fbpx
Wikipedia

Measurement

Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events.[1][2] In other words, measurement is a process of determining how large or small a physical quantity is as compared to a basic reference quantity of the same kind.[3] The scope and application of measurement are dependent on the context and discipline. In natural sciences and engineering, measurements do not apply to nominal properties of objects or events, which is consistent with the guidelines of the International vocabulary of metrology published by the International Bureau of Weights and Measures.[2] However, in other fields such as statistics as well as the social and behavioural sciences, measurements can have multiple levels, which would include nominal, ordinal, interval and ratio scales.[1][4]

Four measuring devices having metric calibrations

Measurement is a cornerstone of trade, science, technology and quantitative research in many disciplines. Historically, many measurement systems existed for the varied fields of human existence to facilitate comparisons in these fields. Often these were achieved by local agreements between trading partners or collaborators. Since the 18th century, developments progressed towards unifying, widely accepted standards that resulted in the modern International System of Units (SI). This system reduces all physical measurements to a mathematical combination of seven base units. The science of measurement is pursued in the field of metrology.

Measurement is defined as the process of comparison of an unknown quantity with a known or standard quantity.

Methodology

The measurement of a property may be categorized by the following criteria: type, magnitude, unit, and uncertainty.[citation needed] They enable unambiguous comparisons between measurements.

  • The level of measurement is a taxonomy for the methodological character of a comparison. For example, two states of a property may be compared by ratio, difference, or ordinal preference. The type is commonly not explicitly expressed, but implicit in the definition of a measurement procedure.
  • The magnitude is the numerical value of the characterization, usually obtained with a suitably chosen measuring instrument.
  • A unit assigns a mathematical weighting factor to the magnitude that is derived as a ratio to the property of an artifact used as standard or a natural physical quantity.
  • An uncertainty represents the random and systemic errors of the measurement procedure; it indicates a confidence level in the measurement. Errors are evaluated by methodically repeating measurements and considering the accuracy and precision of the measuring instrument.

Standardization of measurement units

Measurements most commonly use the International System of Units (SI) as a comparison framework. The system defines seven fundamental units: kilogram, metre, candela, second, ampere, kelvin, and mole. All of these units are defined without reference to a particular physical object which serves as a standard. Artifact-free definitions fix measurements at an exact value related to a physical constant or other invariable phenomena in nature, in contrast to standard artifacts which are subject to deterioration or destruction. Instead, the measurement unit can only ever change through increased accuracy in determining the value of the constant it is tied to.

 
The seven base units in the SI system. Arrows point from units to those that depend on them.

The first proposal to tie an SI base unit to an experimental standard independent of fiat was by Charles Sanders Peirce (1839–1914),[5] who proposed to define the metre in terms of the wavelength of a spectral line.[6] This directly influenced the Michelson–Morley experiment; Michelson and Morley cite Peirce, and improve on his method.[7]

Standards

With the exception of a few fundamental quantum constants, units of measurement are derived from historical agreements. Nothing inherent in nature dictates that an inch has to be a certain length, nor that a mile is a better measure of distance than a kilometre. Over the course of human history, however, first for convenience and then for necessity, standards of measurement evolved so that communities would have certain common benchmarks. Laws regulating measurement were originally developed to prevent fraud in commerce.

Units of measurement are generally defined on a scientific basis, overseen by governmental or independent agencies, and established in international treaties, pre-eminent of which is the General Conference on Weights and Measures (CGPM), established in 1875 by the Metre Convention, overseeing the International System of Units (SI). For example, the metre was redefined in 1983 by the CGPM in terms of the speed of light, the kilogram was redefined in 2019 in terms of the Planck constant and the international yard was defined in 1960 by the governments of the United States, United Kingdom, Australia and South Africa as being exactly 0.9144 metres.

In the United States, the National Institute of Standards and Technology (NIST), a division of the United States Department of Commerce, regulates commercial measurements. In the United Kingdom, the role is performed by the National Physical Laboratory (NPL), in Australia by the National Measurement Institute,[8] in South Africa by the Council for Scientific and Industrial Research and in India the National Physical Laboratory of India.

Units and systems

unit is known or standard quantity in terms of which other physical quantities are measured.

 

Imperial and US customary systems

Before SI units were widely adopted around the world, the British systems of English units and later imperial units were used in Britain, the Commonwealth and the United States. The system came to be known as U.S. customary units in the United States and is still in use there and in a few Caribbean countries. These various systems of measurement have at times been called foot-pound-second systems after the Imperial units for length, weight and time even though the tons, hundredweights, gallons, and nautical miles, for example, are different for the U.S. units. Many Imperial units remain in use in Britain, which has officially switched to the SI system—with a few exceptions such as road signs, which are still in miles. Draught beer and cider must be sold by the imperial pint, and milk in returnable bottles can be sold by the imperial pint. Many people measure their height in feet and inches and their weight in stone and pounds, to give just a few examples. Imperial units are used in many other places, for example, in many Commonwealth countries that are considered metricated, land area is measured in acres and floor space in square feet, particularly for commercial transactions (rather than government statistics). Similarly, gasoline is sold by the gallon in many countries that are considered metricated.

