Stephen J Bentley Michael J Smith James A Johnson Joanne S Verleyen Elie Vyverman Wim Hodson Andy J Leng Melanie J Cziferszky Andreas Fox Adrian J 2009 Exploring former subglacial Hodgson Lake Antarctica Paper I site description geomorphology and limnology Quaternary Science Reviews 28 23 24 2295 2309 Bibcode 2009QSRv 28 2295H doi 10 1016 j quascirev 2009 04 011 a b Willis Michael J Herried Bradley G Bevis Michael G Bell Robin E 2015 Recharge of a subglacial lake by surface meltwater in northeast Greenland Nature 518 7538 223 227 Bibcode 2015Natur 518 223W doi 10 1038 nature14116 ISSN 0028 0836 PMID 25607355 S2CID 4455698 Howat I M Porter C Noh M J Smith B E Jeong S 2015 01 15 Brief Communication Sudden drainage of a subglacial lake beneath the Greenland Ice Sheet The Cryosphere 9 1 103 108 Bibcode 2015TCry 9 103H doi 10 5194 tc 9 103 2015 ISSN 1994 0424 Johannesson Tomas Thorsteinsson Thorsteinn Stefansson Andri Gaidos Eric J Einarsson Bergur 2007 10 02 Circulation and thermodynamics in a subglacial geothermal lake under the Western Skafta cauldron of the Vatnajokull ice cap Iceland Geophysical Research Letters 34 19 L19502 Bibcode 2007GeoRL 3419502J doi 10 1029 2007GL030686 ISSN 0094 8276 S2CID 31272061 a b c Bjornsson Helgi Palsson Finnur Gudmundsson 2000 Surface and bedrock topography of the Myrdalsjokull ice cap Iceland The Katla caldera eruption sites and routes of jokulhlaups Jokull 49 29 46 doi 10 33799 jokull2000 49 029 S2CID 204845366 Magnusson E Bjornsson H Rott H Palsson F 2010 Reduced glacier sliding caused by persistent drainage from a subglacial lake The Cryosphere 4 1 13 20 Bibcode 2010TCry 4 13M doi 10 5194 tc 4 13 2010 ISSN 1994 0416 Livingstone Stephen J Utting Daniel J Ruffell Alastair Clark Chris D Pawley Steven Atkinson Nigel Fowler Andrew C 2016 Discovery of relict subglacial lakes and their geometry and mechanism of drainage Nature Communications 7 1 ncomms11767 Bibcode 2016NatCo 711767L doi 10 1038 ncomms11767 ISSN 2041 1723 PMC 4909952 PMID 27292049 Munro Stasiuk Mandy J 2003 Subglacial Lake McGregor south central Alberta Canada Sedimentary Geology 160 4 325 350 Bibcode 2003SedG 160 325M doi 10 1016 S0037 0738 03 00090 3 a b Rutishauser Anja Blankenship Donald D Sharp Martin Skidmore Mark L Greenbaum Jamin S Grima Cyril Schroeder Dustin M Dowdeswell Julian A Young Duncan A 2018 Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap Canadian Arctic Science Advances 4 4 eaar4353 Bibcode 2018SciA 4 4353R doi 10 1126 sciadv aar4353 ISSN 2375 2548 PMC 5895444 PMID 29651462 a b c d Fox Douglas 2019 01 18 EXCLUSIVE Tiny animal carcasses found in buried Antarctic lake Nature 565 7740 405 406 Bibcode 2019Natur 565 405F doi 10 1038 d41586 019 00106 z PMID 30670855 Marlow Jeffrey 2012 10 31 The World s Largest Wetland Is Not Where You d Expect Wired ISSN 1059 1028 Retrieved 2019 12 02 a b c d e f g h i j k l Laybourn Parry Johanna Wadham Jemma L 2014 08 14 Antarctic Lakes Oxford University Press doi 10 1093 acprof oso 9780199670499 003 0006 ISBN 9780199670499 a b Priscu John C Adams Edward E Lyons W Berry Voytek Mary A Mogk David W Brown Robert L McKay Christopher P Takacs Cristina D Welch Kathy A Wolf Craig F Kirshtein Julie D 1999 12 10 Geomicrobiology of Subglacial Ice Above Lake Vostok Antarctica Science 286 5447 2141 2144 doi 10 1126 science 286 5447 2141 ISSN 0036 8075 PMID 10591642 S2CID 20376311 a b Christner Brent C Royston Bishop George Foreman Christine M Arnold Brianna R Tranter Martyn Welch Kathleen A Lyons W