fbpx
Wikipedia

Xenoestrogen

Xenoestrogens are a type of xenohormone that imitates estrogen. They can be either synthetic or natural chemical compounds. Synthetic xenoestrogens include some widely used industrial compounds, such as PCBs, BPA, and phthalates, which have estrogenic effects on a living organism even though they differ chemically from the estrogenic substances produced internally by the endocrine system of any organism. Natural xenoestrogens include phytoestrogens which are plant-derived xenoestrogens. Because the primary route of exposure to these compounds is by consumption of phytoestrogenic plants, they are sometimes called "dietary estrogens". Mycoestrogens, estrogenic substances from fungi, are another type of xenoestrogen that are also considered mycotoxins.[1][2]

Xenoestrogens are clinically significant because they can mimic the effects of endogenous estrogen and thus have been implicated in precocious puberty and other disorders of the reproductive system.[3][4]

Xenoestrogens include pharmacological estrogens (in which estrogenic action is an intended effect, as in the drug ethinylestradiol used in contraceptive pills), but other chemicals may also have estrogenic effects. Xenoestrogens have been introduced into the environment by industrial, agricultural and chemical companies and consumers only in the last 70 years or so, but archiestrogens exist naturally. Some plants (like the cereals and the legumes) are using estrogenic substances possibly as part of their natural defence against herbivore animals by controlling their fertility.[5][6]

The potential ecological and human health impact of xenoestrogens is of growing concern.[7] The word xenoestrogen is derived from the Greek words ξένο (xeno, meaning foreign), οἶστρος (estrus, meaning sexual desire) and γόνο (gene, meaning "to generate") and literally means "foreign estrogen". Xenoestrogens are also called "environmental hormones" or "EDC" (Endocrine Disrupting Compounds). Most scientists that study xenoestrogens, including The Endocrine Society, regard them as serious environmental hazards that have hormone disruptive effects on both wildlife and humans.[8][9][10][11][12]

Mechanism of action edit

The onset of puberty is characterized by increased levels of hypothalamic gonadotropin releasing hormone (GnRH). GnRH triggers the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the anterior pituitary gland, which in turn causes the ovaries to respond and secrete estradiol. Increases in gonadal estrogen promote breast development, female fat distribution and skeletal growth. Adrenal androgen and gonadal androgen result in pubic and axillary hair.[13][14] Peripheral precocious puberty caused by exogenous estrogens is evaluated by assessing decreased levels of gonadotrophins.[15]

Xenoestrogens in plastics, packaged food, drink trays and containers, (more so, when they've been heated in the Sun, or an oven), may interfere with pubertal development by actions at different levels – hypothalamic-pituitary axis, gonads, peripheral target organs such as the breast, hair follicles and genitals. Exogenous chemicals that mimic estrogen can alter the functions of the endocrine system and cause various health defects by interfering with synthesis, metabolism, binding or cellular responses of natural estrogens.[14][16][17][18]

Although the physiology of the reproductive system is complex, the action of environmental exogenous estrogens is hypothesized to occur by two possible mechanisms. Xenoestrogens may temporarily or permanently alter the feedback loops in the brain, pituitary, gonads, and thyroid by mimicking the effects of estrogen and triggering their specific receptors or they may bind to hormone receptors and block the action of natural hormones. Thus it is plausible that environmental estrogens can accelerate sexual development if present in a sufficient concentration or with chronic exposure.[16][18][19][20] The similarity in the structure of exogenous estrogens and the estrogens has changed the hormone balance within the body and resulted in various reproductive problems in females.[14] The overall mechanism of action is binding of the exogenous compounds that mimic estrogen to the estrogen binding receptors and cause the determined action in the target organs.[21]

Affinities of estrogen receptor ligands for the ERα and ERβ
Ligand Other names Relative binding affinities (RBA, %)a Absolute binding affinities (Ki, nM)a Action
ERα ERβ ERα ERβ
Estradiol E2; 17β-Estradiol 100 100 0.115 (0.04–0.24) 0.15 (0.10–2.08) Estrogen
Estrone E1; 17-Ketoestradiol 16.39 (0.7–60) 6.5 (1.36–52) 0.445 (0.3–1.01) 1.75 (0.35–9.24) Estrogen
Estriol E3; 16α-OH-17β-E2 12.65 (4.03–56) 26 (14.0–44.6) 0.45 (0.35–1.4) 0.7 (0.63–0.7) Estrogen
Estetrol E4; 15α,16α-Di-OH-17β-E2 4.0 3.0 4.9 19 Estrogen
Alfatradiol 17α-Estradiol 20.5 (7–80.1) 8.195 (2–42) 0.2–0.52 0.43–1.2 Metabolite
16-Epiestriol 16β-Hydroxy-17β-estradiol 7.795 (4.94–63) 50 ? ? Metabolite
17-Epiestriol 16α-Hydroxy-17α-estradiol 55.45 (29–103) 79–80 ? ? Metabolite
16,17-Epiestriol 16β-Hydroxy-17α-estradiol 1.0 13 ? ? Metabolite
2-Hydroxyestradiol 2-OH-E2 22 (7–81) 11–35 2.5 1.3 Metabolite
2-Methoxyestradiol 2-MeO-E2 0.0027–2.0 1.0 ? ? Metabolite
4-Hydroxyestradiol 4-OH-E2 13 (8–70) 7–56 1.0 1.9 Metabolite
4-Methoxyestradiol 4-MeO-E2 2.0 1.0 ? ? Metabolite
2-Hydroxyestrone 2-OH-E1 2.0–4.0 0.2–0.4 ? ? Metabolite
2-Methoxyestrone 2-MeO-E1 <0.001–<1 <1 ? ? Metabolite
4-Hydroxyestrone 4-OH-E1 1.0–2.0 1.0 ? ? Metabolite
4-Methoxyestrone 4-MeO-E1 <1 <1 ? ? Metabolite
16α-Hydroxyestrone 16α-OH-E1; 17-Ketoestriol 2.0–6.5 35 ? ? Metabolite
2-Hydroxyestriol 2-OH-E3 2.0 1.0 ? ? Metabolite
4-Methoxyestriol 4-MeO-E3 1.0 1.0 ? ? Metabolite
Estradiol sulfate E2S; Estradiol 3-sulfate <1 <1 ? ? Metabolite
Estradiol disulfate Estradiol 3,17β-disulfate 0.0004 ? ? ? Metabolite
Estradiol 3-glucuronide E2-3G 0.0079 ? ? ? Metabolite
Estradiol 17β-glucuronide E2-17G 0.0015 ? ? ? Metabolite
Estradiol 3-gluc. 17β-sulfate E2-3G-17S 0.0001 ? ? ? Metabolite
Estrone sulfate E1S; Estrone 3-sulfate <1 <1 >10 >10 Metabolite
Estradiol benzoate EB; Estradiol 3-benzoate 10 ? ? ? Estrogen
Estradiol 17β-benzoate E2-17B 11.3 32.6 ? ? Estrogen
Estrone methyl ether Estrone 3-methyl ether 0.145 ? ? ? Estrogen
ent-Estradiol 1-Estradiol 1.31–12.34 9.44–80.07 ? ? Estrogen
Equilin 7-Dehydroestrone 13 (4.0–28.9) 13.0–49 0.79 0.36 Estrogen
Equilenin 6,8-Didehydroestrone 2.0–15 7.0–20 0.64 0.62 Estrogen
17β-Dihydroequilin 7-Dehydro-17β-estradiol 7.9–113 7.9–108 0.09 0.17 Estrogen
17α-Dihydroequilin 7-Dehydro-17α-estradiol 18.6 (18–41) 14–32 0.24 0.57 Estrogen
17β-Dihydroequilenin 6,8-Didehydro-17β-estradiol 35–68 90–100 0.15 0.20 Estrogen
17α-Dihydroequilenin 6,8-Didehydro-17α-estradiol 20 49 0.50 0.37 Estrogen
Δ8-Estradiol 8,9-Dehydro-17β-estradiol 68 72 0.15 0.25 Estrogen
Δ8-Estrone 8,9-Dehydroestrone 19 32 0.52 0.57 Estrogen
Ethinylestradiol EE; 17α-Ethynyl-17β-E2 120.9 (68.8–480) 44.4 (2.0–144) 0.02–0.05 0.29–0.81 Estrogen
Mestranol EE 3-methyl ether ? 2.5 ? ? Estrogen
Moxestrol RU-2858; 11β-Methoxy-EE 35–43 5–20 0.5 2.6 Estrogen
Methylestradiol 17α-Methyl-17β-estradiol 70 44 ? ? Estrogen
Diethylstilbestrol DES; Stilbestrol 129.5 (89.1–468) 219.63 (61.2–295) 0.04 0.05 Estrogen
Hexestrol Dihydrodiethylstilbestrol 153.6 (31–302) 60–234 0.06 0.06 Estrogen
Dienestrol Dehydrostilbestrol 37 (20.4–223) 56–404 0.05 0.03 Estrogen
Benzestrol (B2) 114 ? ? ? Estrogen
Chlorotrianisene TACE 1.74 ? 15.30 ? Estrogen
Triphenylethylene TPE 0.074 ? ? ? Estrogen
Triphenylbromoethylene TPBE 2.69 ? ? ? Estrogen
Tamoxifen ICI-46,474 3 (0.1–47) 3.33 (0.28–6) 3.4–9.69 2.5 SERM
Afimoxifene 4-Hydroxytamoxifen; 4-OHT 100.1 (1.7–257) 10 (0.98–339) 2.3 (0.1–3.61) 0.04–4.8 SERM
Toremifene 4-Chlorotamoxifen; 4-CT ? ? 7.14–20.3 15.4 SERM
Clomifene MRL-41 25 (19.2–37.2) 12 0.9 1.2 SERM
Cyclofenil F-6066; Sexovid 151–152 243 ? ? SERM
Nafoxidine U-11,000A 30.9–44 16 0.3 0.8 SERM
Raloxifene 41.2 (7.8–69) 5.34 (0.54–16) 0.188–0.52 20.2 SERM
Arzoxifene LY-353,381 ? ? 0.179 ? SERM
Lasofoxifene CP-336,156 10.2–166 19.0 0.229 ? SERM
Ormeloxifene Centchroman ? ? 0.313 ? SERM
Levormeloxifene 6720-CDRI; NNC-460,020 1.55 1.88 ? ? SERM
Ospemifene Deaminohydroxytoremifene 0.82–2.63 0.59–1.22 ? ? SERM
Bazedoxifene ? ? 0.053 ? SERM
Etacstil GW-5638 4.30 11.5 ? ? SERM
ICI-164,384 63.5 (3.70–97.7) 166 0.2 0.08 Antiestrogen
Fulvestrant ICI-182,780 43.5 (9.4–325) 21.65 (2.05–40.5) 0.42 1.3 Antiestrogen
Propylpyrazoletriol PPT 49 (10.0–89.1) 0.12 0.40 92.8 ERα agonist
16α-LE2 16α-Lactone-17β-estradiol 14.6–57 0.089 0.27 131 ERα agonist
16α-Iodo-E2 16α-Iodo-17β-estradiol 30.2 2.30 ? ? ERα agonist
Methylpiperidinopyrazole MPP 11 0.05 ? ? ERα antagonist
Diarylpropionitrile DPN 0.12–0.25 6.6–18 32.4 1.7 ERβ agonist
8β-VE2 8β-Vinyl-17β-estradiol 0.35 22.0–83 12.9 0.50 ERβ agonist
Prinaberel ERB-041; WAY-202,041 0.27 67–72 ? ? ERβ agonist
ERB-196 WAY-202,196 ? 180 ? ? ERβ agonist
Erteberel SERBA-1; LY-500,307 ? ? 2.68 0.19 ERβ agonist
SERBA-2 ? ? 14.5 1.54 ERβ agonist
Coumestrol 9.225 (0.0117–94) 64.125 (0.41–185) 0.14–80.0 0.07–27.0 Xenoestrogen
Genistein 0.445 (0.0012–16) 33.42 (0.86–87) 2.6–126 0.3–12.8 Xenoestrogen
Equol 0.2–0.287 0.85 (0.10–2.85) ? ? Xenoestrogen
Daidzein 0.07 (0.0018–9.3) 0.7865 (0.04–17.1) 2.0 85.3 Xenoestrogen
Biochanin A 0.04 (0.022–0.15) 0.6225 (0.010–1.2) 174 8.9 Xenoestrogen
Kaempferol 0.07 (0.029–0.10) 2.2 (0.002–3.00) ? ? Xenoestrogen
Naringenin 0.0054 (<0.001–0.01) 0.15 (0.11–0.33) ? ? Xenoestrogen
8-Prenylnaringenin 8-PN 4.4 ? ? ? Xenoestrogen
Quercetin <0.001–0.01 0.002–0.040 ? ? Xenoestrogen
Ipriflavone <0.01 <0.01 ? ? Xenoestrogen
Miroestrol 0.39 ? ? ? Xenoestrogen
Deoxymiroestrol 2.0 ? ? ? Xenoestrogen
β-Sitosterol <0.001–0.0875 <0.001–0.016 ? ? Xenoestrogen
Resveratrol <0.001–0.0032 ? ? ? Xenoestrogen
α-Zearalenol 48 (13–52.5) ? ? ? Xenoestrogen
β-Zearalenol 0.6 (0.032–13) ? ? ? Xenoestrogen
Zeranol α-Zearalanol 48–111 ? ? ? Xenoestrogen
Taleranol β-Zearalanol 16 (13–17.8) 14 0.8 0.9 Xenoestrogen
Zearalenone ZEN 7.68 (2.04–28) 9.45 (2.43–31.5) ? ? Xenoestrogen
Zearalanone ZAN 0.51 ? ? ? Xenoestrogen
Bisphenol A BPA 0.0315 (0.008–1.0) 0.135 (0.002–4.23) 195 35 Xenoestrogen
Endosulfan EDS <0.001–<0.01 <0.01 ? ? Xenoestrogen
Kepone Chlordecone 0.0069–0.2 ? ? ? Xenoestrogen
o,p'-DDT 0.0073–0.4 ? ? ? Xenoestrogen
p,p'-DDT 0.03 ? ? ? Xenoestrogen
Methoxychlor p,p'-Dimethoxy-DDT 0.01 (<0.001–0.02) 0.01–0.13 ? ? Xenoestrogen
HPTE Hydroxychlor; p,p'-OH-DDT 1.2–1.7 ? ? ? Xenoestrogen
Testosterone T; 4-Androstenolone <0.0001–<0.01 <0.002–0.040 >5000 >5000 Androgen
Dihydrotestosterone DHT; 5α-Androstanolone 0.01 (<0.001–0.05) 0.0059–0.17 221–>5000 73–1688 Androgen
Nandrolone 19-Nortestosterone; 19-NT 0.01 0.23 765 53 Androgen
Dehydroepiandrosterone DHEA; Prasterone 0.038 (<0.001–0.04) 0.019–0.07 245–1053 163–515 Androgen
5-Androstenediol A5; Androstenediol 6 17 3.6 0.9 Androgen
4-Androstenediol 0.5 0.6 23 19 Androgen
4-Androstenedione A4; Androstenedione <0.01 <0.01 >10000 >10000 Androgen
3α-Androstanediol 3α-Adiol 0.07 0.3 260 48 Androgen
3β-Androstanediol 3β-Adiol 3 7 6 2 Androgen
Androstanedione 5α-Androstanedione <0.01 <0.01 >10000 >10000 Androgen
Etiocholanedione 5β-Androstanedione <0.01 <0.01 >10000 >10000 Androgen
Methyltestosterone 17α-Methyltestosterone <0.0001 ? ? ? Androgen
Ethinyl-3α-androstanediol 17α-Ethynyl-3α-adiol 4.0 <0.07 ? ? Estrogen
Ethinyl-3β-androstanediol 17α-Ethynyl-3β-adiol 50 5.6 ? ? Estrogen
Progesterone P4; 4-Pregnenedione <0.001–0.6 <0.001–0.010 ? ? Progestogen
Norethisterone NET; 17α-Ethynyl-19-NT 0.085 (0.0015–<0.1) 0.1 (0.01–0.3) 152 1084 Progestogen
Norethynodrel 5(10)-Norethisterone 0.5 (0.3–0.7) <0.1–0.22 14 53 Progestogen
Tibolone 7α-Methylnorethynodrel 0.5 (0.45–2.0) 0.2–0.076 ? ? Progestogen
Δ4-Tibolone 7α-Methylnorethisterone 0.069–<0.1 0.027–<0.1 ? ? Progestogen
3α-Hydroxytibolone 2.5 (1.06–5.0) 0.6–0.8 ? ? Progestogen
3β-Hydroxytibolone 1.6 (0.75–1.9) 0.070–0.1 ? ? Progestogen
Footnotes: a = (1) Binding affinity values are of the format "median (range)" (# (#–#)), "range" (#–#), or "value" (#) depending on the values available. The full sets of values within the ranges can be found in the Wiki code. (2) Binding affinities were determined via displacement studies in a variety of in-vitro systems with labeled estradiol and human ERα and ERβ proteins (except the ERβ values from Kuiper et al. (1997), which are rat ERβ). Sources: See template page.

