fbpx
Wikipedia

Phytoestrogen

A phytoestrogen is a plant-derived xenoestrogen (a type of estrogen produced by organisms other than humans) not generated within the endocrine system, but consumed by eating plants or manufactured foods.[1] Also called a "dietary estrogen", it is a diverse group of naturally occurring nonsteroidal plant compounds that, because of its structural similarity to estradiol (17-β-estradiol), have the ability to cause estrogenic or antiestrogenic effects.[2] Phytoestrogens are not essential nutrients because their absence from the diet does not cause a disease, nor are they known to participate in any normal biological function.[2] Common foods containing phytoestrogens are soy protein, beans, oats, barley, rice, coffee, apples, carrots (see Food Sources section below for bigger list).

Its name comes from the Greek phyto ("plant") and estrogen, the hormone which gives fertility to female mammals. The word "estrus" (Greek οίστρος) means "sexual desire", and "gene" (Greek γόνο) is "to generate". It has been hypothesized that plants use a phytoestrogen as part of their natural defense against the overpopulation of herbivore animals by controlling female fertility.[3][4]

The similarities, at molecular level, of an estrogen and a phytoestrogen allow them to mildly mimic and sometimes act as an antagonist of estrogen.[2] Phytoestrogens were first observed in 1926,[2][5] but it was unknown if they could have any effect in human or animal metabolism. In the 1940s and early 1950s, it was noticed that some pastures of subterranean clover and red clover (phytoestrogen-rich plants) had adverse effects on the fecundity of grazing sheep.[2][6][7][8]

Chemical structures of the most common phytoestrogens found in plants (top and middle) compared with estrogen (bottom) found in animals

Structure edit

Phytoestrogens mainly belong to a large group of substituted natural phenolic compounds: the coumestans, prenylflavonoids and isoflavones are three of the most active in estrogenic effects in this class.[1] The best-researched are isoflavones, which are commonly found in soy and red clover. Lignans have also been identified as phytoestrogens, although they are not flavonoids.[2] Mycoestrogens have similar structures and effects, but are not components of plants; these are mold metabolites of Fusarium, especially common on cereal grains,[9][10][11] but also occurring elsewhere, e.g. on various forages.[12] Although mycoestrogens are rarely taken into account in discussions about phytoestrogens, these are the compounds that initially generated the interest on the topic.[13]

Mechanism of action edit

Phytoestrogens exert their effects primarily through binding to estrogen receptors (ER).[14] There are two variants of the estrogen receptor, alpha (ER-α) and beta (ER-β) and many phytoestrogens display somewhat higher affinity for ER-β compared to ER-α.[14]

The key structural elements that enable phytoestrogens to bind with high affinity to estrogen receptors and display estradiol-like effects are:[2]

  • The phenolic ring that is indispensable for binding to estrogen receptor
  • The ring of isoflavones mimicking a ring of estrogens at the receptors binding site
  • Low molecular weight similar to estrogens (MW=272)
  • Distance between two hydroxyl groups at the isoflavones nucleus similar to that occurring in estradiol
  • Optimal hydroxylation pattern

In addition to interaction with ERs, phytoestrogens may also modulate the concentration of endogenous estrogens by binding or inactivating some enzymes, and may affect the bioavailability of sex hormones by depressing or stimulating the synthesis of sex hormone-binding globulin (SHBG).[8]

Emerging evidence shows that some phytoestrogens bind to and transactivate peroxisome proliferator-activated receptors (PPARs).[15][16] In vitro studies show an activation of PPARs at concentrations above 1 μM, which is higher than the activation level of ERs.[17][18] At the concentration below 1 μM, activation of ERs may play a dominant role. At higher concentrations (>1 μM), both ERs and PPARs are activated. Studies have shown that both ERs and PPARs influence each other and therefore induce differential effects in a dose-dependent way. The final biological effects of genistein are determined by the balance among these pleiotrophic actions.[15][16][17]