Berry Tsapin Alexandre I Studinger Michael Priscu John C 2006 Limnological conditions in Subglacial Lake Vostok Antarctica Limnology and Oceanography 51 6 2485 2501 Bibcode 2006LimOc 51 2485C doi 10 4319 lo 2006 51 6 2485 ISSN 1939 5590 S2CID 14039770 McKay C P Hand K P Doran P T Andersen D T Priscu J C 2003 Clathrate formation and the fate of noble and biologically useful gases in Lake Vostok Antarctica Geophysical Research Letters 30 13 1702 Bibcode 2003GeoRL 30 1702M doi 10 1029 2003GL017490 ISSN 1944 8007 S2CID 20136021 Priscu John C Christner Brent C 2004 Earth s Icy Biosphere Microbial Diversity and Bioprospecting American Society of Microbiology pp 130 145 doi 10 1128 9781555817770 ch13 ISBN 978 1 55581 267 6 S2CID 35813189 a b c Wadham J L Arndt S Tulaczyk S Stibal M Tranter M Telling J Lis G P Lawson E Ridgwell A Dubnick A Sharp M J 2012 Potential methane reservoirs beneath Antarctica Nature 488 7413 633 637 Bibcode 2012Natur 488 633W doi 10 1038 nature11374 ISSN 1476 4687 PMID 22932387 S2CID 4322761 a b c d Wadham J L De ath R Monteiro F M Tranter M Ridgwell A Raiswell R Tulaczyk S 2013 The potential role of the Antarctic Ice Sheet in global biogeochemical cycles Earth and Environmental Science Transactions of the Royal Society of Edinburgh 104 1 55 67 Bibcode 2013EESTR 104 55W doi 10 1017 S1755691013000108 ISSN 1755 6910 S2CID 130709276 a b c d e f g h Wadham J L Tranter M Skidmore M Hodson A J Priscu J Lyons W B Sharp M Wynn P Jackson M 2010 Biogeochemical weathering under ice Size matters Global Biogeochemical Cycles 24 3 n a Bibcode 2010GBioC 24 3025W doi 10 1029 2009gb003688 ISSN 0886 6236 S2CID 37744208 a b Bottrell Simon H Tranter Martyn 2002 Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d Arolla Switzerland Hydrological Processes 16 12 2363 2368 Bibcode 2002HyPr 16 2363B doi 10 1002 hyp 1012 ISSN 0885 6087 S2CID 128691555 McKay C P Hand K P Doran P T Andersen D T Priscu J C 2003 Clathrate formation and the fate of noble and biologically useful gases in Lake Vostok Antarctica Geophysical Research Letters 30 13 1702 Bibcode 2003GeoRL 30 1702M doi 10 1029 2003gl017490 ISSN 0094 8276 S2CID 20136021 a b c d e Siegert Martin J Ellis Evans J Cynan Tranter Martyn Mayer Christoph Petit Jean Robert Salamatin Andrey Priscu John C 2001 Physical chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes Nature 414 6864 603 609 Bibcode 2001Natur 414 603S doi 10 1038 414603a ISSN 1476 4687 PMID 11740551 S2CID 4423510 Michaud Alexander B Skidmore Mark L Mitchell Andrew C Vick Majors Trista J Barbante Carlo Turetta Clara vanGelder Will Priscu John C 2016 03 30 Solute sources and geochemical processes in Subglacial Lake Whillans West Antarctica Geology 44 5 347 350 Bibcode 2016Geo 44 347M doi 10 1130 g37639 1 ISSN 0091 7613 a b c d e Vick Majors Trista J Mitchell Andrew C Achberger Amanda M Christner Brent C Dore John E Michaud Alexander B Mikucki Jill A Purcell Alicia M Skidmore Mark L Priscu John C 2016 10 27 Physiological Ecology of Microorganisms in Subglacial Lake Whillans Frontiers in Microbiology 7 1705 doi 10 3389 fmicb 2016 01705 ISSN 1664 302X PMC 5081474 PMID 27833599 Death R Wadham J L Monteiro F Le Brocq A M Tranter M Ridgwell A Dutkiewicz S Raiswell R 2014 05 19 Antarctic ice sheet fertilises the Southern Ocean Biogeosciences 11 10 2635 2643 Bibcode 2014BGeo 11 2635D doi 10 5194 bg 11 2635 2014 hdl 10871 18680 ISSN 1726 4189 Raiswell Rob Tranter Martyn Benning Liane G Siegert Martin De ath Ros Huybrechts Philippe Payne