fbpx
Wikipedia

Genistein

Genistein (C15H10O5) is a naturally occurring compound that structurally belongs to a class of compounds known as isoflavones. It is described as an angiogenesis inhibitor and a phytoestrogen.[1]

Genistein
Names
IUPAC name
4′,5,7-Trihydroxyisoflavone
Preferred IUPAC name
5,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one
Identifiers
  • 446-72-0 Y
3D model (JSmol)
  • Interactive image
263823
ChEBI
  • CHEBI:28088 Y
ChEMBL
  • ChEMBL44 Y
ChemSpider
  • 4444448 Y
DrugBank
  • DB01645 Y
ECHA InfoCard 100.006.524
EC Number
  • 207-174-9
  • 2826
KEGG
  • D11680 Y
  • C06563
  • 5280961
UNII
  • DH2M523P0H Y
  • DTXSID5022308
  • InChI=1S/C15H10O5/c16-9-3-1-8(2-4-9)11-7-20-13-6-10(17)5-12(18)14(13)15(11)19/h1-7,16-18H Y
    Key: TZBJGXHYKVUXJN-UHFFFAOYSA-N Y
  • InChI=1/C15H10O5/c16-9-3-1-8(2-4-9)11-7-20-13-6-10(17)5-12(18)14(13)15(11)19/h1-7,16-18H
    Key: TZBJGXHYKVUXJN-UHFFFAOYAH
  • Oc1ccc(cc1)C\3=C\Oc2cc(O)cc(O)c2C/3=O
Properties
C15H10O5
Molar mass 270.240 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)

It was first isolated in 1899 from the dyer's broom, Genista tinctoria; hence, the chemical name. The compound structure was established in 1926, when it was found to be identical with that of prunetol. It was chemically synthesized in 1928.[2] It has been shown to be the primary secondary metabolite of the Trifolium species and Glycine max L.[3]

Natural occurrences

Isoflavones such as genistein and daidzein are found in a number of plants including lupin, fava beans, soybeans, kudzu, and psoralea being the primary food source,[4][5] also in the medicinal plants, Flemingia vestita[6] and F. macrophylla,[7][8] and coffee.[9] It can also be found in Maackia amurensis cell cultures.[10]

Biological effects

Besides functioning as an antioxidant and anthelmintic, many isoflavones have been shown to interact with animal and human estrogen receptors, causing effects in the body similar to those caused by the hormone estrogen. Isoflavones also produce non-hormonal effects.[citation needed]

Molecular function

Genistein influences multiple biochemical functions in living cells:

Activation of PPARs

Isoflavones genistein and daidzein bind to and transactivate all three PPAR isoforms, α, δ, and γ.[20] For example, membrane-bound PPARγ-binding assay showed that genistein can directly interact with the PPARγ ligand binding domain and has a measurable Ki of 5.7 mM.[21] Gene reporter assays showed that genistein at concentrations between 1 and 100 uM activated PPARs in a dose dependent way in KS483 mesenchymal progenitor cells, breast cancer MCF-7 cells, T47D cells and MDA-MD-231 cells, murine macrophage-like RAW 264.7 cells, endothelial cells and in Hela cells. Several studies have shown that both ERs and PPARs influenced each other and therefore induce differential effects in a dose-dependent way. The final biological effects of genistein are determined by the balance among these pleiotrophic actions.[20][22][23]

Tyrosine kinase inhibitor

The main known activity of genistein is tyrosine kinase inhibitor, mostly of epidermal growth factor receptor (EGFR). Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades.[citation needed]

Redox-active—not only antioxidant

Genistein may act as direct antioxidant, similar to many other isoflavones, and thus may alleviate damaging effects of free radicals in tissues.[24][25]

The same molecule of genistein, similar to many other isoflavones, by generation of free radicals poison topoisomerase II, an enzyme important for maintaining DNA stability.[26][27][28]

Human cells turn on beneficial, detoxifying Nrf2 factor in response to genistein insult. This pathway may be responsible for observed health maintaining properties of small doses of genistein.[29]

Anthelmintic

The root-tuber peel extract of the leguminous plant Flemingia vestita is the traditional anthelmintic of the Khasi tribes of India. While investigating its anthelmintic activity, genistein was found to be the major isoflavone responsible for the deworming property.[6][30] Genistein was subsequently demonstrated to be highly effective against intestinal parasites such as the poultry cestode Raillietina echinobothrida,[30] the pork trematode Fasciolopsis buski,[31] and the sheep liver fluke Fasciola hepatica.[32] It exerts its anthelmintic activity by inhibiting the enzymes of glycolysis and glycogenolysis,[33][34] and disturbing the Ca2+ homeostasis and NO activity in the parasites.[35][36] It has also been investigated in human tapeworms such as Echinococcus multilocularis and E. granulosus metacestodes that genistein and its derivatives, Rm6423 and Rm6426, are potent cestocides.[37]