Metric system

The metric system is a decimal system of measurement based on its units for length, the metre and for mass, the kilogram. It exists in several variations, with different choices of base units, though these do not affect its day-to-day use. Since the 1960s, the International System of Units (SI) is the internationally recognised metric system. Metric units of mass, length, and electricity are widely used around the world for both everyday and scientific purposes.

International System of Units

The International System of Units (abbreviated as SI from the French language name Système International d'Unités) is the modern revision of the metric system. It is the world's most widely used system of units, both in everyday commerce and in science. The SI was developed in 1960 from the metre–kilogram–second (MKS) system, rather than the centimetre–gram–second (CGS) system, which, in turn, had many variants. The SI units for the seven base physical quantities are:[9]

In the SI, base units are the simple measurements for time, length, mass, temperature, amount of substance, electric current and light intensity. Derived units are constructed from the base units, for example, the watt, i.e. the unit for power, is defined from the base units as m2·kg·s−3. Other physical properties may be measured in compound units, such as material density, measured in kg/m3.

Converting prefixes

The SI allows easy multiplication when switching among units having the same base but different prefixes. To convert from metres to centimetres it is only necessary to multiply the number of metres by 100, since there are 100 centimetres in a metre. Inversely, to switch from centimetres to metres one multiplies the number of centimetres by 0.01 or divides the number of centimetres by 100.

Length

 
A 2-metre carpenter's ruler

A ruler or rule is a tool used in, for example, geometry, technical drawing, engineering, and carpentry, to measure lengths or distances or to draw straight lines. Strictly speaking, the ruler is the instrument used to rule straight lines and the calibrated instrument used for determining length is called a measure, however common usage calls both instruments rulers and the special name straightedge is used for an unmarked rule. The use of the word measure, in the sense of a measuring instrument, only survives in the phrase tape measure, an instrument that can be used to measure but cannot be used to draw straight lines. As can be seen in the photographs on this page, a two-metre carpenter's rule can be folded down to a length of only 20 centimetres, to easily fit in a pocket, and a five-metre-long tape measure easily retracts to fit within a small housing.

Some special names

Some non-systematic names are applied for some multiples of some units.

  • 100 kilograms = 1 quintal; 1000 kilogram = 1 tonne;
  • 10 years = 1 decade; 100 years = 1 century; 1000 years = 1 millennium

Building trades

The Australian building trades adopted the metric system in 1966 and the units used for measurement of length are metres (m) and millimetres (mm). Centimetres (cm) are avoided as they cause confusion when reading plans. For example, the length two and a half metres is usually recorded as 2500 mm or 2.5 m; it would be considered non-standard to record this length as 250 cm.[10][11]

Surveyor's trade

American surveyors use a decimal-based system of measurement devised by Edmund Gunter in 1620. The base unit is Gunter's chain of 66 feet (20 m) which is subdivided into 4 rods, each of 16.5 ft or 100 links of 0.66 feet. A link is abbreviated "lk", and links "lks", in old deeds and land surveys done for the government.

The Standard Method of Measurement (SMM) published by the Royal Institution of Chartered Surveyors (RICS) consisted of classification tables and rules of measurement, allowing use of a uniform basis for measuring building works. It was first published in 1922, superseding a Scottish Standard Method of Measurement which had been published in 1915. Its seventh edition (SMM7) was first published in 1988 and revised in 1998. SMM7 was replaced by the New Rules of Measurement, volume 2 (NRM2), which were published in April 2012 by the RICS Quantity Surveying and Construction Professional Group and became operational on 1 January 2013.[12] NRM2 has been in general use since July 2013.

SMM7 was accompanied by the Code of Procedure for the Measurement of Building Works (the SMM7 Measurement Code). Whilst SMM7 could have a contractual status within a project, for example in the JCT Standard form of Building Contract), the Measurement Code was not mandatory.[13]

NRM2 Is the second of three component parts within the NRM suite:

  • NRM1 - Order of cost estimating and cost planning for capital building works
  • NRM2 - Detailed measurement for building works
  • NRM3 - Order of cost estimating and cost planning for building maintenance works.[14]

Time

Time is an abstract measurement of elemental changes over a non-spatial continuum. It is denoted by numbers and/or named periods such as hours, days, weeks, months and years. It is an apparently irreversible series of occurrences within this non spatial continuum. It is also used to denote an interval between two relative points on this continuum.

Mass

Mass refers to the intrinsic property of all material objects to resist changes in their momentum. Weight, on the other hand, refers to the downward force produced when a mass is in a gravitational field. In free fall, (no net gravitational forces) objects lack weight but retain their mass. The Imperial units of mass include the ounce, pound, and ton. The metric units gram and kilogram are units of mass.

One device for measuring weight or mass is called a weighing scale or, often, simply a scale. A spring scale measures force but not mass, a balance compares weight, both require a gravitational field to operate. Some of the most accurate instruments for measuring weight or mass are based on load cells with a digital read-out, but require a gravitational field to function and would not work in free fall.

Economics

The measures used in economics are physical measures, nominal price value measures and real price measures. These measures differ from one another by the variables they measure and by the variables excluded from measurements.