Tony 2006 Contributions from glacially derived sediment to the global iron oxyhydr oxide cycle Implications for iron delivery to the oceans PDF Geochimica et Cosmochimica Acta 70 11 2765 2780 Bibcode 2006GeCoA 70 2765R doi 10 1016 j gca 2005 12 027 ISSN 0016 7037 Bell Robin E Studinger Michael Tikku Anahita A Clarke Garry K C Gutner Michael M Meertens Chuck 2002 03 21 Origin and fate of Lake Vostok water frozen to the base of the East Antarctic ice sheet Nature 416 6878 307 310 Bibcode 2002Natur 416 307B doi 10 1038 416307a ISSN 0028 0836 PMID 11907573 S2CID 4330438 Fricker Helen Amanda Scambos Ted Bindschadler Robert Padman Laurie 16 Mar 2007 An Active Subglacial Water System in West Antarctica Mapped from Space Science 315 5818 1544 1548 Bibcode 2007Sci 315 1544F doi 10 1126 science 1136897 PMID 17303716 S2CID 35995169 Tarnocai C Canadell J G Schuur E a G Kuhry P Mazhitova G Zimov S 2009 Soil organic carbon pools in the northern circumpolar permafrost region Global Biogeochemical Cycles 23 2 n a Bibcode 2009GBioC 23 2023T doi 10 1029 2008GB003327 ISSN 1944 9224 Houghton R A 2007 Balancing the Global Carbon Budget Annual Review of Earth and Planetary Sciences 35 1 313 347 Bibcode 2007AREPS 35 313H doi 10 1146 annurev earth 35 031306 140057 S2CID 54750990 Wadham J L Tranter M Tulaczyk S Sharp M 2008 Subglacial methanogenesis A potential climatic amplifier Global Biogeochemical Cycles 22 2 n a Bibcode 2008GBioC 22 2021W doi 10 1029 2007GB002951 ISSN 1944 9224 S2CID 55342841 Weitemeyer Karen A Buffett Bruce A 2006 09 01 Accumulation and release of methane from clathrates below the Laurentide and Cordilleran ice sheets Global and Planetary Change 53 3 176 187 Bibcode 2006GPC 53 176W doi 10 1016 j gloplacha 2006 03 014 ISSN 0921 8181 a b c Michaud Alexander B Dore John E Achberger Amanda M Christner Brent C Mitchell Andrew C Skidmore Mark L Vick Majors Trista J Priscu John C 2017 Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet Nature Geoscience 10 8 582 586 Bibcode 2017NatGe 10 582M doi 10 1038 ngeo2992 ISSN 1752 0908 S2CID 53387495 Stibal Marek Wadham Jemma L Lis Grzegorz P Telling Jon Pancost Richard D Dubnick Ashley Sharp Martin J Lawson Emily C Butler Catriona E H Hasan Fariha Tranter Martyn 2012 Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources Global Change Biology 18 11 3332 3345 Bibcode 2012GCBio 18 3332S doi 10 1111 j 1365 2486 2012 02763 x ISSN 1365 2486 S2CID 128610015 a b Dieser Markus Broemsen Erik L J E Cameron Karen A King Gary M Achberger Amanda Choquette Kyla Hagedorn Birgit Sletten Ron Junge Karen Christner Brent C 2014 Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet The ISME Journal 8 11 2305 2316 Bibcode 2014ISMEJ 8 2305D doi 10 1038 ismej 2014 59 ISSN 1751 7370 PMC 4992074 PMID 24739624 Raiswell R 1984 Chemical Models of Solute Acquisition in Glacial Melt Waters Journal of Glaciology 30 104 49 57 Bibcode 1984JGlac 30 49R doi 10 3189 S0022143000008480 ISSN 0022 1430 Boyd Eric S Hamilton Trinity L Havig Jeff R Skidmore Mark L Shock Everett L 2014 10 01 Chemolithotrophic Primary Production in a Subglacial Ecosystem Applied and Environmental Microbiology 80 19 6146 6153 Bibcode 2014ApEnM 80 6146B doi 10 1128 AEM 01956 14 ISSN 0099 2240 PMC 4178699 PMID 25085483 Achberger Amanda 2016 Structure and Functional Potential of Microbial Communities in Subglacial Lake Whillans and at the Ross Ice Shelf Grounding Zone West Antarctica PhD dissertation Louisiana State University doi 10 31390 gradschool