fbpx
Wikipedia

Natural number

In mathematics, the natural numbers are those numbers used for counting (as in "there are six coins on the table") and ordering (as in "this is the third largest city in the country"). Numbers used for counting are called cardinal numbers, and numbers used for ordering are called ordinal numbers. Natural numbers are sometimes used as labels, known as nominal numbers, having none of the properties of numbers in a mathematical sense (e.g. sports jersey numbers).[1][2]

The double-struck capital N symbol, often used to denote the set of all natural numbers (see Glossary of mathematical symbols).
Natural numbers can be used for counting (one apple, two apples, three apples, ...)

Some definitions, including the standard ISO 80000-2,[3][a] begin the natural numbers with 0, corresponding to the non-negative integers 0, 1, 2, 3, ..., whereas others start with 1, corresponding to the positive integers 1, 2, 3, ...[4][b] Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers).[5]

The natural numbers form a set. Many other number sets are built by successively extending the set of natural numbers: the integers, by including an additive identity 0 (if not yet in) and an additive inverse n for each nonzero natural number n; the rational numbers, by including a multiplicative inverse for each nonzero integer n (and also the product of these inverses by integers); the real numbers by including the limits of (converging) Cauchy sequences of rationals; the complex numbers, by adjoining to the real numbers a square root of −1 (and also the sums and products thereof); and so on.[c][d] This chain of extensions canonically embeds the natural numbers in the other number systems.

Properties of the natural numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics.

In common language, particularly in primary school education, natural numbers may be called counting numbers[6] to intuitively exclude the negative integers and zero, and also to contrast the discreteness of counting to the continuity of measurement—a hallmark characteristic of real numbers.

History

Ancient roots

 
The Ishango bone (on exhibition at the Royal Belgian Institute of Natural Sciences)[7][8][9] is believed to have been used 20,000 years ago for natural number arithmetic.

The most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage—by striking out a mark and removing an object from the set.

The first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers. The ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1, 10, and all powers of 10 up to over 1 million. A stone carving from Karnak, dating back from around 1500 BCE and now at the Louvre in Paris, depicts 276 as 2 hundreds, 7 tens, and 6 ones; and similarly for the number 4,622. The Babylonians had a place-value system based essentially on the numerals for 1 and 10, using base sixty, so that the symbol for sixty was the same as the symbol for one—its value being determined from context.[10]

A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation (within other numbers) dates back as early as 700 BCE by the Babylonians, who omitted such a digit when it would have been the last symbol in the number.[e] The Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BCE, but this usage did not spread beyond Mesoamerica.[12][13] The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628 CE. However, 0 had been used as a number in the medieval computus (the calculation of the date of Easter), beginning with Dionysius Exiguus in 525 CE, without being denoted by a numeral (standard Roman numerals do not have a symbol for 0). Instead, nulla (or the genitive form nullae) from nullus, the Latin word for "none", was employed to denote a 0 value.[14]

The first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, sometimes even not as a number at all.[f] Euclid, for example, defined a unit first and then a number as a multitude of units, thus by his definition, a unit is not a number and there are no unique numbers (e.g., any two units from indefinitely many units is a 2).[16]

Independent studies on numbers also occurred at around the same time in India, China, and Mesoamerica.[17]

Modern definitions

In 19th century Europe, there was mathematical and philosophical discussion about the exact nature of the natural numbers. A school[which?] of Naturalism stated that the natural numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker, who summarized his belief as "God made the integers, all else is the work of man".[g]

In opposition to the Naturalists, the constructivists saw a need to improve upon the logical rigor in the foundations of mathematics.[h] In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers, thus stating they were not really natural—but a consequence of definitions. Later, two classes of such formal definitions were constructed; later still, they were shown to be equivalent in most practical applications.

Set-theoretical definitions of natural numbers were initiated by Frege. He initially defined a natural number as the class of all sets that are in one-to-one correspondence with a particular set. However, this definition turned out to lead to paradoxes, including Russell's paradox. To avoid such paradoxes, the formalism was modified so that a natural number is defined as a particular set, and any set that can be put into one-to-one correspondence with that set is said to have that number of elements.[20]

The second class of definitions was introduced by Charles Sanders Peirce, refined by Richard Dedekind, and further explored by Giuseppe Peano; this approach is now called Peano arithmetic. It is based on an axiomatization of the properties of ordinal numbers: each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several weak systems of set theory. One such system is ZFC with the axiom of infinity replaced by its negation. Theorems that can be proved in ZFC but cannot be proved using the Peano Axioms include Goodstein's theorem.[21]

With all these definitions, it is convenient to include 0 (corresponding to the empty set) as a natural number. Including 0 is now the common convention among set theorists[22] and logicians.[23] Other mathematicians also include 0,[a] and computer languages often start from zero when enumerating items like loop counters and string- or array-elements.[24][25] On the other hand, many mathematicians have kept the older tradition to take 1 to be the first natural number.[26]

Notation

The set of all natural numbers is standardly denoted N or  [1][27] Older texts have occasionally employed J as the symbol for this set.[28]

Since natural numbers may contain 0 or not, it may be important to know which version is referred to. This is often specified by the context, but may also be done by using a subscript or a superscript in the notation, such as:[3][29]

  • Naturals without zero:  
  • Naturals with zero:  

Alternatively, since the natural numbers naturally form a subset of the integers (often denoted  ), they may be referred to as the positive, or the non-negative integers, respectively.[30] To be unambiguous about whether 0 is included or not, sometimes a subscript (or superscript) "0" is added in the former case, and a superscript "*" is added in the latter case:[3]

 
 

Properties

Addition

Given the set   of natural numbers and the successor function   sending each natural number to the next one, one can define addition of natural numbers recursively by setting a + 0 = a and a + S(b) = S(a + b) for all a, b. Then   is a commutative monoid with identity element 0. It is a free monoid on one generator. This commutative monoid satisfies the cancellation property, so it can be embedded in a group. The smallest group containing the natural numbers is the integers.

If 1 is defined as S(0), then b + 1 = b + S(0) = S(b + 0) = S(b). That is, b + 1 is simply the successor of b.

Multiplication

Analogously, given that addition has been defined, a multiplication operator   can be defined via a × 0 = 0 and a × S(b) = (a × b) + a. This turns   into a free commutative monoid with identity element 1; a generator set for this monoid is the set of prime numbers.

Relationship between addition and multiplication

Addition and multiplication are compatible, which is expressed in the distribution law: a × (b + c) = (a × b) + (a × c). These properties of addition and multiplication make the natural numbers an instance of a commutative semiring. Semirings are an algebraic generalization of the natural numbers where multiplication is not necessarily commutative. The lack of additive inverses, which is equivalent to the fact that   is not closed under subtraction (that is, subtracting one natural from another does not always result in another natural), means that   is not a ring; instead it is a semiring (also known as a rig).

If the natural numbers are taken as "excluding 0", and "starting at 1", the definitions of + and × are as above, except that they begin with a + 1 = S(a) and a × 1 = a. Furthermore,   has no identity element.