Survey research

 
Measurement station C of EMMA experiment situated at the depth of 75 meters in the Pyhäsalmi Mine.

In the field of survey research, measures are taken from individual attitudes, values, and behavior using questionnaires as a measurement instrument. As all other measurements, measurement in survey research is also vulnerable to measurement error, i.e. the departure from the true value of the measurement and the value provided using the measurement instrument.[15] In substantive survey research, measurement error can lead to biased conclusions and wrongly estimated effects. In order to get accurate results, when measurement errors appear, the results need to be corrected for measurement errors.

Exactness designation

The following rules generally apply for displaying the exactness of measurements:[16]

  • All non-0 digits and any 0s appearing between them are significant for the exactness of any number. For example, the number 12000 has two significant digits, and has implied limits of 11500 and 12500.
  • Additional 0s may be added after a decimal separator to denote a greater exactness, increasing the number of decimals. For example, 1 has implied limits of 0.5 and 1.5 whereas 1.0 has implied limits 0.95 and 1.05.

Difficulties

Since accurate measurement is essential in many fields, and since all measurements are necessarily approximations, a great deal of effort must be taken to make measurements as accurate as possible. For example, consider the problem of measuring the time it takes an object to fall a distance of one metre (about 39 in). Using physics, it can be shown that, in the gravitational field of the Earth, it should take any object about 0.45 second to fall one metre. However, the following are just some of the sources of error that arise:

  • This computation used for the acceleration of gravity 9.8 metres per second squared (32 ft/s2). But this measurement is not exact, but only precise to two significant digits.
  • The Earth's gravitational field varies slightly depending on height above sea level and other factors.
  • The computation of 0.45 seconds involved extracting a square root, a mathematical operation that required rounding off to some number of significant digits, in this case two significant digits.

Additionally, other sources of experimental error include:

  • carelessness,
  • determining of the exact time at which the object is released and the exact time it hits the ground,
  • measurement of the height and the measurement of the time both involve some error,
  • Air resistance.
  • posture of human participants[17]

Scientific experiments must be carried out with great care to eliminate as much error as possible, and to keep error estimates realistic.

Definitions and theories

Classical definition

In the classical definition, which is standard throughout the physical sciences, measurement is the determination or estimation of ratios of quantities.[18] Quantity and measurement are mutually defined: quantitative attributes are those possible to measure, at least in principle. The classical concept of quantity can be traced back to John Wallis and Isaac Newton, and was foreshadowed in Euclid's Elements.[18]

Representational theory

In the representational theory, measurement is defined as "the correlation of numbers with entities that are not numbers".[19] The most technically elaborated form of representational theory is also known as additive conjoint measurement. In this form of representational theory, numbers are assigned based on correspondences or similarities between the structure of number systems and the structure of qualitative systems. A property is quantitative if such structural similarities can be established. In weaker forms of representational theory, such as that implicit within the work of Stanley Smith Stevens,[20] numbers need only be assigned according to a rule.

The concept of measurement is often misunderstood as merely the assignment of a value, but it is possible to assign a value in a way that is not a measurement in terms of the requirements of additive conjoint measurement. One may assign a value to a person's height, but unless it can be established that there is a correlation between measurements of height and empirical relations, it is not a measurement according to additive conjoint measurement theory. Likewise, computing and assigning arbitrary values, like the "book value" of an asset in accounting, is not a measurement because it does not satisfy the necessary criteria.

Three type of Representational theory

1) Empirical relation

In science, an empirical relationship is a relationship or correlation based solely on observation rather than theory. An empirical relationship requires only confirmatory data irrespective of theoretical basis

2) The rule of mapping

The real world is the Domain of mapping, and the mathematical world is the range. when we map the attribute to mathematical system, we have many choice for mapping and the range

3) The representation condition of measurement

Information theory

Information theory recognises that all data are inexact and statistical in nature. Thus the definition of measurement is: "A set of observations that reduce uncertainty where the result is expressed as a quantity."[21] This definition is implied in what scientists actually do when they measure something and report both the mean and statistics of the measurements. In practical terms, one begins with an initial guess as to the expected value of a quantity, and then, using various methods and instruments, reduces the uncertainty in the value. Note that in this view, unlike the positivist representational theory, all measurements are uncertain, so instead of assigning one value, a range of values is assigned to a measurement. This also implies that there is not a clear or neat distinction between estimation and measurement.

Quantum mechanics

In quantum mechanics, a measurement is an action that determines a particular property (position, momentum, energy, etc.) of a quantum system. Before a measurement is made, a quantum system is simultaneously described by all values in a range of possible values, where the probability of measuring each value is determined by the wavefunction of the system. When a measurement is performed, the wavefunction of the quantum system "collapses" to a single, definite value.[22] The unambiguous meaning of the measurement problem is an unresolved fundamental problem in quantum mechanics.[citation needed]

Biology

In biology, there is generally no well established theory of measurement. However, the importance of the theoretical context is emphasized.[23] Moreover, the theoretical context stemming from the theory of evolution leads to articulate the theory of measurement and historicity as a fundamental notion.[24] Among the most developed fields of measurement in biology are the measurement of genetic diversity and species diversity.[25]