dissertations 4453 S2CID 133793401 Price P Buford Sowers Todd 2004 03 30 Temperature dependence of metabolic rates for microbial growth maintenance and survival Proceedings of the National Academy of Sciences 101 13 4631 4636 Bibcode 2004PNAS 101 4631P doi 10 1073 pnas 0400522101 ISSN 0027 8424 PMC 384798 PMID 15070769 a b c Purcell Alicia M Mikucki Jill A Achberger Amanda M Alekhina Irina A Barbante Carlo Christner Brent C Ghosh Dhritiman Michaud Alexander B Mitchell Andrew C Priscu John C Scherer Reed 2014 Microbial sulfur transformations in sediments from Subglacial Lake Whillans Frontiers in Microbiology 5 594 doi 10 3389 fmicb 2014 00594 ISSN 1664 302X PMC 4237127 PMID 25477865 a b c Shtarkman Yury M Kocer Zeynep A Edgar Robyn Veerapaneni Ram S D Elia Tom Morris Paul F Rogers Scott O 2013 07 03 Subglacial Lake Vostok Antarctica Accretion Ice Contains a Diverse Set of Sequences from Aquatic Marine and Sediment Inhabiting Bacteria and Eukarya PLOS ONE 8 7 e67221 Bibcode 2013PLoSO 867221S doi 10 1371 journal pone 0067221 ISSN 1932 6203 PMC 3700977 PMID 23843994 a b Gaidos Eric Marteinsson Viggo Thorsteinsson Thorsteinn Johannesson Tomas Runarsson Arni Rafn Stefansson Andri Glazer Brian Lanoil Brian Skidmore Mark Han Sukkyun Miller Mary 2009 An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake The ISME Journal 3 4 486 497 Bibcode 2009ISMEJ 3 486G doi 10 1038 ismej 2008 124 ISSN 1751 7370 PMID 19092861 Sterner Robert W 2008 On the Phosphorus Limitation Paradigm for Lakes International Review of Hydrobiology 93 4 5 433 445 Bibcode 2008IRH 93 433S doi 10 1002 iroh 200811068 ISSN 1522 2632 Elser James J Bracken Matthew E S Cleland Elsa E Gruner Daniel S Harpole W Stanley Hillebrand Helmut Ngai Jacqueline T Seabloom Eric W Shurin Jonathan B Smith Jennifer E 2007 Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater marine and terrestrial ecosystems Ecology Letters 10 12 1135 1142 Bibcode 2007EcolL 10 1135E doi 10 1111 j 1461 0248 2007 01113 x hdl 1903 7447 ISSN 1461 0248 PMID 17922835 S2CID 12083235 Karl D M Bird D F Bjorkman K Houlihan T Shackelford R Tupas L 1999 12 10 Microorganisms in the Accreted Ice of Lake Vostok Antarctica Science 286 5447 2144 2147 doi 10 1126 science 286 5447 2144 ISSN 0036 8075 PMID 10591643 S2CID 12922364 Bulat Sergey A 2016 01 28 Microbiology of the subglacial Lake Vostok first results of borehole frozen lake water analysis and prospects for searching for lake inhabitants Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 374 2059 20140292 Bibcode 2016RSPTA 37440292B doi 10 1098 rsta 2014 0292 PMID 26667905 a b c Mikucki Jill A Pearson Ann Johnston David T Turchyn Alexandra V Farquhar James Schrag Daniel P Anbar Ariel D Priscu John C Lee Peter A 2009 04 17 A Contemporary Microbially Maintained Subglacial Ferrous Ocean Science 324 5925 397 400 Bibcode 2009Sci 324 397M doi 10 1126 science 1167350 ISSN 0036 8075 PMID 19372431 S2CID 44802632 Miteva V I Sheridan P P Brenchley J E 2004 01 01 Phylogenetic and Physiological Diversity of Microorganisms Isolated from a Deep Greenland Glacier Ice Core Applied and Environmental Microbiology 70 1 202 213 Bibcode 2004ApEnM 70 202M doi 10 1128 AEM 70 1 202 213 2004 ISSN 0099 2240 PMC 321287 PMID 14711643 Agustsdottir Anna Maria Brantley Susan L 1994 Volatile fluxes integrated over four decades at Grimsvotn volcano Iceland Journal of Geophysical Research Solid Earth 99 B5 9505 9522 Bibcode 1994JGR 99 9505A doi 10 1029 93JB03597 ISSN 2156 2202 Gaidos Eric Lanoil Brian