fbpx
Wikipedia

Radioglaciology

Radioglaciology is the study of glaciers, ice sheets, ice caps and icy moons using ice penetrating radar. It employs a geophysical method similar to ground-penetrating radar and typically operates at frequencies in the MF, HF, VHF and UHF portions of the radio spectrum.[1][2][3][4] This technique is also commonly referred to as "Ice Penetrating Radar (IPR)" or "Radio Echo Sounding (RES)".

Glaciers are particularly well suited to investigation by radar because the conductivity, imaginary part of the permittivity, and the dielectric absorption of ice are small at radio frequencies resulting in low loss tangent, skin depth, and attenuation values. This allows echoes from the base of the ice sheet to be detected through ice thicknesses greater than 4 km.[5][6] The subsurface observation of ice masses using radio waves has been an integral and evolving geophysical technique in glaciology for over half a century.[7][8][9][10][11][12][13][14] Its most widespread uses have been the measurement of ice thickness, subglacial topography, and ice sheet stratigraphy.[15][8][5] It has also been used to observe the subglacial and conditions of ice sheets and glaciers, including hydrology, thermal state, accumulation, flow history, ice fabric, and bed geology.[1] In planetary science, ice penetrating radar has also been used to explore the subsurface of the Polar Ice Caps on Mars and comets.[16][17][18] Missions are planned to explore the icy moons of Jupiter.[19][20]

Measurements and applications edit

Radioglaciology uses nadir facing radars to probe the subsurface of glaciers, ice sheets, ice caps, and icy moons and to detect reflected and scattered energy from within and beneath the ice.[8] This geometry tends to emphasize coherent and specular reflected energy resulting in distinct forms of the radar equation.[21][22] Collected radar data typically undergoes signal processing ranging from stacking (or pre-summing) to migration to Synthetic Aperture Radar (SAR) focusing in 1, 2, or 3 dimensions.[23][24][25][22] This data is collected using ice penetrating radar systems which range from commercial (or bespoke) ground penetrating radar (GPR) systems[26][27] to coherent, chirped airborne sounders [28][29][30] to swath-imaging,[31] multi-frequency,[32] or polarimetric[33] implementations of such systems. Additionally, stationary, phase-sensitive, and Frequency Modulated Continuous Wave (FMCW) radars [34][35][36] have been used to observe snow,[37] ice shelf melt rates,[38] englacial hydrology,[39] ice sheet structure,[40] and vertical ice flow.[41][42] Interferometric analysis of airborne systems have also been demonstrated to measure vertical ice flow.[43] Additionally, radioglaciological instruments have been developed to operate on autonomous platforms,[44] on in-situ probes,[45] in low-cost deployments,[46] using Software Defined Radios,[47] and exploiting ambient radio signals for passive sounding.[48][49]

The most common scientific application for radioglaciological observations is measuring ice thickness and bed topography. This includes interpolated "bed maps",[6][50][51][52] widely used in ice sheet modeling and sea level rise projections, studies exploring specific ice-sheet regions,[53][54][55][56][57] and observations of glacier beds.[58][59][60][61] The strength and character of radar echoes from the bed of the ice sheet are also used to investigate the reflectivity[62][27] of the bed, the attenuation[63][64][65] of radar in the ice, and the morphology of the bed.[66][67][68] In addition bed echoes, radar returns from englacial layers[69] are used in studies of the radio stratigraphy of ice sheets[70][71][72][73][74] including investigations of ice accumulation,[75][76][77][78][79] flow,[80][81][82][83] and fabric[84][85] as well as absence or disturbances of that stratigraphy.[86][87][88] Radioglaciology data has also been used extensively to study subglacial lakes[89][90][91][92][93][94] and glacial hydrology[95] including englacial water,[96][97][98] firn aquifers,[99] and their temporal evolution.[100][39][101] Ice penetrating radar data has also been used to investigate the subsurface of ice shelves including their grounding zones,[102][103] melt rates,[104][105] brine distribution,[106] and basal channels.[107]

Planetary exploration edit

There are currently two ice-penetrating radars orbiting Mars: MARSIS and SHARAD.[108][109][110][111][112][113][114][115][116][117] An ice penetrating radar was also part of the ROSETTA mission to comet 67P/Churyumov–Gerasimenko.[17] Ice penetrating radars are also included in the payloads of two planned missions to the icy moons of Jupiter: JUICE and Europa Clipper.[19][118][119][120][121][122][123]

IGS symposia edit

The International Glaciological Society (IGS) holds a periodic series of symposia focused on radioglaciology. In 2008, the "Symposium on Radioglaciology and its Applications" was hosted at the Technical University of Madrid.  In 2013, the "Symposium on Radioglaciology" was hosted at the University of Kansas. In 2019, the "Symposium of Five Decades of Radioglaciology" was hosted at Stanford University.

Further reading edit

The following books and papers cover important topics in radioglaciology

Research institutions edit

Research and education in radioglaciology is undertaken at universities and research institutes around the world.  These groups found in institutions and departments that span physical geography, geophysics, earth science, planetary science, electrical engineering, and related disciplines.