Affinities of estrogen receptor ligands for the ERα and ERβ
Ligand Other names Relative binding affinities (RBA, %)a Absolute binding affinities (Ki, nM)a Action
ERα ERβ ERα ERβ
Estradiol E2; 17β-Estradiol 100 100 0.115 (0.04–0.24) 0.15 (0.10–2.08) Estrogen
Estrone E1; 17-Ketoestradiol 16.39 (0.7–60) 6.5 (1.36–52) 0.445 (0.3–1.01) 1.75 (0.35–9.24) Estrogen
Estriol E3; 16α-OH-17β-E2 12.65 (4.03–56) 26 (14.0–44.6) 0.45 (0.35–1.4) 0.7 (0.63–0.7) Estrogen
Estetrol E4; 15α,16α-Di-OH-17β-E2 4.0 3.0 4.9 19 Estrogen
Alfatradiol 17α-Estradiol 20.5 (7–80.1) 8.195 (2–42) 0.2–0.52 0.43–1.2 Metabolite
16-Epiestriol 16β-Hydroxy-17β-estradiol 7.795 (4.94–63) 50 ? ? Metabolite
17-Epiestriol 16α-Hydroxy-17α-estradiol 55.45 (29–103) 79–80 ? ? Metabolite
16,17-Epiestriol 16β-Hydroxy-17α-estradiol 1.0 13 ? ? Metabolite
2-Hydroxyestradiol 2-OH-E2 22 (7–81) 11–35 2.5 1.3 Metabolite
2-Methoxyestradiol 2-MeO-E2 0.0027–2.0 1.0 ? ? Metabolite
4-Hydroxyestradiol 4-OH-E2 13 (8–70) 7–56 1.0 1.9 Metabolite
4-Methoxyestradiol 4-MeO-E2 2.0 1.0 ? ? Metabolite
2-Hydroxyestrone 2-OH-E1 2.0–4.0 0.2–0.4 ? ? Metabolite
2-Methoxyestrone 2-MeO-E1 <0.001–<1 <1 ? ? Metabolite
4-Hydroxyestrone 4-OH-E1 1.0–2.0 1.0 ? ? Metabolite
4-Methoxyestrone 4-MeO-E1 <1 <1 ? ? Metabolite
16α-Hydroxyestrone 16α-OH-E1; 17-Ketoestriol 2.0–6.5 35 ? ? Metabolite
2-Hydroxyestriol 2-OH-E3 2.0 1.0 ? ? Metabolite
4-Methoxyestriol 4-MeO-E3 1.0 1.0 ? ? Metabolite
Estradiol sulfate E2S; Estradiol 3-sulfate <1 <1 ? ? Metabolite
Estradiol disulfate Estradiol 3,17β-disulfate 0.0004 ? ? ? Metabolite
Estradiol 3-glucuronide E2-3G 0.0079 ? ? ? Metabolite
Estradiol 17β-glucuronide E2-17G 0.0015 ? ? ? Metabolite
Estradiol 3-gluc. 17β-sulfate E2-3G-17S 0.0001 ? ? ? Metabolite
Estrone sulfate E1S; Estrone 3-sulfate <1 <1 >10 >10 Metabolite
Estradiol benzoate EB; Estradiol 3-benzoate 10 ? ? ? Estrogen
Estradiol 17β-benzoate E2-17B 11.3 32.6 ? ? Estrogen
Estrone methyl ether Estrone 3-methyl ether 0.145 ? ? ? Estrogen
ent-Estradiol 1-Estradiol 1.31–12.34 9.44–80.07 ? ? Estrogen
Equilin 7-Dehydroestrone 13 (4.0–28.9) 13.0–49 0.79 0.36 Estrogen
Equilenin 6,8-Didehydroestrone 2.0–15 7.0–20 0.64 0.62 Estrogen
17β-Dihydroequilin 7-Dehydro-17β-estradiol 7.9–113 7.9–108 0.09 0.17 Estrogen
17α-Dihydroequilin 7-Dehydro-17α-estradiol 18.6 (18–41) 14–32 0.24 0.57 Estrogen
17β-Dihydroequilenin 6,8-Didehydro-17β-estradiol 35–68 90–100 0.15 0.20 Estrogen
17α-Dihydroequilenin 6,8-Didehydro-17α-estradiol 20 49 0.50 0.37 Estrogen
Δ8-Estradiol 8,9-Dehydro-17β-estradiol 68 72 0.15 0.25 Estrogen
Δ8-Estrone 8,9-Dehydroestrone 19 32 0.52 0.57 Estrogen
Ethinylestradiol EE; 17α-Ethynyl-17β-E2 120.9 (68.8–480) 44.4 (2.0–144) 0.02–0.05 0.29–0.81 Estrogen
Mestranol EE 3-methyl ether ? 2.5 ? ? Estrogen
Moxestrol RU-2858; 11β-Methoxy-EE 35–43 5–20 0.5 2.6 Estrogen
Methylestradiol 17α-Methyl-17β-estradiol 70 44 ? ? Estrogen
Diethylstilbestrol DES; Stilbestrol 129.5 (89.1–468) 219.63 (61.2–295) 0.04 0.05 Estrogen
Hexestrol Dihydrodiethylstilbestrol 153.6 (31–302) 60–234 0.06 0.06 Estrogen
Dienestrol Dehydrostilbestrol 37 (20.4–223) 56–404 0.05 0.03 Estrogen
Benzestrol (B2) 114 ? ? ? Estrogen
Chlorotrianisene TACE 1.74 ? 15.30 ? Estrogen
Triphenylethylene TPE 0.074 ? ? ? Estrogen
Triphenylbromoethylene TPBE 2.69 ? ? ? Estrogen
Tamoxifen ICI-46,474 3 (0.1–47) 3.33 (0.28–6) 3.4–9.69 2.5 SERM
Afimoxifene 4-Hydroxytamoxifen; 4-OHT 100.1 (1.7–257) 10 (0.98–339) 2.3 (0.1–3.61) 0.04–4.8 SERM
Toremifene 4-Chlorotamoxifen; 4-CT ? ? 7.14–20.3 15.4 SERM
Clomifene MRL-41 25 (19.2–37.2) 12 0.9 1.2 SERM
Cyclofenil F-6066; Sexovid 151–152 243 ? ? SERM
Nafoxidine U-11,000A 30.9–44 16 0.3 0.8 SERM
Raloxifene 41.2 (7.8–69) 5.34 (0.54–16) 0.188–0.52 20.2 SERM
Arzoxifene LY-353,381 ? ? 0.179 ? SERM
Lasofoxifene CP-336,156 10.2–166 19.0 0.229 ? SERM
Ormeloxifene Centchroman ? ? 0.313 ? SERM
Levormeloxifene 6720-CDRI; NNC-460,020 1.55 1.88 ? ? SERM
Ospemifene Deaminohydroxytoremifene 0.82–2.63 0.59–1.22 ? ? SERM
Bazedoxifene ? ? 0.053 ? SERM
Etacstil GW-5638 4.30 11.5 ? ? SERM
ICI-164,384 63.5 (3.70–97.7) 166 0.2 0.08 Antiestrogen
Fulvestrant ICI-182,780 43.5 (9.4–325) 21.65 (2.05–40.5) 0.42 1.3 Antiestrogen
Propylpyrazoletriol PPT 49 (10.0–89.1) 0.12 0.40 92.8 ERα agonist
16α-LE2 16α-Lactone-17β-estradiol 14.6–57 0.089 0.27 131 ERα agonist
16α-Iodo-E2 16α-Iodo-17β-estradiol 30.2 2.30 ? ? ERα agonist
Methylpiperidinopyrazole MPP 11 0.05 ? ? ERα antagonist
Diarylpropionitrile DPN 0.12–0.25 6.6–18 32.4 1.7 ERβ agonist
8β-VE2 8β-Vinyl-17β-estradiol 0.35 22.0–83 12.9 0.50 ERβ agonist
Prinaberel ERB-041; WAY-202,041 0.27 67–72 ? ? ERβ agonist
ERB-196 WAY-202,196 ? 180 ? ? ERβ agonist
Erteberel SERBA-1; LY-500,307 ? ? 2.68 0.19 ERβ agonist
SERBA-2 ? ? 14.5 1.54 ERβ agonist
Coumestrol 9.225 (0.0117–94) 64.125 (0.41–185) 0.14–80.0 0.07–27.0 Xenoestrogen
Genistein 0.445 (0.0012–16) 33.42 (0.86–87) 2.6–126 0.3–12.8 Xenoestrogen
Equol 0.2–0.287 0.85 (0.10–2.85) ? ? Xenoestrogen
Daidzein 0.07 (0.0018–9.3) 0.7865 (0.04–17.1) 2.0 85.3 Xenoestrogen
Biochanin A 0.04 (0.022–0.15) 0.6225 (0.010–1.2) 174 8.9 Xenoestrogen
Kaempferol 0.07 (0.029–0.10) 2.2 (0.002–3.00) ? ? Xenoestrogen
Naringenin 0.0054 (<0.001–0.01) 0.15 (0.11–0.33) ? ? Xenoestrogen
8-Prenylnaringenin 8-PN 4.4 ? ? ? Xenoestrogen
Quercetin <0.001–0.01 0.002–0.040 ? ? Xenoestrogen
Ipriflavone <0.01 <0.01 ? ? Xenoestrogen
Miroestrol 0.39 ? ? ? Xenoestrogen
Deoxymiroestrol 2.0 ? ? ? Xenoestrogen
β-Sitosterol <0.001–0.0875 <0.001–0.016 ? ? Xenoestrogen
Resveratrol <0.001–0.0032 ? ? ? Xenoestrogen
α-Zearalenol 48 (13–52.5) ? ? ? Xenoestrogen
β-Zearalenol 0.6 (0.032–13) ? ? ? Xenoestrogen
Zeranol α-Zearalanol 48–111 ? ? ? Xenoestrogen
Taleranol β-Zearalanol 16 (13–17.8) 14 0.8 0.9 Xenoestrogen
Zearalenone ZEN 7.68 (2.04–28) 9.45 (2.43–31.5) ? ? Xenoestrogen
Zearalanone ZAN 0.51 ? ? ? Xenoestrogen
Bisphenol A BPA 0.0315 (0.008–1.0) 0.135 (0.002–4.23) 195 35 Xenoestrogen
Endosulfan EDS <0.001–<0.01 <0.01 ? ? Xenoestrogen
Kepone Chlordecone 0.0069–0.2 ? ? ? Xenoestrogen
o,p'-DDT 0.0073–0.4 ? ? ? Xenoestrogen
p,p'-DDT 0.03 ? ? ? Xenoestrogen
Methoxychlor p,p'-Dimethoxy-DDT 0.01 (<0.001–0.02) 0.01–0.13 ? ? Xenoestrogen
HPTE Hydroxychlor; p,p'-OH-DDT 1.2–1.7 ? ? ? Xenoestrogen
Testosterone T; 4-Androstenolone <0.0001–<0.01 <0.002–0.040 >5000 >5000 Androgen
Dihydrotestosterone DHT; 5α-Androstanolone 0.01 (<0.001–0.05) 0.0059–0.17 221–>5000 73–1688 Androgen
Nandrolone 19-Nortestosterone; 19-NT 0.01 0.23 765 53 Androgen
Dehydroepiandrosterone DHEA; Prasterone 0.038 (<0.001–0.04) 0.019–0.07 245–1053 163–515 Androgen
5-Androstenediol A5; Androstenediol 6 17 3.6 0.9 Androgen
4-Androstenediol 0.5 0.6 23 19 Androgen
4-Androstenedione A4; Androstenedione <0.01 <0.01 >10000 >10000 Androgen
3α-Androstanediol 3α-Adiol 0.07 0.3 260 48 Androgen
3β-Androstanediol 3β-Adiol 3 7 6 2 Androgen
Androstanedione 5α-Androstanedione <0.01 <0.01 >10000 >10000 Androgen
Etiocholanedione 5β-Androstanedione <0.01 <0.01 >10000 >10000 Androgen
Methyltestosterone 17α-Methyltestosterone <0.0001 ? ? ? Androgen
Ethinyl-3α-androstanediol 17α-Ethynyl-3α-adiol 4.0 <0.07 ? ? Estrogen
Ethinyl-3β-androstanediol 17α-Ethynyl-3β-adiol 50 5.6 ? ? Estrogen
Progesterone P4; 4-Pregnenedione <0.001–0.6 <0.001–0.010 ? ? Progestogen
Norethisterone NET; 17α-Ethynyl-19-NT 0.085 (0.0015–<0.1) 0.1 (0.01–0.3) 152 1084 Progestogen
Norethynodrel 5(10)-Norethisterone 0.5 (0.3–0.7) <0.1–0.22 14 53 Progestogen
Tibolone 7α-Methylnorethynodrel 0.5 (0.45–2.0) 0.2–0.076 ? ? Progestogen
Δ4-Tibolone 7α-Methylnorethisterone 0.069–<0.1 0.027–<0.1 ? ? Progestogen
3α-Hydroxytibolone 2.5 (1.06–5.0) 0.6–0.8 ? ? Progestogen
3β-Hydroxytibolone 1.6 (0.75–1.9) 0.070–0.1 ? ? Progestogen
Footnotes: a = (1) Binding affinity values are of the format "median (range)" (# (#–#)), "range" (#–#), or "value" (#) depending on the values available. The full sets of values within the ranges can be found in the Wiki code. (2) Binding affinities were determined via displacement studies in a variety of in-vitro systems with labeled estradiol and human ERα and ERβ proteins (except the ERβ values from Kuiper et al. (1997), which are rat ERβ). Sources: See template page.

Ecology edit

Phytoestrogens are involved in the synthesis of antifungal benzofurans and phytoalexins, such as medicarpin (common in legumes), and sesquiterpenes, such as capsidiol in tobacco.[19] Soybeans naturally produce isoflavones, and are therefore a dietary source for isoflavones.

Phytoestrogens are ancient naturally occurring substances, and as dietary phytochemicals they are considered to have coevolved with mammals. In the human diet, phytoestrogens are not the only source of exogenous estrogens. Xenoestrogens (novel, man-made), are found as food additives[20] and ingredients, and also in cosmetics, plastics, and insecticides. Environmentally, they have similar effects as phytoestrogens, making it difficult to clearly separate the action of these two kind of agents in studies.[21]

Avian studies edit

The consumption of plants with unusual content of phytoestrogens, under drought conditions, has been shown to decrease fertility in quail.[22] Parrot food as available in nature has shown only weak estrogenic activity. Studies have been conducted on screening methods for environmental estrogens present in manufactured supplementary food, with the purpose of aiding reproduction of endangered species.[23]

Food sources edit

According to one study of nine common phytoestrogens in a Western diet, foods with the highest relative phytoestrogen content were nuts and oilseeds, followed by soy products, cereals and breads, legumes, meat products, and other processed foods that may contain soy, vegetables, fruits, alcoholic, and nonalcoholic beverages. Flax seed and other oilseeds contained the highest total phytoestrogen content, followed by soybeans and tofu.[24] The highest concentrations of isoflavones are found in soybeans and soybean products followed by legumes, whereas lignans are the primary source of phytoestrogens found in nuts and oilseeds (e.g. flax) and also found in cereals, legumes, fruits and vegetables. Phytoestrogen content varies in different foods, and may vary significantly within the same group of foods (e.g. soy beverages, tofu) depending on processing mechanisms and type of soybean used. Legumes (in particular soybeans), whole grain cereals, and some seeds are high in phytoestrogens.