Order

In this section, juxtaposed variables such as ab indicate the product a × b,[31] and the standard order of operations is assumed.

A total order on the natural numbers is defined by letting ab if and only if there exists another natural number c where a + c = b. This order is compatible with the arithmetical operations in the following sense: if a, b and c are natural numbers and ab, then a + cb + c and acbc.

An important property of the natural numbers is that they are well-ordered: every non-empty set of natural numbers has a least element. The rank among well-ordered sets is expressed by an ordinal number; for the natural numbers, this is denoted as ω (omega).

Division

In this section, juxtaposed variables such as ab indicate the product a × b, and the standard order of operations is assumed.

While it is in general not possible to divide one natural number by another and get a natural number as result, the procedure of division with remainder or Euclidean division is available as a substitute: for any two natural numbers a and b with b ≠ 0 there are natural numbers q and r such that

 

The number q is called the quotient and r is called the remainder of the division of a by b. The numbers q and r are uniquely determined by a and b. This Euclidean division is key to the several other properties (divisibility), algorithms (such as the Euclidean algorithm), and ideas in number theory.

Algebraic properties satisfied by the natural numbers

The addition (+) and multiplication (×) operations on natural numbers as defined above have several algebraic properties:

  • Closure under addition and multiplication: for all natural numbers a and b, both a + b and a × b are natural numbers.[32]
  • Associativity: for all natural numbers a, b, and c, a + (b + c) = (a + b) + c and a × (b × c) = (a × b) × c.[33]
  • Commutativity: for all natural numbers a and b, a + b = b + a and a × b = b × a.[34]
  • Existence of identity elements: for every natural number a, a + 0 = a if and a × 1 = a.
    • If the natural numbers are taken as "excluding 0", and "starting at 1", then for every natural number a, a × 1 = a. However, the "existence of additive identity element" property is not satisfied
  • Distributivity of multiplication over addition for all natural numbers a, b, and c, a × (b + c) = (a × b) + (a × c).
  • No nonzero zero divisors: if a and b are natural numbers such that a × b = 0, then a = 0 or b = 0 (or both).
    • If the natural numbers are taken as "excluding 0", and "starting at 1", the "no nonzero zero divisors" property is not satisfied.

Generalizations

Two important generalizations of natural numbers arise from the two uses of counting and ordering: cardinal numbers and ordinal numbers.

  • A natural number can be used to express the size of a finite set; more precisely, a cardinal number is a measure for the size of a set, which is even suitable for infinite sets. This concept of "size" relies on maps between sets, such that two sets have the same size, exactly if there exists a bijection between them. The set of natural numbers itself, and any bijective image of it, is said to be countably infinite and to have cardinality aleph-null (0).
  • Natural numbers are also used as linguistic ordinal numbers: "first", "second", "third", and so forth. This way they can be assigned to the elements of a totally ordered finite set, and also to the elements of any well-ordered countably infinite set. This assignment can be generalized to general well-orderings with a cardinality beyond countability, to yield the ordinal numbers. An ordinal number may also be used to describe the notion of "size" for a well-ordered set, in a sense different from cardinality: if there is an order isomorphism (more than a bijection!) between two well-ordered sets, they have the same ordinal number. The first ordinal number that is not a natural number is expressed as ω; this is also the ordinal number of the set of natural numbers itself.

The least ordinal of cardinality 0 (that is, the initial ordinal of 0) is ω but many well-ordered sets with cardinal number 0 have an ordinal number greater than ω.

For finite well-ordered sets, there is a one-to-one correspondence between ordinal and cardinal numbers; therefore they can both be expressed by the same natural number, the number of elements of the set. This number can also be used to describe the position of an element in a larger finite, or an infinite, sequence.

A countable non-standard model of arithmetic satisfying the Peano Arithmetic (that is, the first-order Peano axioms) was developed by Skolem in 1933. The hypernatural numbers are an uncountable model that can be constructed from the ordinary natural numbers via the ultrapower construction.

Georges Reeb used to claim provocatively that "The naïve integers don't fill up"  . Other generalizations are discussed in the article on numbers.

Formal definitions

There are two standard methods for formally defining natural numbers. The first one, due to Giuseppe Peano, consists of an autonomous axiomatic theory called Peano arithmetic, based on few axioms called Peano axioms.

The second definition is based on set theory. It defines the natural numbers as specific sets. More precisely, each natural number n is defined as an explicitly defined set, whose elements allow counting the elements of other sets, in the sense that the sentence "a set S has n elements" means that there exists a one to one correspondence between the two sets n and S.

The sets used to define natural numbers satisfy Peano axioms. It follows that every theorem that can be stated and proved in Peano arithmetic can also be proved in set theory. However, the two definitions are not equivalent, as there are theorems that can be stated in terms of Peano arithmetic and proved in set theory, which are not provable inside Peano arithmetic. A probable example is Fermat's Last Theorem.

The definition of the integers as sets satisfying Peano axioms provide a model of Peano arithmetic inside set theory. An important consequence is that, if set theory is consistent (as it is usually guessed), then Peano arithmetic is consistent. In other words, if a contradiction could be proved in Peano arithmetic, then set theory would by contradictory, and every theorem of set theory would be both true and wrong.

Peano axioms

The five Peano axioms are the following:[35][i]

  1. 0 is a natural number.
  2. Every natural number has a successor which is also a natural number.
  3. 0 is not the successor of any natural number.
  4. If the successor of   equals the successor of  , then   equals  .
  5. The axiom of induction: If a statement is true of 0, and if the truth of that statement for a number implies its truth for the successor of that number, then the statement is true for every natural number.

These are not the original axioms published by Peano, but are named in his honor. Some forms of the Peano axioms have 1 in place of 0. In ordinary arithmetic, the successor of   is  .

Set-theoretic definition

Intuitively, the natural number n is the common property of all sets that have n elements. So, its seems natural to define n as an equivalence class under the relation "can be made in one to one correspondence". Unfortunately, this does not work in set theory, as such an equivalence class would not be a set (because of Russell's paradox). The standard solution is to define a particular set with n elements that will be called the natural number n.

The following definition was first published by John von Neumann,[36] although Levy attributes the idea to unpublished work of Zermelo in 1916.[37] As this definition extends to infinite set as a definition of ordinal number, the sets considered below are sometimes called von Neumann ordinals.

The definition proceeds as follows:

  • Call 0 = { }, the empty set.
  • Define the successor S(a) of any set a by S(a) = a ∪ {a}.
  • By the axiom of infinity, there exist sets which contain 0 and are closed under the successor function. Such sets are said to be inductive. The intersection of all inductive sets is still an inductive set.
  • This intersection is the set of the natural numbers.