See also

References

  1. ^ a b Pedhazur, Elazar J.; Schmelkin, Leora and Albert (1991). Measurement, Design, and Analysis: An Integrated Approach (1st ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. pp. 15–29. ISBN 978-0-8058-1063-9.
  2. ^ a b International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM) (PDF) (3rd ed.). International Bureau of Weights and Measures. 2008. p. 16.
  3. ^ Young, Hugh D; Freedman, Roger A. (2012). University Physics (13 ed.). Pearson Education Inc. ISBN 978-0-321-69686-1.
  4. ^ Kirch, Wilhelm, ed. (2008). "Level of measurement". Encyclopedia of Public Health. Vol. 2. Springer. p. 81. ISBN 978-0-321-02106-9.
  5. ^ Crease 2011, pp. 182–4
  6. ^ C.S. Peirce (July 1879) "Note on the Progress of Experiments for Comparing a Wave-length with a Metre" American Journal of Science, as referenced by Crease 2011, p. 203
  7. ^ Crease 2011, p. 203
  8. ^ "About Us". National Measurement Institute of Australia. 3 December 2020.
  9. ^ Le Système international d’unités [The International System of Units] (PDF) (in French and English) (9th ed.), International Bureau of Weights and Measures, 2019, ISBN 978-92-822-2272-0
  10. ^ Wilks, Kevin Joseph. (1992). Metrication in Australia : a review of the effectiveness of policies and procedures in Australia's conversion to the metric system. Australia. Department of Industry, Technology, and Commerce. Canberra: Australian Govt. Pub. Service. p. 94. ISBN 0-644-24860-2. OCLC 27702954.
  11. ^ "Metrication in Australia" (PDF).
  12. ^ RICS, RICS standards and guidance - SMM7: Standard method of measurement of building works, accessed 1 July 2020
  13. ^ Designing Buildings Wiki, Standard Method of Measurement, accessed 1 July 2020
  14. ^ RICS, NRM, accessed 2 August 2020
  15. ^ Groves, Robert (2004). Survey Methodology. New Jersey: Wiley. ISBN 9780471483489. "By measurement error we mean a departure from the value of the measurement as applied to a sample unit and the value provided. " pp. 51–52 .
  16. ^ Page 41 in: VanPool, Todd (2011). Quantitative analysis in archaeology. Chichester Malden: Wiley-Blackwell. ISBN 978-1-4443-9017-9. OCLC 811317577.
  17. ^ Gill, Simeon; Parker, Christopher J. (2017). "Scan posture definition and hip girth measurement: the impact on clothing design and body scanning". Ergonomics. 60 (8): 1123–1136. doi:10.1080/00140139.2016.1251621. PMID 27764997. S2CID 23758581.
  18. ^ a b Michell, J. (1999). Measurement in psychology: a critical history of a methodological concept. New York: Cambridge University Press.
  19. ^ Ernest Nagel: "Measurement", Erkenntnis, Volume 2, Number 1 / December 1931, pp. 313–335, published by Springer, the Netherlands
  20. ^ Stevens, S.S. On the theory of scales and measurement 1946. Science. 103, 677–80.
  21. ^ Douglas Hubbard: "How to Measure Anything", Wiley (2007), p. 21
  22. ^ Penrose, Roger (2007). The road to reality : a complete guide to the laws of the universe. New York: Vintage Books. ISBN 978-0-679-77631-4. "The jumping of the quantum state to one of the eigenstates of Q is the process referred to as state-vector reduction or collapse of the wavefunction. It is one of quantum theory's most puzzling features ..." "[T]he way in which quantum mechanics is used in practice is to take the state indeed to jump in this curious way whenever a measurement is deemed to take place." p 528 Later Chapter 29 is entitled the Measurement paradox.
  23. ^ Houle, David; Pélabon, Christophe; Wagner, Günter P.; Hansen, Thomas F. (2011). (PDF). The Quarterly Review of Biology. 86 (1): 3–34. doi:10.1086/658408. ISSN 0033-5770. PMID 21495498. S2CID 570080. Archived from the original (PDF) on 2019-05-29.
  24. ^ Montévil, Maël (2019). "Measurement in biology is methodized by theory". Biology & Philosophy. 34 (3). doi:10.1007/s10539-019-9687-x. ISSN 0169-3867. S2CID 96447209.
  25. ^ Magurran, A.E. & McGill, B.J. (Hg.) 2011: Biological Diversity: Frontiers in Measurement and Assessment Oxford University Press.