Effects edit

Xenoestrogens have been implicated in a variety of medical problems, and during the last 10 years many scientific studies have found hard evidence of adverse effects on human and animal health.[33]

There is a concern that xenoestrogens may act as false messengers and disrupt the process of reproduction. Xenoestrogens, like all estrogens, can increase growth of the endometrium, so treatments for endometriosis include avoidance of products which contain them. Likewise, they are avoided in order to prevent the onset or aggravation of adenomyosis. Studies have implicated observations of disturbances in wildlife with estrogenic exposure. For example, discharge from human settlement including runoff and water flowing out of wastewater treatment plants release a large amount of xenoestrogens into streams, which lead to immense alterations in aquatic life. With a bioaccumulation factor of 105 –106, fish are extremely susceptible to pollutants.[34] Streams in more arid conditions are thought to have more effects due to higher concentrations of the chemicals arising from lack of dilution.[35]

When comparing fish from above a wastewater treatment plant and below a wastewater treatment plant, studies found disrupted ovarian and testicular histopathology, gonadal intersex, reduced gonad size, vitellogenin induction, and altered sex ratios.[35]

The sex ratios are female biased because xenoestrogens interrupt gonadal configuration causing complete or partial sex reversal. When comparing adjacent populations of white sucker fish, the exposed female fish can have up to five oocyte stages and asynchronously developing ovaries versus the unexposed female fish who usually have two oocyte stages and group-synchronously developing ovaries. Previously, this type of difference has only been found between tropical and temperate species.[35]

Sperm concentrations and motility perimeters are reduced in male fish exposed to xenoestrogens in addition to disrupt stages of spermatogenesis.[24][35] Moreover, xenoestrogens have been leading to vast amounts of intersex in fish. For example, one study indicates the numbers of intersex in white sucker fish to be equal to the number of males in the population downstream of a waste water treatment plant. No intersex members were found upstream from the plant. Also, they found differences in the proportion of testicular and ovarian tissue and its degree of organization between the intersex fish.[35] Furthermore, xenoestrogens expose fish to CYP1A inducers through inhibiting a putative labile protein and enhancing the Ah receptor, which has been linked to epizootics of cancer and the initiation of tumors.[34]

The induction of CYP1A has been established to be a good bioindicator for xenoestrogen exposure. In addition, xenoestrogens stimulate vitellogenin (Vtg), which acts as a nutrient reserve, and Zona readiata proteins (Zrp), which forms eggshells. Therefore, Vtg and Zrp are biomarkers to exposure for fish.[36]

Another potential effect of xenoestrogens is on oncogenes, specifically in relation to breast cancer. Some scientists doubt that xenoestrogens have any significant biological effect, in the concentrations found in the environment.[37] However, there is substantial evidence in a variety of recent studies to indicate that xenoestrogens can increase breast cancer growth in tissue culture.[38][39][40][41]

It has been suggested that very low levels of a xenoestrogen, Bisphenol A, could affect fetal neural signalling more than higher levels, indicating that classical models where dose equals response may not be applicable in susceptible tissue.[42] As this study involved intra-cerebellar injections, its relevance to environmental exposures is unclear, as is the role of an estrogenic effect compared to some other toxic effect of bisphenol A.

Other scientists argue that the observed effects are spurious and inconsistent, or that the quantities of the agents are too low to have any effect.[43] A 1997 survey of scientists in fields pertinent to evaluating estrogens found that 13 percent regarded the health threats from xenoestrogens as "major," 62 percent as "minor" or "none," and 25 percent were unsure.[44]

There has been speculation that falling sperm counts in males may be due to increased estrogen exposure in utero.[45] Sharpe in a 2005 review indicated that external estrogenic substances are too weak in their cumulative effects to alter male reproductive functioning, but indicates that the situation appears to be more complex as external chemicals may affect the internal testosterone-estrogen balance.[46]

Impact edit

The ubiquitous presence of such estrogenic substances is a significant health concern, both individually and for a population. Life relies on the transmission of biochemical information to the next generation, and the presence of xenoestrogens may interfere with this transgenerational information process through "chemical confusion" (Vidaeff and Sever),[47] who state: "The results do not support with certainty the view that environmental estrogens contribute to an increase in male reproductive disorders, neither do they provide sufficient grounds to reject such a hypothesis."

A 2008 report demonstrates further evidence of widespread effects of feminizing chemicals on male development in each class of vertebrate species as a worldwide phenomenon.[48] Ninety-nine percent of over 100,000 recently introduced chemicals are underregulated, according to the European Commission.[48]

Agencies such as the United States Environmental Protection Agency and the World Health Organization International Programme on Chemical Safety are charged to address these issues.[citation needed]

Precocious puberty edit

Puberty is a complex developmental process defined as the transition from childhood to adolescence and adult reproductive function.[13][19][49] The first sign of female puberty is an acceleration of growth followed by the development of a palpable breast bud (thelarche). The median age of thelarche is 9.8 years. Although the sequence may be reversed, androgen dependent changes such as growth of axillary and pubic hair, body odor and acne (adrenarche) usually appears 2 years later. Onset of menstruation (menarche) is a late event (median 12.8 years), occurring after the peak of growth has passed.[13]

Puberty is considered precocious (precocious puberty) if secondary sex characteristics occur before the age of 8 in girls and 9 years in boys.[13][15] Increased growth is often the first change in precocious puberty, followed by breast development and growth of pubic hair. However, thelarche, adrenarche, and linear growth[clarification needed] can occur simultaneously and although uncommon, menarche can be the first sign.[13] Precocious puberty can be classified into central (gonadotropin-dependent) precocious puberty or peripheral (gonadotropin-independent) puberty.[13][19] Peripheral precocious puberty has been linked to exposure to exogenous estrogenic compounds.

Age of onset of puberty is influenced by many factors such as genetics, nutritional status, ethnicity and environmental factors including socio-economic conditions and geographical location.[3][50] A decline of age at onset of puberty from 17 years of age to 13 years of age has occurred over a period of 200 years until the middle of the 20th century.[3][16][49] Trends toward earlier puberty have been attributed to improved public health and living conditions.[51] A leading hypothesis for this change toward early puberty is improved nutrition resulting in rapid body growth, increased weight and fat deposition.[52] However, many opponents believe that chemical exposure may play a role. Two recent epidemiologic studies in the United States (PROS and NMANES III)[53] highlighted a recent unexpected advance in sexual maturation in girls.[3][4][54] American, European and Asian studies suggest breast development in girls occurs at a much younger age than a few decades ago, irrespective of race and socioeconomic conditions.[16][49][52] Environmental chemical exposure is one of the factors implicated in the recent downward trend of earlier sexual maturation.[16][49][54]

Thelarche in Puerto Rico edit

Since 1979, pediatric endocrinologists in Puerto Rico recognized an increase in number of patients with premature thelarche.[55] The presence of phthalates were measured in the blood of 41 girls experiencing early onset breast development and matched set of controls. The average age of girls with premature thelarche was 31 months. They found high phthalate levels in the girls suffering from premature thelarche compared to the controls.[56] Not all cases of premature thelarche in the study sample contained elevated levels of phthalate esters and there was concern whether artificial contamination from vinyl lab equipment and tubing invalidated the results, hence weakening the link between exposure and causation.[55][57]

Tuscany precocious puberty cases edit

Dr. Massart and colleagues from the University of Pisa studied the increased prevalence of precocious puberty in a region of northwest Tuscany. This region of Italy is represented by a high density of navy yards and greenhouses where exposures to pesticides and mycoestrogens (estrogens produced by fungi) are common. Although unable to identify a definitive cause of the high rates of precocious puberty, the authors concluded environmental pesticides and herbicides may be implicated.[58]

Dairy contamination edit

Animal feed was contaminated with several thousand pounds of polybrominated biphenyl in Michigan in 1973 resulting in high exposures of PBB in the population via milk and other products from contaminated cows. Perinatal exposure of children was estimated by measuring PBB in serum of mothers some years after exposure. Girls that had been exposed to high PBB levels through lactation had an earlier age of menarche and pubic hair development than girls who had less perinatal exposure. The study noted there no differences found in the timing of breast development among the cases and controls.[16][20][57]

Fish contamination edit

The Great Lakes have been polluted with industrial wastes (mainly PCBs and DDT) since the beginning of the 20th century. These compounds have accumulated in birds and sports fish. A study was designed to assess the impact of consumption of contaminated fish on pregnant women and their children. Concentrations of maternal serum PCB and DDE and their daughters' age at menarche were reviewed. In multivariate analysis, DDE but not PCB was linked with a lowered age of menarche.[20][55][57] Limitations of the study included indirect measurement of the exposure and self reporting of menarche.[20]

Implications edit

Precocious puberty has numerous significant physical, psychological and social implications for a young girl. Unfortunately, premature pubertal growth spurt and accelerated bone maturation will result in premature closure of distal epiphysis which causes reduced adult height and short stature.[59] In 1999, US Food and Drug Administration has recommended to not take estrogen in food of more than 3.24 ng per day for females.[60] Precocious puberty has also been implicated in pediatric and adult obesity.[54][59] Some studies have suggested precocious puberty places girls at a higher risk of breast cancer later in life.[54] Precocious puberty is linked with other gynecologic disorders such as endometriosis, adenomyosis, polycystic ovarian syndrome and infertility.[17][61][62] Precocious puberty can lead to psychosocial distress, a poor self-image, and poor self-esteem. Girls with secondary sex characteristics at such a young age are more likely to be bullied and suffer from sexual abuse.[17][61] Studies indicate that girls who become sexually mature at earlier ages are also more likely to engage in risk-taking behaviors such as smoking, alcohol or drug use, and engage in unprotected sex.[59]

The current literature is inadequate to provide the information we need to assess the extent to which environmental chemicals contribute to precocious puberty.[54] Gaps in our knowledge are the result of limitations in the designs of studies, small sample sizes, challenges to conducting exposure assessment and the few number of chemicals studied.[54] Unfortunately exposure is inferred and not actually measured in available studies.[17] The ability to detect the possible role of chemicals in altering pubertal development is confounded by many nutritional, genetic and lifestyle factors capable of affecting puberty and the complex nature of the reproductive endocrine system.[52][63] Other research challenges include shifts in exposure levels among populations over time and simultaneous exposures to multiple compounds.[63] Overall the literature does not with certainty support the contention that environmental chemicals or dietary factors are having widespread effects on human sexual development. However data does not refute such a hypothesis either. Accelerated sexual development is plausible in individuals exposed to high concentration of estrogenic substances. There is a concerning steady increase in exposure to a wide variety of xenoestrogens in the industrial world. Further research is needed to assess the impact of these compounds on pubertal development.[citation needed]

In other animals edit

Non-human animal studies have shown that exposure to environmental contaminants with estrogenic activity can accelerate the onset of puberty. A potential mechanism has been described in rats exposed to DDT or beta-estradiol in which GnRH pulsatile secretion was found to be increased.[20][64] Oral exposure of female rats to xenoestrogens has been shown to cause pseudo precocious puberty (early vaginal opening and early first estrus).[50][65][66][67] A study of dioxin in immature female rats induced early follicular development[68] and phthalates are known to decrease the anogenital distance in newborn rats.[57] Although this article focuses on the effects of xenoestrogens and reproductive function in females, numerous animal studies also implicate environmental estrogens' and androgens' adverse effects on the male reproduction system.[68] Administration of estrogens to developing male animals reduces testicular weight and decreases sperm production.[18] The small phallus size of male alligators has been linked to contamination of their natural Florida habitat with DDT.[59][68] Data from animal research is abundant demonstrating the adverse effects on reproduction of hormonally active compounds found in the environment.[18][68][69][70]

Common environmental estrogens edit

Atrazine edit

Atrazine is widely used as an herbicide to control broad-leaf weed species that grow in crops such as corn, sugarcane, hay and winter wheat. Atrazine is also applied to Christmas trees, residential lawns, golf courses, and other recreational areas. Atrazine is the second largest selling pesticide in the world and estimated to be the most heavily used herbicide in the United States.[14] Atrazine has been implicated in interfering with the neuroendocrine system, blocking the release of gonadotropin-releasing hormone (GnRH) which in turn reduces luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels.[71]