It follows that the natural numbers are defined iteratively as follows:

  • 0 = { },
  • 1 = 0 ∪ {0} = {0} = {{ }},
  • 2 = 1 ∪ {1} = {0, 1} = {{ }, {{ }}},
  • 3 = 2 ∪ {2} = {0, 1, 2} = {{ }, {{ }}, {{ }, {{ }}}},
  • n = n−1 ∪ {n−1} = {0, 1, ..., n−1} = {{ }, {{ }}, ..., {{ }, {{ }}, ...}},
  • etc.

It can be checked that the natural numbers satisfies the Peano axioms.

With this definition, given a natural number n, the sentence "a set S has n elements" can be formally defined as "there exists a bijection from n to S. This formalizes the operation of counting the elements of S. Also, nm if and only if n is a subset of m. In other words, the set inclusion defines the usual total order on the natural numbers. This order is a well-order.

It follows from the definition that each natural number is equal to the set of all natural numbers less than it. This definition, can be extended to the von Neumann definition of ordinals for defining all ordinal numbers, including the infinite ones: "each ordinal is the well-ordered set of all smaller ordinals."

If one does not accept the axiom of infinity, the natural numbers may not form a set. Nevertheless, the natural numbers can still be individually defined as above, and they still satisfy the Peano axioms.

There are other set theoretical constructions. In particular, Ernst Zermelo provided a construction that is nowadays only of historical interest, and is sometimes referred to as Zermelo ordinals.[37] It consists in defining 0 as the empty set, and S(a) = {a}.

With this definition each natural number is a singleton set. So, the property of the natural numbers to represent cardinalities is not directly accessible; only the ordinal property (being the nth element of a sequence) is immediate. Unlike von Neumann's construction, the Zermelo ordinals do not extend to infinite ordinals.

See also

Number systems
Complex  
Real  
Rational  
Integer  
Natural  
Negative integers
Imaginary

Notes

  1. ^ a b Mac Lane & Birkhoff (1999, p. 15) include zero in the natural numbers: 'Intuitively, the set   of all natural numbers may be described as follows:   contains an "initial" number 0; ...'. They follow that with their version of the Peano's axioms.
  2. ^ Carothers (2000, p. 3) says: "  is the set of natural numbers (positive integers)" Both definitions are acknowledged whenever convenient, and there is no general consensus on whether zero should be included in the natural numbers.[1]
  3. ^ Mendelson (2008, p. x) says: "The whole fantastic hierarchy of number systems is built up by purely set-theoretic means from a few simple assumptions about natural numbers."
  4. ^ Bluman (2010, p. 1): "Numbers make up the foundation of mathematics."
  5. ^ A tablet found at Kish ... thought to date from around 700 BC, uses three hooks to denote an empty place in the positional notation. Other tablets dated from around the same time use a single hook for an empty place.[11]
  6. ^ This convention is used, for example, in Euclid's Elements, see D. Joyce's web edition of Book VII.[15]
  7. ^ The English translation is from Gray. In a footnote, Gray attributes the German quote to: "Weber 1891–1892, 19, quoting from a lecture of Kronecker's of 1886."[18][19]
  8. ^ "Much of the mathematical work of the twentieth century has been devoted to examining the logical foundations and structure of the subject." (Eves 1990, p. 606)
  9. ^ Hamilton (1988, pp. 117 ff) calls them "Peano's Postulates" and begins with "1.  0 is a natural number."
    Halmos (1960, p. 46) uses the language of set theory instead of the language of arithmetic for his five axioms. He begins with "(I)  0 ∈ ω (where, of course, 0 = ∅" (ω is the set of all natural numbers).
    Morash (1991) gives "a two-part axiom" in which the natural numbers begin with 1. (Section 10.1: An Axiomatization for the System of Positive Integers)

References

  1. ^ a b c Weisstein, Eric W. "Natural Number". mathworld.wolfram.com. Retrieved 11 August 2020.
  2. ^ "Natural Numbers". Brilliant Math & Science Wiki. Retrieved 11 August 2020.
  3. ^ a b c "Standard number sets and intervals". ISO 80000-2:2009. International Organization for Standardization. p. 6.
  4. ^ "natural number". Merriam-Webster.com. Merriam-Webster. from the original on 13 December 2019. Retrieved 4 October 2014.
  5. ^ Ganssle, Jack G. & Barr, Michael (2003). "integer". Embedded Systems Dictionary. pp. 138 (integer), 247 (signed integer), & 276 (unsigned integer). ISBN 978-1-57820-120-4. from the original on 29 March 2017. Retrieved 28 March 2017 – via Google Books.
  6. ^ Weisstein, Eric W. "Counting Number". MathWorld.
  7. ^ . Ishango bone. Brussels, Belgium: Royal Belgian Institute of Natural Sciences. Archived from the original on 4 March 2016.
  8. ^ . Ishango bone. Brussels, Belgium: Royal Belgian Institute of Natural Sciences. Archived from the original on 27 May 2016.
  9. ^ . UNESCO's Portal to the Heritage of Astronomy. Archived from the original on 10 November 2014., on permanent display at the Royal Belgian Institute of Natural Sciences, Brussels, Belgium.
  10. ^ Ifrah, Georges (2000). The Universal History of Numbers. Wiley. ISBN 0-471-37568-3.
  11. ^ "A history of Zero". MacTutor History of Mathematics. from the original on 19 January 2013. Retrieved 23 January 2013.
  12. ^ Mann, Charles C. (2005). 1491: New Revelations of the Americas before Columbus. Knopf. p. 19. ISBN 978-1-4000-4006-3. from the original on 14 May 2015. Retrieved 3 February 2015 – via Google Books.
  13. ^ Evans, Brian (2014). "Chapter 10. Pre-Columbian Mathematics: The Olmec, Maya, and Inca Civilizations". The Development of Mathematics Throughout the Centuries: A brief history in a cultural context. John Wiley & Sons. ISBN 978-1-118-85397-9 – via Google Books.
  14. ^ Deckers, Michael (25 August 2003). "Cyclus Decemnovennalis Dionysii – Nineteen year cycle of Dionysius". Hbar.phys.msu.ru. from the original on 15 January 2019. Retrieved 13 February 2012.
  15. ^ Euclid. . In Joyce, D. (ed.). Elements. Clark University. Archived from the original on 5 August 2011.
  16. ^ Mueller, Ian (2006). Philosophy of mathematics and deductive structure in Euclid's Elements. Mineola, New York: Dover Publications. p. 58. ISBN 978-0-486-45300-2. OCLC 69792712.
  17. ^ Kline, Morris (1990) [1972]. Mathematical Thought from Ancient to Modern Times. Oxford University Press. ISBN 0-19-506135-7.
  18. ^ Gray, Jeremy (2008). Plato's Ghost: The modernist transformation of mathematics. Princeton University Press. p. 153. ISBN 978-1-4008-2904-0. from the original on 29 March 2017 – via Google Books.
  19. ^ Weber, Heinrich L. (1891–1892). . Jahresbericht der Deutschen Mathematiker-Vereinigung [Annual report of the German Mathematicians Association]. pp. 2:5–23. (The quote is on p. 19). Archived from the original on 9 August 2018; . Archived from the original on 20 August 2017.
  20. ^ Eves 1990, Chapter 15
  21. ^ Kirby, Laurie; Paris, Jeff (1982). "Accessible Independence Results for Peano Arithmetic". Bulletin of the London Mathematical Society. Wiley. 14 (4): 285–293. doi:10.1112/blms/14.4.285. ISSN 0024-6093.
  22. ^ Bagaria, Joan (2017). Set Theory (Winter 2014 ed.). The Stanford Encyclopedia of Philosophy. from the original on 14 March 2015. Retrieved 13 February 2015.
  23. ^ Goldrei, Derek (1998). "3". Classic Set Theory: A guided independent study (1. ed., 1. print ed.). Boca Raton, Fla. [u.a.]: Chapman & Hall/CRC. p. 33. ISBN 978-0-412-60610-6.
  24. ^ Brown, Jim (1978). "In defense of index origin 0". ACM SIGAPL APL Quote Quad. 9 (2): 7. doi:10.1145/586050.586053. S2CID 40187000.
  25. ^ Hui, Roger. "Is index origin 0 a hindrance?". jsoftware.com. from the original on 20 October 2015. Retrieved 19 January 2015.
  26. ^ This is common in texts about Real analysis. See, for example, Carothers (2000, p. 3) or Thomson, Bruckner & Bruckner (2008, p. 2).
  27. ^ "Listing of the Mathematical Notations used in the Mathematical Functions Website: Numbers, variables, and functions". functions.wolfram.com. Retrieved 27 July 2020.
  28. ^ Rudin, W. (1976). Principles of Mathematical Analysis. New York: McGraw-Hill. p. 25. ISBN 978-0-07-054235-8.
  29. ^ Grimaldi, Ralph P. (2004). Discrete and Combinatorial Mathematics: An applied introduction (5th ed.). Pearson Addison Wesley. ISBN 978-0-201-72634-3.
  30. ^ Grimaldi, Ralph P. (2003). A review of discrete and combinatorial mathematics (5th ed.). Boston: Addison-Wesley. p. 133. ISBN 978-0-201-72634-3.
  31. ^ Weisstein, Eric W. "Multiplication". mathworld.wolfram.com. Retrieved 27 July 2020.
  32. ^ Fletcher, Harold; Howell, Arnold A. (9 May 2014). Mathematics with Understanding. Elsevier. p. 116. ISBN 978-1-4832-8079-0. ...the set of natural numbers is closed under addition... set of natural numbers is closed under multiplication
  33. ^ Davisson, Schuyler Colfax (1910). College Algebra. Macmillian Company. p. 2. Addition of natural numbers is associative.
  34. ^ Brandon, Bertha (M.); Brown, Kenneth E.; Gundlach, Bernard H.; Cooke, Ralph J. (1962). Laidlaw mathematics series. Vol. 8. Laidlaw Bros. p. 25.
  35. ^ Mints, G.E. (ed.). "Peano axioms". Encyclopedia of Mathematics. Springer, in cooperation with the European Mathematical Society. from the original on 13 October 2014. Retrieved 8 October 2014.
  36. ^ von Neumann (1923)
  37. ^ a b Levy (1979), p. 52