References edit

  1. ^ a b Schroeder, Dustin M.; Bingham, Robert G.; Blankenship, Donald D.; Christianson, Knut; Eisen, Olaf; Flowers, Gwenn E.; Karlsson, Nanna B.; Koutnik, Michelle R.; Paden, John D.; Siegert, Martin J. (April 2020). "Five decades of radioglaciology". Annals of Glaciology. 61 (81): 1–13. Bibcode:2020AnGla..61....1S. doi:10.1017/aog.2020.11. ISSN 0260-3055.
  2. ^ Kulessa, B.; Booth, A. D.; Hobbs, A.; Hubbard, A. L. (2008-12-18). "Automated monitoring of subglacial hydrological processes with ground-penetrating radar (GPR) at high temporal resolution: scope and potential pitfalls". Geophysical Research Letters. 35 (24): L24502. Bibcode:2008GeoRL..3524502K. doi:10.1029/2008GL035855. ISSN 0094-8276.
  3. ^ Bogorodsky, VV; Bentley, CR; Gudmandsen, PE (1985). Radioglaciology. D. Reidel Publishing.
  4. ^ Pellikka, Petri; Rees, W. Gareth, eds. (2009-12-16). Remote Sensing of Glaciers: Techniques for Topographic, Spatial and Thematic Mapping of Glaciers (0 ed.). CRC Press. doi:10.1201/b10155. ISBN 978-0-429-20642-9. S2CID 129205832.
  5. ^ a b Bamber, J. L.; Griggs, J. A.; Hurkmans, R. T. W. L.; Dowdeswell, J. A.; Gogineni, S. P.; Howat, I.; Mouginot, J.; Paden, J.; Palmer, S.; Rignot, E.; Steinhage, D. (2013-03-22). "A new bed elevation dataset for Greenland". The Cryosphere. 7 (2): 499–510. Bibcode:2013TCry....7..499B. doi:10.5194/tc-7-499-2013. ISSN 1994-0424.
  6. ^ a b Fretwell, P.; Pritchard, H. D.; Vaughan, D. G.; Bamber, J. L.; Barrand, N. E.; et al. (28 February 2013). "Bedmap2: improved ice bed, surface and thickness datasets for Antarctica" (PDF). The Cryosphere. 7 (1): 390. Bibcode:2013TCry....7..375F. doi:10.5194/tc-7-375-2013. Retrieved 6 January 2014.
  7. ^ Allen, Christopher (September 26, 2008). "A Brief History Of Radio – Echo Sounding Of Ice".
  8. ^ a b c Dowdeswell, J A; Evans, S (2004-10-01). "Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding". Reports on Progress in Physics. 67 (10): 1821–1861. Bibcode:2004RPPh...67.1821D. doi:10.1088/0034-4885/67/10/R03. ISSN 0034-4885. S2CID 250845954.
  9. ^ Drewry, DJ (1983). Antarctica: Glaciological and Geophysical Folio, Vol. 2. University of Cambridge, Scott Polar Research Institute Cambridge.
  10. ^ Gudmandsen, P. (December 1969). "Airborne Radio Echo Sounding of the Greenland Ice Sheet". The Geographical Journal. 135 (4): 548–551. doi:10.2307/1795099. JSTOR 1795099.
  11. ^ Robin, G. de Q. (1975). "Radio-Echo Sounding: Glaciological Interpretations and Applications". Journal of Glaciology. 15 (73): 49–64. doi:10.3189/S0022143000034262. ISSN 0022-1430.
  12. ^ Steenson, BO (1951). Radar Methods for the Exploration of Glaciers (PhD). California Institute of Technology.
  13. ^ Stern, W (1930). Principles, methods and results of electrodynamic thickness measurement of glacier ice. Zeitschrift für Gletscherkunde 18, 24.
  14. ^ Turchetti, Simone; Dean, Katrina; Naylor, Simon; Siegert, Martin (September 2008). "Accidents and opportunities: a history of the radio echo-sounding of Antarctica, 1958–79". The British Journal for the History of Science. 41 (3): 417–444. doi:10.1017/S0007087408000903. hdl:1842/2975. ISSN 0007-0874. S2CID 55339188.
  15. ^ Bingham, R. G.; Siegert, M. J. (2007-03-01). "Radio-Echo Sounding Over Polar Ice Masses". Journal of Environmental & Engineering Geophysics. 12 (1): 47–62. Bibcode:2007JEEG...12...47B. doi:10.2113/JEEG12.1.47. hdl:2164/11013. ISSN 1083-1363.
  16. ^ Picardi, G. (2005-12-23). "Radar Soundings of the Subsurface of Mars". Science. 310 (5756): 1925–1928. Bibcode:2005Sci...310.1925P. doi:10.1126/science.1122165. ISSN 0036-8075. PMID 16319122.
  17. ^ a b Kofman, W.; Herique, A.; Barbin, Y.; Barriot, J.-P.; Ciarletti, V.; Clifford, S.; Edenhofer, P.; Elachi, C.; Eyraud, C.; Goutail, J.-P.; Heggy, E. (2015-07-31). "Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar". Science. 349 (6247): aab0639. Bibcode:2015Sci...349b0639K. doi:10.1126/science.aab0639. ISSN 0036-8075. PMID 26228153.
  18. ^ Seu, Roberto; Phillips, Roger J.; Biccari, Daniela; Orosei, Roberto; Masdea, Arturo; Picardi, Giovanni; Safaeinili, Ali; Campbell, Bruce A.; Plaut, Jeffrey J.; Marinangeli, Lucia; Smrekar, Suzanne E. (2007-05-18). "SHARAD sounding radar on the Mars Reconnaissance Orbiter". Journal of Geophysical Research. 112 (E5): E05S05. Bibcode:2007JGRE..112.5S05S. doi:10.1029/2006JE002745. ISSN 0148-0227.
  19. ^ a b Blankenship, DD (2018). "Reasons for Europa". 42nd COSPAR Scientific Assembly. 42. and 5 others.
  20. ^ Bruzzone, L; Alberti, G; Catallo, C; Ferro, A; Kofman, W; Orosei, R (May 2011). "Subsurface Radar Sounding of the Jovian Moon Ganymede". Proceedings of the IEEE. 99 (5): 837–857. doi:10.1109/JPROC.2011.2108990. ISSN 0018-9219. S2CID 12738030.
  21. ^ Haynes, Mark S. (April 2020). "Surface and subsurface radar equations for radar sounders". Annals of Glaciology. 61 (81): 135–142. Bibcode:2020AnGla..61..135H. doi:10.1017/aog.2020.16. ISSN 0260-3055.
  22. ^ a b Peters, M.E.; Blankenship, D.D.; Carter, S.P.; Kempf, S.D.; Young, D.A.; Holt, J.W. (September 2007). "Along-Track Focusing of Airborne Radar Sounding Data From West Antarctica for Improving Basal Reflection Analysis and Layer Detection". IEEE Transactions on Geoscience and Remote Sensing. 45 (9): 2725–2736. Bibcode:2007ITGRS..45.2725P. doi:10.1109/TGRS.2007.897416. ISSN 0196-2892. S2CID 22808977.
  23. ^ Ferro, A. (2019-06-18). "Squinted SAR focusing for improving automatic radar sounder data analysis and enhancement". International Journal of Remote Sensing. 40 (12): 4762–4786. Bibcode:2019IJRS...40.4762F. doi:10.1080/01431161.2019.1573339. ISSN 0143-1161. S2CID 133653325.
  24. ^ Zhang, Qiuwang; Kandic, Ivana; Barfield, Jeffrey T.; Kutryk, Michael J. (2013). "Coculture with Late, but Not Early, Human Endothelial Progenitor Cells Up Regulates IL-1βExpression in THP-1 Monocytic Cells in a Paracrine Manner". Stem Cells International. 2013: 859643. doi:10.1155/2013/859643. ISSN 1687-966X. PMC 3872420. PMID 24385987.
  25. ^ Paden, John; Akins, Torry; Dunson, David; Allen, Chris; Gogineni, Prasad (2010). "Ice-sheet bed 3-D tomography". Journal of Glaciology. 56 (195): 3–11. Bibcode:2010JGlac..56....3P. doi:10.3189/002214310791190811. ISSN 0022-1430.
  26. ^ Booth, Adam D.; Clark, Roger; Murray, Tavi (June 2010). "Semblance response to a ground-penetrating radar wavelet and resulting errors in velocity analysis". Near Surface Geophysics. 8 (3): 235–246. doi:10.3997/1873-0604.2010008.
  27. ^ a b Tulaczyk, Slawek M.; Foley, Neil T. (2020-12-08). "The role of electrical conductivity in radar wave reflection from glacier beds". The Cryosphere. 14 (12): 4495–4506. Bibcode:2020TCry...14.4495T. doi:10.5194/tc-14-4495-2020. ISSN 1994-0416.
  28. ^ Gogineni, S.; Tammana, D.; Braaten, D.; Leuschen, C.; Akins, T.; Legarsky, J.; Kanagaratnam, P.; Stiles, J.; Allen, C.; Jezek, K. (2001-12-27). "Coherent radar ice thickness measurements over the Greenland ice sheet". Journal of Geophysical Research: Atmospheres. 106 (D24): 33761–33772. Bibcode:2001JGR...10633761G. doi:10.1029/2001JD900183.
  29. ^ Rodriguez-Morales, Fernando; Byers, Kyle; Crowe, Reid; Player, Kevin; Hale, Richard D.; Arnold, Emily J.; Smith, Logan; Gifford, Christopher M.; Braaten, David; Panton, Christian; Gogineni, Sivaprasad (May 2014). "Advanced Multifrequency Radar Instrumentation for Polar Research". IEEE Transactions on Geoscience and Remote Sensing. 52 (5): 2824–2842. Bibcode:2014ITGRS..52.2824R. doi:10.1109/TGRS.2013.2266415. ISSN 0196-2892. S2CID 7287473.
  30. ^ Yan, J.; Gogineni, P.; O'Neill, C. (July 2018). "L-Band Radar Sounder for Measuing Ice Basal Conditions and Ice-Shelf Melt Rate". IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. pp. 4135–4137. doi:10.1109/IGARSS.2018.8518210. ISBN 978-1-5386-7150-4. S2CID 53226141.
  31. ^ Holschuh, N.; Christianson, K.; Paden, J.; Alley, R.B.; Anandakrishnan, S. (2020-03-01). "Linking postglacial landscapes to glacier dynamics using swath radar at Thwaites Glacier, Antarctica". Geology. 48 (3): 268–272. Bibcode:2020Geo....48..268H. doi:10.1130/G46772.1. ISSN 0091-7613. S2CID 213056337.
  32. ^ Carrer, Leonardo; Bruzzone, Lorenzo (December 2017). "Solving for ambiguities in radar geophysical exploration of planetary bodies by mimicking bats echolocation". Nature Communications. 8 (1): 2248. Bibcode:2017NatCo...8.2248C. doi:10.1038/s41467-017-02334-1. ISSN 2041-1723. PMC 5740182. PMID 29269728.
  33. ^ Dall, Jorgen; Corr, Hugh F. J.; Walker, Nick; Rommen, Bjorn; Lin, Chung-Chi (July 2018). "Sounding the Antarctic ice sheet from space: A feasibility study based on airborne P-band radar data". IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE. pp. 4142–4145. doi:10.1109/IGARSS.2018.8518826. ISBN 978-1-5386-7150-4. S2CID 53229440.
  34. ^ Brennan, Paul V.; Lok, Lai Bun; Nicholls, Keith; Corr, Hugh (2014). "Phase-sensitive FMCW radar system for high-precision Antarctic ice shelf profile monitoring". IET Radar, Sonar & Navigation. 8 (7): 776–786. doi:10.1049/iet-rsn.2013.0053. ISSN 1751-8792.
  35. ^ Lok, L. B.; Brennan, P. V.; Ash, M.; Nicholls, K. W. (July 2015). "Autonomous phase-sensitive radio echo sounder for monitoring and imaging antarctic ice shelves". 2015 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR). pp. 1–4. doi:10.1109/IWAGPR.2015.7292636. ISBN 978-1-4799-6495-6. S2CID 23122115.
  36. ^ Vaňková, Irena; Nicholls, Keith W.; Xie, Surui; Parizek, Byron R.; Voytenko, Denis; Holland, David M. (April 2020). "Depth-dependent artifacts resulting from ApRES signal clipping". Annals of Glaciology. 61 (81): 108–113. Bibcode:2020AnGla..61..108V. doi:10.1017/aog.2020.56. ISSN 0260-3055.