A more comprehensive list of foods known to contain phytoestrogens includes:

Food content of phytoestrogens is very variable and accurate estimates of intake are therefore difficult and depends on the databases used.[30] Data from the European Prospective Investigation into Cancer and Nutrition found intakes between 1 mg/d in Mediterranean Countries and more than 20 mg/d in the United Kingdom.[31] The high intake in the UK is partly explained by the use of soy in the Chorleywood bread process.[32] An epidemiological study of women in the United States found that the dietary intake of phytoestrogens in healthy post-menopausal Caucasian women is less than one milligram daily.[33]

Effects on humans edit

In humans, phytoestrogens are digested in the small intestine, poorly absorbed into the circulatory system, circulate in plasma, and are excreted in the urine. Metabolic influence is different from that of grazing animals due to the differences between ruminant versus monogastric digestive systems.[21]

As of 2020, there is sufficient clinical evidence to determine that phytoestrogens have effects in humans.[34]

Females edit

It is unclear if phytoestrogens have any effect on the cause or prevention of cancer in women.[1][35] Some epidemiological studies have suggested a protective effect against breast cancer.[1][35][36] Additionally, other epidemiological studies found that consumption of soy estrogens is safe for patients with breast cancer, and that it may decrease mortality and recurrence rates.[1][37][38] It remains unclear if phytoestrogens can minimize some of the deleterious effects of low estrogen levels (hypoestrogenism) resulting from oophorectomy, menopause, or other causes.[35] A Cochrane review of the use of phytoestrogens to relieve the vasomotor symptoms of menopause (hot flashes) stated that there was no conclusive evidence to suggest any benefit to their use, although genistein effects should be further investigated.[39]

Males edit

It is unclear if phytoestrogens have any effect on male sexuality, with conflicting results about the potential effects of isoflavones originating from soy.[1] Some studies showed that isoflavone supplementation had a positive effect on sperm concentration, count, or motility, and increased ejaculate volume.[40][41] Sperm count decline and increasing rate of testicular cancers in the West may be linked to a higher presence of isoflavone phytoestrogens in the diet while in utero, but such a link has not been definitively proven.[42] Furthermore, while there is some evidence that phytoestrogens may affect male fertility, more recent reviews of available studies found no link,[43][44] and instead suggests that healthier diets such as the Mediterranean diet might have a positive effect on male fertility.[44] Neither isoflavones nor soy have been shown to affect male reproductive hormones in healthy individuals.[43][45]

Infant formula edit

Some studies have found that some concentrations of isoflavones may have effects on intestinal cells. At low doses, genistein acted as a weak estrogen and stimulated cell growth; at high doses, it inhibited proliferation and altered cell cycle dynamics. This biphasic response correlates with how genistein is thought to exert its effects.[46] Some reviews express the opinion that more research is needed to answer the question of what effect phytoestrogens may have on infants,[47][48] but their authors did not find any adverse effects. Studies conclude there are no adverse effects in human growth, development, or reproduction as a result of the consumption of soy-based infant formula compared to conventional cow-milk formula.[49][50][51] The American Academy of Pediatrics states: "although isolated soy protein-based formulas may be used to provide nutrition for normal growth and development, there are few indications for their use in place of cow milk-based formula. These indications include (a) for infants with galactosemia and hereditary lactase deficiency (rare) and (b) in situations in which a vegetarian diet is preferred."[52]

Ethnopharmacology edit

In some countries, phytoestrogenic plants have been used for centuries in the treatment of menstrual and menopausal problems, as well as for fertility problems.[53] Plants used that have been shown to contain phytoestrogens include Pueraria mirifica[54] and its close relative kudzu,[55] Angelica,[56] fennel,[28] and anise. In a rigorous study, the use of one such source of phytoestrogen, red clover, has been shown to be safe, but ineffective in relieving menopausal symptoms[57] (black cohosh is also used for menopausal symptoms, but does not contain phytoestrogens[58]).