BPA edit

BPA (Bisphenol A) is the monomer used to manufacture polycarbonate plastic and epoxy resins used as a lining in most food and beverage cans. BPA global capacity is in excess of 6.4 billion pounds (2.9×109 kg) per year and thus is one of the highest-volume chemicals produced worldwide.[72] The ester bonds in the BPA-based polycarbonates could be subject to hydrolysis and leaching of BPA. But in the case of epoxypolymers formed from bisphenol A, it is not possible to release bisphenol A by such a reaction. It is also noteworthy that, of the bisphenols, bisphenol A is a weak xenoestrogen. Other compounds, such as bisphenol Z, have been shown to have stronger estrogenic effects in rats.[73]

It has been suggested that biphenol A and other xenoestrogens might cause disease to humans[63] and animals.[69] BPA exposure is linked to dysfunctions in human systems including the immune, neuroendocrine, and excretory systems. The damage that results in these dysfunctions is via the mechanisms of enzyme interference, cellular oxidation, epigenetic changes, and the breaking of DNA strands.[74]

Bisphenol S (BPS), an analog of BPA, has also been shown to alter estrogenic activity.[75][76] One study demonstrated that when cultured rat pituitary cells were exposed to low levels of BPS, it altered the estrogen-estradiol signaling pathway and led to the inappropriate release of prolactin.[76]

DDT edit

DDT (Dichlorodiphenyltrichloroethane) was widely used in pesticides for agricultural purposes until it was banned in 1972 in the United States. DDT's hazardous effects on the environment include being linked to the production of fragile eggshells in birds and showed a 90% decline in the birth rates of alligators.[77] Though it is banned in the United States, DDT continues to be used in many parts of the world for agricultural use, insect control, and to fight the spread of malaria.[14][17][57][69]

DDT and its metabolites DDE and DDD are persistent in the environment and accumulate in fatty tissues. In vertebrates, DDT is unable to be broken down and remains within the organism. There is little risk of DDT causing an increase in health risk upon exposure in adulthood, but in key developmental periods prenatally and in adolescence, there has been evidence to suggest an increased risk of breast cancer.[77]

Dioxin edit

Dioxin, a group of highly toxic chemicals are released during combustion processes, pesticide manufacturing and chlorine bleaching of wood pulp. Dioxin is discharged into waterways from pulp and paper mills. Consumption of animals fats is thought to be the primary pathway for human exposure.[14][17][51] The connection between dioxin and dioxin-like compound (DLC) exposure and human disease is one not well established. Bioassays performed in animals does not show a strong connection between the two.[78]

Endosulfan edit

Endosulfan is an insecticide used on numerous vegetables, fruits, cereal grains and trees. Endosulfan can be produced as a liquid concentrate, wettable powder or smoke tablet. Human exposure occurs through food consumption or ground and surface water contamination.[14][79] Endosulfan exposure is known to cause seizures that are the result of hyper-stimulation of the central nervous system (CNS). Upon significant exposure and accumulation in the system, toxicity of the major organs such as the heart, liver and kidneys has been reported and can lead to death within hours[80]

Brominated Flame Retardants (BFRs) edit

Both PBBs and PBDEs belong to the same class of chemicals known as brominated flame retardants.[81] PBBs (Polybrominated biphenyls) are chemicals added to plastics used in computer monitors, televisions, textiles and plastics foams to make them more difficult to burn. Manufacturing of PBBs in the United States stopped in 1976, however because they do not degrade easily. PBBs continue to be found in soil, water and air. PBDEs (Polybrominated biphenyl ethers) behave similarly to PBBs in that they are also a flame retardant. PBDEs are not chemically bound to the items they are attached to, and thus can leech into the environment.[82][14][20][69]

PCBs edit

PCBs (Polychlorinated biphenyls) are man made organic chemicals known as chlorinated hydrocarbons. PCBs were manufactured primarily for use as insulating fluids and coolants given their chemical stability, low flammability and electrical insulating properties. PCBs were banned in 1979 but, like DDT, continue to persist in the environment.[14][17][57] The effects of PCBs are not limited to the environment. There have been associations revealed between maternal PCB levels and conditions such as asthma, eczema, roseola, and upper respiratory infections.[83]

Phthalates edit

Phthalates are plasticizers providing durability and flexibility to plastics such as polyvinyl chloride. High molecular weight phthalates are used in flooring, wall coverings and medical device such as intravenous bags and tubing. Low molecular weight phthalates are found in perfumes, lotions, cosmetics, varnishes, lacquers and coatings including timed releases in pharmaceuticals.[14][69][84] Exposure to phthalates can have varying effects in humans depending on maturity. In adults, phthalate exposure has been linked to conditions like asthma, metabolic disorders like type II diabetes and insulin resistance, allergies, and asthma. In children, exposure to phthalates has a marked difference when compared to adults, having been associated with disrupted reproductive hormone levels and thyroid function.[85]

Zeranol edit

Zeranol is currently used as an anabolic growth promoter for livestock in the US[86] and Canada.[87] It has been banned in the EU since 1985,[88] but is still present as a contaminant in food through meat products that were exposed to it.[14]