  37. ^ Marshall, Hans-Peter; Koh, Gary (2008-04-01). "FMCW radars for snow research". Cold Regions Science and Technology. Research in Cryospheric Science and Engineering. 52 (2): 118–131. Bibcode:2008CRST...52..118M. doi:10.1016/j.coldregions.2007.04.008. ISSN 0165-232X.
  38. ^ Corr, H. F. J.; Jenkins, A.; Nicholls, K. W.; Doake, C. S. M. (April 2002). "Precise measurement of changes in ice-shelf thickness by phase-sensitive radar to determine basal melt rates: ICE MELT RATES REVEALED BY RADAR". Geophysical Research Letters. 29 (8): 73–1–74-4. doi:10.1029/2001GL014618. S2CID 127638299.
  39. ^ a b Kendrick, A. K.; Schroeder, D. M.; Chu, W.; Young, T. J.; Christoffersen, P.; Todd, J.; Doyle, S. H.; Box, J. E.; Hubbard, A.; Hubbard, B.; Brennan, P. V. (2018-10-16). "Surface Meltwater Impounded by Seasonal Englacial Storage in West Greenland". Geophysical Research Letters. 45 (19): 10, 474. Bibcode:2018GeoRL..4510474K. doi:10.1029/2018GL079787. ISSN 0094-8276.
  40. ^ Young, Tun Jan; Schroeder, Dustin M.; Christoffersen, Poul; Lok, Lai Bun; Nicholls, Keith W.; Brennan, Paul V.; Doyle, Samuel H.; Hubbard, Bryn; Hubbard, Alun (August 2018). "Resolving the internal and basal geometry of ice masses using imaging phase-sensitive radar". Journal of Glaciology. 64 (246): 649–660. Bibcode:2018JGlac..64..649Y. doi:10.1017/jog.2018.54. ISSN 0022-1430.
  41. ^ Gillet-Chaulet, F.; Hindmarsh, R.C.A.; Corr, H.F.J.; King, E.C.; Jenkins, A. (2011). "In-situ quantification of ice rheology and direct measurement of the Raymond Effect at Summit, Greenland using a phase-sensitive radar". Geophysical Research Letters. 38 (24): n/a. Bibcode:2011GeoRL..3824503G. doi:10.1029/2011GL049843.
  42. ^ Kingslake, Jonathan; Hindmarsh, Richard C. A.; Aðalgeirsdóttir, Guðfinna; Conway, Howard; Corr, Hugh F. J.; Gillet-Chaulet, Fabien; Martín, Carlos; King, Edward C.; Mulvaney, Robert; Pritchard, Hamish D. (2014). "Full-depth englacial vertical ice sheet velocities measured using phase-sensitive radar". Journal of Geophysical Research: Earth Surface. 119 (12): 2604–2618. Bibcode:2014JGRF..119.2604K. doi:10.1002/2014JF003275. ISSN 2169-9011.
  43. ^ Castelletti, D.; Schroeder, D. M.; Jordan, T. M.; Young, D. (2020). "Permanent Scatterers in Repeat-Pass Airborne VHF Radar Sounder for Layer-Velocity Estimation". IEEE Geoscience and Remote Sensing Letters. 18 (10): 1766–1770. doi:10.1109/LGRS.2020.3007514. ISSN 1558-0571.
  44. ^ Arcone, Steven A.; Lever, James H.; Ray, Laura E.; Walker, Benjamin S.; Hamilton, Gordon; Kaluzienski, Lynn (2016-01-01). "Ground-penetrating radar profiles of the McMurdo Shear Zone, Antarctica, acquired with an unmanned rover: Interpretation of crevasses, fractures, and folds within firn and marine ice". Geophysics. 81 (1): WA21–WA34. Bibcode:2016Geop...81A..21A. doi:10.1190/geo2015-0132.1. ISSN 0016-8033.
  45. ^ Bagshaw, E. A.; Lishman, B.; Wadham, J. L.; Bowden, J. A.; Burrow, S. G.; Clare, L. R.; Chandler, D. (2014). "Novel wireless sensors for in situ measurement of sub-ice hydrologic systems". Annals of Glaciology. 55 (65): 41–50. Bibcode:2014AnGla..55...41B. doi:10.3189/2014AoG65A007. ISSN 0260-3055.
  46. ^ Mingo, Laurent; Flowers, Gwenn E.; Crawford, Anna J.; Mueller, Derek R.; Bigelow, David G. (April 2020). "A stationary impulse-radar system for autonomous deployment in cold and temperate environments". Annals of Glaciology. 61 (81): 99–107. Bibcode:2020AnGla..61...99M. doi:10.1017/aog.2020.2. ISSN 0260-3055.
  47. ^ Liu, Peng; Mendoza, Jesus; Hu, Hanxiong; Burkett, Peter G.; Urbina, Julio V.; Anandakrishnan, Sridhar; Bilen, Sven G. (March 2019). "Software-Defined Radar Systems for Polar Ice-Sheet Research". IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 12 (3): 803–820. Bibcode:2019IJSTA..12..803L. doi:10.1109/JSTARS.2019.2895616. ISSN 1939-1404.
  48. ^ Peters, Sean T.; Schroeder, Dustin M.; Castelletti, Davide; Haynes, Mark; Romero-Wolf, Andrew (December 2018). "In Situ Demonstration of a Passive Radio Sounding Approach Using the Sun for Echo Detection". IEEE Transactions on Geoscience and Remote Sensing. 56 (12): 7338–7349. Bibcode:2018ITGRS..56.7338P. doi:10.1109/TGRS.2018.2850662. ISSN 0196-2892.
  49. ^ Romero-Wolf, Andrew; Vance, Steve; Maiwald, Frank; Heggy, Essam; Ries, Paul; Liewer, Kurt (2015-03-01). "A passive probe for subsurface oceans and liquid water in Jupiter's icy moons". Icarus. 248: 463–477. arXiv:1404.1876. Bibcode:2015Icar..248..463R. doi:10.1016/j.icarus.2014.10.043. ISSN 0019-1035. S2CID 119234268.
  50. ^ Bamber, J. L.; Griggs, J. A.; Hurkmans, R. T. W. L.; Dowdeswell, J. A.; Gogineni, S. P.; Howat, I.; Mouginot, J.; Paden, J.; Palmer, S.; Rignot, E.; Steinhage, D. (2013-03-22). "A new bed elevation dataset for Greenland". The Cryosphere. 7 (2): 499–510. Bibcode:2013TCry....7..499B. doi:10.5194/tc-7-499-2013. ISSN 1994-0416.
  51. ^ MacKie, E. J.; Schroeder, D. M.; Caers, J.; Siegfried, M. R.; Scheidt, C. (2020). "Antarctic Topographic Realizations and Geostatistical Modeling Used to Map Subglacial Lakes". Journal of Geophysical Research: Earth Surface. 125 (3): e2019JF005420. Bibcode:2020JGRF..12505420M. doi:10.1029/2019JF005420. ISSN 2169-9011.
  52. ^ Morlighem, M.; Rignot, E.; Seroussi, H.; Larour, E.; Dhia, H. Ben; Aubry, D. (2011). "A mass conservation approach for mapping glacier ice thickness". Geophysical Research Letters. 38 (19): n/a. Bibcode:2011GeoRL..3819503M. doi:10.1029/2011GL048659. ISSN 1944-8007.
  53. ^ Bo, Sun; Siegert, Martin J.; Mudd, Simon M.; Sugden, David; Fujita, Shuji; Xiangbin, Cui; Yunyun, Jiang; Xueyuan, Tang; Yuansheng, Li (June 2009). "The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet". Nature. 459 (7247): 690–693. Bibcode:2009Natur.459..690B. doi:10.1038/nature08024. ISSN 1476-4687. PMID 19494912. S2CID 4381263.
  54. ^ King, Edward C. (April 2020). "The precision of radar-derived subglacial bed topography: a case study from Pine Island Glacier, Antarctica". Annals of Glaciology. 61 (81): 154–161. Bibcode:2020AnGla..61..154K. doi:10.1017/aog.2020.33. ISSN 0260-3055.
  55. ^ Ross, Neil; Bingham, Robert G.; Corr, Hugh F. J.; Ferraccioli, Fausto; Jordan, Tom A.; Le Brocq, Anne; Rippin, David M.; Young, Duncan; Blankenship, Donald D.; Siegert, Martin J. (June 2012). "Steep reverse bed slope at the grounding line of the Weddell Sea sector in West Antarctica". Nature Geoscience. 5 (6): 393–396. Bibcode:2012NatGe...5..393R. doi:10.1038/ngeo1468. ISSN 1752-0894.
  56. ^ Vaughan, David G.; Corr, Hugh F. J.; Ferraccioli, Fausto; Frearson, Nicholas; O'Hare, Aidan; Mach, Dieter; Holt, John W.; Blankenship, Donald D.; Morse, David L.; Young, Duncan A. (2006). "New boundary conditions for the West Antarctic ice sheet: Subglacial topography beneath Pine Island Glacier". Geophysical Research Letters. 33 (9): L09501. Bibcode:2006GeoRL..33.9501V. doi:10.1029/2005GL025588. ISSN 1944-8007. S2CID 128406976.
  57. ^ Young, Duncan A.; Wright, Andrew P.; Roberts, Jason L.; Warner, Roland C.; Young, Neal W.; Greenbaum, Jamin S.; Schroeder, Dustin M.; Holt, John W.; Sugden, David E.; Blankenship, Donald D.; van Ommen, Tas D. (June 2011). "A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes". Nature. 474 (7349): 72–75. Bibcode:2011Natur.474...72Y. doi:10.1038/nature10114. ISSN 1476-4687. PMID 21637255. S2CID 4425075.
  58. ^ Clarke, G. K. C.; Cross, G. M.; Benson, C. S. (1987). "Airborne UHF Radar Measurements of Caldera Geometry and Volcanic History, Mount Wrangell, Alaska, U.S.A." Annals of Glaciology. 9: 236–237. Bibcode:1987AnGla...9R.236C. doi:10.3189/S0260305500000707. ISSN 0260-3055.
  59. ^ Flowers, Gwenn E.; Clarke, Garry K. C. (1999). "Surface and bed topography of Trapridge Glacier, Yukon Territory, Canada: digital elevation models and derived hydraulic geometry". Journal of Glaciology. 45 (149): 165–174. doi:10.3189/S0022143000003142. ISSN 0022-1430.
  60. ^ Maurer, Hansruedi; Hauck, Christian (2007). "Geophysical imaging of alpine rock glaciers". Journal of Glaciology. 53 (180): 110–120. Bibcode:2007JGlac..53..110M. doi:10.3189/172756507781833893. ISSN 0022-1430.
  61. ^ Zamora, Rodrigo; Ulloa, David; Garcia, Gonzalo; Mella, Ronald; Uribe, José; Wendt, Jens; Rivera, Andrés; Gacitúa, Guisella; Casassa, Gino (2009). "Airborne radar sounder for temperate ice: initial results from Patagonia". Journal of Glaciology. 55 (191): 507–512. Bibcode:2009JGlac..55..507Z. doi:10.3189/002214309788816641. ISSN 0022-1430.
  62. ^ Jacobel, Robert W.; Welch, Brian C.; Osterhouse, David; Pettersson, Rickard; MacGregor, Joseph A. (2009). "Spatial variation of radar-derived basal conditions on Kamb Ice Stream, West Antarctica". Annals of Glaciology. 50 (51): 10–16. Bibcode:2009AnGla..50...10J. doi:10.3189/172756409789097504. ISSN 0260-3055.
  63. ^ Matsuoka, Kenichi (2011-03-16). "Pitfalls in radar diagnosis of ice-sheet bed conditions: Lessons from englacial attenuation models: RADAR DIAGNOSIS OF ICE-SHEET BEDS". Geophysical Research Letters. 38 (5): n/a. doi:10.1029/2010GL046205.
  64. ^ Pettinelli, Elena; Cosciotti, Barbara; Di Paolo, Federico; Lauro, Sebastian Emanuel; Mattei, Elisabetta; Orosei, Roberto; Vannaroni, Giuliano (September 2015). "Dielectric properties of Jovian satellite ice analogs for subsurface radar exploration: A review: JOVIAN ICY MOONS DIELECTRIC PROPERTIES". Reviews of Geophysics. 53 (3): 593–641. doi:10.1002/2014RG000463. hdl:11590/283398. S2CID 128925940.
  65. ^ Stillman, David E.; MacGregor, Joseph A.; Grimm, Robert E. (March 2013). "The role of acids in electrical conduction through ice: CONDUCTION OF ACIDS IN ICE". Journal of Geophysical Research: Earth Surface. 118 (1): 1–16. doi:10.1029/2012JF002603.