See also edit

References edit

  1. ^ a b c d e f "Isoflavones". Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis. October 2016. Retrieved 6 August 2022.
  2. ^ a b c d e f g Yildiz F (2005). Phytoestrogens in Functional Foods. Taylor & Francis Ltd. pp. 3–5, 210–211. ISBN 978-1-57444-508-4.
  3. ^ Hughes CL (Jun 1988). "Phytochemical mimicry of reproductive hormones and modulation of herbivore fertility by phytoestrogens". Environmental Health Perspectives. 78: 171–4. doi:10.1289/ehp.8878171. PMC 1474615. PMID 3203635.
  4. ^ Bentley GR, Mascie-Taylor CG (2000). Infertility in the modern world: present and future prospects. Cambridge, UK: Cambridge University Press. pp. 99–100. ISBN 978-0-521-64387-0.
  5. ^ Varner JE, Bonner J (1966). Plant Biochemistry. Academic Press. ISBN 978-0-12-114856-0.
  6. ^ Bennetts HW, Underwood EJ, Shier FL (1946). "A specific breeding problem of sheep on subterranean clover pastures in Western Australia". Australian Veterinary Journal. 22 (1): 2–12. doi:10.1111/j.1751-0813.1946.tb15473.x. PMID 21028682.
  7. ^ Cunningham IJ, Hogan KG (1954). "Oestrogens in New Zealand pasture plants". N. Z. Vet. J. 2 (4): 128–134. doi:10.1080/00480169.1954.33166.
  8. ^ a b Johnston I (2003). Phytochem Functional Foods. CRC Press Inc. pp. 66–68. ISBN 978-0-8493-1754-5.
  9. ^ Bennett GA, Shotwell OI (1979). "Zearalenone in cereal grains". J. Amer. Oil. Chemists Soc. 56 (9): 812–819. doi:10.1007/bf02909525. S2CID 39917693.[permanent dead link]
  10. ^ Kuiper-Goodman T, Scott PM, Watanabe H (1987). "Risk assessment of the mycotoxin zearalenone". Regul. Toxicol. Pharmacol. 7 (3): 253–306. doi:10.1016/0273-2300(87)90037-7. PMID 2961013.
  11. ^ Zinedine A, Soriano JM, Moltó JC, Mañes J (2007). "Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin". Food Chem. Toxicol. 45 (1): 1–18. doi:10.1016/j.fct.2006.07.030. PMID 17045381.
  12. ^ Gallo A, Giuberti G, Frisvad JC, Bertuzzi T, Nielsen KF (2015). "Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects". Toxins (Basel). 7 (8): 3057–111. doi:10.3390/toxins7083057. PMC 4549740. PMID 26274974.
  13. ^ Naz RK (1999). Endocrine Disruptors: Effects on Male and Female Reproductive Systems. CRC Press Inc. p. 90. ISBN 978-0-8493-3164-0.
  14. ^ a b Turner JV, Agatonovic-Kustrin S, Glass BD (Aug 2007). "Molecular aspects of phytoestrogen selective binding at estrogen receptors". Journal of Pharmaceutical Sciences. 96 (8): 1879–85. doi:10.1002/jps.20987. PMID 17518366.
  15. ^ a b Dang ZC, Lowik C (Jul 2005). "Dose-dependent effects of phytoestrogens on bone". Trends in Endocrinology and Metabolism. 16 (5): 207–13. doi:10.1016/j.tem.2005.05.001. PMID 15922618. S2CID 35366615.
  16. ^ a b Dang ZC (May 2009). "Dose-dependent effects of soy phyto-oestrogen genistein on adipocytes: mechanisms of action". Obesity Reviews. 10 (3): 342–9. doi:10.1111/j.1467-789X.2008.00554.x. PMID 19207876. S2CID 13804244.
  17. ^ a b Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Löwik CW (Jan 2003). "Peroxisome proliferator-activated receptor gamma (PPARgamma ) as a molecular target for the soy phytoestrogen genistein". The Journal of Biological Chemistry. 278 (2): 962–7. doi:10.1074/jbc.M209483200. PMID 12421816.
  18. ^ Dang Z, Löwik CW (May 2004). "The balance between concurrent activation of ERs and PPARs determines daidzein-induced osteogenesis and adipogenesis". Journal of Bone and Mineral Research. 19 (5): 853–61. doi:10.1359/jbmr.040120. PMID 15068509.
  19. ^ Leegood RC, Lea P (1998). Plant Biochemistry and Molecular Biology. John Wiley & Sons. pp. 204, 211–213. ISBN 978-0-471-97683-7.
  20. ^ Amadasi A, Mozzarelli A, Meda C, Maggi A, Cozzini P (2009). "Identification of xenoestrogens in food additives by an integrated in silico and in vitro approach". Chem. Res. Toxicol. 22 (1): 52–63. doi:10.1021/tx800048m. PMC 2758355. PMID 19063592.
  21. ^ a b Korach KS (1998). Reproductive and Developmental Toxicology. Marcel Dekker Ltd. pp. 278–279. ISBN 978-0-8247-9857-4.
  22. ^ Leopold AS, Erwin M, Oh J, Browning B (January 1976). "Phytoestrogens: adverse effects on reproduction in California quail". Science. 191 (4222): 98–100. Bibcode:1976Sci...191...98S. doi:10.1126/science.1246602. PMID 1246602.
  23. ^ Fidler AE, Zwart S, Pharis RP, Weston RJ, Lawrence SB, Jansen P, Elliott G, Merton DV (2000). "Screening the foods of an endangered parrot, the kakapo (Strigops habroptilus), for oestrogenic activity using a recombinant yeast bioassay". Reproduction, Fertility, and Development. 12 (3–4): 191–9. doi:10.1071/RD00041. PMID 11302429.
  24. ^ Thompson LU, Boucher BA, Liu Z, Cotterchio M, Kreiger N (2006). "Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan". Nutrition and Cancer. 54 (2): 184–201. doi:10.1207/s15327914nc5402_5. PMID 16898863. S2CID 60328.
  25. ^ van Elswijk DA, Schobel UP, Lansky EP, Irth H, van der Greef J (Jan 2004). "Rapid dereplication of estrogenic compounds in pomegranate (Punica granatum) using on-line biochemical detection coupled to mass spectrometry". Phytochemistry. 65 (2): 233–41. Bibcode:2004PChem..65..233V. doi:10.1016/j.phytochem.2003.07.001. PMID 14732284.
  26. ^ Chadwick LR, Nikolic D, Burdette JE, Overk CR, Bolton JL, van Breemen RB, Fröhlich R, Fong HH, Farnsworth NR, Pauli GF (Dec 2004). "Estrogens and congeners from spent hops (Humulus lupulus)". Journal of Natural Products. 67 (12): 2024–32. doi:10.1021/np049783i. PMC 7418824. PMID 15620245.
  27. ^ Rosenblum ER, Stauber RE, Van Thiel DH, Campbell IM, Gavaler JS (Dec 1993). "Assessment of the estrogenic activity of phytoestrogens isolated from bourbon and beer". Alcoholism: Clinical and Experimental Research. 17 (6): 1207–9. doi:10.1111/j.1530-0277.1993.tb05230.x. PMID 8116832.
  28. ^ a b Albert-Puleo M (Dec 1980). "Fennel and anise as estrogenic agents". Journal of Ethnopharmacology. 2 (4): 337–44. doi:10.1016/S0378-8741(80)81015-4. PMID 6999244.
  29. ^ Bacciottini, Lucia; Falchetti, Alberto; Pampaloni, Barbara; Bartolini, Elisa; Carossino, Anna Maria; Brandi, Maria Luisa (2007). "Phytoestrogens: food or drug?". Clinical Cases in Mineral and Bone Metabolism. 4 (2): 123–130. ISSN 1724-8914. PMC 2781234. PMID 22461212.
  30. ^ Kuhnle, Gunter G.C.; Dell’Aquila, Caterina; Runswick, Shirley A.; Bingham, Sheila A. (2008). "Variability of phytoestrogen content in foods from different sources". Food Chemistry. 113 (4): 1184–1187. doi:10.1016/j.foodchem.2008.08.004.
  31. ^ Zamora-Ros, R; Knaze, V; Luján-Barroso, L; Kuhnle, G G C; Mulligan, A A; Touillaud, M; Slimani, N; Romieu, I; Powell, N; Tumino, R; Peeters, P H M; de Magistris, M S; Ricceri, F; Sonestedt, E; Drake, I (2012). "Dietary intakes and food sources of phytoestrogens in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24-hour dietary recall cohort". European Journal of Clinical Nutrition. 66 (8): 932–941. doi:10.1038/ejcn.2012.36. ISSN 0954-3007. PMID 22510793. S2CID 24241153.
  32. ^ Cauvain, Stanley P. (2006). The Chorleywood bread process. Linda S. Young. Boca Raton, FL: CRC Press. ISBN 1-84569-143-1. OCLC 236341936.
  33. ^ de Kleijn MJ, van der Schouw YT, Wilson PW, Adlercreutz H, Mazur W, Grobbee DE, Jacques PF (Jun 2001). "Intake of dietary phytoestrogens is low in postmenopausal women in the United States: the Framingham study(1-4)". The Journal of Nutrition. 131 (6): 1826–32. doi:10.1093/jn/131.6.1826. PMID 11385074.
  34. ^ Domínguez-López, Inés; Yago-Aragón, Maria; Salas-Huetos, Albert; Tresserra-Rimbau, Anna; Hurtado-Barroso, Sara (August 2020). "Effects of Dietary Phytoestrogens on Hormones throughout a Human Lifespan: A Review". Nutrients. 12 (8): 2456. doi:10.3390/nu12082456. ISSN 2072-6643. PMC 7468963. PMID 32824177.
  35. ^ a b c Bilal I, Chowdhury A, Davidson J, Whitehead S (2014). "Phytoestrogens and prevention of breast cancer: The contentious debate". World Journal of Clinical Oncology. 5 (4): 705–12. doi:10.5306/wjco.v5.i4.705. PMC 4129534. PMID 25302172.
  36. ^ Ingram D, Sanders K, Kolybaba M, Lopez D (Oct 1997). "Case-control study of phyto-oestrogens and breast cancer". Lancet. 350 (9083): 990–4. doi:10.1016/S0140-6736(97)01339-1. PMID 9329514. S2CID 12158051.
  37. ^ Shu XO, Zheng Y, Cai H, Gu K, Chen Z, Zheng W, Lu W (Dec 2009). "Soy food intake and breast cancer survival". JAMA. 302 (22): 2437–43. doi:10.1001/jama.2009.1783. PMC 2874068. PMID 19996398.
  38. ^ Fritz H, Seely D, Flower G, Skidmore B, Fernandes R, Vadeboncoeur S, Kennedy D, Cooley K, Wong R, Sagar S, Sabri E, Fergusson D (2013). "Soy, red clover, and isoflavones and breast cancer: a systematic review". PLOS ONE. 8 (11): e81968. Bibcode:2013PLoSO...881968F. doi:10.1371/journal.pone.0081968. PMC 3842968. PMID 24312387.
  39. ^ Lethaby A, Marjoribanks J, Kronenberg F, Roberts H, Eden J, Brown J (2013). "Phytoestrogens for menopausal vasomotor symptoms". The Cochrane Database of Systematic Reviews. 2013 (12): CD001395. doi:10.1002/14651858.CD001395.pub4. PMC 10247921. PMID 24323914.
  40. ^ Dabrowski WM (2004). Toxins in Food. CRC Press Inc. p. 95. ISBN 978-0-8493-1904-4.
  41. ^ Mitchell JH, Cawood E, Kinniburgh D, Provan A, Collins AR, Irvine DS (Jun 2001). "Effect of a phytoestrogen food supplement on reproductive health in normal males". Clinical Science. 100 (6): 613–8. doi:10.1042/CS20000212. PMID 11352776.
  42. ^ Patisaul HB, Jefferson W (2010). "The pros and cons of phytoestrogens". Frontiers in Neuroendocrinology. 31 (4): 400–19. doi:10.1016/j.yfrne.2010.03.003. PMC 3074428. PMID 20347861.
  43. ^ a b Messina, Mark; Mejia, Sonia Blanco; Cassidy, Aedin; Duncan, Alison; Kurzer, Mindy; Nagato, Chisato; Ronis, Martin; Rowland, Ian; Sievenpiper, John; Barnes, Stephen (2021-03-27). "Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data". Critical Reviews in Food Science and Nutrition. 62 (21): 5824–5885. doi:10.1080/10408398.2021.1895054. ISSN 1040-8398. PMID 33775173. S2CID 232408113.
  44. ^ a b Nassan, Feiby L.; Chavarro, Jorge E.; Tanrikut, Cigdem (2018-09-01). "Diet and men's fertility: does diet affect sperm quality?". Fertility and Sterility. 110 (4): 570–577. doi:10.1016/j.fertnstert.2018.05.025. ISSN 0015-0282. PMID 30196939. S2CID 52179133.
  45. ^ Reed KE, Camargo J, Messina M (2020). "Neither soy nor isoflavone intake affects male reproductive hormones: An expanded and updated meta-analysis of clinical studies". Reproductive Toxicology. 100: 60–67. doi:10.1016/j.reprotox.2020.12.019. PMID 33383165.
  46. ^ Chen AC, Donovan SM (Jun 2004). "Genistein at a concentration present in soy infant formula inhibits Caco-2BBe cell proliferation by causing G2/M cell cycle arrest". The Journal of Nutrition. 134 (6): 1303–8. doi:10.1093/jn/134.6.1303. PMID 15173388.
  47. ^ Miniello VL, Moro GE, Tarantino M, Natile M, Granieri L, Armenio L (Sep 2003). "Soy-based formulas and phyto-oestrogens: a safety profile". Acta Paediatrica. 91 (441): 93–100. doi:10.1111/j.1651-2227.2003.tb00655.x. PMID 14599051. S2CID 25762109.
  48. ^ Chen A, Rogan WJ (2004). "Isoflavones in soy infant formula: a review of evidence for endocrine and other activity in infants". Annual Review of Nutrition. 24 (1): 33–54. doi:10.1146/annurev.nutr.24.101603.064950. PMID 15189112.
  49. ^ Strom BL, Schinnar R, Ziegler EE, Barnhart KT, Sammel MD, Macones GA, Stallings VA, Drulis JM, Nelson SE, Hanson SA (Aug 2001). "Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood". JAMA. 286 (7): 807–14. doi:10.1001/jama.286.7.807. PMID 11497534.
  50. ^ Giampietro PG, Bruno G, Furcolo G, Casati A, Brunetti E, Spadoni GL, Galli E (Feb 2004). "Soy protein formulas in children: no hormonal effects in long-term feeding". Journal of Pediatric Endocrinology & Metabolism. 17 (2): 191–6. doi:10.1515/JPEM.2004.17.2.191. PMID 15055353. S2CID 43304969.
  51. ^ Merritt RJ, Jenks BH (May 2004). "Safety of soy-based infant formulas containing isoflavones: the clinical evidence". The Journal of Nutrition. 134 (5): 1220S–1224S. doi:10.1093/jn/134.5.1220S. PMID 15113975.
  52. ^ Bhatia J, Greer F (May 2008). "Use of soy protein-based formulas in infant feeding". Pediatrics. 121 (5): 1062–8. doi:10.1542/peds.2008-0564. PMID 18450914. S2CID 1482728.
  53. ^ Muller-Schwarze D (2006). Chemical Ecology of Vertebrates. Cambridge University Press. p. 287. ISBN 978-0-521-36377-8.
  54. ^ Lee YS, Park JS, Cho SD, Son JK, Cherdshewasart W, Kang KS (December 2002). "Requirement of metabolic activation for estrogenic activity of Pueraria mirifica". Journal of Veterinary Science. 3 (4): 273–277. doi:10.4142/jvs.2002.3.4.273. PMID 12819377.
  55. ^ Delmonte P, Rader JI (2006). "Analysis of isoflavones in foods and dietary supplements". Journal of AOAC International. 89 (4): 1138–1146. doi:10.1093/jaoac/89.4.1138. PMID 16915857.
  56. ^ Brown D, Walton N (1999). Chemicals from plants: Perspectives on plant secondary products. World Scientific Publishing. pp. 21, 141. ISBN 978-981-02-2773-9.
  57. ^ Geller SE, Shulman LP, van Breemen RB, Banuvar S, Zhou Y, Epstein G, Hedayat S, Nikolic D, Krause EC, Piersen CE, Bolton JL, Pauli GF, Farnsworth NR (2009). "Safety and efficacy of black cohosh and red clover for the management of vasomotor symptoms: A randomized controlled trial". Menopause. 16 (6): 1156–1166. doi:10.1097/gme.0b013e3181ace49b. PMC 2783540. PMID 19609225.
  58. ^ Kennelly EJ, Baggett S, Nuntanakorn P, Ososki AL, Mori SA, Duke J, Coleton M, Kronenberg F (Jul 2002). "Analysis of thirteen populations of black cohosh for formononetin". Phytomedicine. 9 (5): 461–467. doi:10.1078/09447110260571733. PMID 12222669. S2CID 24786174.