External links

measurement, scientific, journal, journal, this, article, about, measures, metrology, other, uses, measure, measure, quantification, attributes, object, event, which, used, compare, with, other, objects, events, other, words, measurement, process, determining,. For the scientific journal see Measurement journal This article is about measures in metrology For other uses of measure see Measure Measurement is the quantification of attributes of an object or event which can be used to compare with other objects or events 1 2 In other words measurement is a process of determining how large or small a physical quantity is as compared to a basic reference quantity of the same kind 3 The scope and application of measurement are dependent on the context and discipline In natural sciences and engineering measurements do not apply to nominal properties of objects or events which is consistent with the guidelines of the International vocabulary of metrology published by the International Bureau of Weights and Measures 2 However in other fields such as statistics as well as the social and behavioural sciences measurements can have multiple levels which would include nominal ordinal interval and ratio scales 1 4 Four measuring devices having metric calibrations Measurement is a cornerstone of trade science technology and quantitative research in many disciplines Historically many measurement systems existed for the varied fields of human existence to facilitate comparisons in these fields Often these were achieved by local agreements between trading partners or collaborators Since the 18th century developments progressed towards unifying widely accepted standards that resulted in the modern International System of Units SI This system reduces all physical measurements to a mathematical combination of seven base units The science of measurement is pursued in the field of metrology Measurement is defined as the process of comparison of an unknown quantity with a known or standard quantity Contents 1 Methodology 2 Standardization of measurement units 2 1 Standards 3 Units and systems 3 1 Imperial and US customary systems 3 2 Metric system 3 2 1 International System of Units 3 2 1 1 Converting prefixes 3 3 Length 3 4 Some special names 3 5 Building trades 3 6 Surveyor s trade 3 7 Time 3 8 Mass 3 9 Economics 3 10 Survey research 3 11 Exactness designation 4 Difficulties 5 Definitions and theories 5 1 Classical definition 5 2 Representational theory 5 3 Information theory 5 4 Quantum mechanics 5 5 Biology 6 See also 7 References 8 External linksMethodology EditThe measurement of a property may be categorized by the following criteria type magnitude unit and uncertainty citation needed They enable unambiguous comparisons between measurements The level of measurement is a taxonomy for the methodological character of a comparison For example two states of a property may be compared by ratio difference or ordinal preference The type is commonly not explicitly expressed but implicit in the definition of a measurement procedure The magnitude is the numerical value of the characterization usually obtained with a suitably chosen measuring instrument A unit assigns a mathematical weighting factor to the magnitude that is derived as a ratio to the property of an artifact used as standard or a natural physical quantity An uncertainty represents the random and systemic errors of the measurement procedure it indicates a confidence level in the measurement Errors are evaluated by methodically repeating measurements and considering the accuracy and precision of the measuring instrument Standardization of measurement units EditMeasurements most commonly use the International System of Units SI as a comparison framework The system defines seven fundamental units kilogram metre candela second ampere kelvin and mole All of these units are defined without reference to a particular physical object which serves as a standard Artifact free definitions fix measurements at an exact value related to a physical constant or other invariable phenomena in nature in contrast to standard artifacts which are subject to deterioration or destruction Instead the measurement unit can only ever change through increased accuracy in determining the value of the constant it is tied to The seven base units in the SI system Arrows point from units to those that depend on them The first proposal to tie an SI base unit to an experimental standard independent of fiat was by Charles Sanders Peirce 1839 1914 5 who proposed to define the metre in terms of the wavelength of a spectral line 6 This directly influenced the Michelson Morley experiment Michelson and Morley cite Peirce and improve on his method 7 Standards Edit With the exception of a few fundamental quantum constants units of measurement are derived from historical agreements Nothing inherent in nature dictates that an inch has to be a certain length nor that a mile is a better measure of distance than a kilometre Over the course of human history however first for convenience and then for necessity standards of measurement evolved so that communities would have certain common benchmarks Laws regulating measurement were originally developed to prevent fraud in commerce Units of measurement are generally defined on a scientific basis overseen by governmental or independent agencies and established in international treaties pre eminent of which is the General Conference on Weights and Measures CGPM established in 1875 by the Metre Convention overseeing the International System of Units SI For example the metre was redefined in 1983 by the CGPM in terms of the speed of light the kilogram was redefined in 2019 in terms of the Planck constant and the international yard was defined in 1960 by the governments of the United States United Kingdom Australia and South Africa as being exactly 0 9144 metres In the United States the National Institute of Standards and Technology NIST a division of the United States Department of Commerce regulates commercial measurements In the United Kingdom the role is performed by the National Physical Laboratory NPL in Australia by the National Measurement Institute 8 in South Africa by the Council for Scientific and Industrial Research and in India the National Physical Laboratory of India Units and systems EditMain articles Unit of measurement and System of measurementunit is known or standard quantity in terms of which other physical quantities are measured A baby bottle that measures in three measurement systems metric imperial UK and US customary Imperial and US customary systems Edit Main article Imperial and US customary measurement systems Before SI units were widely adopted around the world the