Atherosclerosis

Genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis.[38]

Cancer links

Genistein and other isoflavones have been identified as angiogenesis inhibitors, and found to inhibit the uncontrolled cell growth of cancer, most likely by inhibiting the activity of substances in the body that regulate cell division and cell survival (growth factors). Various studies have found that moderate doses of genistein have inhibitory effects on cancers of the prostate,[39][40] cervix,[41] brain,[42] breast[39][43][44] and colon.[17] It has also been shown that genistein makes some cells more sensitive to radio-therapy.;[45] although, timing of phytoestrogen use is also important.[45]

Genistein's chief method of activity is as a tyrosine kinase inhibitor. Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades. Inhibition of DNA topoisomerase II also plays an important role in the cytotoxic activity of genistein.[27][46] The observation that transition of normal lymphocytes from quiescence (G0) to the G1 phase of the cell cycle is particularly sensitive to genistein prompted the authors to suggest that this isoflavone may be potential immunosuppressant.[47] Genistein has been used to selectively target pre B-cells via conjugation with an anti-CD19 antibody.[48]

Studies on rodents have found genistein to be useful in the treatment of leukemia, and that it can be used in combination with certain other antileukemic drugs to improve their efficacy.[49]

Estrogen receptor — more cancer links

Due to its structure similarity to 17β-estradiol (estrogen), genistein can compete with it and bind to estrogen receptors. However, genistein shows much higher affinity toward estrogen receptor β than toward estrogen receptor α.[50]

Data from in vitro and in vivo research confirms that genistein can increase rate of growth of some ER expressing breast cancers. Genistein was found to increase the rate of proliferation of estrogen-dependent breast cancer when not cotreated with an estrogen antagonist.[51][52][53] It was also found to decrease efficiency of tamoxifen and letrozole - drugs commonly used in breast cancer therapy.[54][55] Genistein was found to inhibit immune response towards cancer cells allowing their survival.[56]

Effects in males

Isoflavones can act like estrogen, stimulating development and maintenance of female characteristics, or they can block cells from using cousins of estrogen. In vitro studies have shown genistein to induce apoptosis of testicular cells at certain levels, thus raising concerns about effects it could have on male fertility;[57] however, one study found that isoflavones had "no observable effect on endocrine measurements, testicular volume or semen parameters over the study period." in healthy males given isoflavone supplements daily over a 2-month period.[58]

Carcinogenic and toxic potential

Genistein was, among other flavonoids, found to be a strong topoisomerase inhibitor, similarly to some chemotherapeutic anticancer drugs ex. etoposide and doxorubicin.[26][59] In high doses it was found to be strongly toxic to normal cells.[60] This effect may be responsible for both anticarcinogenic and carcinogenic potential of the substance.[28][61] It was found to deteriorate DNA of cultured blood stem cells, which may lead to leukemia.[62] Genistein among other flavonoids is suspected to increase risk of infant leukemia when consumed during pregnancy.[63][64]

Sanfilippo syndrome treatment

Genistein decreases pathological accumulation of glycosaminoglycans in Sanfilippo syndrome. In vitro animal studies and clinical experiments suggest that the symptoms of the disease may be alleviated by adequate dose of genistein.[65] Genistein was found to also possess toxic properties toward brain cells.[60] Among many pathways stimulated by genistein, autophagy may explain the observed efficiency of the substance as autophagy is significantly impaired in the disease.[66][67]

Cognition

A study looking at Italians older than 50 found that those with the highest genistein intake had the lowest odds of cognitive impairment.[68]