phytoestrogen, phytoestrogen, plant, derived, xenoestrogen, type, estrogen, produced, organisms, other, than, humans, generated, within, endocrine, system, consumed, eating, plants, manufactured, foods, also, called, dietary, estrogen, diverse, group, naturall. A phytoestrogen is a plant derived xenoestrogen a type of estrogen produced by organisms other than humans not generated within the endocrine system but consumed by eating plants or manufactured foods 1 Also called a dietary estrogen it is a diverse group of naturally occurring nonsteroidal plant compounds that because of its structural similarity to estradiol 17 b estradiol have the ability to cause estrogenic or antiestrogenic effects 2 Phytoestrogens are not essential nutrients because their absence from the diet does not cause a disease nor are they known to participate in any normal biological function 2 Common foods containing phytoestrogens are soy protein beans oats barley rice coffee apples carrots see Food Sources section below for bigger list Its name comes from the Greek phyto plant and estrogen the hormone which gives fertility to female mammals The word estrus Greek oistros means sexual desire and gene Greek gono is to generate It has been hypothesized that plants use a phytoestrogen as part of their natural defense against the overpopulation of herbivore animals by controlling female fertility 3 4 The similarities at molecular level of an estrogen and a phytoestrogen allow them to mildly mimic and sometimes act as an antagonist of estrogen 2 Phytoestrogens were first observed in 1926 2 5 but it was unknown if they could have any effect in human or animal metabolism In the 1940s and early 1950s it was noticed that some pastures of subterranean clover and red clover phytoestrogen rich plants had adverse effects on the fecundity of grazing sheep 2 6 7 8 Chemical structures of the most common phytoestrogens found in plants top and middle compared with estrogen bottom found in animalsContents 1 Structure 2 Mechanism of action 3 Ecology 4 Avian studies 5 Food sources 6 Effects on humans 6 1 Females 6 2 Males 6 3 Infant formula 7 Ethnopharmacology 8 See also 9 ReferencesStructure editPhytoestrogens mainly belong to a large group of substituted natural phenolic compounds the coumestans prenylflavonoids and isoflavones are three of the most active in estrogenic effects in this class 1 The best researched are isoflavones which are commonly found in soy and red clover Lignans have also been identified as phytoestrogens although they are not flavonoids 2 Mycoestrogens have similar structures and effects but are not components of plants these are mold metabolites of Fusarium especially common on cereal grains 9 10 11 but also occurring elsewhere e g on various forages 12 Although mycoestrogens are rarely taken into account in discussions about phytoestrogens these are the compounds that initially generated the interest on the topic 13 Mechanism of action editPhytoestrogens exert their effects primarily through binding to estrogen receptors ER 14 There are two variants of the estrogen receptor alpha ER a and beta ER b and many phytoestrogens display somewhat higher affinity for ER b compared to ER a 14 The key structural elements that enable phytoestrogens to bind with high affinity to estrogen receptors and display estradiol like effects are 2 The phenolic ring that is indispensable for binding to estrogen receptor The ring of isoflavones mimicking a ring of estrogens at the receptors binding site Low molecular weight similar to estrogens MW 272 Distance between two hydroxyl groups at the isoflavones nucleus similar to that occurring in estradiol Optimal hydroxylation patternIn addition to interaction with ERs phytoestrogens may also modulate the concentration of endogenous estrogens by binding or inactivating some enzymes and may affect the bioavailability of sex hormones by depressing or stimulating the synthesis of sex hormone binding globulin SHBG 8 Emerging evidence shows that some phytoestrogens bind to and transactivate peroxisome proliferator activated receptors PPARs 15 16 In vitro studies show an activation of PPARs at concentrations above 1 mM which is higher than the activation level of ERs 17 18 At the concentration below 1 mM activation of ERs may play a dominant role At higher concentrations gt 1 mM both ERs and PPARs are activated Studies have shown that both ERs and PPARs influence each other and therefore induce differential effects in a dose dependent way The final biological effects of genistein are determined by the balance among these pleiotrophic actions 15 16 17 vte Affinities of estrogen receptor ligands for the ERa and ERb Ligand Other names Relative binding affinities RBA a Absolute binding affinities Ki nM a ActionERa ERb ERa ERbEstradiol E2 17b Estradiol 100 100 0 115 0 04 0 24 0 15 0 10 2 08 EstrogenEstrone E1 17 Ketoestradiol 16 39 0 7 60 6 5 1 36 52 0 445 0 3 1 01 1 75 0 35 9 24 EstrogenEstriol E3 16a OH 17b E2 12 65 4 03 56 26 14 0 44 6 0 45 0 35 1 4 0 7 0 63 0 7 EstrogenEstetrol E4 15a 16a Di OH 17b E2 4 0 3 0 4 9 19 EstrogenAlfatradiol 17a Estradiol 20 5 7 80 1 8 195 2 42 0 2 0 52 0 43 1 2 Metabolite16 Epiestriol 16b Hydroxy 17b estradiol 7 795 4 94 63 50 Metabolite17 Epiestriol 16a Hydroxy 17a estradiol 55 45 29 103 79 80 Metabolite16 17 Epiestriol 16b Hydroxy 17a estradiol 1 0 13 Metabolite2 Hydroxyestradiol 2 OH E2 22 7 81 11 35 2 5 1 3 Metabolite2 Methoxyestradiol 2 MeO E2 0 0027 2 0 1 0 Metabolite4 Hydroxyestradiol 4 OH E2 13 8 70 7 56 1 0 1 9 Metabolite4 Methoxyestradiol 4 MeO E2 2 0 1 0 Metabolite2 Hydroxyestrone 2 OH E1 2 0 4 0 0 2 0 4 Metabolite2 Methoxyestrone 2 MeO E1 lt 0 001 lt 1 lt 1 Metabolite4 Hydroxyestrone 4 OH E1 1 0 2 0 1 0 Metabolite4 Methoxyestrone 4 MeO E1 lt 1 lt 1 Metabolite16a Hydroxyestrone 16a OH E1 17 Ketoestriol 2 0 6 5 35 Metabolite2 Hydroxyestriol 2 OH E3 2 0 1 0 Metabolite4 Methoxyestriol 4 MeO E3 1 0 1 0 MetaboliteEstradiol sulfate E2S Estradiol 3 sulfate lt 1 lt 1 MetaboliteEstradiol disulfate Estradiol 3 17b disulfate 0 0004 MetaboliteEstradiol 3 glucuronide E2 3G 0 0079 MetaboliteEstradiol 17b glucuronide E2 17G 0 0015 MetaboliteEstradiol 3 gluc 17b sulfate E2 3G 17S 0 0001 MetaboliteEstrone sulfate E1S Estrone 3 sulfate lt 1 lt 1 gt 10 gt 10 MetaboliteEstradiol benzoate EB Estradiol 3 benzoate 10 EstrogenEstradiol 17b benzoate E2 17B 11 3 32 6 EstrogenEstrone methyl ether Estrone 3 methyl ether 0 145 Estrogenent Estradiol 1 Estradiol 1 31 12 34 9 44 80 07 EstrogenEquilin 7 Dehydroestrone 13 4 0 28 9 13 0 49 0 79 0 36 EstrogenEquilenin 6 8 Didehydroestrone 2 0 15 7 0 20 0 64 0 62 Estrogen17b Dihydroequilin 7 Dehydro 17b estradiol 7 9 113 7 9 108 0 09 0 17 Estrogen17a Dihydroequilin 7 Dehydro 17a estradiol 18 6 18 41 14 32 0 24 0 57 Estrogen17b Dihydroequilenin 6 8 Didehydro 17b estradiol 35 68 90 100 0 15 0 20 Estrogen17a Dihydroequilenin 6 8 Didehydro 17a estradiol 20 49 0 50 0 37 EstrogenD8 Estradiol 8 9 Dehydro 17b estradiol 68 72 0 15 0 25 EstrogenD8 Estrone 8 9 Dehydroestrone 19 32 0 52 0 57 EstrogenEthinylestradiol EE 17a Ethynyl 17b E2 120 9 68 8 480 44 4 2 0 144 0 02 0 05 0 29 0 81 EstrogenMestranol EE 3 methyl ether 2 5 EstrogenMoxestrol RU 2858 11b Methoxy EE 35 43 5 20 0 5 2 6 EstrogenMethylestradiol 17a Methyl 17b estradiol 70 44 EstrogenDiethylstilbestrol DES Stilbestrol 129 5 89 1 468 219 63 61 2 295 0 04 0 05 EstrogenHexestrol Dihydrodiethylstilbestrol 153 6 31 302 60 234 0 06 0 06 EstrogenDienestrol Dehydrostilbestrol 37 20 4 223 56 404 0 05 0 03 EstrogenBenzestrol B2 114 EstrogenChlorotrianisene TACE 1 74 15 30 EstrogenTriphenylethylene TPE 0 074 EstrogenTriphenylbromoethylene TPBE 2 69 EstrogenTamoxifen ICI 46 474 3 0 1 47 3 33 0 28 6 3 4 9 69 2 5 SERMAfimoxifene 4 Hydroxytamoxifen 4 OHT 100 1 1 7 257 10 0 98 339 2 3 0 1 3 61 0 04 4 8 SERMToremifene 4 Chlorotamoxifen 4 CT 7 14 20 3 15 4 SERMClomifene MRL 41 25 19 2 37 2 12 0 9 1 2 SERMCyclofenil F 6066 Sexovid 151 152 243 SERMNafoxidine U 11 000A 30 9 44 16 0 3 0 8 SERMRaloxifene 41 2 