  66. ^ Muto, Atsuhiro; Alley, Richard B.; Parizek, Byron R.; Anandakrishnan, Sridhar (December 2019). "Bed-type variability and till (dis)continuity beneath Thwaites Glacier, West Antarctica". Annals of Glaciology. 60 (80): 82–90. Bibcode:2019AnGla..60...82M. doi:10.1017/aog.2019.32. ISSN 0260-3055.
  67. ^ Rippin, D.M.; Bingham, R.G.; Jordan, T.A.; Wright, A.P.; Ross, N.; Corr, H.F.J.; Ferraccioli, F.; Le Brocq, A.M.; Rose, K.C.; Siegert, M.J. (June 2014). "Basal roughness of the Institute and Möller Ice Streams, West Antarctica: Process determination and landscape interpretation". Geomorphology. 214: 139–147. Bibcode:2014Geomo.214..139R. doi:10.1016/j.geomorph.2014.01.021.
  68. ^ Попов, С. В. (2017-04-18). "Flow-Lines Computation and Their Use in Subglacial Geomorphology and Glacial Erosion Modeling: The Princess Elizabeth Land (East Antarctica) Case Study". Geomorphology Ras (in Russian) (1): 46–54. doi:10.15356/0435-4281-2017-1-46-54. Retrieved 2021-03-04.
  69. ^ Fujita, Shuji; Maeno, Hideo; Uratsuka, Seiho; Furukawa, Teruo; Mae, Shinji; Fujii, Yoshiyuki; Watanabe, Okitsugu (1999). "Nature of radio echo layering in the Antarctic Ice Sheet detected by a two-frequency experiment". Journal of Geophysical Research: Solid Earth. 104 (B6): 13013–13024. Bibcode:1999JGR...10413013F. doi:10.1029/1999JB900034. ISSN 2156-2202.
  70. ^ Campbell, Seth; Balco, Greg; Todd, Claire; Conway, Howard; Huybers, Kathleen; Simmons, Christopher; Vermeulen, Michael (2013). "Radar-detected englacial stratigraphy in the Pensacola Mountains, Antarctica: implications for recent changes in ice flow and accumulation". Annals of Glaciology. 54 (63): 91–100. Bibcode:2013AnGla..54...91C. doi:10.3189/2013AoG63A371. ISSN 0260-3055.
  71. ^ NEEM community members (January 2013). "Eemian interglacial reconstructed from a Greenland folded ice core". Nature. 493 (7433): 489–494. Bibcode:2013Natur.493..489N. doi:10.1038/nature11789. ISSN 0028-0836. PMID 23344358. S2CID 4420908.
  72. ^ Hindmarsh, Richard C. A.; Leysinger Vieli, Gwendolyn J.-M. C.; Raymond, Mélanie J.; Gudmundsson, G. Hilmar (2006). "Draping or overriding: The effect of horizontal stress gradients on internal layer architecture in ice sheets". Journal of Geophysical Research. 111 (F2): F02018. Bibcode:2006JGRF..111.2018H. doi:10.1029/2005JF000309. ISSN 0148-0227. S2CID 21709437.
  73. ^ Karlsson, Nanna B.; Binder, Tobias; Eagles, Graeme; Helm, Veit; Pattyn, Frank; Van Liefferinge, Brice; Eisen, Olaf (2018-07-25). "Glaciological characteristics in the Dome Fuji region and new assessment for "Oldest Ice"". The Cryosphere. 12 (7): 2413–2424. Bibcode:2018TCry...12.2413K. doi:10.5194/tc-12-2413-2018. ISSN 1994-0424.
  74. ^ MacGregor, Joseph A.; Fahnestock, Mark A.; Catania, Ginny A.; Paden, John D.; Prasad Gogineni, S.; Young, S. Keith; Rybarski, Susan C.; Mabrey, Alexandria N.; Wagman, Benjamin M.; Morlighem, Mathieu (February 2015). "Radiostratigraphy and age structure of the Greenland Ice Sheet". Journal of Geophysical Research: Earth Surface. 120 (2): 212–241. Bibcode:2015JGRF..120..212M. doi:10.1002/2014JF003215. ISSN 2169-9003. PMC 4508962. PMID 26213664.
  75. ^ Cavitte, Marie G. P.; Parrenin, Frédéric; Ritz, Catherine; Young, Duncan A.; Van Liefferinge, Brice; Blankenship, Donald D.; Frezzotti, Massimo; Roberts, Jason L. (2018-04-17). "Accumulation patterns around Dome C, East Antarctica, in the last 73 kyr". The Cryosphere. 12 (4): 1401–1414. Bibcode:2018TCry...12.1401C. doi:10.5194/tc-12-1401-2018. ISSN 1994-0424.
  76. ^ Kohler, Jack; Moore, John; Kennett, Mike; Engeset, Rune; Elvehøy, Hallgeir (1997). "Using ground-penetrating radar to image previous years' summer surfaces for mass-balance measurements". Annals of Glaciology. 24: 355–360. Bibcode:1997AnGla..24..355K. doi:10.3189/S0260305500012441. ISSN 0260-3055.
  77. ^ Koutnik, Michelle R.; Fudge, T. J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C. (2016). "Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice core site". Journal of Geophysical Research: Earth Surface. 121 (5): 907–924. Bibcode:2016JGRF..121..907K. doi:10.1002/2015JF003668. ISSN 2169-9011.
  78. ^ Medley, B.; Joughin, I.; Smith, B. E.; Das, S. B.; Steig, E. J.; Conway, H.; Gogineni, S.; Lewis, C.; Criscitiello, A. S.; McConnell, J. R.; van den Broeke, M. R. (2014-07-31). "Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation". The Cryosphere. 8 (4): 1375–1392. Bibcode:2014TCry....8.1375M. doi:10.5194/tc-8-1375-2014. ISSN 1994-0424.
  79. ^ Waddington, Edwin D.; Neumann, Thomas A.; Koutnik, Michelle R.; Marshall, Hans-Peter; Morse, David L. (2007). "Inference of accumulation-rate patterns from deep layers in glaciers and ice sheets". Journal of Glaciology. 53 (183): 694–712. Bibcode:2007JGlac..53..694W. doi:10.3189/002214307784409351. ISSN 0022-1430.
  80. ^ Eisen, Olaf (2008). "Inference of velocity pattern from isochronous layers in firn, using an inverse method". Journal of Glaciology. 54 (187): 613–630. Bibcode:2008JGlac..54..613E. doi:10.3189/002214308786570818. ISSN 0022-1430.
  81. ^ Fahnestock, Mark; Abdalati, Waleed; Joughin, Ian; Brozena, John; Gogineni, Prasad (2001-12-14). "High Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice Flow in Central Greenland". Science. 294 (5550): 2338–2342. Bibcode:2001Sci...294.2338F. doi:10.1126/science.1065370. ISSN 0036-8075. PMID 11743197. S2CID 19844250.
  82. ^ Vieli, G. J.-M. C. Leysinger; Hindmarsh, R. C. A.; Siegert, M. J. (2007). "Three-dimensional flow influences on radar layer stratigraphy". Annals of Glaciology. 46 (1): 22–28. Bibcode:2007AnGla..46...22L. doi:10.3189/172756407782871729. ISSN 0260-3055.
  83. ^ Pettit, Erin C.; Waddington, Edwin D.; Harrison, William D.; Thorsteinsson, Throstur; Elsberg, Daniel; Morack, John; Zumberge, Mark A. (2011). "The crossover stress, anisotropy and the ice flow law at Siple Dome, West Antarctica". Journal of Glaciology. 57 (201): 39–52. Bibcode:2011JGlac..57...39P. doi:10.3189/002214311795306619. ISSN 0022-1430.
  84. ^ Jordan, Thomas M.; Schroeder, Dustin M.; Castelletti, Davide; Li, Jilu; Dall, Jorgen (November 2019). "A Polarimetric Coherence Method to Determine Ice Crystal Orientation Fabric From Radar Sounding: Application to the NEEM Ice Core Region". IEEE Transactions on Geoscience and Remote Sensing. 57 (11): 8641–8657. Bibcode:2019ITGRS..57.8641J. doi:10.1109/TGRS.2019.2921980. ISSN 0196-2892. S2CID 198442821.
  85. ^ Martín, Carlos; Gudmundsson, G. Hilmar; Pritchard, Hamish D.; Gagliardini, Olivier (2009-10-14). "On the effects of anisotropic rheology on ice flow, internal structure, and the age-depth relationship at ice divides". Journal of Geophysical Research. 114 (F4): F04001. Bibcode:2009JGRF..114.4001M. doi:10.1029/2008JF001204. ISSN 0148-0227. S2CID 129357387.
  86. ^ Bell, R. E.; Ferraccioli, F.; Creyts, T. T.; Braaten, D.; Corr, H.; Das, I.; Damaske, D.; Frearson, N.; Jordan, T.; Rose, K.; Studinger, M. (2011-03-25). "Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base". Science. 331 (6024): 1592–1595. Bibcode:2011Sci...331.1592B. doi:10.1126/science.1200109. ISSN 0036-8075. PMID 21385719. S2CID 45110037.
  87. ^ Drews, R.; Eisen, O.; Weikusat, I.; Kipfstuhl, S.; Lambrecht, A.; Steinhage, D.; Wilhelms, F.; Miller, H. (2009-08-25). "Layer disturbances and the radio-echo free zone in ice sheets". The Cryosphere. 3 (2): 195–203. Bibcode:2009TCry....3..195D. doi:10.5194/tc-3-195-2009. ISSN 1994-0416.
  88. ^ Winter, Kate; Woodward, John; Ross, Neil; Dunning, Stuart A.; Hein, Andrew S.; Westoby, Matthew J.; Culberg, Riley; Marrero, Shasta M.; Schroeder, Dustin M.; Sugden, David E.; Siegert, Martin J. (2019). "Radar-Detected Englacial Debris in the West Antarctic Ice Sheet". Geophysical Research Letters. 46 (17–18): 10454–10462. Bibcode:2019GeoRL..4610454W. doi:10.1029/2019GL084012. ISSN 1944-8007.
  89. ^ Carter, Sasha P.; Blankenship, Donald D.; Peters, Matthew E.; Young, Duncan A.; Holt, John W.; Morse, David L. (March 2007). "Radar-based subglacial lake classification in Antarctica: ANTARCTIC SUBGLACIAL LAKES". Geochemistry, Geophysics, Geosystems. 8 (3): n/a. doi:10.1029/2006GC001408. S2CID 134827447.
  90. ^ Ilisei, Ana-Maria; Khodadadzadeh, Mahdi; Ferro, Adamo; Bruzzone, Lorenzo (June 2019). "An Automatic Method for Subglacial Lake Detection in Ice Sheet Radar Sounder Data". IEEE Transactions on Geoscience and Remote Sensing. 57 (6): 3252–3270. Bibcode:2019ITGRS..57.3252I. doi:10.1109/TGRS.2018.2882911. ISSN 0196-2892. S2CID 127129493.
  91. ^ Oswald, G. K. A.; Robin, G. De Q. (October 1973). "Lakes Beneath the Antarctic Ice Sheet". Nature. 245 (5423): 251–254. Bibcode:1973Natur.245..251O. doi:10.1038/245251a0. ISSN 0028-0836. S2CID 4271414.
  92. ^ Palmer, Steven J.; Dowdeswell, Julian A.; Christoffersen, Poul; Young, Duncan A.; Blankenship, Donald D.; Greenbaum, Jamin S.; Benham, Toby; Bamber, Jonathan; Siegert, Martin J. (2013). "Greenland subglacial lakes detected by radar". Geophysical Research Letters. 40 (23): 6154–6159. Bibcode:2013GeoRL..40.6154P. doi:10.1002/2013GL058383. ISSN 1944-8007.
  93. ^ Rutishauser, Anja; Blankenship, Donald D.; Sharp, Martin; Skidmore, Mark L.; Greenbaum, Jamin S.; Grima, Cyril; Schroeder, Dustin M.; Dowdeswell, Julian A.; Young, Duncan A. (2018-04-01). "Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic". Science Advances. 4 (4): eaar4353. Bibcode:2018SciA....4.4353R. doi:10.1126/sciadv.aar4353. ISSN 2375-2548. PMC 5895444. PMID 29651462.
  94. ^ Siegert, Martin J. (2018). "A 60-year international history of Antarctic subglacial lake exploration". Geological Society, London, Special Publications. 461 (1): 7–21. Bibcode:2018GSLSP.461....7S. doi:10.1144/SP461.5. ISSN 0305-8719.