Related compounds

See also

References

  1. ^ Sail, Vibhavari; Hadden, M. Kyle (2012-01-01), Desai, Manoj C. (ed.), Chapter Eighteen - Notch Pathway Modulators as Anticancer Chemotherapeutics, Annual Reports in Medicinal Chemistry, vol. 47, Academic Press, pp. 267–280, doi:10.1016/B978-0-12-396492-2.00018-7, retrieved 2020-09-14
  2. ^ Walter, E. D. (1941). "Genistin (an Isoflavone Glucoside) and its Aglucone, Genistein, from Soybeans". Journal of the American Chemical Society. 63 (12): 3273–76. doi:10.1021/ja01857a013.
  3. ^ Popiołkiewicz, Joanna; Polkowski, Krzysztof; Skierski, Janusz S.; Mazurek, Aleksander P. (November 2005). "In vitro toxicity evaluation in the development of new anticancer drugs—genistein glycosides". Cancer Letters. 229 (1): 67–75. doi:10.1016/j.canlet.2005.01.014. ISSN 0304-3835. PMID 16157220.
  4. ^ Coward, Lori; Barnes, Neil C.; Setchell, Kenneth D. R.; Barnes, Stephen (1993). "Genistein, daidzein, and their β-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets". Journal of Agricultural and Food Chemistry. 41 (11): 1961–7. doi:10.1021/jf00035a027.
  5. ^ Kaufman, Peter B.; Duke, James A.; Brielmann, Harry; Boik, John; Hoyt, James E. (1997). "A Comparative Survey of Leguminous Plants as Sources of the Isoflavones, Genistein and Daidzein: Implications for Human Nutrition and Health". The Journal of Alternative and Complementary Medicine. 3 (1): 7–12. CiteSeerX 10.1.1.320.9747. doi:10.1089/acm.1997.3.7. PMID 9395689.
  6. ^ a b Rao, H. S. P.; Reddy, K. S. (1991). "Isoflavones from Flemingia vestita". Fitoterapia. 62 (5): 458.
  7. ^ Rao, K.Nageswara; Srimannarayana, G. (1983). "Fleminone, a flavanone from the stems of Flemingia macrophylla". Phytochemistry. 22 (10): 2287–90. doi:10.1016/S0031-9422(00)80163-6.
  8. ^ Wang, Bor-Sen; Juang, Lih-Jeng; Yang, Jeng-Jer; Chen, Li-Ying; Tai, Huo-Mu; Huang, Ming-Hsing (2012). "Antioxidant and Antityrosinase Activity of Flemingia macrophylla and Glycine tomentella Roots". Evidence-Based Complementary and Alternative Medicine. 2012: 1–7. doi:10.1155/2012/431081. PMC 3444970. PMID 22997529.
  9. ^ Alves, Rita C.; Almeida, Ivone M. C.; Casal, Susana; Oliveira, M. Beatriz P. P. (2010). "Isoflavones in Coffee: Influence of Species, Roast Degree, and Brewing Method". Journal of Agricultural and Food Chemistry. 58 (5): 3002–7. doi:10.1021/jf9039205. PMID 20131840.
  10. ^ Fedoreyev, S.A; Pokushalova, T.V; Veselova, M.V; Glebko, L.I; Kulesh, N.I; Muzarok, T.I; Seletskaya, L.D; Bulgakov, V.P; Zhuravlev, Yu.N (2000). "Isoflavonoid production by callus cultures of Maackia amurensis". Fitoterapia. 71 (4): 365–72. doi:10.1016/S0367-326X(00)00129-5. PMID 10925005.
  11. ^ Patisaul, Heather B.; Melby, Melissa; Whitten, Patricia L.; Young, Larry J. (2002). "Genistein Affects ERβ- But Not ERα-Dependent Gene Expression in the Hypothalamus". Endocrinology. 143 (6): 2189–2197. doi:10.1210/endo.143.6.8843. ISSN 0013-7227. PMID 12021182.
  12. ^ Green, Sarah E (2015), , archived from the original on 2016-02-22, retrieved 2016-01-01
  13. ^ Prossnitz ER, Arterburn JB (July 2015). "International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators". Pharmacol. Rev. 67 (3): 505–40. doi:10.1124/pr.114.009712. PMC 4485017. PMID 26023144.
  14. ^ Prossnitz, Eric R.; Barton, Matthias (2014). "Estrogen biology: New insights into GPER function and clinical opportunities". Molecular and Cellular Endocrinology. 389 (1–2): 71–83. doi:10.1016/j.mce.2014.02.002. ISSN 0303-7207. PMC 4040308. PMID 24530924.
  15. ^ Gossner, G; Choi, M; Tan, L; Fogoros, S; Griffith, K; Kuenker, M; Liu, J (2007). "Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells". Gynecologic Oncology. 105 (1): 23–30. doi:10.1016/j.ygyno.2006.11.009. PMID 17234261.