7 8 69 5 34 0 54 16 0 188 0 52 20 2 SERMArzoxifene LY 353 381 0 179 SERMLasofoxifene CP 336 156 10 2 166 19 0 0 229 SERMOrmeloxifene Centchroman 0 313 SERMLevormeloxifene 6720 CDRI NNC 460 020 1 55 1 88 SERMOspemifene Deaminohydroxytoremifene 0 82 2 63 0 59 1 22 SERMBazedoxifene 0 053 SERMEtacstil GW 5638 4 30 11 5 SERMICI 164 384 63 5 3 70 97 7 166 0 2 0 08 AntiestrogenFulvestrant ICI 182 780 43 5 9 4 325 21 65 2 05 40 5 0 42 1 3 AntiestrogenPropylpyrazoletriol PPT 49 10 0 89 1 0 12 0 40 92 8 ERa agonist16a LE2 16a Lactone 17b estradiol 14 6 57 0 089 0 27 131 ERa agonist16a Iodo E2 16a Iodo 17b estradiol 30 2 2 30 ERa agonistMethylpiperidinopyrazole MPP 11 0 05 ERa antagonistDiarylpropionitrile DPN 0 12 0 25 6 6 18 32 4 1 7 ERb agonist8b VE2 8b Vinyl 17b estradiol 0 35 22 0 83 12 9 0 50 ERb agonistPrinaberel ERB 041 WAY 202 041 0 27 67 72 ERb agonistERB 196 WAY 202 196 180 ERb agonistErteberel SERBA 1 LY 500 307 2 68 0 19 ERb agonistSERBA 2 14 5 1 54 ERb agonistCoumestrol 9 225 0 0117 94 64 125 0 41 185 0 14 80 0 0 07 27 0 XenoestrogenGenistein 0 445 0 0012 16 33 42 0 86 87 2 6 126 0 3 12 8 XenoestrogenEquol 0 2 0 287 0 85 0 10 2 85 XenoestrogenDaidzein 0 07 0 0018 9 3 0 7865 0 04 17 1 2 0 85 3 XenoestrogenBiochanin A 0 04 0 022 0 15 0 6225 0 010 1 2 174 8 9 XenoestrogenKaempferol 0 07 0 029 0 10 2 2 0 002 3 00 XenoestrogenNaringenin 0 0054 lt 0 001 0 01 0 15 0 11 0 33 Xenoestrogen8 Prenylnaringenin 8 PN 4 4 XenoestrogenQuercetin lt 0 001 0 01 0 002 0 040 XenoestrogenIpriflavone lt 0 01 lt 0 01 XenoestrogenMiroestrol 0 39 XenoestrogenDeoxymiroestrol 2 0 Xenoestrogenb Sitosterol lt 0 001 0 0875 lt 0 001 0 016 XenoestrogenResveratrol lt 0 001 0 0032 Xenoestrogena Zearalenol 48 13 52 5 Xenoestrogenb Zearalenol 0 6 0 032 13 XenoestrogenZeranol a Zearalanol 48 111 XenoestrogenTaleranol b Zearalanol 16 13 17 8 14 0 8 0 9 XenoestrogenZearalenone ZEN 7 68 2 04 28 9 45 2 43 31 5 XenoestrogenZearalanone ZAN 0 51 XenoestrogenBisphenol A BPA 0 0315 0 008 1 0 0 135 0 002 4 23 195 35 XenoestrogenEndosulfan EDS lt 0 001 lt 0 01 lt 0 01 XenoestrogenKepone Chlordecone 0 0069 0 2 Xenoestrogeno p DDT 0 0073 0 4 Xenoestrogenp p DDT 0 03 XenoestrogenMethoxychlor p p Dimethoxy DDT 0 01 lt 0 001 0 02 0 01 0 13 XenoestrogenHPTE Hydroxychlor p p OH DDT 1 2 1 7 XenoestrogenTestosterone T 4 Androstenolone lt 0 0001 lt 0 01 lt 0 002 0 040 gt 5000 gt 5000 AndrogenDihydrotestosterone DHT 5a Androstanolone 0 01 lt 0 001 0 05 0 0059 0 17 221 gt 5000 73 1688 AndrogenNandrolone 19 Nortestosterone 19 NT 0 01 0 23 765 53 AndrogenDehydroepiandrosterone DHEA Prasterone 0 038 lt 0 001 0 04 0 019 0 07 245 1053 163 515 Androgen5 Androstenediol A5 Androstenediol 6 17 3 6 0 9 Androgen4 Androstenediol 0 5 0 6 23 19 Androgen4 Androstenedione A4 Androstenedione lt 0 01 lt 0 01 gt 10000 gt 10000 Androgen3a Androstanediol 3a Adiol 0 07 0 3 260 48 Androgen3b Androstanediol 3b Adiol 3 7 6 2 AndrogenAndrostanedione 5a Androstanedione lt 0 01 lt 0 01 gt 10000 gt 10000 AndrogenEtiocholanedione 5b Androstanedione lt 0 01 lt 0 01 gt 10000 gt 10000 AndrogenMethyltestosterone 17a Methyltestosterone lt 0 0001 AndrogenEthinyl 3a androstanediol 17a Ethynyl 3a adiol 4 0 lt 0 07 EstrogenEthinyl 3b androstanediol 17a Ethynyl 3b adiol 50 5 6 EstrogenProgesterone P4 4 Pregnenedione lt 0 001 0 6 lt 0 001 0 010 ProgestogenNorethisterone NET 17a Ethynyl 19 NT 0 085 0 0015 lt 0 1 0 1 0 01 0 3 152 1084 ProgestogenNorethynodrel 5 10 Norethisterone 0 5 0 3 0 7 lt 0 1 0 22 14 53 ProgestogenTibolone 7a Methylnorethynodrel 0 5 0 45 2 0 0 2 0 076 ProgestogenD4 Tibolone 7a Methylnorethisterone 0 069 lt 0 1 0 027 lt 0 1 Progestogen3a Hydroxytibolone 2 5 1 06 5 0 0 6 0 8 Progestogen3b Hydroxytibolone 1 6 0 75 1 9 0 070 0 1 ProgestogenFootnotes a 1 Binding affinity values are of the format median range range or value depending on the values available The full sets of values within the ranges can be found in the Wiki code 2 Binding affinities were determined via displacement studies in a variety of in vitro systems with labeled estradiol and human ERa and ERb proteins except the ERb values from Kuiper et al 1997 which are rat ERb Sources See template page Ecology editPhytoestrogens are involved in the synthesis of antifungal benzofurans and phytoalexins such as medicarpin common in legumes and sesquiterpenes such as capsidiol in tobacco 19 Soybeans naturally produce isoflavones and are therefore a dietary source for isoflavones Phytoestrogens are ancient naturally occurring substances and as dietary phytochemicals they are considered to have coevolved with mammals In the human diet phytoestrogens are not the only source of exogenous estrogens Xenoestrogens novel man made are found as food additives 20 and ingredients and also in cosmetics plastics and insecticides Environmentally they have similar effects as phytoestrogens making it difficult to clearly separate the action of these two kind of agents in studies 21 Avian studies editThe consumption of plants with unusual content of phytoestrogens under drought conditions has been shown to decrease fertility in quail 22 Parrot food as available in nature has shown only weak estrogenic activity Studies have been conducted on screening methods for environmental estrogens present in manufactured supplementary food with the purpose of aiding reproduction of endangered species 23 Food sources editAccording to one study of nine common phytoestrogens in a Western diet foods with the highest relative phytoestrogen content were nuts and oilseeds followed by soy products cereals and breads legumes meat products and other processed foods that may contain soy vegetables fruits alcoholic and nonalcoholic beverages Flax seed and other oilseeds contained the highest total phytoestrogen content followed by soybeans and tofu 24 The highest concentrations of isoflavones are found in soybeans and soybean products followed by legumes whereas lignans are the primary source of phytoestrogens found in nuts and oilseeds e g flax and also found in cereals legumes fruits and vegetables Phytoestrogen content varies in different foods and may vary significantly within the same group of foods e g soy beverages tofu depending on processing mechanisms and type of soybean used Legumes in particular soybeans whole grain cereals and some seeds are high in phytoestrogens A more comprehensive list of foods known to contain phytoestrogens includes Soybeans and soy products Tempeh Linseed flax Sesame seeds Wheat berries Fenugreek contains diosgenin but also used to make Testofen a compound taken by men to increase testosterone Oats Barley Beans Lentils Yams Rice Alfalfa Mung beans Apples Carrots Pomegranates 25 Wheat germ Rice bran Lupin Kudzu Coffee Licorice root Mint Ginseng Hops 26 Bourbon whiskey Beer 27 Fennel Anise 28 Red clover sometimes a constituent of green manure Spinach 29 Food content of phytoestrogens is very variable and accurate estimates of intake are therefore difficult and depends on the databases used 30 Data from the European Prospective Investigation into Cancer and Nutrition found intakes between 1 mg d in Mediterranean Countries and more than 20 mg d in the United Kingdom 31 The high intake in the UK is partly explained by the use of soy in the Chorleywood bread process 32 An epidemiological study of women in the United States found that the dietary intake of phytoestrogens in healthy post menopausal Caucasian women is less than one milligram daily 33 Effects on humans editThis article or section appears to contradict itself on whether humans are affected by phytoestrogens Please see the talk page for more information May 2023 In humans phytoestrogens are digested in the small intestine poorly absorbed into the circulatory system circulate in plasma and are excreted in the urine Metabolic influence is different from that of grazing animals due to the differences between ruminant versus monogastric digestive systems 21 As of 2020 there is sufficient clinical evidence to determine that phytoestrogens have effects in humans 34 