Miscellaneous edit

See also edit

References edit

  1. ^ Paterni, Ilaria; Granchi, Carlotta; Minutolo, Filippo (2017-11-02). "Risks and benefits related to alimentary exposure to xenoestrogens". Critical Reviews in Food Science and Nutrition. 57 (16): 3384–3404. doi:10.1080/10408398.2015.1126547. ISSN 1040-8398. PMC 6104637. PMID 26744831.
  2. ^ Wang, Xiaoqiang; Ha, Desiree; Yoshitake, Ryohei; Chan, Yin S.; Sadava, David; Chen, Shiuan (2021-08-16). "Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts". International Journal of Molecular Sciences. 22 (16): 8798. doi:10.3390/ijms22168798. ISSN 1422-0067. PMC 8395949. PMID 34445499.
  3. ^ a b c d Aksglaede L, Juul A, Leffers H, Skakkebaek NE, Andersson AM (2006). "The sensitivity of the child to sex steroids: possible impact of exogenous estrogens". Human Reproduction Update. 12 (4): 341–349. doi:10.1093/humupd/dml018. PMID 16672247.
  4. ^ a b Herman-Giddens ME, Slora EJ, Wasserman RC, Bourdony CJ, Bhapkar MV, Koch GG, Hasemeier CM (April 1997). "Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network". Pediatrics. 99 (4): 505–512. doi:10.1542/peds.99.4.505. PMID 9093289.
  5. ^ Hughes CL (June 1988). "Phytochemical mimicry of reproductive hormones and modulation of herbivore fertility by phytoestrogens". Environmental Health Perspectives. 78: 171–174. doi:10.1289/ehp.8878171. PMC 1474615. PMID 3203635.
  6. ^ Bentley GR, Mascie-Taylor CG (November 2000). "Wild-life studies". Infertility in the modern world: present and future prospects. Cambridge University Press. pp. 99–100. ISBN 978-0-521-64387-0.
  7. ^ Korach KS (1998). Reproductive and Developmental Toxicology. Marcel Dekker Ltd. pp. 278–279, 294–295. ISBN 978-0-8247-9857-4.
  8. ^ Bern HA, Blair P, Brasseur S, Colborn T, Cunha GR, Davis W, et al. (1992). (PDF). In Clement C, Colborn T (eds.). Chemically-induced alterations in sexual and functional development -- the wildlife/human connection. Princeton, N.J: Princeton Scientific Pub. Co. pp. 1–8. ISBN 978-0-911131-35-2. Archived from the original (PDF) on 2013-05-24. Retrieved 2010-11-16.
  9. ^ Colborn, T. (May 1995). "Statement from the Work Session on Environmentally induced Alterations in Development: A Focus on Wildlife". Environmental Health Perspectives. 103 (Suppl 4): 3–5. doi:10.2307/3432404. JSTOR 3432404. PMC 1519268. PMID 17539108.
  10. ^ Benson WH, Bern HA, Bue B, Colborn T, Cook P, Davis WP, Denslow N, Donaldson EM, Edsall CC, Fournier M, Gilbertson M, Johnson R, Kocan R, Monosson E, Norrgren L, Peterson RE, Rolland R, Smolen M, Spies R, Sullivan C, Thomas P, Van Der Kraak G (1997). "Statement from the work session on chemically induced alterations in functional development and reproduction of fishes". In Rolland RM, Gilbertson M, Peterson RE (eds.). Chemically Induced Alterations in Functional Development and Reproduction of Fishes. Society of Environmental Toxicology & Chemist. pp. 3–8. ISBN 978-1-880611-19-7.
  11. ^ "Statement from the work session on environmental endocrine-disrupting chemicals: neural, endocrine, and behavioral effects". Toxicology and Industrial Health. 14 (1–2): 1–8. 1998. Bibcode:1998ToxIH..14....1.. doi:10.1177/074823379801400103. PMID 9460166. S2CID 45902764.
  12. ^ Brock J, Colborn T, Cooper R, Craine DA, Dodson SF, Garry VF, Gilbertson M, Gray E, Hodgson E, Kelce W, Klotz D, Maciorowski AF, Olea N, Porter W, Rolland R, Scott GI, Smolen M, Snedaker SC, Sonnenschein C, Vyas NB, Welshons WV, Whitcomb CE (1999). "Statement from the Work Session on Health Effects of Contemporary-Use Pesticides: the Wildlife / Human Connection". Toxicol Ind Health. 15 (1–2): 1–5. Bibcode:1999ToxIH..15....1.. doi:10.1191/074823399678846547.
  13. ^ a b c d e f Kase NG, Speroff L, Glass RL (1994). Clinical gynecologic endocrinology and infertility (5 ed.). Baltimore: Williams & Wilkins. pp. 371–382. ISBN 978-0-683-07899-2.
  14. ^ a b c d e f g h i j k Roy JR, Chakraborty S, Chakraborty TR (June 2009). "Estrogen-like endocrine disrupting chemicals affecting puberty in humans--a review". Medical Science Monitor. 15 (6): RA137–RA145. PMID 19478717.
  15. ^ a b Massart F, Parrino R, Seppia P, Federico G, Saggese G (June 2006). "How do environmental estrogen disruptors induce precocious puberty?". Minerva Pediatrica. 58 (3): 247–254. PMID 16832329.
  16. ^ a b c d e f Toppari J, Juul A (August 2010). "Trends in puberty timing in humans and environmental modifiers". Molecular and Cellular Endocrinology. 324 (1–2): 39–44. doi:10.1016/j.mce.2010.03.011. PMID 20298746. S2CID 19235168.
  17. ^ a b c d e f g Caserta D, Maranghi L, Mantovani A, Marci R, Maranghi F, Moscarini M (2008). "Impact of endocrine disruptor chemicals in gynaecology". Human Reproduction Update. 14 (1): 59–72. doi:10.1093/humupd/dmm025. PMID 18070835.
  18. ^ a b c d Danzo BJ (November 1998). "The effects of environmental hormones on reproduction". Cellular and Molecular Life Sciences. 54 (11): 1249–1264. doi:10.1007/s000180050251. PMID 9849617. S2CID 11913134.
  19. ^ a b c Buck Louis GM, Gray LE, Marcus M, Ojeda SR, Pescovitz OH, Witchel SF, et al. (February 2008). "Environmental factors and puberty timing: expert panel research needs". Pediatrics. 121 (Suppl 3): S192–S207. doi:10.1542/peds.1813E. PMID 18245512. S2CID 9375302.
  20. ^ a b c d e f Rasier G, Toppari J, Parent AS, Bourguignon JP (July 2006). "Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data". Molecular and Cellular Endocrinology. 254–255: 187–201. doi:10.1016/j.mce.2006.04.002. hdl:2268/69898. PMID 16720078. S2CID 26180396.
  21. ^ Mueller SO (February 2004). "Xenoestrogens: mechanisms of action and detection methods". Analytical and Bioanalytical Chemistry. 378 (3): 582–587. doi:10.1007/s00216-003-2238-x. PMID 14564443. S2CID 46507842.
  22. ^ Aravindakshan J, Paquet V, Gregory M, Dufresne J, Fournier M, Marcogliese DJ, Cyr DG (March 2004). "Consequences of xenoestrogen exposure on male reproductive function in spottail shiners (Notropis hudsonius)". Toxicological Sciences. 78 (1): 156–165. doi:10.1093/toxsci/kfh042. PMID 14657511.
  23. ^ vom Saal FS, Cooke PS, Buchanan DL, Palanza P, Thayer KA, Nagel SC, et al. (1998). "A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior". Toxicology and Industrial Health. 14 (1–2): 239–260. Bibcode:1998ToxIH..14..239V. doi:10.1177/074823379801400115. PMID 9460178. S2CID 27382573.
  24. ^ a b Aravindakshan J, Gregory M, Marcogliese DJ, Fournier M, Cyr DG (September 2004). "Consumption of xenoestrogen-contaminated fish during lactation alters adult male reproductive function". Toxicological Sciences. 81 (1): 179–189. doi:10.1093/toxsci/kfh174. PMID 15159524.
  25. ^ Luconi M, Bonaccorsi L, Forti G, Baldi E (June 2001). "Effects of estrogenic compounds on human spermatozoa: evidence for interaction with a nongenomic receptor for estrogen on human sperm membrane". Molecular and Cellular Endocrinology. 178 (1–2): 39–45. doi:10.1016/S0303-7207(01)00416-6. PMID 11403892. S2CID 27021549.
  26. ^ Rozati R, Reddy PP, Reddanna P, Mujtaba R (December 2002). "Role of environmental estrogens in the deterioration of male factor fertility". Fertility and Sterility. 78 (6): 1187–1194. doi:10.1016/S0015-0282(02)04389-3. PMID 12477510.
  27. ^ Sharpe RM, Fisher JS, Millar MM, Jobling S, Sumpter JP (December 1995). "Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production". Environmental Health Perspectives. 103 (12): 1136–1143. doi:10.1289/ehp.951031136. PMC 1519239. PMID 8747020.
  28. ^ Dallinga JW, Moonen EJ, Dumoulin JC, Evers JL, Geraedts JP, Kleinjans JC (August 2002). "Decreased human semen quality and organochlorine compounds in blood". Human Reproduction. 17 (8): 1973–1979. doi:10.1093/humrep/17.8.1973. PMID 12151423.
  29. ^ Palmlund I (June 1996). "Exposure to a xenoestrogen before birth: the diethylstilbestrol experience". Journal of Psychosomatic Obstetrics and Gynaecology. 17 (2): 71–84. doi:10.3109/01674829609025667. PMID 8819018.
  30. ^ Olea N, Olea-Serrano F, Lardelli-Claret P, Rivas A, Barba-Navarro A (1999). "Inadvertent exposure to xenoestrogens in children". Toxicology and Industrial Health. 15 (1–2): 151–158. Bibcode:1999ToxIH..15..152O. doi:10.1177/074823379901500112. PMID 10188197. S2CID 25327579.
  31. ^ Li DK, Zhou Z, Miao M, He Y, Wang J, Ferber J, et al. (February 2011). "Urine bisphenol-A (BPA) level in relation to semen quality". Fertility and Sterility. 95 (2): 625–30.e1–4. doi:10.1016/j.fertnstert.2010.09.026. PMID 21035116.
  32. ^ Rogan WJ, Ragan NB (July 2003). "Evidence of effects of environmental chemicals on the endocrine system in children". Pediatrics. 112 (1 Pt 2): 247–252. doi:10.1542/peds.112.S1.247. PMID 12837917. S2CID 13058233.
  33. ^ [22][23][24][25][26][27][28][29][30][31][32]
  34. ^ a b Williams DE, Lech JJ, Buhler DR (March 1998). "Xenobiotics and xenoestrogens in fish: modulation of cytochrome P450 and carcinogenesis". Mutation Research. 399 (2): 179–192. doi:10.1016/S0027-5107(97)00255-8. PMID 9672659.
  35. ^ a b c d e Vajda AM, Barber LB, Gray JL, Lopez EM, Woodling JD, Norris DO (May 2008). "Reproductive disruption in fish downstream from an estrogenic wastewater effluent". Environmental Science & Technology. 42 (9): 3407–3414. Bibcode:2008EnST...42.3407V. doi:10.1021/es0720661. PMID 18522126.
  36. ^ Arukwe A, Celius T, Walther BT, Goksøyr A (June 2000). "Effects of xenoestrogen treatment on zona radiata protein and vitellogenin expression in Atlantic salmon (Salmo salar)". Aquatic Toxicology. 49 (3): 159–170. Bibcode:2000AqTox..49..159A. doi:10.1016/S0166-445X(99)00083-1. PMID 10856602.
  37. ^ Golden RJ, Noller KL, Titus-Ernstoff L, Kaufman RH, Mittendorf R, Stillman R, Reese EA (March 1998). "Environmental endocrine modulators and human health: an assessment of the biological evidence". Critical Reviews in Toxicology. 28 (2): 109–227. doi:10.1080/10408449891344191. PMID 9557209.
  38. ^ Pugazhendhi D, Sadler AJ, Darbre PD (2007). "Comparison of the global gene expression profiles produced by methylparaben, n-butylparaben and 17beta-oestradiol in MCF7 human breast cancer cells". Journal of Applied Toxicology. 27 (1): 67–77. doi:10.1002/jat.1200. PMID 17121429. S2CID 19942049.
  39. ^ Buterin T, Koch C, Naegeli H (August 2006). "Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells". Carcinogenesis. 27 (8): 1567–1578. doi:10.1093/carcin/bgi339. PMID 16474171.
  40. ^ Darbre PD (March 2006). "Environmental oestrogens, cosmetics and breast cancer". Best Practice & Research. Clinical Endocrinology & Metabolism. 20 (1): 121–143. doi:10.1016/j.beem.2005.09.007. PMID 16522524.
  41. ^ Darbre PD, Aljarrah A, Miller WR, Coldham NG, Sauer MJ, Pope GS (2004). "Concentrations of parabens in human breast tumours". Journal of Applied Toxicology. 24 (1): 5–13. doi:10.1002/jat.958. PMID 14745841. S2CID 11999424.
  42. ^ Zsarnovszky A, Le HH, Wang HS, Belcher SM (December 2005). "Ontogeny of rapid estrogen-mediated extracellular signal-regulated kinase signaling in the rat cerebellar cortex: potent nongenomic agonist and endocrine disrupting activity of the xenoestrogen bisphenol A". Endocrinology. 146 (12): 5388–5396. doi:10.1210/en.2005-0565. PMID 16123166.
  43. ^ Safe S (December 2004). "Endocrine disruptors and human health: is there a problem". Toxicology. 205 (1–2): 3–10. doi:10.1016/j.tox.2004.06.032. PMID 15458784.
  44. ^ Murray DW, Lichter SR (April 1998). "Organochlorine residues and breast cancer". The New England Journal of Medicine. 338 (14): 990–991. doi:10.1056/nejm199804023381411. PMID 9527611.
  45. ^ Sharpe RM, Skakkebaek NE (May 1993). "Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract?". Lancet. 341 (8857): 1392–1395. doi:10.1016/0140-6736(93)90953-E. PMID 8098802. S2CID 33135527.
  46. ^ Sharpe RM (February 2003). "The 'oestrogen hypothesis'- where do we stand now?". International Journal of Andrology. 26 (1): 2–15. doi:10.1046/j.1365-2605.2003.00367.x. PMID 12534932.
  47. ^ Vidaeff AC, Sever LE (2005). "In utero exposure to environmental estrogens and male reproductive health: a systematic review of biological and epidemiologic evidence". Reproductive Toxicology. 20 (1): 5–20. doi:10.1016/j.reprotox.2004.12.015. PMID 15808781.
  48. ^ a b 7 December 2008. The Independent.
  49. ^ a b c d Mouritsen A, Aksglaede L, Sørensen K, Mogensen SS, Leffers H, Main KM, et al. (April 2010). "Hypothesis: exposure to endocrine-disrupting chemicals may interfere with timing of puberty". International Journal of Andrology. 33 (2): 346–359. doi:10.1111/j.1365-2605.2010.01051.x. PMID 20487042.
  50. ^ a b Parent AS, Rasier G, Gerard A, Heger S, Roth C, Mastronardi C, et al. (2005). "Early onset of puberty: tracking genetic and environmental factors". Hormone Research. 64 (Suppl 2): 41–47. doi:10.1159/000087753. hdl:2268/69899. PMID 16286770. S2CID 22073984.
  51. ^ a b Jacobson-Dickman E, Lee MM (February 2009). "The influence of endocrine disruptors on pubertal timing". Current Opinion in Endocrinology, Diabetes, and Obesity. 16 (1): 25–30. doi:10.1097/MED.0b013e328320d560. PMID 19115521. S2CID 35633602.
  52. ^ a b c Guillette EA, Conard C, Lares F, Aguilar MG, McLachlan J, Guillette LJ (March 2006). "Altered breast development in young girls from an agricultural environment". Environmental Health Perspectives. 114 (3): 471–475. doi:10.1289/ehp.8280. PMC 1392245. PMID 16507474.
  53. ^ The National Health and Nutrition Examination Survey III (NHANES III) and the Pediatric Research in Office Settings (PROS)
  54. ^ a b c d e f Wang RY, Needham LL, Barr DB (August 2005). "Effects of environmental agents on the attainment of puberty: considerations when assessing exposure to environmental chemicals in the National Children's Study". Environmental Health Perspectives. 113 (8): 1100–1107. doi:10.1289/ehp.7615. PMC 1280355. PMID 16079085.
  55. ^ a b c Den Hond E, Schoeters G (February 2006). "Endocrine disrupters and human puberty". International Journal of Andrology. 29 (1): 264–71, discussion 286–90. doi:10.1111/j.1365-2605.2005.00561.x. PMID 16466548.
  56. ^ Colón I, Caro D, Bourdony CJ, Rosario O (September 2000). "Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development". Environmental Health Perspectives. 108 (9): 895–900. doi:10.1289/ehp.00108895. PMC 2556932. PMID 11017896.
  57. ^ a b c d e f Rogan WJ, Ragan NB (October 2007). "Some evidence of effects of environmental chemicals on the endocrine system in children". International Journal of Hygiene and Environmental Health. 210 (5): 659–667. doi:10.1016/j.ijheh.2007.07.005. PMC 2245801. PMID 17870664.
  58. ^ Massart F, Meucci V, Saggese G, Soldani G (May 2008). "High growth rate of girls with precocious puberty exposed to estrogenic mycotoxins". The Journal of Pediatrics. 152 (5): 690–5, 695.e1. doi:10.1016/j.jpeds.2007.10.020. PMID 18410776.
  59. ^ a b c d Cesario SK, Hughes LA (2007). "Precocious puberty: a comprehensive review of literature". Journal of Obstetric, Gynecologic, and Neonatal Nursing. 36 (3): 263–274. doi:10.1111/j.1552-6909.2007.00145.x. PMID 17489932.
  60. ^ Partsch CJ, Sippell WG (2001). "Pathogenesis and epidemiology of precocious puberty. Effects of exogenous oestrogens". Human Reproduction Update. 7 (3): 292–302. doi:10.1093/humupd/7.3.292. PMID 11392376.
  61. ^ a b Grün F, Blumberg B (May 2009). "Endocrine disrupters as obesogens". Molecular and Cellular Endocrinology. 304 (1–2): 19–29. doi:10.1016/j.mce.2009.02.018. PMC 2713042. PMID 19433244.
  62. ^ Genuis SJ (September 2006). "Health issues and the environment--an emerging paradigm for providers of obstetrical and gynaecological health care". Human Reproduction. 21 (9): 2201–2208. doi:10.1093/humrep/del181. PMID 16775159.
  63. ^ a b c Meeker JD, Sathyanarayana S, Swan SH (July 2009). "Phthalates and other additives in plastics: human exposure and associated health outcomes". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 364 (1526): 2097–2113. doi:10.1098/rstb.2008.0268. PMC 2873014. PMID 19528058.
  64. ^ Nikaido Y, Yoshizawa K, Danbara N, Tsujita-Kyutoku M, Yuri T, Uehara N, Tsubura A (2004). "Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring". Reproductive Toxicology. 18 (6): 803–811. doi:10.1016/j.reprotox.2004.05.002. PMID 15279878.
  65. ^ Hotchkiss AK, Rider CV, Blystone CR, Wilson VS, Hartig PC, Ankley GT, et al. (October 2008). "Fifteen years after "Wingspread"--environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go". Toxicological Sciences. 105 (2): 235–259. doi:10.1093/toxsci/kfn030. PMC 2721670. PMID 18281716.
  66. ^ Della Seta D, Farabollini F, Dessì-Fulgheri F, Fusani L (November 2008). "Environmental-like exposure to low levels of estrogen affects sexual behavior and physiology of female rats". Endocrinology. 149 (11): 5592–5598. doi:10.1210/en.2008-0113. PMID 18635664. S2CID 28304236.
  67. ^ Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM (January 2007). "Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland". Endocrinology. 148 (1): 116–127. doi:10.1210/en.2006-0561. PMC 2819269. PMID 17023525.
  68. ^ a b c d Acerini CL, Hughes IA (August 2006). "Endocrine disrupting chemicals: a new and emerging public health problem?". Archives of Disease in Childhood. 91 (8): 633–641. doi:10.1136/adc.2005.088500. PMC 2083052. PMID 16861481.
  69. ^ a b c d e Patisaul HB, Adewale HB (2009). "Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior". Frontiers in Behavioral Neuroscience. 3: 10. doi:10.3389/neuro.08.010.2009. PMC 2706654. PMID 19587848.
  70. ^ Degen GH, Bolt HM (September 2000). "Endocrine disruptors: update on xenoestrogens". International Archives of Occupational and Environmental Health. 73 (7): 433–441. Bibcode:2000IAOEH..73..433D. doi:10.1007/s004200000163. PMID 11057411. S2CID 24198566.
  71. ^ Stradtman SC, Freeman JL (August 2021). "Mechanisms of Neurotoxicity Associated with Exposure to the Herbicide Atrazine". Toxics. 9 (9): 207. doi:10.3390/toxics9090207. PMC 8473009. PMID 34564358.
  72. ^ vom Saal FS, Hughes C (August 2005). "An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment". Environmental Health Perspectives. 113 (8): 926–933. doi:10.1289/ehp.7713. PMC 1280330. PMID 16079060.
  73. ^ Reid EE, Wilson E (1944). "The Relation of Estrogenic Activity to Structure in Some 4,4'-Dihydroxydiphenylmethanes". J. Am. Chem. Soc. 66 (6): 967–969. doi:10.1021/ja01234a038.
  74. ^ Ma, Ya; Liu, Haohao; Wu, Jinxia; Yuan, Le; Wang, Yueqin; Du, Xingde; Wang, Rui; Marwa, Phelisters Wegesa; Petlulu, Pavankumar; Chen, Xinghai; Zhang, Huizhen (September 2019). "The adverse health effects of bisphenol a and related toxicity mechanisms". Environmental Research. 176. Bibcode:2019ER....176j8575M. doi:10.1016/j.envres.2019.108575. PMID 31299621. S2CID 196349678. Retrieved 2023-04-12.
  75. ^ Kuruto-Niwa R, Nozawa R, Miyakoshi T, Shiozawa T, Terao Y (January 2005). "Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system". Environmental Toxicology and Pharmacology. 19 (1): 121–130. doi:10.1016/j.etap.2004.05.009. PMID 21783468.
  76. ^ a b Viñas R, Watson CS (March 2013). "Bisphenol S disrupts estradiol-induced nongenomic signaling in a rat pituitary cell line: effects on cell functions". Environmental Health Perspectives. 121 (3): 352–358. doi:10.1289/ehp.1205826. PMC 3621186. PMID 23458715.
  77. ^ a b Gilbert S (2015). Ecological Developmental Biology (2nd ed.). Oxford University Press Academic US. pp. 225–228. ISBN 9781605355429.
  78. ^ Tavakoly Sany SB, Hashim R, Salleh A, Rezayi M, Karlen DJ, Razavizadeh BB, Abouzari-Lotf E (December 2015). "Dioxin risk assessment: mechanisms of action and possible toxicity in human health". Environmental Science and Pollution Research International. 22 (24): 19434–19450. Bibcode:2015ESPR...2219434T. doi:10.1007/s11356-015-5597-x. PMID 26514567. S2CID 9584022.
  79. ^ Watson CS, Jeng YJ, Guptarak J (October 2011). "Endocrine disruption via estrogen receptors that participate in nongenomic signaling pathways". The Journal of Steroid Biochemistry and Molecular Biology. 127 (1–2): 44–50. doi:10.1016/j.jsbmb.2011.01.015. PMC 3106143. PMID 21300151.
  80. ^ Menezes, Ritesh G.; Qadir, Tooba Fatima; Moin, Ariba; Fatima, Huda; Hussain, Syed Ather; Madadin, Mohammed; Pasha, Syed Bilal; Al Rubaish, Fatima A.; Senthilkumaran, S. (October 2017). "Endosulfan poisoning: An overview". Journal of Forensic and Legal Medicine. 51: 27–33. doi:10.1016/j.jflm.2017.07.008. PMID 28734199. S2CID 12535174. Retrieved 2023-03-28.
  81. ^ Jagić K, Dvoršćak M, Klinčić D (December 2021). "Analysis of brominated flame retardants in the aquatic environment: a review". Arhiv Za Higijenu Rada I Toksikologiju. 72 (4): 254–267. doi:10.2478/aiht-2021-72-3576. PMC 8785114. PMID 34985845.
  82. ^ "Polybrominated Diphenyl Ethers (PBDEs) | Toxic Substances | Toxic Substance Portal | ATSDR". wwwn.cdc.gov. Retrieved 2023-03-29.
  83. ^ Zhang MZ, Chu SS, Xia YK, Wang DD, Wang X (October 2021). "Environmental exposure during pregnancy and the risk of childhood allergic diseases". World Journal of Pediatrics. 17 (5): 467–475. doi:10.1007/s12519-021-00448-7. PMID 34476758. S2CID 237395252.
  84. ^ Nilsson R (2000). "Endocrine modulators in the food chain and environment". Toxicologic Pathology. 28 (3): 420–431. doi:10.1177/019262330002800311. PMID 10862560. S2CID 34979477.
  85. ^ Wang Y, Qian H (May 2021). "Phthalates and Their Impacts on Human Health". Healthcare. 9 (5): 603. doi:10.3390/healthcare9050603. PMC 8157593. PMID 34069956.
  86. ^ US Food and Drug Administration. "21CFR522.2680". Retrieved 14 June 2014.
  87. ^ Health Canada (2012-09-05). "Questions and Answers - Hormonal Growth Promoters". Retrieved 14 June 2014. There are six hormonal growth promoters approved in Canada for use in beef cattle: three natural - progesterone, testosterone and estradiol-17ß; and three synthetic - trenbolone acetate (TBA), zeranol and melengestrol acetate (MGA).
  88. ^ Agriculture and Fisheries (including Agro-industry, Food technologies, Forestry, Aquaculture and Rural Development) . . European Commission. Archived from the original on March 5, 2016. Retrieved 14 June 2014. The use of zeranol for growth promotion in food animals was banned in the EU in 1985.
  89. ^ Pair call for public discourse on treating wastewater contaminated with birth control pill chemicals, Phys.org