Bibliography

  • Bluman, Allan (2010). Pre-Algebra DeMYSTiFieD (Second ed.). McGraw-Hill Professional. ISBN 978-0-07-174251-1 – via Google Books.
  • Carothers, N.L. (2000). Real Analysis. Cambridge University Press. ISBN 978-0-521-49756-5 – via Google Books.
  • Clapham, Christopher; Nicholson, James (2014). The Concise Oxford Dictionary of Mathematics (Fifth ed.). Oxford University Press. ISBN 978-0-19-967959-1 – via Google Books.
  • Dedekind, Richard (1963) [1901]. Essays on the Theory of Numbers. Translated by Beman, Wooster Woodruff (reprint ed.). Dover Books. ISBN 978-0-486-21010-0 – via Archive.org.
    • Dedekind, Richard (1901). Essays on the Theory of Numbers. Translated by Beman, Wooster Woodruff. Chicago, IL: Open Court Publishing Company. Retrieved 13 August 2020 – via Project Gutenberg.
    • Dedekind, Richard (2007) [1901]. Essays on the Theory of Numbers. Kessinger Publishing, LLC. ISBN 978-0-548-08985-9.
  • Eves, Howard (1990). An Introduction to the History of Mathematics (6th ed.). Thomson. ISBN 978-0-03-029558-4 – via Google Books.
  • Halmos, Paul (1960). Naive Set Theory. Springer Science & Business Media. ISBN 978-0-387-90092-6 – via Google Books.
  • Hamilton, A.G. (1988). Logic for Mathematicians (Revised ed.). Cambridge University Press. ISBN 978-0-521-36865-0 – via Google Books.
  • James, Robert C.; James, Glenn (1992). Mathematics Dictionary (Fifth ed.). Chapman & Hall. ISBN 978-0-412-99041-0 – via Google Books.
  • Landau, Edmund (1966). Foundations of Analysis (Third ed.). Chelsea Publishing. ISBN 978-0-8218-2693-5 – via Google Books.
  • Levy, Azriel (1979). Basic Set Theory. Springer-Verlag Berlin Heidelberg. ISBN 978-3-662-02310-5.
  • Mac Lane, Saunders; Birkhoff, Garrett (1999). Algebra (3rd ed.). American Mathematical Society. ISBN 978-0-8218-1646-2 – via Google Books.
  • Mendelson, Elliott (2008) [1973]. Number Systems and the Foundations of Analysis. Dover Publications. ISBN 978-0-486-45792-5 – via Google Books.
  • Morash, Ronald P. (1991). Bridge to Abstract Mathematics: Mathematical proof and structures (Second ed.). Mcgraw-Hill College. ISBN 978-0-07-043043-3 – via Google Books.
  • Musser, Gary L.; Peterson, Blake E.; Burger, William F. (2013). Mathematics for Elementary Teachers: A contemporary approach (10th ed.). Wiley Global Education. ISBN 978-1-118-45744-3 – via Google Books.
  • Szczepanski, Amy F.; Kositsky, Andrew P. (2008). The Complete Idiot's Guide to Pre-algebra. Penguin Group. ISBN 978-1-59257-772-9 – via Google Books.
  • Thomson, Brian S.; Bruckner, Judith B.; Bruckner, Andrew M. (2008). Elementary Real Analysis (Second ed.). ClassicalRealAnalysis.com. ISBN 978-1-4348-4367-8 – via Google Books.
  • von Neumann, John (1923). [On the Introduction of the Transfinite Numbers]. Acta Litterarum AC Scientiarum Ragiae Universitatis Hungaricae Francisco-Josephinae, Sectio Scientiarum Mathematicarum. 1: 199–208. Archived from the original on 18 December 2014. Retrieved 15 September 2013.
  • von Neumann, John (January 2002) [1923]. "On the introduction of transfinite numbers". In van Heijenoort, Jean (ed.). From Frege to Gödel: A source book in mathematical logic, 1879–1931 (3rd ed.). Harvard University Press. pp. 346–354. ISBN 978-0-674-32449-7. – English translation of von Neumann 1923.