Females edit It is unclear if phytoestrogens have any effect on the cause or prevention of cancer in women 1 35 Some epidemiological studies have suggested a protective effect against breast cancer 1 35 36 Additionally other epidemiological studies found that consumption of soy estrogens is safe for patients with breast cancer and that it may decrease mortality and recurrence rates 1 37 38 It remains unclear if phytoestrogens can minimize some of the deleterious effects of low estrogen levels hypoestrogenism resulting from oophorectomy menopause or other causes 35 A Cochrane review of the use of phytoestrogens to relieve the vasomotor symptoms of menopause hot flashes stated that there was no conclusive evidence to suggest any benefit to their use although genistein effects should be further investigated 39 Males edit It is unclear if phytoestrogens have any effect on male sexuality with conflicting results about the potential effects of isoflavones originating from soy 1 Some studies showed that isoflavone supplementation had a positive effect on sperm concentration count or motility and increased ejaculate volume 40 41 Sperm count decline and increasing rate of testicular cancers in the West may be linked to a higher presence of isoflavone phytoestrogens in the diet while in utero but such a link has not been definitively proven 42 Furthermore while there is some evidence that phytoestrogens may affect male fertility more recent reviews of available studies found no link 43 44 and instead suggests that healthier diets such as the Mediterranean diet might have a positive effect on male fertility 44 Neither isoflavones nor soy have been shown to affect male reproductive hormones in healthy individuals 43 45 Infant formula edit Some studies have found that some concentrations of isoflavones may have effects on intestinal cells At low doses genistein acted as a weak estrogen and stimulated cell growth at high doses it inhibited proliferation and altered cell cycle dynamics This biphasic response correlates with how genistein is thought to exert its effects 46 Some reviews express the opinion that more research is needed to answer the question of what effect phytoestrogens may have on infants 47 48 but their authors did not find any adverse effects Studies conclude there are no adverse effects in human growth development or reproduction as a result of the consumption of soy based infant formula compared to conventional cow milk formula 49 50 51 The American Academy of Pediatrics states although isolated soy protein based formulas may be used to provide nutrition for normal growth and development there are few indications for their use in place of cow milk based formula These indications include a for infants with galactosemia and hereditary lactase deficiency rare and b in situations in which a vegetarian diet is preferred 52 Ethnopharmacology editIn some countries phytoestrogenic plants have been used for centuries in the treatment of menstrual and menopausal problems as well as for fertility problems 53 Plants used that have been shown to contain phytoestrogens include Pueraria mirifica 54 and its close relative kudzu 55 Angelica 56 fennel 28 and anise In a rigorous study the use of one such source of phytoestrogen red clover has been shown to be safe but ineffective in relieving menopausal symptoms 57 black cohosh is also used for menopausal symptoms but does not contain phytoestrogens 58 See also editEthnopharmacology Isoflavones Lignan Mycoestrogens Phytoandrogens Plant hormone SoyReferences edit a b c d e f Isoflavones Micronutrient Information Center Linus Pauling Institute Oregon State University Corvallis October 2016 Retrieved 6 August 2022 a b c d e f g Yildiz F 2005 Phytoestrogens in Functional Foods Taylor amp Francis Ltd pp 3 5 210 211 ISBN 978 1 57444 508 4 Hughes CL Jun 1988 Phytochemical mimicry of reproductive hormones and modulation of herbivore fertility by phytoestrogens Environmental Health Perspectives 78 171 4 doi 10 1289 ehp 8878171 PMC 1474615 PMID 3203635 Bentley GR Mascie Taylor CG 2000 Infertility in the modern world present and future prospects Cambridge UK Cambridge University Press pp 99 100 ISBN 978 0 521 64387 0 Varner JE Bonner J 1966 Plant Biochemistry Academic Press ISBN 978 0 12 114856 0 Bennetts HW Underwood EJ Shier FL 1946 A specific breeding problem of sheep on subterranean clover pastures in Western Australia Australian Veterinary Journal 22 1 2 12 doi 10 1111 j 1751 0813 1946 tb15473 x PMID 21028682 Cunningham IJ Hogan KG 1954 Oestrogens in New Zealand pasture plants N Z Vet J 2 4 128 134 doi 10 1080 00480169 1954 33166 a b Johnston I 2003 Phytochem Functional Foods CRC Press Inc pp 66 68 ISBN 978 0 8493 1754 5 Bennett GA Shotwell OI 1979 Zearalenone in cereal grains J Amer Oil Chemists Soc 56 9 812 819 doi 10 1007 bf02909525 S2CID 39917693 permanent dead link Kuiper Goodman T Scott PM Watanabe H 1987 Risk assessment of the mycotoxin zearalenone Regul Toxicol Pharmacol 7 3 253 306 doi 10 1016 0273 2300 87 90037 7 PMID 2961013 Zinedine A Soriano JM Molto JC Manes J 2007 Review on the toxicity occurrence metabolism detoxification regulations and intake of zearalenone an oestrogenic mycotoxin Food Chem Toxicol 45 1 1 18 doi 10 1016 j fct 2006 07 030 PMID 17045381 Gallo A Giuberti G Frisvad JC Bertuzzi T Nielsen KF 2015 Review on Mycotoxin Issues in Ruminants Occurrence in Forages Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects Toxins Basel 7 8 3057 111 doi 10 3390 toxins7083057 PMC 4549740 PMID 26274974 Naz RK 1999 Endocrine Disruptors Effects on Male and Female Reproductive Systems CRC Press Inc p 90 ISBN 978 0 8493 3164 0 a b Turner JV Agatonovic Kustrin S Glass BD Aug 2007 Molecular aspects of phytoestrogen selective binding at estrogen receptors Journal of Pharmaceutical Sciences 96 8 1879 85 doi 10 1002 jps 20987 PMID 17518366 a b Dang ZC Lowik C Jul 2005 Dose dependent effects of phytoestrogens on bone Trends in Endocrinology and Metabolism 16 5 207 13 doi 10 1016 j tem 2005 05 001 PMID 15922618 S2CID 35366615 a b Dang ZC May 2009 Dose dependent effects of soy phyto oestrogen genistein on adipocytes mechanisms of action Obesity Reviews 10 3 342 9 doi 10 1111 j 1467 789X 2008 00554 x PMID 19207876 S2CID 13804244 a b Dang ZC Audinot V Papapoulos SE Boutin JA Lowik CW Jan 2003 Peroxisome proliferator activated receptor gamma PPARgamma as a molecular target for the soy phytoestrogen genistein The Journal of Biological Chemistry 278 2 962 7 doi 10 1074 jbc M209483200 PMID 12421816 Dang Z Lowik CW May 2004 The balance between concurrent activation of ERs and PPARs determines daidzein induced osteogenesis and adipogenesis Journal of Bone and Mineral Research 19 5 853 61 doi 10 1359 jbmr 040120 PMID 15068509 Leegood RC Lea P 1998 Plant Biochemistry and Molecular Biology John Wiley amp Sons pp 204 211 213 ISBN 978 0 471 97683 7 Amadasi A Mozzarelli A Meda C Maggi A Cozzini P 2009 Identification of xenoestrogens in food additives by an integrated in silico and in vitro approach Chem Res Toxicol 22 1 52 63 doi 10 1021 tx800048m PMC 2758355 PMID 19063592 a b Korach KS 1998 Reproductive and Developmental Toxicology Marcel Dekker Ltd pp 278 279 ISBN 978 0 8247 9857 4 Leopold AS Erwin M Oh J Browning B January 1976 Phytoestrogens adverse effects on reproduction in California quail Science 191 4222 98 100 Bibcode 1976Sci 191 98S doi 10 1126 science 1246602 PMID 1246602 Fidler AE Zwart S Pharis RP Weston RJ Lawrence SB Jansen P Elliott G Merton DV 2000 Screening the foods of an endangered parrot the kakapo Strigops habroptilus for oestrogenic activity using a recombinant yeast bioassay Reproduction Fertility and Development 12 3 4 191 9 doi 10 1071 RD00041 PMID 11302429 Thompson LU Boucher BA Liu Z Cotterchio M Kreiger N 2006 Phytoestrogen content of foods consumed in Canada including isoflavones lignans and coumestan Nutrition and Cancer 54 2 184 201 doi 10 1207 s15327914nc5402 5 PMID 16898863 S2CID 60328 van Elswijk DA Schobel UP Lansky EP Irth H