External links edit

  • How to avoid xenoestrogens

xenoestrogen, type, xenohormone, that, imitates, estrogen, they, either, synthetic, natural, chemical, compounds, synthetic, xenoestrogens, include, some, widely, used, industrial, compounds, such, pcbs, phthalates, which, have, estrogenic, effects, living, or. Xenoestrogens are a type of xenohormone that imitates estrogen They can be either synthetic or natural chemical compounds Synthetic xenoestrogens include some widely used industrial compounds such as PCBs BPA and phthalates which have estrogenic effects on a living organism even though they differ chemically from the estrogenic substances produced internally by the endocrine system of any organism Natural xenoestrogens include phytoestrogens which are plant derived xenoestrogens Because the primary route of exposure to these compounds is by consumption of phytoestrogenic plants they are sometimes called dietary estrogens Mycoestrogens estrogenic substances from fungi are another type of xenoestrogen that are also considered mycotoxins 1 2 Xenoestrogens are clinically significant because they can mimic the effects of endogenous estrogen and thus have been implicated in precocious puberty and other disorders of the reproductive system 3 4 Xenoestrogens include pharmacological estrogens in which estrogenic action is an intended effect as in the drug ethinylestradiol used in contraceptive pills but other chemicals may also have estrogenic effects Xenoestrogens have been introduced into the environment by industrial agricultural and chemical companies and consumers only in the last 70 years or so but archiestrogens exist naturally Some plants like the cereals and the legumes are using estrogenic substances possibly as part of their natural defence against herbivore animals by controlling their fertility 5 6 The potential ecological and human health impact of xenoestrogens is of growing concern 7 The word xenoestrogen is derived from the Greek words 3eno xeno meaning foreign oἶstros estrus meaning sexual desire and gono gene meaning to generate and literally means foreign estrogen Xenoestrogens are also called environmental hormones or EDC Endocrine Disrupting Compounds Most scientists that study xenoestrogens including The Endocrine Society regard them as serious environmental hazards that have hormone disruptive effects on both wildlife and humans 8 9 10 11 12 Contents 1 Mechanism of action 2 Effects 2 1 Impact 2 2 Precocious puberty 2 2 1 Thelarche in Puerto Rico 2 2 2 Tuscany precocious puberty cases 2 2 3 Dairy contamination 2 2 4 Fish contamination 2 2 5 Implications 2 3 In other animals 3 Common environmental estrogens 3 1 Atrazine 3 2 BPA 3 3 DDT 3 4 Dioxin 3 5 Endosulfan 3 6 Brominated Flame Retardants BFRs 3 7 PCBs 3 8 Phthalates 3 9 Zeranol 3 10 Miscellaneous 4 See also 5 References 6 External linksMechanism of action editThe onset of puberty is characterized by increased levels of hypothalamic gonadotropin releasing hormone GnRH GnRH triggers the secretion of luteinizing hormone LH and follicle stimulating hormone FSH from the anterior pituitary gland which in turn causes the ovaries to respond and secrete estradiol Increases in gonadal estrogen promote breast development female fat distribution and skeletal growth Adrenal androgen and gonadal androgen result in pubic and axillary hair 13 14 Peripheral precocious puberty caused by exogenous estrogens is evaluated by assessing decreased levels of gonadotrophins 15 Xenoestrogens in plastics packaged food drink trays and containers more so when they ve been heated in the Sun or an oven may interfere with pubertal development by actions at different levels hypothalamic pituitary axis gonads peripheral target organs such as the breast hair follicles and genitals Exogenous chemicals that mimic estrogen can alter the functions of the endocrine system and cause various health defects by interfering with synthesis metabolism binding or cellular responses of natural estrogens 14 16 17 18 Although the physiology of the reproductive system is complex the action of environmental exogenous estrogens is hypothesized to occur by two possible mechanisms Xenoestrogens may temporarily or permanently alter the feedback loops in the brain pituitary gonads and thyroid by mimicking the effects of estrogen and triggering their specific receptors or they may bind to hormone receptors and block the action of natural hormones Thus it is plausible that environmental estrogens can accelerate sexual development if present in a sufficient concentration or with chronic exposure 16 18 19 20 The similarity in the structure of exogenous estrogens and the estrogens has changed the hormone balance within the body and resulted in various reproductive problems in females 14 The overall mechanism of action is binding of the exogenous compounds that mimic estrogen to the estrogen binding receptors and cause the determined action in the target organs 21 vte Affinities of estrogen receptor ligands for the ERa and ERb Ligand Other names Relative binding affinities RBA a Absolute binding affinities Ki nM a ActionERa ERb ERa ERbEstradiol E2 17b Estradiol 100 100 0 115 0 04 0 24 0 15 0 10 2 08 EstrogenEstrone E1 17 Ketoestradiol 16 39 0 7 60 6 5 1 36 52 0 445 0 3 1 01 1 75 0 35 9 24 EstrogenEstriol E3 16a OH 17b E2 12 65 4 03 56 26 14 0 44 6 0 45 0 35 1 4 0 7 0 63 0 7 EstrogenEstetrol E4 15a 16a Di OH 17b E2 4 0 3 0 4 9 19 EstrogenAlfatradiol 17a Estradiol 20 5 7 80 1 8 195 2 42 0 2 0 52 0 43 1 2 Metabolite16 Epiestriol 16b Hydroxy 17b estradiol 7 795 4 94 63 50 Metabolite17 Epiestriol 16a Hydroxy 17a estradiol 55 45 29 103 79 80 Metabolite16 17 Epiestriol 16b Hydroxy 17a estradiol 1 0 13 Metabolite2 Hydroxyestradiol 2 OH E2 22 7 81 11 35 2 5 1 3 Metabolite2 Methoxyestradiol 2 MeO E2 0 0027 2 0 1 0 Metabolite4 Hydroxyestradiol 4 OH E2 13 8 70 7 56 1 0 1 9 Metabolite4 Methoxyestradiol 4 MeO E2 2 0 1 0 Metabolite2 Hydroxyestrone 2 OH E1 2 0 4 0 0 2 0 4 Metabolite2 Methoxyestrone 2 MeO E1 lt 0 001 lt 1 lt 1 Metabolite4 Hydroxyestrone 4 OH E1 1 0 2 0 1 0 Metabolite4 Methoxyestrone 4 MeO E1 lt 1 lt 1 Metabolite16a Hydroxyestrone 16a OH E1 17 Ketoestriol 2 0 6 5 35 Metabolite2 Hydroxyestriol 2 OH E3 2 0 1 0 Metabolite4 Methoxyestriol 4 MeO E3 1 0 1 0 MetaboliteEstradiol sulfate E2S Estradiol 3 sulfate lt 1 lt 1 MetaboliteEstradiol disulfate Estradiol 3 17b disulfate 0 0004 MetaboliteEstradiol 3 glucuronide E2 3G 0 0079 MetaboliteEstradiol 17b glucuronide E2 17G 0 0015 MetaboliteEstradiol 3 gluc 17b sulfate E2 3G 17S 0 0001 MetaboliteEstrone sulfate E1S Estrone 3 sulfate lt 1 lt 1 gt 10 gt 10 MetaboliteEstradiol benzoate EB Estradiol 3 benzoate 10 EstrogenEstradiol 17b benzoate E2 17B 11 3 32 6 EstrogenEstrone methyl ether Estrone 3 methyl ether 0 145 Estrogenent Estradiol 1 Estradiol 1 31 12 34 9 44 80 07 EstrogenEquilin 7 Dehydroestrone 13 4 0 28 9 13 0 49 0 79 0 36 EstrogenEquilenin 6 8 Didehydroestrone 2 0 15 7 0 20 0 64 0 62 Estrogen17b Dihydroequilin 7 Dehydro 17b estradiol 7 9 113 7 9 108 0 09 0 17 Estrogen17a Dihydroequilin 7 Dehydro 17a estradiol 18 6 18 41 14 32 0 24 0 57 Estrogen17b Dihydroequilenin 6 8 Didehydro 17b estradiol 35 68 90 100 0 15 0 20 Estrogen17a Dihydroequilenin 6 8 Didehydro 17a estradiol 20 49 0 50 0 37 EstrogenD8 Estradiol 8 9 Dehydro 17b estradiol 68 72 0 15 0 25 EstrogenD8 Estrone 8 9 Dehydroestrone 19 32 0 52 0 57 EstrogenEthinylestradiol EE 17a Ethynyl 17b E2 120 9 68 8 480 44 4 2 0 144 0 02 0 05 0 29 0 81 EstrogenMestranol EE 3 methyl ether 2 5 EstrogenMoxestrol RU 2858 11b Methoxy EE 35 43 5 20 0 5 2 6 EstrogenMethylestradiol 17a Methyl 17b estradiol 70 44 EstrogenDiethylstilbestrol DES Stilbestrol 129 5 89 1 468 219 63 61 2 295 0 04 0 05 EstrogenHexestrol Dihydrodiethylstilbestrol 153 6 31 302 60 234 0 06 0 06 EstrogenDienestrol Dehydrostilbestrol 37 20 4 223 56 404 0 05 0 03 EstrogenBenzestrol B2 114 EstrogenChlorotrianisene TACE 1 74 15 30 EstrogenTriphenylethylene TPE 0 074 EstrogenTriphenylbromoethylene TPBE 2 69 EstrogenTamoxifen ICI 46 474 3 0 1 47 3 33 0 28 6 3 4 9 69 2 5 SERMAfimoxifene 4 Hydroxytamoxifen 4 OHT 100 1 1 7 257 10 0 98 339 2 3 0 1 3 61 0 04 4 8 SERMToremifene 4 Chlorotamoxifen 4 CT 7 14 20 3 15 4 SERMClomifene MRL 41 25 19 2 37 2 12 0 9 1 2 SERMCyclofenil F 6066 Sexovid 151 152 243 SERMNafoxidine U 11 000A 30 9 44 16 0 3 0 8 SERMRaloxifene 41 2 7 8 69 5 34 0 54 16 0 188 0 52 20 2 SERMArzoxifene LY 353 381 0 179 SERMLasofoxifene CP 336 156 10 2 166 19 0 0 229 SERMOrmeloxifene Centchroman 0 313 SERMLevormeloxifene 6720 CDRI NNC 460 020 1 55 1 88 SERMOspemifene Deaminohydroxytoremifene 0 82 2 63 0 59 1 22 SERMBazedoxifene 0 053 SERMEtacstil GW 5638 4 30 11 5 SERMICI 164 384 63 5 3 70 97 7 166 0 2 0 08 AntiestrogenFulvestrant ICI 182 780 43 5 9 4 325 21 65 2 05 40 5 0 42 1 3 AntiestrogenPropylpyrazoletriol PPT 49 10 0 89 1 0 12 0 40 92 8 ERa agonist16a LE2 16a Lactone 17b estradiol 14 6 57 0 089 0 27 131 ERa agonist16a Iodo E2 16a Iodo 17b estradiol 30 2 2 30 ERa agonistMethylpiperidinopyrazole MPP 11 0 05 ERa antagonistDiarylpropionitrile DPN 0 12 0 25 6 6 18 32 4 1 7 ERb agonist8b VE2 8b Vinyl 17b estradiol 0 35 22 0 83 12 9 0 50 ERb agonistPrinaberel ERB 041 WAY 202 041 0 27 67 72 ERb agonistERB 196 WAY 202 196 180 ERb agonistErteberel SERBA 1 LY 500 307 2 68 0 19 ERb agonistSERBA 2 14 5 1 54 ERb agonistCoumestrol 9 225 0 0117 94 64 125 0 41 185 0 14 80 0 0 07 27 0 XenoestrogenGenistein 0 445 0 0012 16 33 42 0 86 87 2 6 126 0 3 12 8 XenoestrogenEquol 0 2 0 287 0 85 0 10 2 85 XenoestrogenDaidzein 0 07 0 0018 9 3 0 7865 0 04 17 1 2 0 85 3 XenoestrogenBiochanin A 0 04 0 022 0 15 0 6225 0 010 1 2 174 8 9 XenoestrogenKaempferol 0 07 0 029 0 10 2 2 0 002 3 00 XenoestrogenNaringenin 0 0054 lt 0 001 0 01 0 15 0 11 0 33 Xenoestrogen8 Prenylnaringenin 8 PN 4 4 XenoestrogenQuercetin lt 0 001 0 01 0 002 0 040 XenoestrogenIpriflavone lt 0 01 lt 0 01 XenoestrogenMiroestrol 0 39 XenoestrogenDeoxymiroestrol 2 0 Xenoestrogenb Sitosterol lt 0 001 0 0875 lt 0 001 0 016 XenoestrogenResveratrol lt 0 001 0 0032 Xenoestrogena Zearalenol 48 13 52 5 Xenoestrogenb Zearalenol 0 6 0 032 13 XenoestrogenZeranol a Zearalanol 48 111 XenoestrogenTaleranol b Zearalanol 16 13 17 8 14 0 8 0 9 XenoestrogenZearalenone ZEN 7 68 2 04 28 9 45 2 43 31 5 XenoestrogenZearalanone ZAN 0 51 XenoestrogenBisphenol A BPA 0 0315 0 008 1 0 0 135 0 002 4 23 195 35 XenoestrogenEndosulfan EDS lt 0 001 lt 0 01 lt 0 01 XenoestrogenKepone Chlordecone 0 0069 0 2 Xenoestrogeno p DDT 0 0073 0 4 Xenoestrogenp p DDT 0 03 XenoestrogenMethoxychlor p p Dimethoxy DDT 0 01 lt 0 001 0 02 0 01 0 13 XenoestrogenHPTE Hydroxychlor p p OH DDT 1 2 1 7 XenoestrogenTestosterone T 4 Androstenolone lt 0 0001 lt 0 01 lt 0 002 0 040 gt 5000 gt 5000 AndrogenDihydrotestosterone DHT 5a Androstanolone 0 01 lt 0 001 0 05 0 0059 0 17 221 gt 5000 73 1688 AndrogenNandrolone 19 Nortestosterone 19 NT 0 01 0 23 765 53 AndrogenDehydroepiandrosterone DHEA Prasterone 0 038 lt 0 001 0 04 0 019 0 07 245 1053 163 515 Androgen5 Androstenediol A5 Androstenediol 6 17 3 6 0 9 Androgen4 Androstenediol 0 5 0 6 23 19 Androgen4 Androstenedione A4 Androstenedione lt 0 01 lt 0 01 gt 10000 gt 10000 Androgen3a Androstanediol 3a Adiol 0 07 0 3 260 48 Androgen3b Androstanediol 3b Adiol 3 7 6 2 AndrogenAndrostanedione 5a Androstanedione lt 0 01 lt 0 01 gt 10000 gt 10000 AndrogenEtiocholanedione 5b Androstanedione lt 0 01 lt 0 01 gt 10000 gt 10000 AndrogenMethyltestosterone 17a Methyltestosterone lt 0 0001 AndrogenEthinyl 3a androstanediol 17a Ethynyl 3a adiol 4 0 lt 0 07 EstrogenEthinyl 3b androstanediol 17a Ethynyl 3b adiol 50 5 6 EstrogenProgesterone P4 4 Pregnenedione lt 0 001 0 6 lt 0 001 0 010 ProgestogenNorethisterone NET 17a Ethynyl 19 NT 0 085 0 0015 lt 0 1 0 1 0 01 0 3 152 1084 ProgestogenNorethynodrel 5 10 Norethisterone 0 5 0 3 0 7 lt 0 1 0 22 14 53 ProgestogenTibolone 7a Methylnorethynodrel 0 5 0 45 2 0 0 2 0 076 ProgestogenD4 Tibolone 7a Methylnorethisterone 0 069 lt 0 1 0 027 lt 0 1 Progestogen3a Hydroxytibolone 2 5 1 06 5 0 0 6 0 8 Progestogen3b Hydroxytibolone 1 6 0 75 1 9 0 070 0 1 ProgestogenFootnotes a 1 Binding affinity values are of the format median range range or value depending on the values available The full sets of values within the ranges can be found in the Wiki code 2 Binding affinities were determined via displacement studies in a variety of in vitro systems with labeled estradiol and human ERa and ERb proteins except the ERb values from Kuiper et al 1997 which are rat ERb Sources See template page Effects editXenoestrogens have been implicated in a variety of medical problems and during the last 10 years many scientific studies have found hard evidence of adverse effects on human and animal health 33 There is a concern that xenoestrogens may act as false messengers and disrupt the process of reproduction Xenoestrogens like all estrogens can increase growth of the endometrium so treatments for endometriosis include avoidance of products which contain them Likewise they are avoided in order to prevent the onset or aggravation of adenomyosis Studies have implicated observations of disturbances in wildlife with estrogenic exposure For example discharge from human settlement including runoff and water flowing out of wastewater treatment plants release a large amount of xenoestrogens into streams which lead to immense alterations in aquatic life With a bioaccumulation factor of 105 106 fish are extremely susceptible to pollutants 34 Streams in more arid conditions are thought to have more effects due to higher concentrations of the chemicals arising from lack of dilution 35 When comparing fish from above a wastewater treatment plant and below a wastewater treatment plant studies found disrupted ovarian and testicular histopathology gonadal intersex reduced gonad size vitellogenin induction and altered sex ratios 35 The sex ratios are female biased because xenoestrogens interrupt