External links

natural, number, this, article, about, positive, integers, negative, integers, numbers, integer, mathematics, natural, numbers, those, numbers, used, counting, there, coins, table, ordering, this, third, largest, city, country, numbers, used, counting, called,. This article is about positive integers and non negative integers For all the numbers 2 1 0 1 2 see Integer In mathematics the natural numbers are those numbers used for counting as in there are six coins on the table and ordering as in this is the third largest city in the country Numbers used for counting are called cardinal numbers and numbers used for ordering are called ordinal numbers Natural numbers are sometimes used as labels known as nominal numbers having none of the properties of numbers in a mathematical sense e g sports jersey numbers 1 2 The double struck capital N symbol often used to denote the set of all natural numbers see Glossary of mathematical symbols Natural numbers can be used for counting one apple two apples three apples Some definitions including the standard ISO 80000 2 3 a begin the natural numbers with 0 corresponding to the non negative integers 0 1 2 3 whereas others start with 1 corresponding to the positive integers 1 2 3 4 b Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers while in other writings that term is used instead for the integers including negative integers 5 The natural numbers form a set Many other number sets are built by successively extending the set of natural numbers the integers by including an additive identity 0 if not yet in and an additive inverse n for each nonzero natural number n the rational numbers by including a multiplicative inverse 1 n displaystyle 1 n for each nonzero integer n and also the product of these inverses by integers the real numbers by including the limits of converging Cauchy sequences of rationals the complex numbers by adjoining to the real numbers a square root of 1 and also the sums and products thereof and so on c d This chain of extensions canonically embeds the natural numbers in the other number systems Properties of the natural numbers such as divisibility and the distribution of prime numbers are studied in number theory Problems concerning counting and ordering such as partitioning and enumerations are studied in combinatorics In common language particularly in primary school education natural numbers may be called counting numbers 6 to intuitively exclude the negative integers and zero and also to contrast the discreteness of counting to the continuity of measurement a hallmark characteristic of real numbers Contents 1 History 1 1 Ancient roots 1 2 Modern definitions 2 Notation 3 Properties 3 1 Addition 3 2 Multiplication 3 3 Relationship between addition and multiplication 3 4 Order 3 5 Division 3 6 Algebraic properties satisfied by the natural numbers 4 Generalizations 5 Formal definitions 5 1 Peano axioms 5 2 Set theoretic definition 6 See also 7 Notes 8 References 9 Bibliography 10 External linksHistory EditAncient roots Edit The Ishango bone on exhibition at the Royal Belgian Institute of Natural Sciences 7 8 9 is believed to have been used 20 000 years ago for natural number arithmetic The most primitive method of representing a natural number is to put down a mark for each object Later a set of objects could be tested for equality excess or shortage by striking out a mark and removing an object from the set The first major advance in abstraction was the use of numerals to represent numbers This allowed systems to be developed for recording large numbers The ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1 10 and all powers of 10 up to over 1 million A stone carving from Karnak dating back from around 1500 BCE and now at the Louvre in Paris depicts 276 as 2 hundreds 7 tens and 6 ones and similarly for the number 4 622 The Babylonians had a place value system based essentially on the numerals for 1 and 10 using base sixty so that the symbol for sixty was the same as the symbol for one its value being determined from context 10 A much later advance was the development of the idea that 0 can be considered as a number with its own numeral The use of a 0 digit in place value notation within other numbers dates back as early as 700 BCE by the Babylonians who omitted such a digit when it would have been the last symbol in the number e The Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BCE but this usage did not spread beyond Mesoamerica 12 13 The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628 CE However 0 had been used as a number in the medieval computus the calculation of the date of Easter beginning with Dionysius Exiguus in 525 CE without being denoted by a numeral standard Roman numerals do not have a symbol for 0 Instead nulla or the genitive form nullae from nullus the Latin word for none was employed to denote a 0 value 14 The first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes Some Greek mathematicians treated the number 1 differently than larger numbers sometimes even not as a number at all f Euclid for example defined a unit first and then a number as a multitude of units thus by his definition a unit is not a number and there are no unique numbers e g any two units from indefinitely many units is a 2 16 Independent studies on numbers also occurred at around the same time in India China and Mesoamerica 17 Modern definitions Edit In 19th century Europe there was mathematical and philosophical discussion about the exact nature of the natural numbers A school which of Naturalism stated that the natural numbers were a direct consequence of the human psyche Henri Poincare was one of its advocates as was Leopold Kronecker who summarized his belief as God made the integers all else is the work of man g In opposition to the Naturalists the constructivists saw a need to improve upon the logical rigor in the foundations of mathematics h In the 1860s Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural but a consequence of definitions Later two classes of such formal definitions were constructed later still they were shown to be equivalent in most practical applications Set theoretical definitions of natural numbers were initiated by Frege He initially defined a natural number as the class of all sets that are in one to one correspondence with a particular set However this definition turned out to lead to paradoxes including Russell s paradox To avoid such paradoxes the formalism was modified so that a natural number is defined as a particular set and any set that can be put into one to one correspondence with that set is said to have that number of elements 20 The second class of definitions was introduced by Charles Sanders Peirce refined by Richard Dedekind and further explored by Giuseppe Peano this approach is now called Peano arithmetic It is based on an axiomatization of the properties of ordinal numbers each natural number has a successor and every non zero natural number has a unique predecessor Peano arithmetic is equiconsistent with several weak systems of set theory One such system is ZFC with the axiom of infinity replaced by its negation Theorems that can be proved in ZFC but cannot be proved using the Peano Axioms include Goodstein s theorem 21 With all these definitions it is convenient to include 0 corresponding to the empty set as a natural number Including 0 is now the common convention among set theorists 22 and logicians 23 Other mathematicians also include 0 a and computer languages often start from zero when enumerating items like loop counters and string or array elements 24 25 On the other hand many mathematicians have kept the older tradition to take 1 to be the first natural number 26 Notation EditThe set of all natural numbers is standardly denoted N or N displaystyle mathbb N 1 27 Older