  95. ^ Wolovick, Michael J.; Bell, Robin E.; Creyts, Timothy T.; Frearson, Nicholas (2013). "Identification and control of subglacial water networks under Dome A, Antarctica". Journal of Geophysical Research: Earth Surface. 118 (1): 140–154. Bibcode:2013JGRF..118..140W. doi:10.1029/2012JF002555. ISSN 2169-9011. S2CID 31518000.
  96. ^ Björnsson, Helgi; Gjessing, Yngvar; Hamran, Svein-Erik; Hagen, Jon Ove; LiestøL, Olav; Pálsson, Finnur; Erlingsson, Björn (1996). "The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding". Journal of Glaciology. 42 (140): 23–32. doi:10.3189/S0022143000030495. ISSN 0022-1430.
  97. ^ Bradford, John H.; Harper, Joel T. (2005). "Wave field migration as a tool for estimating spatially continuous radar velocity and water content in glaciers". Geophysical Research Letters. 32 (8): L08502. Bibcode:2005GeoRL..32.8502B. doi:10.1029/2004GL021770. ISSN 1944-8007.
  98. ^ Murray, Tavi; Stuart, Graham W.; Fry, Matt; Gamble, Nicola H.; Crabtree, Mike D. (2000). "Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis". Journal of Glaciology. 46 (154): 389–398. Bibcode:2000JGlac..46..389M. doi:10.3189/172756500781833188. ISSN 0022-1430.
  99. ^ Forster, Richard R.; Box, Jason E.; van den Broeke, Michiel R.; Miège, Clément; Burgess, Evan W.; van Angelen, Jan H.; Lenaerts, Jan T. M.; Koenig, Lora S.; Paden, John; Lewis, Cameron; Gogineni, S. Prasad (February 2014). "Extensive liquid meltwater storage in firn within the Greenland ice sheet". Nature Geoscience. 7 (2): 95–98. Bibcode:2014NatGe...7...95F. doi:10.1038/ngeo2043. ISSN 1752-0908. S2CID 128970359.
  100. ^ Chu, W.; Schroeder, D. M.; Siegfried, M. R. (2018-11-16). "Retrieval of Englacial Firn Aquifer Thickness From Ice-Penetrating Radar Sounding in Southeastern Greenland". Geophysical Research Letters. 45 (21): 11, 770–11, 778. Bibcode:2018GeoRL..4511770C. doi:10.1029/2018GL079751.
  101. ^ Kulessa, B.; Booth, A. D.; Hobbs, A.; Hubbard, A. L. (2008). "Automated monitoring of subglacial hydrological processes with ground-penetrating radar (GPR) at high temporal resolution: scope and potential pitfalls". Geophysical Research Letters. 35 (24): L24502. Bibcode:2008GeoRL..3524502K. doi:10.1029/2008GL035855. ISSN 1944-8007.
  102. ^ Catania, G. A.; Conway, H.; Raymond, C. F.; Scambos, T. A. (2006). "Evidence for floatation or near floatation in the mouth of Kamb Ice Stream, West Antarctica, prior to stagnation". Journal of Geophysical Research: Earth Surface. 111 (F1): F01005. Bibcode:2006JGRF..111.1005C. doi:10.1029/2005JF000355. ISSN 2156-2202.
  103. ^ Greenbaum, J. S.; Blankenship, D. D.; Young, D. A.; Richter, T. G.; Roberts, J. L.; Aitken, A. R. A.; Legresy, B.; Schroeder, D. M.; Warner, R. C.; van Ommen, T. D.; Siegert, M. J. (April 2015). "Ocean access to a cavity beneath Totten Glacier in East Antarctica". Nature Geoscience. 8 (4): 294–298. Bibcode:2015NatGe...8..294G. doi:10.1038/ngeo2388. ISSN 1752-0894.
  104. ^ Khazendar, Ala; Rignot, Eric; Schroeder, Dustin M.; Seroussi, Helene; Schodlok, Michael P.; Scheuchl, Bernd; Mouginot, Jeremie; Sutterley, Tyler C.; Velicogna, Isabella (December 2016). "Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica". Nature Communications. 7 (1): 13243. Bibcode:2016NatCo...713243K. doi:10.1038/ncomms13243. ISSN 2041-1723. PMC 5093338. PMID 27780191.
  105. ^ Pattyn, F.; Matsuoka, K.; Callens, D.; Conway, H.; Depoorter, M.; Docquier, D.; Hubbard, B.; Samyn, D.; Tison, J. L. (2012). "Melting and refreezing beneath Roi Baudouin Ice Shelf (East Antarctica) inferred from radar, GPS, and ice core data". Journal of Geophysical Research: Earth Surface. 117 (F4): n/a. Bibcode:2012JGRF..117.4008P. doi:10.1029/2011JF002154. ISSN 2156-2202.
  106. ^ Grima, Cyril; Greenbaum, Jamin S.; Lopez Garcia, Erika J.; Soderlund, Krista M.; Rosales, Arami; Blankenship, Donald D.; Young, Duncan A. (2016-07-16). "Radar detection of the brine extent at McMurdo Ice Shelf, Antarctica, and its control by snow accumulation: BRINE EXTENT AT MCMURDO ICE SHELF". Geophysical Research Letters. 43 (13): 7011–7018. doi:10.1002/2016GL069524.
  107. ^ Le Brocq, Anne M.; Ross, Neil; Griggs, Jennifer A.; Bingham, Robert G.; Corr, Hugh F. J.; Ferraccioli, Fausto; Jenkins, Adrian; Jordan, Tom A.; Payne, Antony J.; Rippin, David M.; Siegert, Martin J. (November 2013). "Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet". Nature Geoscience. 6 (11): 945–948. Bibcode:2013NatGe...6..945L. doi:10.1038/ngeo1977. ISSN 1752-0894.
  108. ^ Campbell, Bruce A.; Schroeder, Dustin M.; Whitten, Jennifer L. (January 2018). "Mars radar clutter and surface roughness characteristics from MARSIS data". Icarus. 299: 22–30. Bibcode:2018Icar..299...22C. doi:10.1016/j.icarus.2017.07.011.
  109. ^ Holt, John W.; Safaeinili, Ali; Plaut, Jeffrey J.; Head, James W.; Phillips, Roger J.; Seu, Roberto; Kempf, Scott D.; Choudhary, Prateek; Young, Duncan A.; Putzig, Nathaniel E.; Biccari, Daniela (2008-11-21). "Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars". Science. 322 (5905): 1235–1238. Bibcode:2008Sci...322.1235H. doi:10.1126/science.1164246. ISSN 0036-8075. PMID 19023078. S2CID 36614186.
  110. ^ Lalich, D. E.; Holt, J. W. (2017-01-28). "New Martian climate constraints from radar reflectivity within the north polar layered deposits". Geophysical Research Letters. 44 (2): 657–664. Bibcode:2017GeoRL..44..657L. doi:10.1002/2016GL071323. ISSN 0094-8276.
  111. ^ Lauro, Sebastian Emanuel; Pettinelli, Elena; Caprarelli, Graziella; Guallini, Luca; Rossi, Angelo Pio; Mattei, Elisabetta; Cosciotti, Barbara; Cicchetti, Andrea; Soldovieri, Francesco; Cartacci, Marco; Di Paolo, Federico (January 2021). "Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data". Nature Astronomy. 5 (1): 63–70. arXiv:2010.00870. Bibcode:2021NatAs...5...63L. doi:10.1038/s41550-020-1200-6. ISSN 2397-3366. S2CID 222125007.
  112. ^ Nerozzi, Stefano; W. Holt, John (July 2018). "Earliest accumulation history of the north polar layered deposits, Mars from SHARAD". Icarus. 308: 128–137. Bibcode:2018Icar..308..128N. doi:10.1016/j.icarus.2017.05.027. S2CID 125836984.
  113. ^ Orosei, R.; Lauro, S. E.; Pettinelli, E.; Cicchetti, A.; Coradini, M.; Cosciotti, B.; Paolo, F. Di; Flamini, E.; Mattei, E.; Pajola, M.; Soldovieri, F. (2018-08-03). "Radar evidence of subglacial liquid water on Mars". Science. 361 (6401): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. ISSN 0036-8075. PMID 30045881.
  114. ^ Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro (2009). "Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars". Geophysical Research Letters. 36 (2): n/a. Bibcode:2009GeoRL..36.2203P. doi:10.1029/2008GL036379. ISSN 1944-8007. S2CID 17530607.
  115. ^ Putzig, Nathaniel E.; Smith, Isaac B.; Perry, Matthew R.; Foss, Frederick J.; Campbell, Bruce A.; Phillips, Roger J.; Seu, Roberto (2018-07-01). "Three-dimensional radar imaging of structures and craters in the Martian polar caps". Icarus. Mars Polar Science VI. 308: 138–147. Bibcode:2018Icar..308..138P. doi:10.1016/j.icarus.2017.09.023. ISSN 0019-1035. PMC 5937288. PMID 29749975.
  116. ^ Seu, Roberto; Phillips, Roger J.; Biccari, Daniela; Orosei, Roberto; Masdea, Arturo; Picardi, Giovanni; Safaeinili, Ali; Campbell, Bruce A.; Plaut, Jeffrey J.; Marinangeli, Lucia; Smrekar, Suzanne E. (2007). "SHARAD sounding radar on the Mars Reconnaissance Orbiter". Journal of Geophysical Research: Planets. 112 (E5): E05S05. Bibcode:2007JGRE..112.5S05S. doi:10.1029/2006JE002745. ISSN 2156-2202.
  117. ^ Smith, I. B.; Putzig, N. E.; Holt, J. W.; Phillips, R. J. (2016-05-27). "An ice age recorded in the polar deposits of Mars". Science. 352 (6289): 1075–1078. Bibcode:2016Sci...352.1075S. doi:10.1126/science.aad6968. ISSN 0036-8075. PMID 27230372.
  118. ^ Bruzzone, L.; Alberti, G.; Catallo, C.; Ferro, A.; Kofman, W.; Orosei, R. (May 2011). "Subsurface Radar Sounding of the Jovian Moon Ganymede". Proceedings of the IEEE. 99 (5): 837–857. doi:10.1109/JPROC.2011.2108990. ISSN 1558-2256. S2CID 12738030.
  119. ^ Heggy, Essam; Scabbia, Giovanni; Bruzzone, Lorenzo; Pappalardo, Robert T. (March 2017). "Radar probing of Jovian icy moons: Understanding subsurface water and structure detectability in the JUICE and Europa missions". Icarus. 285: 237–251. Bibcode:2017Icar..285..237H. doi:10.1016/j.icarus.2016.11.039.
  120. ^ McKinnon, W (2005). "Radar sounding of convecting ice shells in the presence of convection: application to Europa, Ganymede, and Callisto". Workshop on Radar Investigations of Planetary and Terrestrial Environments, Houston, TX: 53. Bibcode:2005ript.work...53M.
  121. ^ Scanlan, Kirk M.; Grima, Cyril; Steinbrügge, Gregor; Kempf, Scott D.; Young, Duncan A.; Blankenship, Donald D. (2019-11-15). "Geometric determination of ionospheric total electron content from dual frequency radar sounding measurements". Planetary and Space Science. 178: 104696. Bibcode:2019P&SS..17804696S. doi:10.1016/j.pss.2019.07.010. ISSN 0032-0633. S2CID 199677922.
  122. ^ Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M. (November 2011). "Active formation of 'chaos terrain' over shallow subsurface water on Europa". Nature. 479 (7374): 502–505. Bibcode:2011Natur.479..502S. doi:10.1038/nature10608. ISSN 0028-0836. PMID 22089135. S2CID 4405195.
  123. ^ Steinbrügge, G.; Schroeder, D. M.; Haynes, M. S.; Hussmann, H.; Grima, C.; Blankenship, D. D. (2018-01-15). "Assessing the potential for measuring Europa's tidal Love number h2 using radar sounder and topographic imager data". Earth and Planetary Science Letters. 482: 334–341. Bibcode:2018E&PSL.482..334S. doi:10.1016/j.epsl.2017.11.028. ISSN 0012-821X.