van der Greef J Jan 2004 Rapid dereplication of estrogenic compounds in pomegranate Punica granatum using on line biochemical detection coupled to mass spectrometry Phytochemistry 65 2 233 41 Bibcode 2004PChem 65 233V doi 10 1016 j phytochem 2003 07 001 PMID 14732284 Chadwick LR Nikolic D Burdette JE Overk CR Bolton JL van Breemen RB Frohlich R Fong HH Farnsworth NR Pauli GF Dec 2004 Estrogens and congeners from spent hops Humulus lupulus Journal of Natural Products 67 12 2024 32 doi 10 1021 np049783i PMC 7418824 PMID 15620245 Rosenblum ER Stauber RE Van Thiel DH Campbell IM Gavaler JS Dec 1993 Assessment of the estrogenic activity of phytoestrogens isolated from bourbon and beer Alcoholism Clinical and Experimental Research 17 6 1207 9 doi 10 1111 j 1530 0277 1993 tb05230 x PMID 8116832 a b Albert Puleo M Dec 1980 Fennel and anise as estrogenic agents Journal of Ethnopharmacology 2 4 337 44 doi 10 1016 S0378 8741 80 81015 4 PMID 6999244 Bacciottini Lucia Falchetti Alberto Pampaloni Barbara Bartolini Elisa Carossino Anna Maria Brandi Maria Luisa 2007 Phytoestrogens food or drug Clinical Cases in Mineral and Bone Metabolism 4 2 123 130 ISSN 1724 8914 PMC 2781234 PMID 22461212 Kuhnle Gunter G C Dell Aquila Caterina Runswick Shirley A Bingham Sheila A 2008 Variability of phytoestrogen content in foods from different sources Food Chemistry 113 4 1184 1187 doi 10 1016 j foodchem 2008 08 004 Zamora Ros R Knaze V Lujan Barroso L Kuhnle G G C Mulligan A A Touillaud M Slimani N Romieu I Powell N Tumino R Peeters P H M de Magistris M S Ricceri F Sonestedt E Drake I 2012 Dietary intakes and food sources of phytoestrogens in the European Prospective Investigation into Cancer and Nutrition EPIC 24 hour dietary recall cohort European Journal of Clinical Nutrition 66 8 932 941 doi 10 1038 ejcn 2012 36 ISSN 0954 3007 PMID 22510793 S2CID 24241153 Cauvain Stanley P 2006 The Chorleywood bread process Linda S Young Boca Raton FL CRC Press ISBN 1 84569 143 1 OCLC 236341936 de Kleijn MJ van der Schouw YT Wilson PW Adlercreutz H Mazur W Grobbee DE Jacques PF Jun 2001 Intake of dietary phytoestrogens is low in postmenopausal women in the United States the Framingham study 1 4 The Journal of Nutrition 131 6 1826 32 doi 10 1093 jn 131 6 1826 PMID 11385074 Dominguez Lopez Ines Yago Aragon Maria Salas Huetos Albert Tresserra Rimbau Anna Hurtado Barroso Sara August 2020 Effects of Dietary Phytoestrogens on Hormones throughout a Human Lifespan A Review Nutrients 12 8 2456 doi 10 3390 nu12082456 ISSN 2072 6643 PMC 7468963 PMID 32824177 a b c Bilal I Chowdhury A Davidson J Whitehead S 2014 Phytoestrogens and prevention of breast cancer The contentious debate World Journal of Clinical Oncology 5 4 705 12 doi 10 5306 wjco v5 i4 705 PMC 4129534 PMID 25302172 Ingram D Sanders K Kolybaba M Lopez D Oct 1997 Case control study of phyto oestrogens and breast cancer Lancet 350 9083 990 4 doi 10 1016 S0140 6736 97 01339 1 PMID 9329514 S2CID 12158051 Shu XO Zheng Y Cai H Gu K Chen Z Zheng W Lu W Dec 2009 Soy food intake and breast cancer survival JAMA 302 22 2437 43 doi 10 1001 jama 2009 1783 PMC 2874068 PMID 19996398 Fritz H Seely D Flower G Skidmore B Fernandes R Vadeboncoeur S Kennedy D Cooley K Wong R Sagar S Sabri E Fergusson D 2013 Soy red clover and isoflavones and breast cancer a systematic review PLOS ONE 8 11 e81968 Bibcode 2013PLoSO 881968F doi 10 1371 journal pone 0081968 PMC 3842968 PMID 24312387 Lethaby A Marjoribanks J Kronenberg F Roberts H Eden J Brown J 2013 Phytoestrogens for menopausal vasomotor symptoms The Cochrane Database of Systematic Reviews 2013 12 CD001395 doi 10 1002 14651858 CD001395 pub4 PMC 10247921 PMID 24323914 Dabrowski WM 2004 Toxins in Food CRC Press Inc p 95 ISBN 978 0 8493 1904 4 Mitchell JH Cawood E Kinniburgh D Provan A Collins AR Irvine DS Jun 2001 Effect of a phytoestrogen food supplement on reproductive health in normal males Clinical Science 100 6 613 8 doi 10 1042 CS20000212 PMID 11352776 Patisaul HB Jefferson W 2010 The pros and cons of phytoestrogens Frontiers in Neuroendocrinology 31 4 400 19 doi 10 1016 j yfrne 2010 03 003 PMC 3074428 PMID 20347861 a b Messina Mark Mejia Sonia Blanco Cassidy Aedin Duncan Alison Kurzer Mindy Nagato Chisato Ronis Martin Rowland Ian Sievenpiper John Barnes Stephen 2021 03 27 Neither soyfoods nor isoflavones warrant classification as endocrine disruptors a technical review of the observational and clinical data Critical Reviews in Food Science and Nutrition 62 21 5824 5885 doi 10 1080 10408398 2021 1895054 ISSN 1040 8398 PMID 33775173 S2CID 232408113 a b Nassan Feiby L Chavarro Jorge E Tanrikut Cigdem 2018 09 01 Diet and men s fertility does diet affect sperm quality Fertility and Sterility 110 4 570 577 doi 10 1016 j fertnstert 2018 05 025 ISSN 0015 0282 PMID 30196939 S2CID 52179133 Reed KE Camargo J Messina M 2020 Neither soy nor isoflavone intake affects male reproductive hormones An expanded and updated meta analysis of clinical studies Reproductive Toxicology 100 60 67 doi 10 1016 j reprotox 2020 12 019 PMID 33383165 Chen AC Donovan SM Jun 2004 Genistein at a concentration present in soy infant formula inhibits Caco 2BBe cell proliferation by causing G2 M cell cycle arrest The Journal of Nutrition 134 6 1303 8 doi 10 1093 jn 134 6 1303 PMID 15173388 Miniello VL Moro GE Tarantino M Natile M Granieri L Armenio L Sep 2003 Soy based formulas and phyto oestrogens a safety profile Acta Paediatrica 91 441 93 100 doi 10 1111 j 1651 2227 2003 tb00655 x PMID 14599051 S2CID 25762109 Chen A Rogan WJ 2004 Isoflavones in soy infant formula a review of evidence for endocrine and other activity in infants Annual Review of Nutrition 24 1 33 54 doi 10 1146 annurev nutr 24 101603 064950 PMID 15189112 Strom BL Schinnar R Ziegler EE Barnhart KT Sammel MD Macones GA Stallings VA Drulis JM Nelson SE Hanson SA Aug 2001 Exposure to soy based formula in infancy and endocrinological and reproductive outcomes in young adulthood JAMA 286 7 807 14 doi 10 1001 jama 286 7 807 PMID 11497534 Giampietro PG Bruno G Furcolo G Casati A Brunetti E Spadoni GL Galli E Feb 2004 Soy protein formulas in children no hormonal effects in long term feeding Journal of Pediatric Endocrinology amp Metabolism 17 2 191 6 doi 10 1515 JPEM 2004 17 2 191 PMID 15055353 S2CID 43304969 Merritt RJ Jenks BH May 2004 Safety of soy based infant formulas containing isoflavones the clinical evidence The Journal of Nutrition 134 5 1220S 1224S doi 10 1093 jn 134 5 1220S PMID 15113975 Bhatia J Greer F May 2008 Use of soy protein based formulas in infant feeding Pediatrics 121 5 1062 8 doi 10 1542 peds 2008 0564 PMID 18450914 S2CID 1482728 Muller Schwarze D 2006 Chemical Ecology of Vertebrates Cambridge University Press p 287 ISBN 978 0 521 36377 8 Lee YS Park JS Cho SD Son JK Cherdshewasart W Kang KS December 2002 Requirement of metabolic activation for estrogenic activity of Pueraria mirifica Journal of Veterinary Science 3 4 273 277 doi 10 4142 jvs 2002 3 4 273 PMID 12819377 Delmonte P Rader JI 2006 Analysis of isoflavones in foods and dietary supplements Journal of AOAC International 89 4 1138 1146 doi 10 1093 jaoac 89 4 1138 PMID 16915857 Brown D Walton N 1999 Chemicals from plants Perspectives on plant secondary products World Scientific Publishing pp 21 141 ISBN 978 981 02 2773 9 Geller SE Shulman LP van Breemen RB Banuvar S Zhou Y Epstein G Hedayat S Nikolic D Krause EC Piersen CE Bolton JL Pauli GF Farnsworth NR 2009 Safety and efficacy of black cohosh and red clover for the management of vasomotor symptoms A randomized controlled trial Menopause 16 6 1156 1166 doi 10 1097 gme 0b013e3181ace49b PMC 2783540 PMID 19609225 Kennelly EJ Baggett S Nuntanakorn P Ososki AL Mori SA Duke J Coleton M Kronenberg F Jul 2002 Analysis of thirteen populations of black cohosh for formononetin Phytomedicine 9 5 461 467 doi 10 1078 09447110260571733 PMID 12222669 S2CID 24786174 Retrieved from https en wikipedia org w index php title Phytoestrogen amp oldid 1203394108, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.