gonadal configuration causing complete or partial sex reversal When comparing adjacent populations of white sucker fish the exposed female fish can have up to five oocyte stages and asynchronously developing ovaries versus the unexposed female fish who usually have two oocyte stages and group synchronously developing ovaries Previously this type of difference has only been found between tropical and temperate species 35 Sperm concentrations and motility perimeters are reduced in male fish exposed to xenoestrogens in addition to disrupt stages of spermatogenesis 24 35 Moreover xenoestrogens have been leading to vast amounts of intersex in fish For example one study indicates the numbers of intersex in white sucker fish to be equal to the number of males in the population downstream of a waste water treatment plant No intersex members were found upstream from the plant Also they found differences in the proportion of testicular and ovarian tissue and its degree of organization between the intersex fish 35 Furthermore xenoestrogens expose fish to CYP1A inducers through inhibiting a putative labile protein and enhancing the Ah receptor which has been linked to epizootics of cancer and the initiation of tumors 34 The induction of CYP1A has been established to be a good bioindicator for xenoestrogen exposure In addition xenoestrogens stimulate vitellogenin Vtg which acts as a nutrient reserve and Zona readiata proteins Zrp which forms eggshells Therefore Vtg and Zrp are biomarkers to exposure for fish 36 Another potential effect of xenoestrogens is on oncogenes specifically in relation to breast cancer Some scientists doubt that xenoestrogens have any significant biological effect in the concentrations found in the environment 37 However there is substantial evidence in a variety of recent studies to indicate that xenoestrogens can increase breast cancer growth in tissue culture 38 39 40 41 It has been suggested that very low levels of a xenoestrogen Bisphenol A could affect fetal neural signalling more than higher levels indicating that classical models where dose equals response may not be applicable in susceptible tissue 42 As this study involved intra cerebellar injections its relevance to environmental exposures is unclear as is the role of an estrogenic effect compared to some other toxic effect of bisphenol A Other scientists argue that the observed effects are spurious and inconsistent or that the quantities of the agents are too low to have any effect 43 A 1997 survey of scientists in fields pertinent to evaluating estrogens found that 13 percent regarded the health threats from xenoestrogens as major 62 percent as minor or none and 25 percent were unsure 44 There has been speculation that falling sperm counts in males may be due to increased estrogen exposure in utero 45 Sharpe in a 2005 review indicated that external estrogenic substances are too weak in their cumulative effects to alter male reproductive functioning but indicates that the situation appears to be more complex as external chemicals may affect the internal testosterone estrogen balance 46 Impact edit The ubiquitous presence of such estrogenic substances is a significant health concern both individually and for a population Life relies on the transmission of biochemical information to the next generation and the presence of xenoestrogens may interfere with this transgenerational information process through chemical confusion Vidaeff and Sever 47 who state The results do not support with certainty the view that environmental estrogens contribute to an increase in male reproductive disorders neither do they provide sufficient grounds to reject such a hypothesis A 2008 report demonstrates further evidence of widespread effects of feminizing chemicals on male development in each class of vertebrate species as a worldwide phenomenon 48 Ninety nine percent of over 100 000 recently introduced chemicals are underregulated according to the European Commission 48 Agencies such as the United States Environmental Protection Agency and the World Health Organization International Programme on Chemical Safety are charged to address these issues citation needed Precocious puberty edit Puberty is a complex developmental process defined as the transition from childhood to adolescence and adult reproductive function 13 19 49 The first sign of female puberty is an acceleration of growth followed by the development of a palpable breast bud thelarche The median age of thelarche is 9 8 years Although the sequence may be reversed androgen dependent changes such as growth of axillary and pubic hair body odor and acne adrenarche usually appears 2 years later Onset of menstruation menarche is a late event median 12 8 years occurring after the peak of growth has passed 13 Puberty is considered precocious precocious puberty if secondary sex characteristics occur before the age of 8 in girls and 9 years in boys 13 15 Increased growth is often the first change in precocious puberty followed by breast development and growth of pubic hair However thelarche adrenarche and linear growth clarification needed can occur simultaneously and although uncommon menarche can be the first sign 13 Precocious puberty can be classified into central gonadotropin dependent precocious puberty or peripheral gonadotropin independent puberty 13 19 Peripheral precocious puberty has been linked to exposure to exogenous estrogenic compounds Age of onset of puberty is influenced by many factors such as genetics nutritional status ethnicity and environmental factors including socio economic conditions and geographical location 3 50 A decline of age at onset of puberty from 17 years of age to 13 years of age has occurred over a period of 200 years until the middle of the 20th century 3 16 49 Trends toward earlier puberty have been attributed to improved public health and living conditions 51 A leading hypothesis for this change toward early puberty is improved nutrition resulting in rapid body growth increased weight and fat deposition 52 However many opponents believe that chemical exposure may play a role Two recent epidemiologic studies in the United States PROS and NMANES III 53 highlighted a recent unexpected advance in sexual maturation in girls 3 4 54 American European and Asian studies suggest breast development in girls occurs at a much younger age than a few decades ago irrespective of race and socioeconomic conditions 16 49 52 Environmental chemical exposure is one of the factors implicated in the recent downward trend of earlier sexual maturation 16 49 54 Thelarche in Puerto Rico edit Since 1979 pediatric endocrinologists in Puerto Rico recognized an increase in number of patients with premature thelarche 55 The presence of phthalates were measured in the blood of 41 girls experiencing early onset breast development and matched set of controls The average age of girls with premature thelarche was 31 months They found high phthalate levels in the girls suffering from premature thelarche compared to the controls 56 Not all cases of premature thelarche in the study sample contained elevated levels of phthalate esters and there was concern whether artificial contamination from vinyl lab equipment and tubing invalidated the results hence weakening the link between exposure and causation 55 57 Tuscany precocious puberty cases edit Dr Massart and colleagues from the University of Pisa studied the increased prevalence of precocious puberty in a region of northwest Tuscany This region of Italy is represented by a high density of navy yards and greenhouses where exposures to pesticides and mycoestrogens estrogens produced by fungi are common Although unable to identify a definitive cause of the high rates of precocious puberty the authors concluded environmental pesticides and herbicides may be implicated 58 Dairy contamination edit Animal feed was contaminated with several thousand pounds of polybrominated biphenyl in Michigan in 1973 resulting in high exposures of PBB in the population via milk and other products from contaminated cows Perinatal exposure of children was estimated by measuring PBB in serum of mothers some years after exposure Girls that had been exposed to high PBB levels through lactation had an earlier age of menarche and pubic hair development than girls who had less perinatal exposure The study noted there no differences found in the timing of breast development among the cases and controls 16 20 57 Fish contamination edit The Great Lakes have been polluted with industrial wastes mainly PCBs and DDT since the beginning of the 20th century These compounds have accumulated in birds and sports fish A study was designed to assess the impact of consumption of contaminated fish on pregnant women and their children Concentrations of maternal serum PCB and DDE and their daughters age at menarche were reviewed In multivariate analysis DDE but not PCB was linked with a lowered age of menarche 20 55 57 Limitations of the study included indirect measurement of the exposure and self reporting of menarche 20 Implications edit Precocious puberty has numerous significant physical psychological and social implications for a young girl Unfortunately premature pubertal growth spurt and accelerated bone maturation will result in premature closure of distal epiphysis which causes reduced adult height and short stature 59 In 1999 US Food and Drug Administration has recommended to not take estrogen in food of more than 3 24 ng per day for females 60 Precocious puberty has also been implicated in pediatric and adult obesity 54 59 Some studies have suggested precocious puberty places girls at a higher risk of breast cancer later in life 54 Precocious puberty is linked with other gynecologic disorders such as endometriosis adenomyosis polycystic ovarian syndrome and infertility 17 61 62 Precocious puberty can lead to psychosocial distress a poor self image and poor self esteem Girls with secondary sex characteristics at such a young age are more likely to be bullied and suffer from sexual abuse 17 61 Studies indicate that girls who become sexually mature at earlier ages are also more likely to engage in risk taking behaviors such as smoking alcohol or drug use and engage in unprotected sex 59 The current literature is inadequate to provide the information we need to assess the extent to which environmental chemicals contribute to precocious puberty 54 Gaps in our knowledge are the result of limitations in the designs of studies small sample sizes challenges to conducting exposure assessment and the few number of chemicals studied 54 Unfortunately exposure is inferred and not actually measured in available studies 17 The ability to detect the possible role of chemicals in altering pubertal development is confounded by many nutritional genetic and lifestyle factors capable of affecting puberty and the complex nature of the reproductive endocrine system 52 63 Other research challenges include shifts in exposure levels among populations over time and simultaneous exposures to multiple compounds 63 Overall the literature does not with certainty support the contention that environmental chemicals or dietary factors are having widespread effects on human sexual development However data does not refute such a hypothesis either Accelerated sexual development is plausible in individuals exposed to high concentration of estrogenic substances There is a concerning steady increase in exposure to a wide variety of xenoestrogens in the industrial world Further research is needed to assess the impact of these compounds on pubertal development citation needed In other animals edit Non human animal studies have shown that exposure to environmental contaminants with estrogenic activity can accelerate the onset of puberty A potential mechanism has been described in rats exposed to DDT or beta estradiol in which GnRH pulsatile secretion was found to be increased 20 64 Oral exposure of female rats to xenoestrogens has been shown to cause pseudo precocious puberty early vaginal opening and early first estrus 50 65 66 67 A study of dioxin in immature female rats induced early follicular development 68 and phthalates are known to decrease the anogenital distance in newborn rats 57 Although this article focuses on the effects of xenoestrogens and reproductive function in females numerous animal studies also implicate environmental estrogens and androgens adverse effects on the male reproduction system 68 Administration of estrogens to developing male animals reduces testicular weight and decreases sperm production 18 The small phallus size of male alligators has been linked to contamination of their natural Florida habitat with DDT 59 68 Data from animal research is abundant demonstrating the adverse effects on reproduction of hormonally active compounds found in the environment 18 68 69 70 Common environmental estrogens editAtrazine edit Atrazine is widely used as an herbicide to control broad leaf weed species that grow in crops such as corn sugarcane hay and winter wheat Atrazine is also applied to Christmas trees residential lawns golf courses and other recreational areas Atrazine is the second largest selling pesticide in the world and estimated to be the most heavily used herbicide in the United States 14 Atrazine has been implicated in interfering with the neuroendocrine system blocking the release of gonadotropin releasing hormone GnRH which in turn reduces luteinizing hormone LH and follicle stimulating hormone FSH levels 71 BPA edit BPA Bisphenol A is the monomer used to manufacture polycarbonate plastic and epoxy resins used as a lining in most food and beverage cans BPA global capacity is in excess of 6 4 billion pounds 2 9 109 kg per year and thus is one of the highest volume chemicals produced worldwide 72 The ester bonds in the BPA based polycarbonates could be subject to