radioglaciology, this, article, needs, additional, more, specific, images, please, help, adding, images, that, better, illustrated, 2023, study, glaciers, sheets, caps, moons, using, penetrating, radar, employs, geophysical, method, similar, ground, penetratin. This article needs additional or more specific images Please help out by adding images to it so that it can be better illustrated May 2023 Radioglaciology is the study of glaciers ice sheets ice caps and icy moons using ice penetrating radar It employs a geophysical method similar to ground penetrating radar and typically operates at frequencies in the MF HF VHF and UHF portions of the radio spectrum 1 2 3 4 This technique is also commonly referred to as Ice Penetrating Radar IPR or Radio Echo Sounding RES Glaciers are particularly well suited to investigation by radar because the conductivity imaginary part of the permittivity and the dielectric absorption of ice are small at radio frequencies resulting in low loss tangent skin depth and attenuation values This allows echoes from the base of the ice sheet to be detected through ice thicknesses greater than 4 km 5 6 The subsurface observation of ice masses using radio waves has been an integral and evolving geophysical technique in glaciology for over half a century 7 8 9 10 11 12 13 14 Its most widespread uses have been the measurement of ice thickness subglacial topography and ice sheet stratigraphy 15 8 5 It has also been used to observe the subglacial and conditions of ice sheets and glaciers including hydrology thermal state accumulation flow history ice fabric and bed geology 1 In planetary science ice penetrating radar has also been used to explore the subsurface of the Polar Ice Caps on Mars and comets 16 17 18 Missions are planned to explore the icy moons of Jupiter 19 20 Contents 1 Measurements and applications 2 Planetary exploration 3 IGS symposia 4 Further reading 5 Research institutions 6 ReferencesMeasurements and applications editRadioglaciology uses nadir facing radars to probe the subsurface of glaciers ice sheets ice caps and icy moons and to detect reflected and scattered energy from within and beneath the ice 8 This geometry tends to emphasize coherent and specular reflected energy resulting in distinct forms of the radar equation 21 22 Collected radar data typically undergoes signal processing ranging from stacking or pre summing to migration to Synthetic Aperture Radar SAR focusing in 1 2 or 3 dimensions 23 24 25 22 This data is collected using ice penetrating radar systems which range from commercial or bespoke ground penetrating radar GPR systems 26 27 to coherent chirped airborne sounders 28 29 30 to swath imaging 31 multi frequency 32 or polarimetric 33 implementations of such systems Additionally stationary phase sensitive and Frequency Modulated Continuous Wave FMCW radars 34 35 36 have been used to observe snow 37 ice shelf melt rates 38 englacial hydrology 39 ice sheet structure 40 and vertical ice flow 41 42 Interferometric analysis of airborne systems have also been demonstrated to measure vertical ice flow 43 Additionally radioglaciological instruments have been developed to operate on autonomous platforms 44 on in situ probes 45 in low cost deployments 46 using Software Defined Radios 47 and exploiting ambient radio signals for passive sounding 48 49 The most common scientific application for radioglaciological observations is measuring ice thickness and bed topography This includes interpolated bed maps 6 50 51 52 widely used in ice sheet modeling and sea level rise projections studies exploring specific ice sheet regions 53 54 55 56 57 and observations of glacier beds 58 59 60 61 The strength and character of radar echoes from the bed of the ice sheet are also used to investigate the reflectivity 62 27 of the bed the attenuation 63 64 65 of radar in the ice and the morphology of the bed 66 67 68 In addition bed echoes radar returns from englacial layers 69 are used in studies of the radio stratigraphy of ice sheets 70 71 72 73 74 including investigations of ice accumulation 75 76 77 78 79 flow 80 81 82 83 and fabric 84 85 as well as absence or disturbances of that stratigraphy 86 87 88 Radioglaciology data has also been used extensively to study subglacial lakes 89 90 91 92 93 94 and glacial hydrology 95 including englacial water 96 97 98 firn aquifers 99 and their temporal evolution 100 39 101 Ice penetrating radar data has also been used to investigate the subsurface of ice shelves including their grounding zones 102 103 melt rates 104 105 brine distribution 106 and basal channels 107 Planetary exploration editThere are currently two ice penetrating radars orbiting Mars MARSIS and SHARAD 108 109 110 111 112 113 114 115 116 117 An ice penetrating radar was also part of the ROSETTA mission to comet 67P Churyumov Gerasimenko 17 Ice penetrating radars are also included in the payloads of two planned missions to the icy moons of Jupiter JUICE and Europa Clipper 19 118 119 120 121 122 123 IGS symposia editThe International Glaciological Society IGS holds a periodic series of symposia focused on radioglaciology In 2008 the Symposium on Radioglaciology and its Applications was hosted at the Technical University of Madrid In 2013 the Symposium on Radioglaciology was hosted at the University of Kansas In 2019 the Symposium of Five Decades of Radioglaciology was hosted at Stanford University Further reading editThe following books and papers cover important topics in radioglaciology Allen C 2008 of ice 2 A brief history of radio echo sounding of ice Earthzine Bingham RG and Siegert MJ 2007 Radio echo sounding over polar ice masses Journal of Environmental and Engineering Geophysics 12 1 47 62 Bogorodsky VV Bentley CR and Gudmandsen PE 1985 Radioglaciology D Reidel Publishing Dowdeswell JA and Evans S 2004 Investigations of the form and flow of ice sheets and glaciers using radio echo sounding Reports on Progress in Physics 67 10 1821 1861 Haynes M 2020 Surface and subsurface radar equations for radar sounders Annals of Glaciology 61 81 135 142 Hubbard B and Glasser NF 2005 Field Techniques in Glaciology and Glacial Geomorphology John Wiley amp Sons Navarro F and Eisen O 2009 11 Ground penetrating radar in glaciological in Remote Sensing of Glaciers Pellikka P and Rees GW editors Pettinelli E and 6 others 2015 Dielectric properties of Jovian satellite ice analogs for subsurface radar exploration a review Reviews of Geophysics 53 3 593 641 Schroeder DM Bingham RG Blankenship DD Christianson K Eisen O Flowers GE Karlsson NB Koutnik MR Paden JD Siegert MJ 2020 Five decades of radioglaciology Annals of Glaciology 61 81 1 13 Turchetti S Dean K Naylor S and Siegert M 2008 Accidents and opportunities a history of the radio echo sounding of Antarctica 1958 79 The British Journal for the History of Science 41 3 417 444 Research institutions editResearch and education in radioglaciology is undertaken at universities and research institutes around the world These groups found in institutions and departments that span physical geography geophysics earth science planetary science electrical engineering and related disciplines References edit a b Schroeder Dustin M Bingham Robert G Blankenship Donald D Christianson Knut Eisen Olaf Flowers Gwenn E Karlsson Nanna B Koutnik Michelle R Paden John D Siegert Martin J April 2020 Five decades of radioglaciology Annals of Glaciology 61 81 1 13 Bibcode 2020AnGla 61 1S doi 10 1017 aog 2020 11 ISSN 0260 3055 Kulessa B Booth A D Hobbs A Hubbard A L 2008 12 18 Automated monitoring of subglacial hydrological processes with ground penetrating radar GPR at high temporal resolution scope and potential pitfalls Geophysical Research Letters 35 24 L24502 Bibcode 2008GeoRL 3524502K doi 10 1029 2008GL035855 ISSN 0094 8276 Bogorodsky VV Bentley CR Gudmandsen PE 1985 Radioglaciology D Reidel Publishing Pellikka Petri Rees W Gareth eds 2009 12 16 Remote Sensing of Glaciers Techniques for Topographic Spatial and Thematic Mapping of Glaciers 0 ed CRC Press doi 10 1201 b10155 ISBN 978 0 429 20642 9 S2CID 129205832 a b Bamber J L Griggs J A Hurkmans R T W L Dowdeswell J A Gogineni S P Howat I Mouginot J Paden J Palmer S Rignot E Steinhage D 2013 03 22 A new bed elevation dataset for Greenland The Cryosphere 7 2 499 510 Bibcode 2013TCry 7 499B doi 10 5194 tc 7 499 2013 ISSN 1994 0424 a b Fretwell P Pritchard H D Vaughan D G Bamber J L Barrand N E et al 28 February 2013 Bedmap2 improved ice bed surface and thickness datasets for Antarctica PDF The Cryosphere 7 1 390 Bibcode 2013TCry 7 375F doi 10 5194 tc 7 375 2013 Retrieved 6 January 2014 Allen Christopher September 26 2008 A Brief History Of Radio Echo Sounding Of Ice a b c Dowdeswell J A Evans S 2004 10 01 Investigations of the form and flow of ice sheets and glaciers using radio echo sounding Reports on Progress in Physics 67 10 1821 1861 Bibcode 2004RPPh 67 1821D doi 10 1088 0034 4885 67 10 R03 ISSN 0034 4885 S2CID 250845954 Drewry DJ 1983 Antarctica Glaciological and Geophysical Folio Vol 2 University of Cambridge Scott Polar Research Institute Cambridge Gudmandsen P December 1969 Airborne Radio Echo Sounding of the Greenland Ice Sheet The Geographical Journal 135 4 548 551 doi 10 2307 1795099 JSTOR 1795099 Robin G de Q 1975 Radio Echo Sounding Glaciological Interpretations and Applications Journal of Glaciology 15 73 49 64 doi 10 3189 S0022143000034262 ISSN 0022 1430 Steenson BO 1951 Radar Methods for the Exploration of Glaciers PhD California Institute of Technology Stern W 1930 Principles methods and results of electrodynamic thickness measurement of glacier ice Zeitschrift fur Gletscherkunde 18 24 Turchetti Simone Dean Katrina Naylor Simon Siegert Martin September 2008 Accidents and opportunities a history of the radio echo sounding of Antarctica 1958 79 The British Journal for the History of Science 41 3 417 444 doi 10 1017 S0007087408000903 hdl 1842 2975 ISSN 0007 0874 S2CID 55339188 Bingham R G Siegert M J 2007 03 01 Radio Echo Sounding Over Polar Ice Masses Journal of Environmental amp Engineering Geophysics 12 1 47 62 Bibcode 2007JEEG 12 47B doi 10 2113 JEEG12 1 47 hdl 2164 11013 ISSN 1083 1363 Picardi G 2005 12 23 Radar Soundings of the Subsurface of Mars Science 310 5756 1925 1928 Bibcode 2005Sci 310 1925P doi 10 1126 science 1122165 ISSN 0036 8075 PMID 16319122 a b Kofman W Herique A Barbin Y Barriot J P Ciarletti V Clifford S Edenhofer P Elachi C Eyraud C Goutail J P Heggy E 2015 07 31 Properties of the 67P Churyumov Gerasimenko interior revealed by CONSERT radar Science 349 6247 aab0639 Bibcode 2015Sci 349b0639K doi 10 1126 science aab0639 ISSN 0036 8075 PMID 26228153 Seu Roberto Phillips Roger J Biccari Daniela Orosei Roberto Masdea Arturo Picardi Giovanni Safaeinili Ali Campbell Bruce A Plaut Jeffrey J Marinangeli Lucia Smrekar Suzanne E 2007 05 18 SHARAD sounding radar on the Mars Reconnaissance Orbiter Journal of Geophysical Research 112 E5 E05S05 Bibcode 2007JGRE 112 5S05S doi 10 1029 2006JE002745 ISSN 0148 0227 a b Blankenship DD 2018 Reasons for Europa 42nd COSPAR Scientific Assembly 42 and 5 others Bruzzone L Alberti G Catallo C Ferro A Kofman W Orosei R May 2011 Subsurface Radar Sounding of the Jovian Moon Ganymede Proceedings of the IEEE 99 5 837 857 doi 10 1109 JPROC 2011 2108990 ISSN 0018 9219 S2CID 12738030 Haynes Mark S April 2020 Surface and subsurface radar equations for radar sounders Annals of Glaciology 61 81 135 142 Bibcode 2020AnGla 61 135H doi 10 1017 aog 2020 16 ISSN 0260 3055 a b Peters M E Blankenship D D Carter S P Kempf S D Young D A Holt J W September 2007 Along Track Focusing of Airborne Radar Sounding Data From West Antarctica for Improving Basal Reflection Analysis and Layer Detection IEEE Transactions on Geoscience and Remote Sensing 45 9 2725 2736 Bibcode 2007ITGRS 45 2725P doi 10 1109 TGRS 2007 897416 ISSN 0196 2892 S2CID 22808977 Ferro A 2019 06 18 Squinted SAR focusing for improving automatic radar sounder data analysis and enhancement International Journal of Remote Sensing 40 12 4762 4786 Bibcode 2019IJRS 40 4762F doi 10 1080 01431161 2019 1573339 ISSN 0143 1161 S2CID 133653325 Zhang Qiuwang Kandic Ivana Barfield Jeffrey T Kutryk Michael J 2013 Coculture with Late but Not Early Human Endothelial Progenitor Cells Up Regulates IL 1bExpression in THP 1 Monocytic Cells in a Paracrine Manner Stem Cells International 2013 859643 doi 10 1155 2013 859643 ISSN 1687 966X PMC 3872420 PMID 24385987 Paden John Akins Torry Dunson David Allen Chris Gogineni Prasad 2010 Ice sheet bed 3 D tomography Journal of Glaciology 56 195 3 11 Bibcode 2010JGlac 56 3P doi 10 3189 002214310791190811 ISSN 0022 1430 Booth Adam D Clark Roger Murray Tavi June 2010 Semblance response to a ground penetrating radar wavelet and resulting errors in velocity analysis Near Surface Geophysics 8 3 235 246 doi 10 3997 1873 0604 2010008 a b Tulaczyk Slawek M Foley Neil T 2020 12 08 The role of electrical conductivity in radar wave reflection from glacier beds The Cryosphere 14 12 4495 4506 Bibcode 2020TCry 14 4495T doi 10 5194 tc 14 4495 2020 ISSN 1994 0416 Gogineni S Tammana D Braaten D Leuschen C Akins T Legarsky J Kanagaratnam P Stiles J Allen C Jezek K 2001 12 27 Coherent radar ice thickness measurements over the Greenland ice sheet Journal of Geophysical Research Atmospheres 106 D24 33761 33772 Bibcode 2001JGR 10633761G doi 10 1029 2001JD900183 Rodriguez Morales Fernando Byers Kyle Crowe Reid Player Kevin Hale Richard D Arnold Emily J Smith Logan Gifford Christopher M Braaten David Panton Christian Gogineni Sivaprasad May 2014 Advanced Multifrequency Radar Instrumentation for Polar Research IEEE Transactions on Geoscience and Remote Sensing 52 5 2824 2842 Bibcode 2014ITGRS 52 2824R doi 10 1109 TGRS 2013 2266415 ISSN 0196 2892 S2CID 7287473 Yan J Gogineni P O Neill C July 2018 L Band Radar Sounder for Measuing Ice Basal Conditions and Ice