  16. ^ Singletary, K.; Milner, J. (2008). "Diet, Autophagy, and Cancer: A Review". Cancer Epidemiology, Biomarkers & Prevention. 17 (7): 1596–610. doi:10.1158/1055-9965.EPI-07-2917. PMID 18628411.
  17. ^ a b Nakamura, Yoshitaka; Yogosawa, Shingo; Izutani, Yasuyuki; Watanabe, Hirotsuna; Otsuji, Eigo; Sakai, Tosiyuki (2009). "A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy". Molecular Cancer. 8: 100. doi:10.1186/1476-4598-8-100. PMC 2784428. PMID 19909554.
  18. ^ Fang, Mingzhu; Chen, Dapeng; Yang, Chung S. (January 2007). "Dietary polyphenols may affect DNA methylation". The Journal of Nutrition. 137 (1 Suppl): 223S–228S. doi:10.1093/jn/137.1.223S. PMID 17182830.
  19. ^ Glushakov, A. V.; Glushakova, H. Y.; Skok, V. I. (1999-01-15). "Modulation of nicotinic acetylcholine receptor activity in submucous neurons by intracellular messengers". Journal of the Autonomic Nervous System. 75 (1): 16–22. doi:10.1016/S0165-1838(98)00165-9. ISSN 0165-1838. PMID 9935265.
  20. ^ a b Wang, Limei; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Blunder, Martina; Liu, Xin; Malainer, Clemens; Blazevic, Tina; Schwaiger, Stefan; Rollinger, Judith M.; Heiss, Elke H.; Schuster, Daniela; Kopp, Brigitte; Bauer, Rudolf; Stuppner, Hermann; Dirsch, Verena M.; Atanasov, Atanas G. (2014). "Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review". Biochemical Pharmacology. 92 (1): 73–89. doi:10.1016/j.bcp.2014.07.018. PMC 4212005. PMID 25083916.
  21. ^ Dang, Zhi-Chao; Audinot, Valérie; Papapoulos, Socrates E.; Boutin, Jean A.; Löwik, Clemens W. G. M. (2002). "Peroxisome Proliferator-activated Receptor γ (PPARγ) as a Molecular Target for the Soy Phytoestrogen Genistein". Journal of Biological Chemistry. 278 (2): 962–7. doi:10.1074/jbc.M209483200. PMID 12421816.
  22. ^ Dang, Zhi Chao; Lowik, Clemens (2005). "Dose-dependent effects of phytoestrogens on bone". Trends in Endocrinology and Metabolism. 16 (5): 207–13. doi:10.1016/j.tem.2005.05.001. PMID 15922618. S2CID 35366615.
  23. ^ Dang, Z. C. (2009). "Dose-dependent effects of soy phyto-oestrogen genistein on adipocytes: Mechanisms of action". Obesity Reviews. 10 (3): 342–9. doi:10.1111/j.1467-789X.2008.00554.x. PMID 19207876. S2CID 13804244.
  24. ^ Han, Rui-Min; Tian, Yu-Xi; Liu, Yin; Chen, Chang-Hui; Ai, Xi-Cheng; Zhang, Jian-Ping; Skibsted, Leif H. (2009). "Comparison of Flavonoids and Isoflavonoids as Antioxidants". Journal of Agricultural and Food Chemistry. 57 (9): 3780–5. doi:10.1021/jf803850p. PMID 19296660.
  25. ^ Borrás, Consuelo; Gambini, Juan; López-Grueso, Raúl; Pallardó, Federico V.; Viña, Jose (2010). "Direct antioxidant and protective effect of estradiol on isolated mitochondria" (PDF). Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1802 (1): 205–11. doi:10.1016/j.bbadis.2009.09.007. PMID 19751829.
  26. ^ a b Bandele, Omari J.; Osheroff, Neil (2007). "Bioflavonoids as Poisons of Human Topoisomerase IIα and IIβ". Biochemistry. 46 (20): 6097–108. doi:10.1021/bi7000664. PMC 2893030. PMID 17458941.
  27. ^ a b Markovits, Judith; Linassier, Claude; Fossé, Philippe; Couprie, Jeanine; Pierre, Josiane; Jacquemin-Sablon, Alain; Saucier, Jean-Marie; Le Pecq, Jean-Bernard; Larsen, Annette K. (September 1989). "Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II". Cancer Research. 49 (18): 5111–7. PMID 2548712.
  28. ^ a b López-Lázaro, Miguel; Willmore, Elaine; Austin, Caroline A. (2007). "Cells Lacking DNA Topoisomerase IIβ are Resistant to Genistein". Journal of Natural Products. 70 (5): 763–7. doi:10.1021/np060609z. PMID 17411092.