hydrolysis and leaching of BPA But in the case of epoxypolymers formed from bisphenol A it is not possible to release bisphenol A by such a reaction It is also noteworthy that of the bisphenols bisphenol A is a weak xenoestrogen Other compounds such as bisphenol Z have been shown to have stronger estrogenic effects in rats 73 It has been suggested that biphenol A and other xenoestrogens might cause disease to humans 63 and animals 69 BPA exposure is linked to dysfunctions in human systems including the immune neuroendocrine and excretory systems The damage that results in these dysfunctions is via the mechanisms of enzyme interference cellular oxidation epigenetic changes and the breaking of DNA strands 74 Bisphenol S BPS an analog of BPA has also been shown to alter estrogenic activity 75 76 One study demonstrated that when cultured rat pituitary cells were exposed to low levels of BPS it altered the estrogen estradiol signaling pathway and led to the inappropriate release of prolactin 76 DDT edit DDT Dichlorodiphenyltrichloroethane was widely used in pesticides for agricultural purposes until it was banned in 1972 in the United States DDT s hazardous effects on the environment include being linked to the production of fragile eggshells in birds and showed a 90 decline in the birth rates of alligators 77 Though it is banned in the United States DDT continues to be used in many parts of the world for agricultural use insect control and to fight the spread of malaria 14 17 57 69 DDT and its metabolites DDE and DDD are persistent in the environment and accumulate in fatty tissues In vertebrates DDT is unable to be broken down and remains within the organism There is little risk of DDT causing an increase in health risk upon exposure in adulthood but in key developmental periods prenatally and in adolescence there has been evidence to suggest an increased risk of breast cancer 77 Dioxin edit Dioxin a group of highly toxic chemicals are released during combustion processes pesticide manufacturing and chlorine bleaching of wood pulp Dioxin is discharged into waterways from pulp and paper mills Consumption of animals fats is thought to be the primary pathway for human exposure 14 17 51 The connection between dioxin and dioxin like compound DLC exposure and human disease is one not well established Bioassays performed in animals does not show a strong connection between the two 78 Endosulfan edit Endosulfan is an insecticide used on numerous vegetables fruits cereal grains and trees Endosulfan can be produced as a liquid concentrate wettable powder or smoke tablet Human exposure occurs through food consumption or ground and surface water contamination 14 79 Endosulfan exposure is known to cause seizures that are the result of hyper stimulation of the central nervous system CNS Upon significant exposure and accumulation in the system toxicity of the major organs such as the heart liver and kidneys has been reported and can lead to death within hours 80 Brominated Flame Retardants BFRs edit Both PBBs and PBDEs belong to the same class of chemicals known as brominated flame retardants 81 PBBs Polybrominated biphenyls are chemicals added to plastics used in computer monitors televisions textiles and plastics foams to make them more difficult to burn Manufacturing of PBBs in the United States stopped in 1976 however because they do not degrade easily PBBs continue to be found in soil water and air PBDEs Polybrominated biphenyl ethers behave similarly to PBBs in that they are also a flame retardant PBDEs are not chemically bound to the items they are attached to and thus can leech into the environment 82 14 20 69 PCBs edit PCBs Polychlorinated biphenyls are man made organic chemicals known as chlorinated hydrocarbons PCBs were manufactured primarily for use as insulating fluids and coolants given their chemical stability low flammability and electrical insulating properties PCBs were banned in 1979 but like DDT continue to persist in the environment 14 17 57 The effects of PCBs are not limited to the environment There have been associations revealed between maternal PCB levels and conditions such as asthma eczema roseola and upper respiratory infections 83 Phthalates edit Phthalates are plasticizers providing durability and flexibility to plastics such as polyvinyl chloride High molecular weight phthalates are used in flooring wall coverings and medical device such as intravenous bags and tubing Low molecular weight phthalates are found in perfumes lotions cosmetics varnishes lacquers and coatings including timed releases in pharmaceuticals 14 69 84 Exposure to phthalates can have varying effects in humans depending on maturity In adults phthalate exposure has been linked to conditions like asthma metabolic disorders like type II diabetes and insulin resistance allergies and asthma In children exposure to phthalates has a marked difference when compared to adults having been associated with disrupted reproductive hormone levels and thyroid function 85 Zeranol edit Zeranol is currently used as an anabolic growth promoter for livestock in the US 86 and Canada 87 It has been banned in the EU since 1985 88 but is still present as a contaminant in food through meat products that were exposed to it 14 Miscellaneous edit alkylphenols intermediate chemicals used in the manufacture of other chemicals 4 Methylbenzylidene camphor 4 MBC sunscreen lotions bisphenol S BPS an analog of BPA butylated hydroxyanisole BHA food preservative dichlorodiphenyldichloroethylene one of the breakdown products of DDT dieldrin banned insecticide DDT banned insecticide endosulfan widely banned insecticide erythrosine FD amp C Red No 3 E127 ethinylestradiol combined oral contraceptive pill released into the environment as a xenoestrogen 89 heptachlor restricted insecticide lindane hexachlorocyclohexane restricted insecticide metalloestrogens a class of inorganic xenoestrogens methoxychlor banned insecticide nonylphenol and derivatives industrial surfactants emulsifiers for emulsion polymerization laboratory detergents pesticides pentachlorophenol restricted general biocide and wood preservative polychlorinated biphenyls PCBs banned formerly used in electrical oils lubricants adhesives paints parabens lotions phthalates plasticizers DEHP plasticizer for PVC Propyl gallate used to protect oils and fats in products from carbonization See also editDiethylstilbestrol obsolete pharmacological estrogen Endocrine disruptor Environmental exogenous hormones Environmental impact of pharmaceuticals and personal care products Environmental xenobiotic Epidemiology and etiology of breast cancer List of breast carcinogenic substances Phytoestrogens SULT2B1 Xenobiotic XenoandrogenReferences edit Paterni Ilaria Granchi Carlotta Minutolo Filippo 2017 11 02 Risks and benefits related to alimentary exposure to xenoestrogens Critical Reviews in Food Science and Nutrition 57 16 3384 3404 doi 10 1080 10408398 2015 1126547 ISSN 1040 8398 PMC 6104637 PMID 26744831 Wang Xiaoqiang Ha Desiree Yoshitake Ryohei Chan Yin S Sadava David Chen Shiuan 2021 08 16 Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers Emerging Methods and Concepts International Journal of Molecular Sciences 22 16 8798 doi 10 3390 ijms22168798 ISSN 1422 0067 PMC 8395949 PMID 34445499 a b c d Aksglaede L Juul A Leffers H Skakkebaek NE Andersson AM 2006 The sensitivity of the child to sex steroids possible impact of exogenous estrogens Human Reproduction Update 12 4 341 349 doi 10 1093 humupd dml018 PMID 16672247 a b Herman Giddens ME Slora EJ Wasserman RC Bourdony CJ Bhapkar MV Koch GG Hasemeier CM April 1997 Secondary sexual characteristics and menses in young girls seen in office practice a study from the Pediatric Research in Office Settings network Pediatrics 99 4 505 512 doi 10 1542 peds 99 4 505 PMID 9093289 Hughes CL June 1988 Phytochemical mimicry of reproductive hormones and modulation of herbivore fertility by phytoestrogens Environmental Health Perspectives 78 171 174 doi 10 1289 ehp 8878171 PMC 1474615 PMID 3203635 Bentley GR Mascie Taylor CG November 2000 Wild life studies Infertility in the modern world present and future prospects Cambridge University Press pp 99 100 ISBN 978 0 521 64387 0 Korach KS 1998 Reproductive and Developmental Toxicology Marcel Dekker Ltd pp 278 279 294 295 ISBN 978 0 8247 9857 4 Bern HA Blair P Brasseur S Colborn T Cunha GR Davis W et al 1992 Statement from the Work Session on Chemically Induced Alterations in Sexual Development The Wildlife Human Connection PDF In Clement C Colborn T eds Chemically induced alterations in sexual and functional development the wildlife human connection Princeton N J Princeton Scientific Pub Co pp 1 8 ISBN 978 0 911131 35 2 Archived from the original PDF on 2013 05 24 Retrieved 2010 11 16 Colborn T May 1995 Statement from the Work Session on Environmentally induced Alterations in Development A Focus on Wildlife Environmental Health Perspectives 103 Suppl 4 3 5 doi 10 2307 3432404 JSTOR 3432404 PMC 1519268 PMID 17539108 Benson WH Bern HA Bue B Colborn T Cook P Davis WP Denslow N Donaldson EM Edsall CC Fournier M Gilbertson M Johnson R Kocan R Monosson E Norrgren L Peterson RE Rolland R Smolen M Spies R Sullivan C Thomas P Van Der Kraak G 1997 Statement from the work session on chemically induced alterations in functional development and reproduction of fishes In Rolland RM Gilbertson M Peterson RE eds Chemically Induced Alterations in Functional Development and Reproduction of Fishes Society of Environmental Toxicology amp Chemist pp 3 8 ISBN 978 1 880611 19 7 Statement from the work session on environmental endocrine disrupting chemicals neural endocrine and behavioral effects Toxicology and Industrial Health 14 1 2 1 8 1998 Bibcode 1998ToxIH 14 1 doi 10 1177 074823379801400103 PMID 9460166 S2CID 45902764 Brock J Colborn T Cooper R Craine DA Dodson SF Garry VF Gilbertson M Gray E Hodgson E Kelce W Klotz D Maciorowski AF Olea N Porter W Rolland R Scott GI Smolen M Snedaker SC Sonnenschein C Vyas NB Welshons WV Whitcomb CE 1999 Statement from the Work Session on Health Effects of Contemporary Use Pesticides the Wildlife Human Connection Toxicol Ind Health 15 1 2 1 5 Bibcode 1999ToxIH 15 1 doi 10 1191 074823399678846547 a b c d e f Kase NG Speroff L Glass RL 1994 Clinical gynecologic endocrinology and infertility 5 ed Baltimore Williams amp Wilkins pp 371 382 ISBN 978 0 683 07899 2 a b c d e f g h i j k Roy JR Chakraborty S Chakraborty TR June 2009 Estrogen like endocrine disrupting chemicals affecting puberty in humans a review Medical Science Monitor 15 6 RA137 RA145 PMID 19478717 a b Massart F Parrino R Seppia P Federico G Saggese G June 2006 How do environmental estrogen disruptors induce precocious puberty Minerva Pediatrica 58 3 247 254 PMID 16832329 a b c d e f Toppari J Juul A August 2010 Trends in puberty timing in humans and environmental modifiers Molecular and Cellular Endocrinology 324 1 2 39 44 doi 10 1016 j mce 2010 03 011 PMID 20298746 S2CID 19235168 a b c d e f g Caserta D Maranghi L Mantovani A Marci R Maranghi F Moscarini M 2008 Impact of endocrine disruptor chemicals in gynaecology Human Reproduction Update 14 1 59 72 doi 10 1093 humupd dmm025 PMID 18070835 a b c d Danzo BJ November 1998 The effects of environmental hormones on reproduction Cellular and Molecular Life Sciences 54 11 1249 1264 doi 10 1007 s000180050251 PMID 9849617 S2CID 11913134 a b c Buck Louis GM Gray LE Marcus M Ojeda SR Pescovitz OH Witchel SF et al February 2008 Environmental factors and puberty timing expert panel research needs Pediatrics 121 Suppl 3 S192 S207 doi 10 1542 peds 1813E PMID 18245512 S2CID 9375302 a b c d e f Rasier G Toppari J Parent AS Bourguignon JP July 2006 Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals a review of rodent and human data Molecular and Cellular Endocrinology 254 255 187 201 doi 10 1016 j mce 2006 04 002 hdl 2268 69898 PMID 16720078 S2CID 26180396 Mueller SO February 2004 Xenoestrogens mechanisms of action and detection methods Analytical and Bioanalytical Chemistry 378 3 582 587 doi 10 1007 s00216 003 2238 x PMID 14564443 S2CID 46507842 Aravindakshan J Paquet V Gregory M Dufresne J Fournier M Marcogliese DJ Cyr DG March 2004 Consequences of xenoestrogen exposure on male reproductive function in spottail shiners Notropis hudsonius Toxicological Sciences 78 1 156 165 doi 10 1093 toxsci kfh042 PMID 14657511 vom Saal FS Cooke PS Buchanan DL Palanza P Thayer KA Nagel SC et al 1998 A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs daily sperm production and behavior Toxicology and Industrial Health 14 1 2 239 260 Bibcode 1998ToxIH 14 239V doi 10 1177 074823379801400115 PMID 9460178 S2CID 27382573 a b Aravindakshan J Gregory M Marcogliese DJ Fournier M Cyr DG September 2004 Consumption of xenoestrogen contaminated fish during lactation alters adult male reproductive function Toxicological Sciences 81 1 179 189 doi 10 1093 toxsci kfh174 PMID 15159524 Luconi M Bonaccorsi L Forti G Baldi E June 2001 Effects of estrogenic compounds on human spermatozoa evidence for interaction with a nongenomic receptor for estrogen on human sperm membrane Molecular and Cellular Endocrinology 178 1 2 39 45 doi 10 1016 S0303 7207 01 00416 6 PMID 11403892 S2CID 27021549 Rozati R Reddy PP Reddanna P Mujtaba R December 2002 Role of environmental estrogens in the deterioration of male factor fertility Fertility and Sterility 78 6 1187 1194 doi 10 1016 S0015 0282 02 04389 3 PMID 12477510 Sharpe RM Fisher JS Millar MM Jobling S Sumpter JP December 1995 Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production Environmental Health Perspectives 103 12 1136 1143 doi 10 1289 ehp 951031136 PMC 1519239 PMID 8747020 Dallinga JW Moonen EJ Dumoulin JC Evers JL Geraedts JP Kleinjans JC August 2002 Decreased human semen quality and organochlorine compounds in blood Human Reproduction 17 8 1973 