British systems of English units and later imperial units were used in Britain the Commonwealth and the United States The system came to be known as U S customary units in the United States and is still in use there and in a few Caribbean countries These various systems of measurement have at times been called foot pound second systems after the Imperial units for length weight and time even though the tons hundredweights gallons and nautical miles for example are different for the U S units Many Imperial units remain in use in Britain which has officially switched to the SI system with a few exceptions such as road signs which are still in miles Draught beer and cider must be sold by the imperial pint and milk in returnable bottles can be sold by the imperial pint Many people measure their height in feet and inches and their weight in stone and pounds to give just a few examples Imperial units are used in many other places for example in many Commonwealth countries that are considered metricated land area is measured in acres and floor space in square feet particularly for commercial transactions rather than government statistics Similarly gasoline is sold by the gallon in many countries that are considered metricated Metric system Edit The metric system is a decimal system of measurement based on its units for length the metre and for mass the kilogram It exists in several variations with different choices of base units though these do not affect its day to day use Since the 1960s the International System of Units SI is the internationally recognised metric system Metric units of mass length and electricity are widely used around the world for both everyday and scientific purposes International System of Units Edit The International System of Units abbreviated as SI from the French language name Systeme International d Unites is the modern revision of the metric system It is the world s most widely used system of units both in everyday commerce and in science The SI was developed in 1960 from the metre kilogram second MKS system rather than the centimetre gram second CGS system which in turn had many variants The SI units for the seven base physical quantities are 9 Base quantity Base unit Symbol Defining constanttime second s hyperfine splitting in caesium 133length metre m speed of light cmass kilogram kg Planck constant helectric current ampere A elementary charge etemperature kelvin K Boltzmann constant kamount of substance mole mol Avogadro constant NAluminous intensity candela cd luminous efficacy of a 540 THz source KcdIn the SI base units are the simple measurements for time length mass temperature amount of substance electric current and light intensity Derived units are constructed from the base units for example the watt i e the unit for power is defined from the base units as m2 kg s 3 Other physical properties may be measured in compound units such as material density measured in kg m3 Converting prefixes Edit The SI allows easy multiplication when switching among units having the same base but different prefixes To convert from metres to centimetres it is only necessary to multiply the number of metres by 100 since there are 100 centimetres in a metre Inversely to switch from centimetres to metres one multiplies the number of centimetres by 0 01 or divides the number of centimetres by 100 Length Edit Main article Length measurement See also List of length distance or range measuring devices A 2 metre carpenter s ruler A ruler or rule is a tool used in for example geometry technical drawing engineering and carpentry to measure lengths or distances or to draw straight lines Strictly speaking the ruler is the instrument used to rule straight lines and the calibrated instrument used for determining length is called a measure however common usage calls both instruments rulers and the special name straightedge is used for an unmarked rule The use of the word measure in the sense of a measuring instrument only survives in the phrase tape measure an instrument that can be used to measure but cannot be used to draw straight lines As can be seen in the photographs on this page a two metre carpenter s rule can be folded down to a length of only 20 centimetres to easily fit in a pocket and a five metre long tape measure easily retracts to fit within a small housing Some special names Edit Some non systematic names are applied for some multiples of some units 100 kilograms 1 quintal 1000 kilogram 1 tonne 10 years 1 decade 100 years 1 century 1000 years 1 millenniumBuilding trades Edit The Australian building trades adopted the metric system in 1966 and the units used for measurement of length are metres m and millimetres mm Centimetres cm are avoided as they cause confusion when reading plans For example the length two and a half metres is usually recorded as 2500 mm or 2 5 m it would be considered non standard to record this length as 250 cm 10 11 Surveyor s trade Edit American surveyors use a decimal based system of measurement devised by Edmund Gunter in 1620 The base unit is Gunter s chain of 66 feet 20 m which is subdivided into 4 rods each of 16 5 ft or 100 links of 0 66 feet A link is abbreviated lk and links lks in old deeds and land surveys done for the government The Standard Method of Measurement SMM published by the Royal Institution of Chartered Surveyors RICS consisted of classification tables and rules of measurement allowing use of a uniform basis for measuring building works It was first published in 1922 superseding a Scottish Standard Method of Measurement which had been published in 1915 Its seventh edition SMM7 was first published in 1988 and revised in 1998 SMM7 was replaced by the New Rules of Measurement volume 2 NRM2 which were published in April 2012 by the RICS Quantity Surveying and Construction Professional Group and became operational on 1 January 2013 12 NRM2 has been in general use since July 2013 SMM7 was accompanied by the Code of Procedure for the Measurement of Building Works the SMM7 Measurement Code Whilst SMM7 could have a contractual status within a project for example in the JCT Standard form of Building Contract the Measurement Code was not mandatory 13 NRM2 Is the second of three component parts within the NRM suite NRM1 Order of cost estimating and cost planning for capital building works NRM2 Detailed measurement for building works NRM3 Order of cost estimating and cost planning for building maintenance works 14 Time Edit Main article Time Time is an abstract measurement of elemental changes over a non spatial continuum It is denoted by numbers and or named periods such as hours days weeks months and years It is an apparently irreversible series of occurrences within this non spatial continuum