texts have occasionally employed J as the symbol for this set 28 Since natural numbers may contain 0 or not it may be important to know which version is referred to This is often specified by the context but may also be done by using a subscript or a superscript in the notation such as 3 29 Naturals without zero 1 2 N N N 0 0 N 1 displaystyle 1 2 mathbb N mathbb N mathbb N 0 smallsetminus 0 mathbb N 1 Naturals with zero 0 1 2 N 0 N 0 N 0 displaystyle 0 1 2 mathbb N 0 mathbb N 0 mathbb N cup 0 Alternatively since the natural numbers naturally form a subset of the integers often denoted Z displaystyle mathbb Z they may be referred to as the positive or the non negative integers respectively 30 To be unambiguous about whether 0 is included or not sometimes a subscript or superscript 0 is added in the former case and a superscript is added in the latter case 3 1 2 3 x Z x gt 0 Z Z gt 0 displaystyle 1 2 3 dots x in mathbb Z x gt 0 mathbb Z mathbb Z gt 0 0 1 2 x Z x 0 Z 0 Z 0 displaystyle 0 1 2 dots x in mathbb Z x geq 0 mathbb Z 0 mathbb Z geq 0 Properties EditAddition Edit Given the set N displaystyle mathbb N of natural numbers and the successor function S N N displaystyle S colon mathbb N to mathbb N sending each natural number to the next one one can define addition of natural numbers recursively by setting a 0 a and a S b S a b for all a b Then N displaystyle mathbb N is a commutative monoid with identity element 0 It is a free monoid on one generator This commutative monoid satisfies the cancellation property so it can be embedded in a group The smallest group containing the natural numbers is the integers If 1 is defined as S 0 then b 1 b S 0 S b 0 S b That is b 1 is simply the successor of b Multiplication Edit Analogously given that addition has been defined a multiplication operator displaystyle times can be defined via a 0 0 and a S b a b a This turns N displaystyle mathbb N times into a free commutative monoid with identity element 1 a generator set for this monoid is the set of prime numbers Relationship between addition and multiplication Edit Addition and multiplication are compatible which is expressed in the distribution law a b c a b a c These properties of addition and multiplication make the natural numbers an instance of a commutative semiring Semirings are an algebraic generalization of the natural numbers where multiplication is not necessarily commutative The lack of additive inverses which is equivalent to the fact that N displaystyle mathbb N is not closed under subtraction that is subtracting one natural from another does not always result in another natural means that N displaystyle mathbb N is not a ring instead it is a semiring also known as a rig If the natural numbers are taken as excluding 0 and starting at 1 the definitions of and are as above except that they begin with a 1 S a and a 1 a Furthermore N displaystyle mathbb N has no identity element Order Edit In this section juxtaposed variables such as ab indicate the product a b 31 and the standard order of operations is assumed A total order on the natural numbers is defined by letting a b if and only if there exists another natural number c where a c b This order is compatible with the arithmetical operations in the following sense if a b and c are natural numbers and a b then a c b c and ac bc An important property of the natural numbers is that they are well ordered every non empty set of natural numbers has a least element The rank among well ordered sets is expressed by an ordinal number for the natural numbers this is denoted as w omega Division Edit In this section juxtaposed variables such as ab indicate the product a b and the standard order of operations is assumed While it is in general not possible to divide one natural number by another and get a natural number as result the procedure of division with remainder or Euclidean division is available as a substitute for any two natural numbers a and b with b 0 there are natural numbers q and r such that a b q r and r lt b displaystyle a bq r text and r lt b The number q is called the quotient and r is called the remainder of the division of a by b The numbers q and r are uniquely determined by a and b This Euclidean division is key to the several other properties divisibility algorithms such as the Euclidean algorithm and ideas in number theory Algebraic properties satisfied by the natural numbers Edit The addition and multiplication operations on natural numbers as defined above have several algebraic properties Closure under addition and multiplication for all natural numbers a and b both a b and a b are natural numbers 32 Associativity for all natural numbers a b and c a b c a b c and a b c a b c 33 Commutativity for all natural numbers a and b a b b a and a b b a 34 Existence of identity elements for every natural number a a 0 a if and a 1 a If the natural numbers are taken as excluding 0 and starting at 1 then for every natural number a a 1 a However the existence of additive identity element property is not satisfied Distributivity of multiplication over addition for all natural numbers a b and c a b c a b a c No nonzero zero divisors if a and b are natural numbers such that a b 0 then a 0 or b 0 or both If the natural numbers are taken as excluding 0 and starting at 1 the no nonzero zero divisors property is not satisfied Generalizations EditTwo important generalizations of natural numbers arise from the two uses of counting and ordering cardinal numbers and ordinal numbers A natural number can be used to express the size of a finite set more precisely a cardinal number is a measure for the size of a set which is even suitable for infinite sets This concept of size relies on maps between sets such that two sets have the same size exactly if there exists a bijection between them The set of natural numbers itself and any bijective image of it is said to be countably infinite and to have cardinality aleph null ℵ0 Natural numbers are also used as linguistic ordinal numbers first second third and so forth This way they can be assigned to the elements of a totally ordered finite set and also to the elements of any well ordered countably infinite set This assignment can be generalized to general well orderings with a cardinality beyond countability to yield the ordinal numbers An ordinal number may also be used to describe the notion of size for a well ordered set in a sense different from cardinality if there is an order isomorphism more than a bijection between two well ordered sets they have the same ordinal number The first ordinal number that is not a natural number is expressed as w this is also the ordinal number of the set of natural numbers itself The least ordinal of cardinality ℵ0 that is the initial ordinal of ℵ0 is w but many well ordered sets with cardinal number ℵ0 have an ordinal number greater than w For finite well ordered sets there is a one to one correspondence between ordinal and cardinal numbers therefore they can both be expressed by the same natural number the number of elements of the set This number can also be used to describe the position of an element in a larger finite or an infinite sequence A countable non standard model of arithmetic satisfying the Peano Arithmetic that is the first order Peano axioms was developed by Skolem in 1933 The hypernatural numbers are an uncountable model that can be constructed from the ordinary natural numbers via the ultrapower construction Georges Reeb used to claim provocatively that The naive integers don t fill up N displaystyle mathbb N Other generalizations are discussed in the article on numbers Formal definitions EditThere are two standard methods for formally defining natural numbers The first one due to Giuseppe Peano consists of an autonomous axiomatic theory called Peano arithmetic based on few axioms