1979 doi 10 1093 humrep 17 8 1973 PMID 12151423 Palmlund I June 1996 Exposure to a xenoestrogen before birth the diethylstilbestrol experience Journal of Psychosomatic Obstetrics and Gynaecology 17 2 71 84 doi 10 3109 01674829609025667 PMID 8819018 Olea N Olea Serrano F Lardelli Claret P Rivas A Barba Navarro A 1999 Inadvertent exposure to xenoestrogens in children Toxicology and Industrial Health 15 1 2 151 158 Bibcode 1999ToxIH 15 152O doi 10 1177 074823379901500112 PMID 10188197 S2CID 25327579 Li DK Zhou Z Miao M He Y Wang J Ferber J et al February 2011 Urine bisphenol A BPA level in relation to semen quality Fertility and Sterility 95 2 625 30 e1 4 doi 10 1016 j fertnstert 2010 09 026 PMID 21035116 Rogan WJ Ragan NB July 2003 Evidence of effects of environmental chemicals on the endocrine system in children Pediatrics 112 1 Pt 2 247 252 doi 10 1542 peds 112 S1 247 PMID 12837917 S2CID 13058233 22 23 24 25 26 27 28 29 30 31 32 a b Williams DE Lech JJ Buhler DR March 1998 Xenobiotics and xenoestrogens in fish modulation of cytochrome P450 and carcinogenesis Mutation Research 399 2 179 192 doi 10 1016 S0027 5107 97 00255 8 PMID 9672659 a b c d e Vajda AM Barber LB Gray JL Lopez EM Woodling JD Norris DO May 2008 Reproductive disruption in fish downstream from an estrogenic wastewater effluent Environmental Science amp Technology 42 9 3407 3414 Bibcode 2008EnST 42 3407V doi 10 1021 es0720661 PMID 18522126 Arukwe A Celius T Walther BT Goksoyr A June 2000 Effects of xenoestrogen treatment on zona radiata protein and vitellogenin expression in Atlantic salmon Salmo salar Aquatic Toxicology 49 3 159 170 Bibcode 2000AqTox 49 159A doi 10 1016 S0166 445X 99 00083 1 PMID 10856602 Golden RJ Noller KL Titus Ernstoff L Kaufman RH Mittendorf R Stillman R Reese EA March 1998 Environmental endocrine modulators and human health an assessment of the biological evidence Critical Reviews in Toxicology 28 2 109 227 doi 10 1080 10408449891344191 PMID 9557209 Pugazhendhi D Sadler AJ Darbre PD 2007 Comparison of the global gene expression profiles produced by methylparaben n butylparaben and 17beta oestradiol in MCF7 human breast cancer cells Journal of Applied Toxicology 27 1 67 77 doi 10 1002 jat 1200 PMID 17121429 S2CID 19942049 Buterin T Koch C Naegeli H August 2006 Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells Carcinogenesis 27 8 1567 1578 doi 10 1093 carcin bgi339 PMID 16474171 Darbre PD March 2006 Environmental oestrogens cosmetics and breast cancer Best Practice amp Research Clinical Endocrinology amp Metabolism 20 1 121 143 doi 10 1016 j beem 2005 09 007 PMID 16522524 Darbre PD Aljarrah A Miller WR Coldham NG Sauer MJ Pope GS 2004 Concentrations of parabens in human breast tumours Journal of Applied Toxicology 24 1 5 13 doi 10 1002 jat 958 PMID 14745841 S2CID 11999424 Zsarnovszky A Le HH Wang HS Belcher SM December 2005 Ontogeny of rapid estrogen mediated extracellular signal regulated kinase signaling in the rat cerebellar cortex potent nongenomic agonist and endocrine disrupting activity of the xenoestrogen bisphenol A Endocrinology 146 12 5388 5396 doi 10 1210 en 2005 0565 PMID 16123166 Safe S December 2004 Endocrine disruptors and human health is there a problem Toxicology 205 1 2 3 10 doi 10 1016 j tox 2004 06 032 PMID 15458784 Murray DW Lichter SR April 1998 Organochlorine residues and breast cancer The New England Journal of Medicine 338 14 990 991 doi 10 1056 nejm199804023381411 PMID 9527611 Sharpe RM Skakkebaek NE May 1993 Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract Lancet 341 8857 1392 1395 doi 10 1016 0140 6736 93 90953 E PMID 8098802 S2CID 33135527 Sharpe RM February 2003 The oestrogen hypothesis where do we stand now International Journal of Andrology 26 1 2 15 doi 10 1046 j 1365 2605 2003 00367 x PMID 12534932 Vidaeff AC Sever LE 2005 In utero exposure to environmental estrogens and male reproductive health a systematic review of biological and epidemiologic evidence Reproductive Toxicology 20 1 5 20 doi 10 1016 j reprotox 2004 12 015 PMID 15808781 a b It s official Men are the weaker sex 7 December 2008 The Independent a b c d Mouritsen A Aksglaede L Sorensen K Mogensen SS Leffers H Main KM et al April 2010 Hypothesis exposure to endocrine disrupting chemicals may interfere with timing of puberty International Journal of Andrology 33 2 346 359 doi 10 1111 j 1365 2605 2010 01051 x PMID 20487042 a b Parent AS Rasier G Gerard A Heger S Roth C Mastronardi C et al 2005 Early onset of puberty tracking genetic and environmental factors Hormone Research 64 Suppl 2 41 47 doi 10 1159 000087753 hdl 2268 69899 PMID 16286770 S2CID 22073984 a b Jacobson Dickman E Lee MM February 2009 The influence of endocrine disruptors on pubertal timing Current Opinion in Endocrinology Diabetes and Obesity 16 1 25 30 doi 10 1097 MED 0b013e328320d560 PMID 19115521 S2CID 35633602 a b c Guillette EA Conard C Lares F Aguilar MG McLachlan J Guillette LJ March 2006 Altered breast development in young girls from an agricultural environment Environmental Health Perspectives 114 3 471 475 doi 10 1289 ehp 8280 PMC 1392245 PMID 16507474 The National Health and Nutrition Examination Survey III NHANES III and the Pediatric Research in Office Settings PROS a b c d e f Wang RY Needham LL Barr DB August 2005 Effects of environmental agents on the attainment of puberty considerations when assessing exposure to environmental chemicals in the National Children s Study Environmental Health Perspectives 113 8 1100 1107 doi 10 1289 ehp 7615 PMC 1280355 PMID 16079085 a b c Den Hond E Schoeters G February 2006 Endocrine disrupters and human puberty International Journal of Andrology 29 1 264 71 discussion 286 90 doi 10 1111 j 1365 2605 2005 00561 x PMID 16466548 Colon I Caro D Bourdony CJ Rosario O September 2000 Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development Environmental Health Perspectives 108 9 895 900 doi 10 1289 ehp 00108895 PMC 2556932 PMID 11017896 a b c d e f Rogan WJ Ragan NB October 2007 Some evidence of effects of environmental chemicals on the endocrine system in children International Journal of Hygiene and Environmental Health 210 5 659 667 doi 10 1016 j ijheh 2007 07 005 PMC 2245801 PMID 17870664 Massart F Meucci V Saggese G Soldani G May 2008 High growth rate of girls with precocious puberty exposed to estrogenic mycotoxins The Journal of Pediatrics 152 5 690 5 695 e1 doi 10 1016 j jpeds 2007 10 020 PMID 18410776 a b c d Cesario SK Hughes LA 2007 Precocious puberty a comprehensive review of literature Journal of Obstetric Gynecologic and Neonatal Nursing 36 3 263 274 doi 10 1111 j 1552 6909 2007 00145 x PMID 17489932 Partsch CJ Sippell WG 2001 Pathogenesis and epidemiology of precocious puberty Effects of exogenous oestrogens Human Reproduction Update 7 3 292 302 doi 10 1093 humupd 7 3 292 PMID 11392376 a b Grun F Blumberg B May 2009 Endocrine disrupters as obesogens Molecular and Cellular Endocrinology 304 1 2 19 29 doi 10 1016 j mce 2009 02 018 PMC 2713042 PMID 19433244 Genuis SJ September 2006 Health issues and the environment an emerging paradigm for providers of obstetrical and gynaecological health care Human Reproduction 21 9 2201 2208 doi 10 1093 humrep del181 PMID 16775159 a b c Meeker JD Sathyanarayana S Swan SH July 2009 Phthalates and other additives in plastics human exposure and associated health outcomes Philosophical Transactions of the Royal Society of London Series B Biological Sciences 364 1526 2097 2113 doi 10 1098 rstb 2008 0268 PMC 2873014 PMID 19528058 Nikaido Y Yoshizawa K Danbara N Tsujita Kyutoku M Yuri T Uehara N Tsubura A 2004 Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD 1 mouse offspring Reproductive Toxicology 18 6 803 811 doi 10 1016 j reprotox 2004 05 002 PMID 15279878 Hotchkiss AK Rider CV Blystone CR Wilson VS Hartig PC Ankley GT et al October 2008 Fifteen years after Wingspread environmental endocrine disrupters and human and wildlife health where we are today and where we need to go Toxicological Sciences 105 2 235 259 doi 10 1093 toxsci kfn030 PMC 2721670 PMID 18281716 Della Seta D Farabollini F Dessi Fulgheri F Fusani L November 2008 Environmental like exposure to low levels of estrogen affects sexual behavior and physiology of female rats Endocrinology 149 11 5592 5598 doi 10 1210 en 2008 0113 PMID 18635664 S2CID 28304236 Vandenberg LN Maffini MV Wadia PR Sonnenschein C Rubin BS Soto AM January 2007 Exposure to environmentally relevant doses of the xenoestrogen bisphenol A alters development of the fetal mouse mammary gland Endocrinology 148 1 116 127 doi 10 1210 en 2006 0561 PMC 2819269 PMID 17023525 a b c d Acerini CL Hughes IA August 2006 Endocrine disrupting chemicals a new and emerging public health problem Archives of Disease in Childhood 91 8 633 641 doi 10 1136 adc 2005 088500 PMC 2083052 PMID 16861481 a b c d e Patisaul HB Adewale HB 2009 Long term effects of environmental endocrine disruptors on reproductive physiology and behavior Frontiers in Behavioral Neuroscience 3 10 doi 10 3389 neuro 08 010 2009 PMC 2706654 PMID 19587848 Degen GH Bolt HM September 2000 Endocrine disruptors update on xenoestrogens International Archives of Occupational and Environmental Health 73 7 433 441 Bibcode 2000IAOEH 73 433D doi 10 1007 s004200000163 PMID 11057411 S2CID 24198566 Stradtman SC Freeman JL August 2021 Mechanisms of Neurotoxicity Associated with Exposure to the Herbicide Atrazine Toxics 9 9 207 doi 10 3390 toxics9090207 PMC 8473009 PMID 34564358 vom Saal FS Hughes C August 2005 An extensive new literature concerning low dose effects of bisphenol A shows the need for a new risk assessment Environmental Health Perspectives 113 8 926 933 doi 10 1289 ehp 7713 PMC 1280330 PMID 16079060 Reid EE Wilson E 1944 The Relation of Estrogenic Activity to Structure in Some 4 4 Dihydroxydiphenylmethanes J Am Chem Soc 66 6 967 969 doi 10 1021 ja01234a038 Ma Ya Liu Haohao Wu Jinxia Yuan Le Wang Yueqin Du Xingde Wang Rui Marwa Phelisters Wegesa Petlulu Pavankumar Chen Xinghai Zhang Huizhen September 2019 The adverse health effects of bisphenol a and related toxicity mechanisms Environmental Research 176 Bibcode 2019ER 176j8575M doi 10 1016 j envres 2019 108575 PMID 31299621 S2CID 196349678 Retrieved 2023 04 12 Kuruto Niwa R Nozawa R Miyakoshi T Shiozawa T Terao Y January 2005 Estrogenic activity of alkylphenols bisphenol S and their chlorinated derivatives using a GFP expression system Environmental Toxicology and Pharmacology 19 1 121 130 doi 10 1016 j etap 2004 05 009 PMID 21783468 a b Vinas R Watson CS March 2013 Bisphenol S disrupts estradiol induced nongenomic signaling in a rat pituitary cell line effects on cell functions Environmental Health Perspectives 121 3 352 358 doi 10 1289 ehp 1205826 PMC 3621186 PMID 23458715 a b Gilbert S 2015 Ecological Developmental Biology 2nd ed Oxford University Press Academic US pp 225 228 ISBN 9781605355429 Tavakoly Sany SB Hashim R Salleh A Rezayi M Karlen DJ Razavizadeh BB Abouzari Lotf E December 2015 Dioxin risk assessment mechanisms of action and possible toxicity in human health Environmental Science and Pollution Research International 22 24 19434 19450 Bibcode 2015ESPR 2219434T doi 10 1007 s11356 015 5597 x PMID 26514567 S2CID 9584022 Watson CS Jeng YJ Guptarak J October 2011 Endocrine disruption via estrogen receptors that participate in nongenomic signaling pathways The Journal of Steroid Biochemistry and Molecular Biology 127 1 2 44 50 doi 10 1016 j jsbmb 2011 01 015 PMC 3106143 PMID 21300151 Menezes Ritesh G Qadir Tooba Fatima Moin Ariba Fatima Huda Hussain Syed Ather Madadin Mohammed Pasha Syed Bilal Al Rubaish Fatima A Senthilkumaran S October 2017 Endosulfan poisoning An overview Journal of Forensic and Legal Medicine 51 27 33 doi 10 1016 j jflm 2017 07 008 PMID 28734199 S2CID 12535174 Retrieved 2023 03 28 Jagic K Dvorscak M Klincic D December 2021 Analysis of brominated flame retardants in the aquatic environment a review Arhiv Za Higijenu Rada I Toksikologiju 72 4 254 267 doi 10 2478 aiht 2021 72 3576 PMC 8785114 PMID 34985845 Polybrominated Diphenyl Ethers PBDEs Toxic Substances Toxic Substance Portal ATSDR wwwn cdc gov Retrieved 2023 03 29 Zhang MZ Chu SS Xia YK Wang DD Wang X October 2021 Environmental exposure during pregnancy and the risk of childhood allergic diseases World Journal of Pediatrics 17 5 467 475 doi 10 1007 s12519 021 00448 7 PMID 34476758 S2CID 237395252 Nilsson R 2000 Endocrine modulators in the food chain and environment Toxicologic Pathology 28 3 420 431 doi 10 1177 019262330002800311 PMID 10862560 S2CID 34979477 Wang Y Qian H May 2021 Phthalates and Their Impacts on Human Health Healthcare 9 5 603 doi 10 3390 healthcare9050603 PMC 8157593 PMID 34069956 US Food and Drug Administration 21CFR522 2680 Retrieved 14 June 2014 Health Canada 2012 09 05 Questions and Answers Hormonal Growth Promoters Retrieved 14 June 2014 There are six hormonal growth promoters approved in Canada for use in beef cattle three natural progesterone testosterone and estradiol 17ss and three synthetic trenbolone acetate TBA zeranol and melengestrol acetate MGA Agriculture and Fisheries including Agro industry Food technologies Forestry Aquaculture and Rural Development Development validation and harmonisation of screening and confirmatory tests to distinguish zeranol abuse from fusarium toxin contamination in food animals European Commission Archived from the original on March 5 2016 Retrieved 14 June 2014 The use of zeranol for growth promotion in food animals was banned in the EU in 1985 Pair call for public discourse on treating wastewater contaminated with birth control pill chemicals Phys orgExternal links edit Our Stolen Future book about endocrine disruption How to avoid xenoestrogens S Safe on lack of evidence for any effect Retrieved from https en wikipedia org w index php title Xenoestrogen amp oldid 1200606823, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.