It is also used to denote an interval between two relative points on this continuum Mass Edit Main article Weighing scale Mass refers to the intrinsic property of all material objects to resist changes in their momentum Weight on the other hand refers to the downward force produced when a mass is in a gravitational field In free fall no net gravitational forces objects lack weight but retain their mass The Imperial units of mass include the ounce pound and ton The metric units gram and kilogram are units of mass One device for measuring weight or mass is called a weighing scale or often simply a scale A spring scale measures force but not mass a balance compares weight both require a gravitational field to operate Some of the most accurate instruments for measuring weight or mass are based on load cells with a digital read out but require a gravitational field to function and would not work in free fall Economics Edit Main article Measurement in economics The measures used in economics are physical measures nominal price value measures and real price measures These measures differ from one another by the variables they measure and by the variables excluded from measurements Survey research Edit Main article Survey methodology Measurement station C of EMMA experiment situated at the depth of 75 meters in the Pyhasalmi Mine In the field of survey research measures are taken from individual attitudes values and behavior using questionnaires as a measurement instrument As all other measurements measurement in survey research is also vulnerable to measurement error i e the departure from the true value of the measurement and the value provided using the measurement instrument 15 In substantive survey research measurement error can lead to biased conclusions and wrongly estimated effects In order to get accurate results when measurement errors appear the results need to be corrected for measurement errors Exactness designation Edit The following rules generally apply for displaying the exactness of measurements 16 All non 0 digits and any 0s appearing between them are significant for the exactness of any number For example the number 12000 has two significant digits and has implied limits of 11500 and 12500 Additional 0s may be added after a decimal separator to denote a greater exactness increasing the number of decimals For example 1 has implied limits of 0 5 and 1 5 whereas 1 0 has implied limits 0 95 and 1 05 Difficulties EditSince accurate measurement is essential in many fields and since all measurements are necessarily approximations a great deal of effort must be taken to make measurements as accurate as possible For example consider the problem of measuring the time it takes an object to fall a distance of one metre about 39 in Using physics it can be shown that in the gravitational field of the Earth it should take any object about 0 45 second to fall one metre However the following are just some of the sources of error that arise This computation used for the acceleration of gravity 9 8 metres per second squared 32 ft s2 But this measurement is not exact but only precise to two significant digits The Earth s gravitational field varies slightly depending on height above sea level and other factors The computation of 0 45 seconds involved extracting a square root a mathematical operation that required rounding off to some number of significant digits in this case two significant digits Additionally other sources of experimental error include carelessness determining of the exact time at which the object is released and the exact time it hits the ground measurement of the height and the measurement of the time both involve some error Air resistance posture of human participants 17 Scientific experiments must be carried out with great care to eliminate as much error as possible and to keep error estimates realistic Definitions and theories EditClassical definition Edit In the classical definition which is standard throughout the physical sciences measurement is the determination or estimation of ratios of quantities 18 Quantity and measurement are mutually defined quantitative attributes are those possible to measure at least in principle The classical concept of quantity can be traced back to John Wallis and Isaac Newton and was foreshadowed in Euclid s Elements 18 Representational theory Edit In the representational theory measurement is defined as the correlation of numbers with entities that are not numbers 19 The most technically elaborated form of representational theory is also known as additive conjoint measurement In this form of representational theory numbers are assigned based on correspondences or similarities between the structure of number systems and the structure of qualitative systems A property is quantitative if such structural similarities can be established In weaker forms of representational theory such as that implicit within the work of Stanley Smith Stevens 20 numbers need only be assigned according to a rule The concept of measurement is often misunderstood as merely the assignment of a value but it is possible to assign a value in a way that is not a measurement in terms of the requirements of additive conjoint measurement One may assign a value to a person s height but unless it can be established that there is a correlation between measurements of height and empirical relations it is not a measurement according to additive conjoint measurement theory Likewise computing and assigning arbitrary values like the book value of an asset in accounting is not a measurement because it does not satisfy the necessary criteria Three type of Representational theory1 Empirical relationIn science an empirical relationship is a relationship or correlation based solely on observation rather than theory An empirical relationship requires only confirmatory data irrespective of theoretical basis2 The rule of mappingThe real world is the Domain of mapping and the mathematical world is the range when we map the attribute to mathematical system we have many choice for mapping and the range3 The representation condition of measurement Information theory Edit Information theory recognises that all data are inexact and statistical in nature Thus the definition of measurement is A set of observations that reduce uncertainty where the result is expressed as a quantity 21 This definition is implied in what scientists actually do when they measure something and report both the mean and statistics of the measurements In practical terms one begins with an initial guess as to the expected value of a quantity and then using various methods and instruments reduces the uncertainty in the value Note that in this view unlike the positivist