Shelf Melt Rate IGARSS 2018 2018 IEEE International Geoscience and Remote Sensing Symposium pp 4135 4137 doi 10 1109 IGARSS 2018 8518210 ISBN 978 1 5386 7150 4 S2CID 53226141 Holschuh N Christianson K Paden J Alley R B Anandakrishnan S 2020 03 01 Linking postglacial landscapes to glacier dynamics using swath radar at Thwaites Glacier Antarctica Geology 48 3 268 272 Bibcode 2020Geo 48 268H doi 10 1130 G46772 1 ISSN 0091 7613 S2CID 213056337 Carrer Leonardo Bruzzone Lorenzo December 2017 Solving for ambiguities in radar geophysical exploration of planetary bodies by mimicking bats echolocation Nature Communications 8 1 2248 Bibcode 2017NatCo 8 2248C doi 10 1038 s41467 017 02334 1 ISSN 2041 1723 PMC 5740182 PMID 29269728 Dall Jorgen Corr Hugh F J Walker Nick Rommen Bjorn Lin Chung Chi July 2018 Sounding the Antarctic ice sheet from space A feasibility study based on airborne P band radar data IGARSS 2018 2018 IEEE International Geoscience and Remote Sensing Symposium Valencia IEEE pp 4142 4145 doi 10 1109 IGARSS 2018 8518826 ISBN 978 1 5386 7150 4 S2CID 53229440 Brennan Paul V Lok Lai Bun Nicholls Keith Corr Hugh 2014 Phase sensitive FMCW radar system for high precision Antarctic ice shelf profile monitoring IET Radar Sonar amp Navigation 8 7 776 786 doi 10 1049 iet rsn 2013 0053 ISSN 1751 8792 Lok L B Brennan P V Ash M Nicholls K W July 2015 Autonomous phase sensitive radio echo sounder for monitoring and imaging antarctic ice shelves 2015 8th International Workshop on Advanced Ground Penetrating Radar IWAGPR pp 1 4 doi 10 1109 IWAGPR 2015 7292636 ISBN 978 1 4799 6495 6 S2CID 23122115 Vankova Irena Nicholls Keith W Xie Surui Parizek Byron R Voytenko Denis Holland David M April 2020 Depth dependent artifacts resulting from ApRES signal clipping Annals of Glaciology 61 81 108 113 Bibcode 2020AnGla 61 108V doi 10 1017 aog 2020 56 ISSN 0260 3055 Marshall Hans Peter Koh Gary 2008 04 01 FMCW radars for snow research Cold Regions Science and Technology Research in Cryospheric Science and Engineering 52 2 118 131 Bibcode 2008CRST 52 118M doi 10 1016 j coldregions 2007 04 008 ISSN 0165 232X Corr H F J Jenkins A Nicholls K W Doake C S M April 2002 Precise measurement of changes in ice shelf thickness by phase sensitive radar to determine basal melt rates ICE MELT RATES REVEALED BY RADAR Geophysical Research Letters 29 8 73 1 74 4 doi 10 1029 2001GL014618 S2CID 127638299 a b Kendrick A K Schroeder D M Chu W Young T J Christoffersen P Todd J Doyle S H Box J E Hubbard A Hubbard B Brennan P V 2018 10 16 Surface Meltwater Impounded by Seasonal Englacial Storage in West Greenland Geophysical Research Letters 45 19 10 474 Bibcode 2018GeoRL 4510474K doi 10 1029 2018GL079787 ISSN 0094 8276 Young Tun Jan Schroeder Dustin M Christoffersen Poul Lok Lai Bun Nicholls Keith W Brennan Paul V Doyle Samuel H Hubbard Bryn Hubbard Alun August 2018 Resolving the internal and basal geometry of ice masses using imaging phase sensitive radar Journal of Glaciology 64 246 649 660 Bibcode 2018JGlac 64 649Y doi 10 1017 jog 2018 54 ISSN 0022 1430 Gillet Chaulet F Hindmarsh R C A Corr H F J King E C Jenkins A 2011 In situ quantification of ice rheology and direct measurement of the Raymond Effect at Summit Greenland using a phase sensitive radar Geophysical Research Letters 38 24 n a Bibcode 2011GeoRL 3824503G doi 10 1029 2011GL049843 Kingslake Jonathan Hindmarsh Richard C A Adalgeirsdottir Gudfinna Conway Howard Corr Hugh F J Gillet Chaulet Fabien Martin Carlos King Edward C Mulvaney Robert Pritchard Hamish D 2014 Full depth englacial vertical ice sheet velocities measured using phase sensitive radar Journal of Geophysical Research Earth Surface 119 12 2604 2618 Bibcode 2014JGRF 119 2604K doi 10 1002 2014JF003275 ISSN 2169 9011 Castelletti D Schroeder D M Jordan T M Young D 2020 Permanent Scatterers in Repeat Pass Airborne VHF Radar Sounder for Layer Velocity Estimation IEEE Geoscience and Remote Sensing Letters 18 10 1766 1770 doi 10 1109 LGRS 2020 3007514 ISSN 1558 0571 Arcone Steven A Lever James H Ray Laura E Walker Benjamin S Hamilton Gordon Kaluzienski Lynn 2016 01 01 Ground penetrating radar profiles of the McMurdo Shear Zone Antarctica acquired with an unmanned rover Interpretation of crevasses fractures and folds within firn and marine ice Geophysics 81 1 WA21 WA34 Bibcode 2016Geop 81A 21A doi 10 1190 geo2015 0132 1 ISSN 0016 8033 Bagshaw E A Lishman B Wadham J L Bowden J A Burrow S G Clare L R Chandler D 2014 Novel wireless sensors for in situ measurement of sub ice hydrologic systems Annals of Glaciology 55 65 41 50 Bibcode 2014AnGla 55 41B doi 10 3189 2014AoG65A007 ISSN 0260 3055 Mingo Laurent Flowers Gwenn E Crawford Anna J Mueller Derek R Bigelow David G April 2020 A stationary impulse radar system for autonomous deployment in cold and temperate environments Annals of Glaciology 61 81 99 107 Bibcode 2020AnGla 61 99M doi 10 1017 aog 2020 2 ISSN 0260 3055 Liu Peng Mendoza Jesus Hu Hanxiong Burkett Peter G Urbina Julio V Anandakrishnan Sridhar Bilen Sven G March 2019 Software Defined Radar Systems for Polar Ice Sheet Research IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12 3 803 820 Bibcode 2019IJSTA 12 803L doi 10 1109 JSTARS 2019 2895616 ISSN 1939 1404 Peters Sean T Schroeder Dustin M Castelletti Davide Haynes Mark Romero Wolf Andrew December 2018 In Situ Demonstration of a Passive Radio Sounding Approach Using the Sun for Echo Detection IEEE Transactions on Geoscience and Remote Sensing 56 12 7338 7349 Bibcode 2018ITGRS 56 7338P doi 10 1109 TGRS 2018 2850662 ISSN 0196 2892 Romero Wolf Andrew Vance Steve Maiwald Frank Heggy Essam Ries Paul Liewer Kurt 2015 03 01 A passive probe for subsurface oceans and liquid water in Jupiter s icy moons Icarus 248 463 477 arXiv 1404 1876 Bibcode 2015Icar 248 463R doi 10 1016 j icarus 2014 10 043 ISSN 0019 1035 S2CID 119234268 Bamber J L Griggs J A Hurkmans R T W L Dowdeswell J A Gogineni S P Howat I Mouginot J Paden J Palmer S Rignot E Steinhage D 2013 03 22 A new bed elevation dataset for Greenland The Cryosphere 7 2 499 510 Bibcode 2013TCry 7 499B doi 10 5194 tc 7 499 2013 ISSN 1994 0416 MacKie E J Schroeder D M Caers J Siegfried M R Scheidt C 2020 Antarctic Topographic Realizations and Geostatistical Modeling Used to Map Subglacial Lakes Journal of Geophysical Research Earth Surface 125 3 e2019JF005420 Bibcode 2020JGRF 12505420M doi 10 1029 2019JF005420 ISSN 2169 9011 Morlighem M Rignot E Seroussi H Larour E Dhia H Ben Aubry D 2011 A mass conservation approach for mapping glacier ice thickness Geophysical Research Letters 38 19 n a Bibcode 2011GeoRL 3819503M doi 10 1029 2011GL048659 ISSN 1944 8007 Bo Sun Siegert Martin J Mudd Simon M Sugden David Fujita Shuji Xiangbin Cui Yunyun Jiang Xueyuan Tang Yuansheng Li June 2009 The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet Nature 459 7247 690 693 Bibcode 2009Natur 459 690B doi 10 1038 nature08024 ISSN 1476 4687 PMID 19494912 S2CID 4381263 King Edward C April 2020 The precision of radar derived subglacial bed topography a case study from Pine Island Glacier Antarctica Annals of Glaciology 61 81 154 161 Bibcode 2020AnGla 61 154K doi 10 1017 aog 2020 33 ISSN 0260 3055 Ross Neil Bingham Robert G Corr Hugh F J Ferraccioli Fausto Jordan Tom A Le Brocq Anne Rippin David M Young Duncan Blankenship Donald D Siegert Martin J June 2012 Steep reverse bed slope at the grounding line of the Weddell Sea sector in West Antarctica Nature Geoscience 5 6 393 396 Bibcode 2012NatGe 5 393R doi 10 1038 ngeo1468 ISSN 1752 0894 Vaughan David G Corr Hugh F J Ferraccioli Fausto Frearson Nicholas O Hare Aidan Mach Dieter Holt John W Blankenship Donald D Morse David L Young Duncan A 2006 New boundary conditions for the West Antarctic ice sheet Subglacial topography beneath Pine Island Glacier Geophysical Research Letters 33 9 L09501 Bibcode 2006GeoRL 33 9501V doi 10 1029 2005GL025588 ISSN 1944 8007 S2CID 128406976 Young Duncan A Wright Andrew P Roberts Jason L Warner Roland C Young Neal W Greenbaum Jamin S Schroeder Dustin M Holt John W Sugden David E Blankenship Donald D van Ommen Tas D June 2011 A dynamic early East Antarctic Ice Sheet suggested by ice covered fjord landscapes Nature 474 7349 72 75 Bibcode 2011Natur 474 72Y doi 10 1038 nature10114 ISSN 1476 4687 PMID 21637255 S2CID 4425075 Clarke G K C Cross G M Benson C S 1987 Airborne UHF Radar Measurements of Caldera Geometry and Volcanic History Mount Wrangell Alaska U S A Annals of Glaciology 9 236 237 Bibcode 1987AnGla 9R 236C doi 10 3189 S0260305500000707 ISSN 0260 3055 Flowers Gwenn E Clarke Garry K C 1999 Surface and bed topography of Trapridge Glacier Yukon Territory Canada digital elevation models and derived hydraulic geometry Journal of Glaciology 45 149 165 174 doi 10 3189 S0022143000003142 ISSN 0022 1430 Maurer Hansruedi Hauck Christian 2007 Geophysical imaging of alpine rock glaciers Journal of Glaciology 53 180 110 120 Bibcode 2007JGlac 53 110M doi 10 3189 172756507781833893 ISSN 0022 1430 Zamora Rodrigo Ulloa David Garcia Gonzalo Mella Ronald Uribe Jose Wendt Jens Rivera Andres Gacitua Guisella Casassa Gino 2009 Airborne radar sounder for temperate ice initial results from Patagonia Journal of Glaciology 55 191 507 512 Bibcode 2009JGlac 55 507Z doi 10 3189 002214309788816641 ISSN 0022 1430 Jacobel Robert W Welch Brian C Osterhouse David Pettersson Rickard MacGregor Joseph A 2009 Spatial variation of radar derived basal conditions on Kamb Ice Stream West Antarctica Annals of Glaciology 50 51 10 16 Bibcode 2009AnGla 50 10J doi 10 3189 172756409789097504 ISSN 0260 3055 Matsuoka Kenichi 2011 03 16 Pitfalls in radar diagnosis of ice sheet bed conditions Lessons from englacial attenuation models RADAR DIAGNOSIS OF ICE SHEET BEDS Geophysical Research Letters 38 5 n a doi 10 1029 2010GL046205 Pettinelli Elena Cosciotti Barbara Di Paolo Federico Lauro Sebastian Emanuel Mattei Elisabetta Orosei Roberto Vannaroni Giuliano September 2015 Dielectric properties of Jovian satellite ice analogs for subsurface radar exploration A review JOVIAN ICY MOONS DIELECTRIC PROPERTIES Reviews of Geophysics 53 3 593 641 doi 10 1002 2014RG000463 hdl 11590 283398 S2CID 128925940 Stillman David E MacGregor Joseph A Grimm Robert E March 2013 The role of acids in electrical conduction through ice CONDUCTION OF ACIDS IN ICE Journal of Geophysical Research Earth Surface 118 1 1 16 doi 10 1029 2012JF002603 Muto Atsuhiro Alley Richard B Parizek Byron R Anandakrishnan Sridhar December 2019 Bed type variability and till dis continuity beneath Thwaites Glacier West Antarctica Annals of Glaciology 60 80 82 90 Bibcode 2019AnGla 60 82M doi 10 1017 aog 2019 32 ISSN 0260 3055 Rippin D M Bingham R G Jordan T A Wright A P Ross N Corr H F J Ferraccioli F Le Brocq A M Rose K C Siegert M J June 2014 Basal roughness of the Institute and Moller Ice Streams West Antarctica Process determination and landscape interpretation Geomorphology 214 139 147 Bibcode 2014Geomo 214 139R doi 10 1016 j geomorph 2014 01 021 Popov S V 2017 04 18 Flow Lines Computation and Their Use in Subglacial Geomorphology and Glacial Erosion Modeling The Princess Elizabeth Land East Antarctica Case Study Geomorphology Ras in Russian 1 46 54 doi 10 15356 0435 4281 2017 1 46 54 Retrieved 2021 03 04 Fujita Shuji Maeno Hideo Uratsuka Seiho Furukawa Teruo Mae Shinji Fujii Yoshiyuki Watanabe Okitsugu 1999 Nature of radio echo layering in the Antarctic Ice Sheet detected by a two frequency experiment Journal of Geophysical Research Solid Earth 104 B6 13013 13024 Bibcode 1999JGR 10413013F doi 10 1029 1999JB900034 ISSN 2156 2202 Campbell Seth Balco Greg Todd Claire Conway Howard Huybers Kathleen Simmons Christopher Vermeulen Michael 2013 Radar detected englacial stratigraphy in the Pensacola Mountains Antarctica implications for recent changes in ice flow and accumulation Annals of Glaciology 54 63 91 100 Bibcode 2013AnGla 54 91C doi 10 3189 2013AoG63A371 ISSN 0260 3055 NEEM community members January 2013 Eemian interglacial reconstructed from a Greenland folded ice core Nature 493 7433 489 494 Bibcode 2013Natur 493 489N doi 10 1038 nature11789 ISSN 0028 0836 PMID 23344358 S2CID 4420908 Hindmarsh Richard C A Leysinger Vieli Gwendolyn J M C Raymond Melanie J Gudmundsson G Hilmar 2006 Draping or overriding The effect of horizontal stress gradients on internal layer architecture in ice sheets Journal of Geophysical Research 111 F2 F02018 Bibcode 2006JGRF 111 2018H doi 10 1029 2005JF000309 ISSN 0148 0227 S2CID 21709437 Karlsson Nanna B Binder Tobias Eagles Graeme Helm Veit Pattyn Frank Van Liefferinge Brice Eisen Olaf 2018 07 25 Glaciological characteristics in the Dome Fuji region and new assessment for Oldest Ice The Cryosphere 12 7 2413 2424 Bibcode 2018TCry 12 2413K doi 10 5194 tc 12 2413 2018 ISSN 1994 0424 MacGregor Joseph A Fahnestock Mark A Catania Ginny A Paden John D Prasad Gogineni S Young S Keith Rybarski Susan C Mabrey Alexandria N Wagman Benjamin M Morlighem Mathieu February 2015 Radiostratigraphy and age structure of the Greenland Ice Sheet Journal of Geophysical Research Earth Surface 120 2 212 241 Bibcode 2015JGRF 120 212M doi 10 1002 2014JF003215 ISSN 2169 9003 PMC 4508962 PMID 26213664 Cavitte Marie G P Parrenin Frederic Ritz Catherine Young Duncan A Van Liefferinge Brice Blankenship Donald D Frezzotti Massimo Roberts Jason L 2018 04 17 Accumulation patterns around Dome C East Antarctica in the last 73 kyr The Cryosphere 12 4 1401 1414 Bibcode 2018TCry 12 1401C doi 10 5194 tc 12 1401 2018 ISSN 1994 0424 Kohler Jack Moore John Kennett Mike Engeset Rune Elvehoy Hallgeir 1997 Using ground penetrating radar to image previous years summer surfaces for mass balance measurements Annals of Glaciology 24 355 360 Bibcode 1997AnGla 24 355K doi 10 3189 S0260305500012441 ISSN 0260 3055 Koutnik Michelle R Fudge T J Conway Howard Waddington Edwin D Neumann Thomas A Cuffey Kurt M Buizert Christo Taylor Kendrick C 2016 Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice core site Journal of Geophysical Research Earth Surface 121 5 907 924 Bibcode 2016JGRF 121 907K doi 10 1002 2015JF003668 ISSN 2169 9011 Medley B Joughin I Smith B E Das S B Steig E J Conway H Gogineni S Lewis C Criscitiello A S McConnell J R van den Broeke M R 2014 07 31 Constraining the recent mass balance of Pine Island and Thwaites glaciers West Antarctica with airborne observations of snow accumulation The Cryosphere 8 4 1375 1392 Bibcode 2014TCry 8 1375M doi 10 5194 tc 8 1375 2014 ISSN 1994 0424 Waddington Edwin D Neumann Thomas A Koutnik Michelle R Marshall Hans Peter Morse David L 2007 Inference of accumulation rate patterns from deep layers in glaciers and ice sheets Journal of Glaciology 53 183 694 712 Bibcode 2007JGlac 53 694W doi 10 3189 002214307784409351 ISSN 0022 1430 Eisen Olaf 2008 Inference of velocity pattern from isochronous layers in firn using an inverse method Journal of Glaciology 54 187 613 630 Bibcode 2008JGlac 54 613E doi 10 3189 002214308786570818 ISSN 0022 1430 Fahnestock Mark Abdalati Waleed Joughin Ian Brozena John Gogineni Prasad 2001 12 14 High Geothermal Heat Flow Basal Melt and the Origin of Rapid Ice Flow in Central Greenland Science 294 5550 2338 2342 Bibcode 2001Sci 294 2338F doi 10 1126 science 1065370 ISSN 0036 8075 PMID 11743197 S2CID 19844250 Vieli G J M C Leysinger Hindmarsh R C A Siegert M J 2007 Three dimensional flow influences on radar layer stratigraphy Annals of Glaciology 46 1 22 28 Bibcode 2007AnGla 46 22L doi 10 3189 172756407782871729 ISSN 0260 3055 Pettit Erin C Waddington Edwin D Harrison William D Thorsteinsson Throstur Elsberg Daniel Morack John Zumberge Mark A 2011 The crossover stress anisotropy and the ice flow law at Siple Dome West Antarctica Journal of Glaciology 57 201 39 52 Bibcode 2011JGlac 57 39P doi 10 3189 002214311795306619 ISSN 0022 1430 Jordan Thomas M Schroeder Dustin M Castelletti Davide Li Jilu Dall Jorgen November 2019 A Polarimetric Coherence Method to Determine Ice Crystal Orientation Fabric From Radar Sounding Application to the NEEM Ice Core Region IEEE Transactions on Geoscience and Remote Sensing 57 11 8641 8657 Bibcode 2019ITGRS 57 8641J doi 10 1109 TGRS 2019 2921980 ISSN 0196 2892 S2CID 198442821 Martin Carlos Gudmundsson G Hilmar Pritchard Hamish D Gagliardini Olivier 2009 10 14 On the effects of anisotropic rheology on ice flow internal structure and the age depth relationship at ice divides Journal of Geophysical Research 114 F4 F04001 Bibcode 2009JGRF 114 4001M doi 10 1029 2008JF001204 ISSN 0148 0227 S2CID 129357387 Bell R E Ferraccioli F Creyts T T Braaten D Corr H Das I Damaske D Frearson N Jordan T Rose K Studinger M 2011 03 25 Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base Science 331 6024 1592 1595 Bibcode 2011Sci 331 1592B doi 10 1126 science 1200109 ISSN 0036 8075 PMID 21385719 S2CID 45110037 Drews R Eisen O Weikusat I Kipfstuhl S Lambrecht A Steinhage D Wilhelms F Miller H 2009 08 25 Layer disturbances and the radio echo free zone in ice sheets The Cryosphere 3 2 195 203 Bibcode 2009TCry 3 195D doi 10 5194 tc 3 195 2009 ISSN 1994 0416 Winter Kate Woodward John Ross Neil Dunning Stuart A Hein Andrew S Westoby Matthew J Culberg Riley Marrero Shasta M Schroeder Dustin M Sugden David E Siegert Martin J 2019 Radar Detected Englacial Debris in the West Antarctic Ice Sheet Geophysical Research Letters 46 17 18 10454 10462 Bibcode 2019GeoRL 4610454W doi 10 1029 2019GL084012 ISSN 1944 8007 Carter Sasha P Blankenship Donald D Peters Matthew E Young Duncan A Holt John W Morse David L March 2007 Radar based subglacial lake classification in Antarctica ANTARCTIC SUBGLACIAL LAKES Geochemistry Geophysics Geosystems 8 3 n a doi 10 1029 2006GC001408 S2CID 134827447 Ilisei Ana Maria Khodadadzadeh Mahdi Ferro Adamo Bruzzone Lorenzo June 2019 An Automatic Method for Subglacial Lake Detection in Ice Sheet Radar Sounder Data IEEE Transactions on Geoscience and Remote Sensing 57 6 3252 3270 Bibcode 2019ITGRS 57 3252I doi 10 1109 TGRS 2018 2882911 ISSN 0196 2892 S2CID 127129493 Oswald G K A Robin G De Q October 1973 Lakes Beneath the Antarctic Ice Sheet Nature 245 5423 251 254 Bibcode 1973Natur 245 251O doi 10 1038 245251a0 ISSN 0028 0836 S2CID 4271414 Palmer Steven J Dowdeswell Julian A Christoffersen Poul Young Duncan A Blankenship Donald D Greenbaum Jamin S Benham Toby Bamber Jonathan Siegert Martin J 2013 Greenland subglacial lakes detected by radar Geophysical Research Letters 40 23 6154 6159 Bibcode 2013GeoRL 40 6154P doi 10 1002 2013GL058383 ISSN 1944 8007 Rutishauser Anja Blankenship Donald D Sharp Martin Skidmore Mark L Greenbaum Jamin S Grima Cyril Schroeder Dustin M Dowdeswell Julian A Young Duncan A 2018 04 01 Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap Canadian Arctic Science Advances 4 4 eaar4353 Bibcode 2018SciA 4 4353R doi 10 1126 sciadv aar4353 ISSN 2375 2548 PMC 5895444 PMID 29651462 Siegert Martin J 2018 A 60 year international history of Antarctic subglacial lake exploration Geological Society London Special Publications 461 1 7 21 Bibcode 2018GSLSP 461 7S doi 10 1144 SP461 5 ISSN 0305 8719 Wolovick Michael J Bell Robin E Creyts Timothy T Frearson Nicholas 2013 Identification and control of subglacial water networks under Dome A Antarctica Journal of Geophysical Research Earth Surface 118 1 140 154 Bibcode 2013JGRF 118 140W doi 10 1029 2012JF002555 ISSN 2169 9011 S2CID 31518000 Bjornsson Helgi Gjessing Yngvar Hamran Svein Erik Hagen Jon Ove LiestoL Olav Palsson Finnur Erlingsson Bjorn 1996 The thermal regime of sub polar glaciers mapped by multi frequency radio echo sounding Journal of Glaciology 42 140 23 32 doi 10 3189 S0022143000030495 ISSN 0022 1430 Bradford John H Harper Joel T 2005 Wave field migration as a tool for estimating spatially continuous radar velocity and water content in glaciers Geophysical Research Letters 32 8 L08502 Bibcode 2005GeoRL 32 8502B doi 10 1029 2004GL021770 ISSN 1944 8007 Murray Tavi Stuart Graham W Fry Matt Gamble Nicola H Crabtree Mike D 2000 Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis Journal of Glaciology 46 154 389 398 Bibcode 2000JGlac 46 389M doi 10 3189 172756500781833188 ISSN 0022 1430 Forster Richard R Box Jason E van den Broeke Michiel R Miege Clement Burgess Evan W van Angelen Jan H Lenaerts Jan T M Koenig Lora S Paden John Lewis Cameron Gogineni S Prasad February 2014 Extensive liquid meltwater storage in firn within the Greenland ice sheet Nature Geoscience 7 2 95 98 Bibcode 2014NatGe 7 95F doi 10 1038 ngeo2043 ISSN 1752 0908 S2CID 128970359 Chu W Schroeder D M Siegfried M R 2018 11 16 Retrieval of Englacial Firn Aquifer Thickness From Ice Penetrating Radar Sounding in Southeastern Greenland Geophysical Research Letters 45 21 11 770 11 778 Bibcode 2018GeoRL 4511770C doi 10 1029 2018GL079751 Kulessa B Booth A D Hobbs A Hubbard A L 2008 Automated monitoring of subglacial hydrological processes with ground penetrating radar GPR at high temporal resolution scope and potential pitfalls Geophysical Research Letters 35 24 L24502 Bibcode 2008GeoRL 3524502K doi 10 1029 2008GL035855 ISSN 1944 8007 Catania G A Conway H Raymond C F Scambos T A 2006 Evidence for floatation or near floatation in the mouth of Kamb Ice Stream West Antarctica prior to stagnation Journal of Geophysical Research Earth Surface 111 F1 F01005 Bibcode 2006JGRF 111 1005C doi 10 1029 2005JF000355 ISSN 2156 2202 Greenbaum J S Blankenship D D Young D A Richter T G Roberts J L Aitken A R A Legresy B Schroeder D M Warner R C van Ommen T D Siegert M J April 2015 Ocean access to a cavity beneath Totten Glacier in East Antarctica Nature Geoscience 8 4 294 298 Bibcode 2015NatGe 8 294G doi 10 1038 ngeo2388 ISSN 1752 0894 Khazendar Ala Rignot Eric Schroeder Dustin M Seroussi Helene Schodlok Michael P Scheuchl Bernd Mouginot Jeremie Sutterley Tyler C Velicogna Isabella December 2016 Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica Nature Communications 7 1 13243 Bibcode 2016NatCo 713243K doi 10 1038 ncomms13243 ISSN 2041 1723 PMC 5093338 PMID 27780191 Pattyn F Matsuoka K Callens D Conway H Depoorter M Docquier D Hubbard B Samyn D Tison J L 2012 Melting and refreezing beneath Roi Baudouin Ice Shelf East Antarctica inferred from radar GPS and ice core data Journal of Geophysical Research Earth Surface 117 F4 n a Bibcode 2012JGRF 117 4008P doi 10 1029 2011JF002154 ISSN 2156 2202 Grima Cyril Greenbaum Jamin S Lopez Garcia Erika J Soderlund Krista M Rosales Arami Blankenship Donald D Young Duncan A 2016 07 16 Radar detection of the brine extent at McMurdo Ice Shelf Antarctica and its control by snow accumulation BRINE EXTENT AT MCMURDO ICE SHELF Geophysical Research Letters 43 13 7011 7018 doi 10 1002 2016GL069524 Le Brocq Anne M Ross Neil Griggs Jennifer A Bingham Robert G Corr Hugh F J Ferraccioli Fausto Jenkins Adrian Jordan Tom A Payne Antony J Rippin David M Siegert Martin J November 2013 Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet Nature Geoscience 6 11 945 948 Bibcode 2013NatGe 6 945L doi 10 1038 ngeo1977 ISSN 1752 0894 Campbell Bruce A Schroeder Dustin M Whitten Jennifer L January 2018 Mars radar clutter and surface roughness characteristics from MARSIS data Icarus 299 22 30 Bibcode 2018Icar 299 22C doi 10 1016 j icarus 2017 07 011 Holt John W Safaeinili Ali Plaut Jeffrey J Head James W Phillips Roger J Seu Roberto Kempf Scott D Choudhary Prateek Young Duncan A Putzig Nathaniel E Biccari Daniela 2008 11 21 Radar Sounding Evidence for Buried Glaciers in the Southern Mid Latitudes of Mars Science 322 5905 1235 1238 Bibcode 2008Sci 322 1235H doi 10 1126 science 1164246 ISSN 0036 8075 PMID 19023078 S2CID 36614186 Lalich D E Holt J W 2017 01 28 New Martian climate constraints from radar reflectivity within the north polar layered deposits Geophysical Research Letters 44 2 657 664 Bibcode 2017GeoRL 44 657L doi 10 1002 2016GL071323 ISSN 0094 8276 Lauro Sebastian Emanuel Pettinelli Elena Caprarelli Graziella Guallini Luca Rossi Angelo Pio Mattei Elisabetta Cosciotti Barbara Cicchetti Andrea Soldovieri Francesco Cartacci Marco Di Paolo Federico January 2021 Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data Nature Astronomy 5 1 63 70 arXiv 2010 00870 Bibcode 2021NatAs 5 63L doi 10 1038 s41550 020 1200 6 ISSN 2397 3366 S2CID 222125007 Nerozzi Stefano W Holt John July 2018 Earliest accumulation history of the north polar layered deposits Mars from SHARAD Icarus 308 128 137 Bibcode 2018Icar 308 128N doi 10 1016 j icarus 2017 05 027 S2CID 125836984 Orosei R Lauro S E Pettinelli E Cicchetti A Coradini M Cosciotti B Paolo F Di Flamini E Mattei E Pajola M Soldovieri F 2018 08 03 Radar evidence of subglacial liquid water on Mars Science 361 6401 490 493 arXiv 2004 04587 Bibcode 2018Sci 361 490O doi 10 1126 science aar7268 ISSN 0036 8075 PMID 30045881 Plaut Jeffrey J Safaeinili Ali Holt John W Phillips Roger J Head James W Seu Roberto Putzig Nathaniel E Frigeri Alessandro 2009 Radar evidence for ice in lobate debris aprons in the mid northern latitudes of Mars Geophysical Research Letters 36 2 n a Bibcode 2009GeoRL 36 2203P doi 10 1029 2008GL036379 ISSN 1944 8007 S2CID 17530607 Putzig Nathaniel E Smith Isaac B Perry Matthew R Foss Frederick J Campbell Bruce A Phillips Roger J Seu Roberto 2018 07 01 Three dimensional radar imaging of structures and craters in the Martian polar caps Icarus Mars Polar Science VI 308 138 147 Bibcode 2018Icar 308 138P doi 10 1016 j icarus 2017 09 023 ISSN 0019 1035 PMC 5937288 PMID 29749975 Seu Roberto Phillips Roger J Biccari Daniela Orosei Roberto Masdea Arturo Picardi Giovanni Safaeinili Ali Campbell Bruce A Plaut Jeffrey J Marinangeli Lucia Smrekar Suzanne E 2007 SHARAD sounding radar on the Mars Reconnaissance Orbiter Journal of Geophysical Research Planets 112 E5 E05S05 Bibcode 2007JGRE 112 5S05S doi 10 1029 2006JE002745 ISSN 2156 2202 Smith I B Putzig N E Holt J W Phillips R J 2016 05 27 An ice age recorded in the polar deposits of Mars Science 352 6289 1075 1078 Bibcode 2016Sci 352 1075S doi 10 1126 science aad6968 ISSN 0036 8075 PMID 27230372 Bruzzone L Alberti G Catallo C Ferro A Kofman W Orosei R May 2011 Subsurface Radar Sounding of the Jovian Moon Ganymede Proceedings of the IEEE 99 5 837 857 doi 10 1109 JPROC 2011 2108990 ISSN 1558 2256 S2CID 12738030 Heggy Essam Scabbia Giovanni Bruzzone Lorenzo Pappalardo Robert T March 2017 Radar probing of Jovian icy moons Understanding subsurface water and structure detectability in the JUICE and Europa missions Icarus 285 237 251 Bibcode 2017Icar 285 237H doi 10 1016 j icarus 2016 11 039 McKinnon W 2005 Radar sounding of convecting ice shells in the presence of convection application to Europa Ganymede and Callisto Workshop on Radar Investigations of Planetary and Terrestrial Environments Houston TX 53 Bibcode 2005ript work 53M Scanlan Kirk M Grima Cyril Steinbrugge Gregor Kempf Scott D Young Duncan A Blankenship Donald D 2019 11 15 Geometric determination of ionospheric total electron content from dual frequency radar sounding measurements Planetary and Space Science 178 104696 Bibcode 2019P amp SS 17804696S doi 10 1016 j pss 2019 07 010 ISSN 0032 0633 S2CID 199677922 Schmidt B E Blankenship D D Patterson G W Schenk P M November 2011 Active formation of chaos terrain over shallow subsurface water on Europa Nature 479 7374 502 505 Bibcode 2011Natur 479 502S doi 10 1038 nature10608 ISSN 0028 0836 PMID 22089135 S2CID 4405195 Steinbrugge G Schroeder D M Haynes M S Hussmann H Grima C Blankenship D D 2018 01 15 Assessing the potential for measuring Europa s tidal Love number h2 using radar sounder and topographic imager data Earth and Planetary Science Letters 482 334 341 Bibcode 2018E amp PSL 482 334S doi 10 1016 j epsl 2017 11 028 ISSN 0012 821X Retrieved from https en wikipedia org w index php title Radioglaciology amp oldid 1212850633, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.