called Peano axioms The second definition is based on set theory It defines the natural numbers as specific sets More precisely each natural number n is defined as an explicitly defined set whose elements allow counting the elements of other sets in the sense that the sentence a set S has n elements means that there exists a one to one correspondence between the two sets n and S The sets used to define natural numbers satisfy Peano axioms It follows that every theorem that can be stated and proved in Peano arithmetic can also be proved in set theory However the two definitions are not equivalent as there are theorems that can be stated in terms of Peano arithmetic and proved in set theory which are not provable inside Peano arithmetic A probable example is Fermat s Last Theorem The definition of the integers as sets satisfying Peano axioms provide a model of Peano arithmetic inside set theory An important consequence is that if set theory is consistent as it is usually guessed then Peano arithmetic is consistent In other words if a contradiction could be proved in Peano arithmetic then set theory would by contradictory and every theorem of set theory would be both true and wrong Peano axioms Edit Main article Peano axioms The five Peano axioms are the following 35 i 0 is a natural number Every natural number has a successor which is also a natural number 0 is not the successor of any natural number If the successor of x displaystyle x equals the successor of y displaystyle y then x displaystyle x equals y displaystyle y The axiom of induction If a statement is true of 0 and if the truth of that statement for a number implies its truth for the successor of that number then the statement is true for every natural number These are not the original axioms published by Peano but are named in his honor Some forms of the Peano axioms have 1 in place of 0 In ordinary arithmetic the successor of x displaystyle x is x 1 displaystyle x 1 Set theoretic definition Edit Main article Set theoretic definition of natural numbers Intuitively the natural number n is the common property of all sets that have n elements So its seems natural to define n as an equivalence class under the relation can be made in one to one correspondence Unfortunately this does not work in set theory as such an equivalence class would not be a set because of Russell s paradox The standard solution is to define a particular set with n elements that will be called the natural number n The following definition was first published by John von Neumann 36 although Levy attributes the idea to unpublished work of Zermelo in 1916 37 As this definition extends to infinite set as a definition of ordinal number the sets considered below are sometimes called von Neumann ordinals The definition proceeds as follows Call 0 the empty set Define the successor S a of any set a by S a a a By the axiom of infinity there exist sets which contain 0 and are closed under the successor function Such sets are said to be inductive The intersection of all inductive sets is still an inductive set This intersection is the set of the natural numbers It follows that the natural numbers are defined iteratively as follows 0 1 0 0 0 2 1 1 0 1 3 2 2 0 1 2 n n 1 n 1 0 1 n 1 etc It can be checked that the natural numbers satisfies the Peano axioms With this definition given a natural number n the sentence a set S has n elements can be formally defined as there exists a bijection from n to S This formalizes the operation of counting the elements of S Also n m if and only if n is a subset of m In other words the set inclusion defines the usual total order on the natural numbers This order is a well order It follows from the definition that each natural number is equal to the set of all natural numbers less than it This definition can be extended to the von Neumann definition of ordinals for defining all ordinal numbers including the infinite ones each ordinal is the well ordered set of all smaller ordinals If one does not accept the axiom of infinity the natural numbers may not form a set Nevertheless the natural numbers can still be individually defined as above and they still satisfy the Peano axioms There are other set theoretical constructions In particular Ernst Zermelo provided a construction that is nowadays only of historical interest and is sometimes referred to as Zermelo ordinals 37 It consists in defining 0 as the empty set and S a a With this definition each natural number is a singleton set So the property of the natural numbers to represent cardinalities is not directly accessible only the ordinal property being the n th element of a sequence is immediate Unlike von Neumann s construction the Zermelo ordinals do not extend to infinite ordinals See also Edit Mathematics portalCanonical representation of a positive integer Representation of a number as a product of primes Countable set Mathematical set that can be enumerated Sequence Function of the natural numbers in another set Ordinal number Generalization of n th to infinite cases Cardinal number Size of a possibly infinite set Set theoretic definition of natural numbersNumber systems Complex C displaystyle mathbb C Real R displaystyle mathbb R Rational Q displaystyle mathbb Q Integer Z displaystyle mathbb Z Natural N displaystyle mathbb N Zero 0One 1Prime numbersComposite numbersNegative integersFraction Finite decimalDyadic finite binary Repeating decimalIrrational Algebraic irrationalTranscendentalImaginaryNotes Edit a b Mac Lane amp Birkhoff 1999 p 15 include zero in the natural numbers Intuitively the set N 0 1 2 displaystyle mathbb N 0 1 2 ldots of all natural numbers may be described as follows N displaystyle mathbb N contains an initial number 0 They follow that with their version of the Peano s axioms Carothers 2000 p 3 says N displaystyle mathbb N is the set of natural numbers positive integers Both definitions are acknowledged whenever convenient and there is no general consensus on whether zero should be included in the natural numbers 1 Mendelson 2008 p x says The whole fantastic hierarchy of number systems is built up by purely set theoretic means from a few simple assumptions about natural numbers Bluman 2010 p 1 Numbers make up the foundation of mathematics A tablet found at Kish thought to date from around 700 BC uses three hooks to denote an empty place in the positional notation Other tablets dated from around the same time use a single hook for an empty place 11 This convention is used for example in Euclid s Elements see D Joyce s web edition of Book VII 15 The English translation is from Gray In a footnote Gray attributes the German quote to Weber 1891 1892 19 quoting from a lecture of Kronecker s of 1886 18 19 Much of the mathematical work of the twentieth century has been devoted to examining the logical foundations and structure of the subject Eves 1990 p 606 Hamilton 1988 pp 117 ff calls them Peano s Postulates and begins with 1 0 is a natural number Halmos 1960 p 46 uses the language of set theory instead of the language of arithmetic for his five axioms He begins with I 0 w where of course 0 w is the set of all natural numbers Morash 1991 gives a two part axiom in which the natural numbers begin with 1 Section 10 1 An Axiomatization for the System of Positive Integers References Edit a b c Weisstein Eric W Natural Number mathworld wolfram com Retrieved 11 August 2020 Natural Numbers Brilliant Math amp Science Wiki Retrieved 11 August 2020 a b c Standard number sets and intervals ISO 80000 2 2009 International Organization for Standardization p 6 natural number Merriam Webster com Merriam Webster Archived from the original on 13 December 2019 Retrieved 4 October 2014 Ganssle Jack G amp Barr Michael 2003 integer Embedded Systems Dictionary pp 138 integer 247 signed integer amp 276 unsigned integer ISBN 978 