representational theory all measurements are uncertain so instead of assigning one value a range of values is assigned to a measurement This also implies that there is not a clear or neat distinction between estimation and measurement Quantum mechanics Edit In quantum mechanics a measurement is an action that determines a particular property position momentum energy etc of a quantum system Before a measurement is made a quantum system is simultaneously described by all values in a range of possible values where the probability of measuring each value is determined by the wavefunction of the system When a measurement is performed the wavefunction of the quantum system collapses to a single definite value 22 The unambiguous meaning of the measurement problem is an unresolved fundamental problem in quantum mechanics citation needed Biology Edit In biology there is generally no well established theory of measurement However the importance of the theoretical context is emphasized 23 Moreover the theoretical context stemming from the theory of evolution leads to articulate the theory of measurement and historicity as a fundamental notion 24 Among the most developed fields of measurement in biology are the measurement of genetic diversity and species diversity 25 See also EditAiry points Conversion of units Detection limit Differential linearity Dimensional analysis Dimensionless number Econometrics Electrical measurements Environmental error History of measurement History of science and technology Instrumentation Integral linearity ISO 10012 Measurement management systems Key relevance in locksmithing Least count Levels of measurement List of humorous units of measurement List of unusual units of measurement Measurement in quantum mechanics Measuring instrument Measurement journal Measurement uncertainty NCSL International Number sense Observable quantity Orders of magnitude Primary instrument Psychometrics Quantification science Remote sensing Standard metrology Test method Timeline of temperature and pressure measurement technology Timeline of time measurement technology Uncertainty principle Virtual instrumentation Web analytics Weights and measures Metric fixationReferences Edit a b Pedhazur Elazar J Schmelkin Leora and Albert 1991 Measurement Design and Analysis An Integrated Approach 1st ed Hillsdale NJ Lawrence Erlbaum Associates pp 15 29 ISBN 978 0 8058 1063 9 a b International Vocabulary of Metrology Basic and General Concepts and Associated Terms VIM PDF 3rd ed International Bureau of Weights and Measures 2008 p 16 Young Hugh D Freedman Roger A 2012 University Physics 13 ed Pearson Education Inc ISBN 978 0 321 69686 1 Kirch Wilhelm ed 2008 Level of measurement Encyclopedia of Public Health Vol 2 Springer p 81 ISBN 978 0 321 02106 9 Crease 2011 pp 182 4harvnb error no target CITEREFCrease2011 help C S Peirce July 1879 Note on the Progress of Experiments for Comparing a Wave length with a Metre American Journal of Science as referenced by Crease 2011 p 203harvnb error no target CITEREFCrease2011 help Crease 2011 p 203harvnb error no target CITEREFCrease2011 help About Us National Measurement Institute of Australia 3 December 2020 Le Systeme international d unites The International System of Units PDF in French and English 9th ed International Bureau of Weights and Measures 2019 ISBN 978 92 822 2272 0 Wilks Kevin Joseph 1992 Metrication in Australia a review of the effectiveness of policies and procedures in Australia s conversion to the metric system Australia Department of Industry Technology and Commerce Canberra Australian Govt Pub Service p 94 ISBN 0 644 24860 2 OCLC 27702954 Metrication in Australia PDF RICS RICS standards and guidance SMM7 Standard method of measurement of building works accessed 1 July 2020 Designing Buildings Wiki Standard Method of Measurement accessed 1 July 2020 RICS NRM accessed 2 August 2020 Groves Robert 2004 Survey Methodology New Jersey Wiley ISBN 9780471483489 By measurement error we mean a departure from the value of the measurement as applied to a sample unit and the value provided pp 51 52 Page 41 in VanPool Todd 2011 Quantitative analysis in archaeology Chichester Malden Wiley Blackwell ISBN 978 1 4443 9017 9 OCLC 811317577 Gill Simeon Parker Christopher J 2017 Scan posture definition and hip girth measurement the impact on clothing design and body scanning Ergonomics 60 8 1123 1136 doi 10 1080 00140139 2016 1251621 PMID 27764997 S2CID 23758581 a b Michell J 1999 Measurement in psychology a critical history of a methodological concept New York Cambridge University Press Ernest Nagel Measurement Erkenntnis Volume 2 Number 1 December 1931 pp 313 335 published by Springer the Netherlands Stevens S S On the theory of scales and measurement 1946 Science 103 677 80 Douglas Hubbard How to Measure Anything Wiley 2007 p 21 Penrose Roger 2007 The road to reality a complete guide to the laws of the universe New York Vintage Books ISBN 978 0 679 77631 4 The jumping of the quantum state to one of the eigenstates of Q is the process referred to as state vector reduction or collapse of the wavefunction It is one of quantum theory s most puzzling features T he way in which quantum mechanics is used in practice is to take the state indeed to jump in this curious way whenever a measurement is deemed to take place p 528 Later Chapter 29 is entitled the Measurement paradox Houle David Pelabon Christophe Wagner Gunter P Hansen Thomas F 2011 Measurement and Meaning in Biology PDF The Quarterly Review of Biology 86 1 3 34 doi 10 1086 658408 ISSN 0033 5770 PMID 21495498 S2CID 570080 Archived from the original PDF on 2019 05 29 Montevil Mael 2019 Measurement in biology is methodized by theory Biology amp Philosophy 34 3 doi 10 1007 s10539 019 9687 x ISSN 0169 3867 S2CID 96447209 Magurran A E amp McGill B J Hg 2011 Biological Diversity Frontiers in Measurement and Assessment Oxford University Press External links Edit Look up measurement in Wiktionary the free dictionary Wikiquote has quotations related to Measurement Media related to Measurement at Wikimedia Commons Schlaudt Oliver 2020 measurement In Kirchhoff Thomas ed Online Encyclopedia Philosophy of Nature Heidelberg Universitatsbibliothek Heidelberg https doi org 10 11588 oepn 2020 0 76654 Tal Era 2020 Measurement in Science In Zalta Edward N ed The Stanford Encyclopedia of Philosophy Fall 2020 Edition URL lt https plato stanford edu archives fall2020 entries measurement science gt A Dictionary of Units of Measurement Archived 2018 10 06 at the Wayback Machine Metrology in short 3rd edition July 2008 ISBN 978 87 988154 5 7 Retrieved from https en wikipedia org w index php title Measurement amp oldid 1152172955, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.