Thorsteinsson Thorsteinn Graham Andrew Skidmore Mark Han Suk Kyun Rust Terri Popp Brian 2004 09 01 A Viable Microbial Community in a Subglacial Volcanic Crater Lake Iceland Astrobiology 4 3 327 344 Bibcode 2004AsBio 4 327G doi 10 1089 ast 2004 4 327 ISSN 1531 1074 PMID 15383238 Thor Marteinsson Viggo Runarsson Arni Stefansson Andri Thorsteinsson Thorsteinn Johannesson Tomas Magnusson Sveinn H Reynisson Eyjolfur Einarsson Bergur Wade Nicole Morrison Hilary G Gaidos Eric 2013 Microbial communities in the subglacial waters of the Vatnajokull ice cap Iceland The ISME Journal 7 2 427 437 Bibcode 2013ISMEJ 7 427T doi 10 1038 ismej 2012 97 ISSN 1751 7370 PMC 3554413 PMID 22975882 Hoffman Paul F Kaufman Alan J Halverson Galen P Schrag Daniel P 1998 08 28 A Neoproterozoic Snowball Earth Science 281 5381 1342 1346 Bibcode 1998Sci 281 1342H doi 10 1126 science 281 5381 1342 ISSN 0036 8075 PMID 9721097 S2CID 13046760 Kristjansson Bjarni K Svavarsson Jorundur 2007 08 01 Subglacial Refugia in Iceland Enabled Groundwater Amphipods to Survive Glaciations The American Naturalist 170 2 292 296 doi 10 1086 518951 ISSN 0003 0147 PMID 17874379 S2CID 39564223 Bulat S A Alekhina I A Lipenkov V Ya Petit J R 2004 Searching for traces of life in subglacial Lake Vostok Antarctica in terms of forward contamination the lessons for exploration of icy environments on Mars Cosp 35 676 Bibcode 2004cosp 35 676B Race M S 2003 Research planning for subglacial lakes Lessons learned from Astrobiology and planetary protection EAEJA 14673 Bibcode 2003EAEJA 14673R Cockell Charles Bagshaw Elizabeth Balme Matt Doran Peter Mckay Christopher Miljkovic Katarina Pearce David Siegert Martin Tranter Martyn 2013 03 01 Subglacial Environments and the Search for Life Beyond the Earth Washington DC American Geophysical Union Geophysical Monograph Series Geophysical Monograph Series 192 129 148 Bibcode 2011GMS 192 129C doi 10 1029 2010GM000939 ISBN 978 0 87590 482 5 retrieved 2019 11 13 Konstantinidis Konstantinos Flores Martinez Claudio L Dachwald Bernd Ohndorf Andreas Dykta Paul Bowitz Pascal Rudolph Martin Digel Ilya Kowalski Julia Voigt Konstantin Forstner Roger 2015 01 01 A lander mission to probe subglacial water on Saturn s moon Enceladus for life Acta Astronautica 106 63 89 Bibcode 2015AcAau 106 63K doi 10 1016 j actaastro 2014 09 012 ISSN 0094 5765 Waite J Hunter Glein Christopher R Perryman Rebecca S Teolis Ben D Magee Brian A Miller Greg Grimes Jacob Perry Mark E Miller Kelly E Bouquet Alexis Lunine Jonathan I 2017 04 14 Cassini finds molecular hydrogen in the Enceladus plume Evidence for hydrothermal processes Science 356 6334 155 159 Bibcode 2017Sci 356 155W doi 10 1126 science aai8703 ISSN 0036 8075 PMID 28408597 Orosei R Lauro S E Pettinelli E Cicchetti A Coradini M Cosciotti B Di Paolo F Flamini E Mattei E Pajola M Soldovieri F 2018 07 25 Radar evidence of subglacial liquid water on Mars Science 361 6401 490 493 arXiv 2004 04587 Bibcode 2018Sci 361 490O doi 10 1126 science aar7268 ISSN 0036 8075 PMID 30045881 Arnold N S Conway S J Butcher F E G Balme M R 2019 Modeled Subglacial Water Flow Routing Supports Localized Intrusive Heating as a Possible Cause of Basal Melting of Mars South Polar Ice Cap PDF Journal of Geophysical Research Planets 124 8 2101 2116 Bibcode 2019JGRE 124 2101A doi 10 1029 2019JE006061 ISSN 2169 9100 S2CID 199414406 Retrieved from https en wikipedia org w index php title Subglacial lake amp oldid 1212753686, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.