1 57820 120 4 Archived from the original on 29 March 2017 Retrieved 28 March 2017 via Google Books Weisstein Eric W Counting Number MathWorld Introduction Ishango bone Brussels Belgium Royal Belgian Institute of Natural Sciences Archived from the original on 4 March 2016 Flash presentation Ishango bone Brussels Belgium Royal Belgian Institute of Natural Sciences Archived from the original on 27 May 2016 The Ishango Bone Democratic Republic of the Congo UNESCO s Portal to the Heritage of Astronomy Archived from the original on 10 November 2014 on permanent display at the Royal Belgian Institute of Natural Sciences Brussels Belgium Ifrah Georges 2000 The Universal History of Numbers Wiley ISBN 0 471 37568 3 A history of Zero MacTutor History of Mathematics Archived from the original on 19 January 2013 Retrieved 23 January 2013 Mann Charles C 2005 1491 New Revelations of the Americas before Columbus Knopf p 19 ISBN 978 1 4000 4006 3 Archived from the original on 14 May 2015 Retrieved 3 February 2015 via Google Books Evans Brian 2014 Chapter 10 Pre Columbian Mathematics The Olmec Maya and Inca Civilizations The Development of Mathematics Throughout the Centuries A brief history in a cultural context John Wiley amp Sons ISBN 978 1 118 85397 9 via Google Books Deckers Michael 25 August 2003 Cyclus Decemnovennalis Dionysii Nineteen year cycle of Dionysius Hbar phys msu ru Archived from the original on 15 January 2019 Retrieved 13 February 2012 Euclid Book VII definitions 1 and 2 In Joyce D ed Elements Clark University Archived from the original on 5 August 2011 Mueller Ian 2006 Philosophy of mathematics and deductive structure in Euclid s Elements Mineola New York Dover Publications p 58 ISBN 978 0 486 45300 2 OCLC 69792712 Kline Morris 1990 1972 Mathematical Thought from Ancient to Modern Times Oxford University Press ISBN 0 19 506135 7 Gray Jeremy 2008 Plato s Ghost The modernist transformation of mathematics Princeton University Press p 153 ISBN 978 1 4008 2904 0 Archived from the original on 29 March 2017 via Google Books Weber Heinrich L 1891 1892 Kronecker Jahresbericht der Deutschen Mathematiker Vereinigung Annual report of the German Mathematicians Association pp 2 5 23 The quote is on p 19 Archived from the original on 9 August 2018 access to Jahresbericht der Deutschen Mathematiker Vereinigung Archived from the original on 20 August 2017 Eves 1990 Chapter 15 Kirby Laurie Paris Jeff 1982 Accessible Independence Results for Peano Arithmetic Bulletin of the London Mathematical Society Wiley 14 4 285 293 doi 10 1112 blms 14 4 285 ISSN 0024 6093 Bagaria Joan 2017 Set Theory Winter 2014 ed The Stanford Encyclopedia of Philosophy Archived from the original on 14 March 2015 Retrieved 13 February 2015 Goldrei Derek 1998 3 Classic Set Theory A guided independent study 1 ed 1 print ed Boca Raton Fla u a Chapman amp Hall CRC p 33 ISBN 978 0 412 60610 6 Brown Jim 1978 In defense of index origin 0 ACM SIGAPL APL Quote Quad 9 2 7 doi 10 1145 586050 586053 S2CID 40187000 Hui Roger Is index origin 0 a hindrance jsoftware com Archived from the original on 20 October 2015 Retrieved 19 January 2015 This is common in texts about Real analysis See for example Carothers 2000 p 3 or Thomson Bruckner amp Bruckner 2008 p 2 Listing of the Mathematical Notations used in the Mathematical Functions Website Numbers variables and functions functions wolfram com Retrieved 27 July 2020 Rudin W 1976 Principles of Mathematical Analysis New York McGraw Hill p 25 ISBN 978 0 07 054235 8 Grimaldi Ralph P 2004 Discrete and Combinatorial Mathematics An applied introduction 5th ed Pearson Addison Wesley ISBN 978 0 201 72634 3 Grimaldi Ralph P 2003 A review of discrete and combinatorial mathematics 5th ed Boston Addison Wesley p 133 ISBN 978 0 201 72634 3 Weisstein Eric W Multiplication mathworld wolfram com Retrieved 27 July 2020 Fletcher Harold Howell Arnold A 9 May 2014 Mathematics with Understanding Elsevier p 116 ISBN 978 1 4832 8079 0 the set of natural numbers is closed under addition set of natural numbers is closed under multiplication Davisson Schuyler Colfax 1910 College Algebra Macmillian Company p 2 Addition of natural numbers is associative Brandon Bertha M Brown Kenneth E Gundlach Bernard H Cooke Ralph J 1962 Laidlaw mathematics series Vol 8 Laidlaw Bros p 25 Mints G E ed Peano axioms Encyclopedia of Mathematics Springer in cooperation with the European Mathematical Society Archived from the original on 13 October 2014 Retrieved 8 October 2014 von Neumann 1923 a b Levy 1979 p 52Bibliography EditBluman Allan 2010 Pre Algebra DeMYSTiFieD Second ed McGraw Hill Professional ISBN 978 0 07 174251 1 via Google Books Carothers N L 2000 Real Analysis Cambridge University Press ISBN 978 0 521 49756 5 via Google Books Clapham Christopher Nicholson James 2014 The Concise Oxford Dictionary of Mathematics Fifth ed Oxford University Press ISBN 978 0 19 967959 1 via Google Books Dedekind Richard 1963 1901 Essays on the Theory of Numbers Translated by Beman Wooster Woodruff reprint ed Dover Books ISBN 978 0 486 21010 0 via Archive org Dedekind Richard 1901 Essays on the Theory of Numbers Translated by Beman Wooster Woodruff Chicago IL Open Court Publishing Company Retrieved 13 August 2020 via Project Gutenberg Dedekind Richard 2007 1901 Essays on the Theory of Numbers Kessinger Publishing LLC ISBN 978 0 548 08985 9 Eves Howard 1990 An Introduction to the History of Mathematics 6th ed Thomson ISBN 978 0 03 029558 4 via Google Books Halmos Paul 1960 Naive Set Theory Springer Science amp Business Media ISBN 978 0 387 90092 6 via Google Books Hamilton A G 1988 Logic for Mathematicians Revised ed Cambridge University Press ISBN 978 0 521 36865 0 via Google Books James Robert C James Glenn 1992 Mathematics Dictionary Fifth ed Chapman amp Hall ISBN 978 0 412 99041 0 via Google Books Landau Edmund 1966 Foundations of Analysis Third ed Chelsea Publishing ISBN 978 0 8218 2693 5 via Google Books Levy Azriel 1979 Basic Set Theory Springer Verlag Berlin Heidelberg ISBN 978 3 662 02310 5 Mac Lane Saunders Birkhoff Garrett 1999 Algebra 3rd ed American Mathematical Society ISBN 978 0 8218 1646 2 via Google Books Mendelson Elliott 2008 1973 Number Systems and the Foundations of Analysis Dover Publications ISBN 978 0 486 45792 5 via Google Books Morash Ronald P 1991 Bridge to Abstract Mathematics Mathematical proof and structures Second ed Mcgraw Hill College ISBN 978 0 07 043043 3 via Google Books Musser Gary L Peterson Blake E Burger William F 2013 Mathematics for Elementary Teachers A contemporary approach 10th ed Wiley Global Education ISBN 978 1 118 45744 3 via Google Books Szczepanski Amy F Kositsky Andrew P 2008 The Complete Idiot s Guide to Pre algebra Penguin Group ISBN 978 1 59257 772 9 via Google Books Thomson Brian S Bruckner Judith B Bruckner Andrew M 2008 Elementary Real Analysis Second ed ClassicalRealAnalysis com ISBN 978 1 4348 4367 8 via Google Books von Neumann John 1923 Zur Einfuhrung der transfiniten Zahlen On the Introduction of the Transfinite Numbers Acta Litterarum AC Scientiarum Ragiae Universitatis Hungaricae Francisco Josephinae Sectio Scientiarum Mathematicarum 1 199 208 Archived from the original on 18 December 2014 Retrieved 15 September 2013 von Neumann John January 2002 1923 On the introduction of transfinite numbers In van Heijenoort Jean ed From Frege to Godel A source book in mathematical logic 1879 1931 3rd ed Harvard University Press pp 346 354 ISBN 978 0 674 32449 7 English translation of von Neumann 1923 External links Edit Wikimedia Commons has media related to Natural numbers Natural number Encyclopedia of Mathematics EMS Press 2001 1994 Axioms and construction of natural numbers apronus com Retrieved from https en wikipedia org w index php title Natural number amp oldid 1128990017, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.