  29. ^ Mann, Giovanni E; Bonacasa, Barbara; Ishii, Tetsuro; Siow, Richard CM (2009). "Targeting the redox sensitive Nrf2–Keap1 defense pathway in cardiovascular disease: Protection afforded by dietary isoflavones". Current Opinion in Pharmacology. 9 (2): 139–45. doi:10.1016/j.coph.2008.12.012. PMID 19157984.
  30. ^ a b Tandon, V.; Pal, P.; Roy, B.; Rao, H. S. P.; Reddy, K. S. (1997). "In vitro anthelmintic activity of root-tuber extract of Flemingia vestita, an indigenous plant in Shillong, India". Parasitology Research. 83 (5): 492–8. doi:10.1007/s004360050286. PMID 9197399. S2CID 25086153.
  31. ^ Kar, Pradip K; Tandon, Veena; Saha, Nirmalendu (2002). "Anthelmintic efficacy of Flemingia vestita: Genistein-induced effect on the activity of nitric oxide synthase and nitric oxide in the trematode parasite, Fasciolopsis buski". Parasitology International. 51 (3): 249–57. doi:10.1016/S1383-5769(02)00032-6. PMID 12243779.
  32. ^ Toner, E.; Brennan, G. P.; Wells, K.; McGeown, J. G.; Fairweather, I. (2008). "Physiological and morphological effects of genistein against the liver fluke, Fasciola hepatica". Parasitology. 135 (10): 1189–203. doi:10.1017/S0031182008004630. PMID 18771609. S2CID 6525410.
  33. ^ Tandon, Veena; Das, Bidyadhar; Saha, Nirmalendu (2003). "Anthelmintic efficacy of Flemingia vestita (Fabaceae): Effect of genistein on glycogen metabolism in the cestode, Raillietina echinobothrida". Parasitology International. 52 (2): 179–86. doi:10.1016/S1383-5769(03)00006-0. PMID 12798931.
  34. ^ Das, B.; Tandon, V.; Saha, N. (2004). "Anthelmintic efficacy of Flemingia vestita (Fabaceae): Alteration in the activities of some glycolytic enzymes in the cestode, Raillietina echinobothrida". Parasitology Research. 93 (4): 253–61. doi:10.1007/s00436-004-1122-8. PMID 15138892. S2CID 9491127.
  35. ^ Das, Bidyadhar; Tandon, Veena; Saha, Nirmalendu (2006). "Effect of isoflavone from Flemingia vestita (Fabaceae) on the Ca2+ homeostasis in Raillietina echinobothrida, the cestode of domestic fowl". Parasitology International. 55 (1): 17–21. doi:10.1016/j.parint.2005.08.002. PMID 16198617.
  36. ^ Das, Bidyadhar; Tandon, Veena; Lyndem, Larisha M.; Gray, Alexander I.; Ferro, Valerie A. (2009). "Phytochemicals from Flemingia vestita (Fabaceae) and Stephania glabra (Menispermeaceae) alter cGMP concentration in the cestode Raillietina echinobothrida". Comparative Biochemistry and Physiology C. 149 (3): 397–403. doi:10.1016/j.cbpc.2008.09.012. PMID 18854226.
  37. ^ Naguleswaran, Arunasalam; Spicher, Martin; Vonlaufen, Nathalie; Ortega-Mora, Luis M.; Torgerson, Paul; Gottstein, Bruno; Hemphill, Andrew (2006). "In Vitro Metacestodicidal Activities of Genistein and Other Isoflavones against Echinococcus multilocularis and Echinococcus granulosus". Antimicrobial Agents and Chemotherapy. 50 (11): 3770–8. doi:10.1128/AAC.00578-06. PMC 1635224. PMID 16954323.
  38. ^ Si, Hongwei; Liu, Dongmin; Si, Hongwei; Liu, Dongmin (2007). "Phytochemical Genistein in the Regulation of Vascular Function: New Insights". Current Medicinal Chemistry. 14 (24): 2581–9. doi:10.2174/092986707782023325. PMID 17979711.
  39. ^ a b Morito, Keiko; Hirose, Toshiharu; Kinjo, Junei; Hirakawa, Tomoki; Okawa, Masafumi; Nohara, Toshihiro; Ogawa, Sumito; Inoue, Satoshi; Muramatsu, Masami; Masamune, Yukito (2001). "Interaction of Phytoestrogens with Estrogen Receptors α and β". Biological & Pharmaceutical Bulletin. 24 (4): 351–6. doi:10.1248/bpb.24.351. PMID 11305594.
  40. ^ Hwang, Ye Won; Kim, Soo Young; Jee, Sun Ha; Kim, Youn Nam; Nam, Chung Mo (2009). "Soy Food Consumption and Risk of Prostate Cancer: A Meta-Analysis of Observational Studies". Nutrition and Cancer. 61 (5): 598–606. doi:10.1080/01635580902825639. PMID 19838933. S2CID 19719873.
  41. ^ Kim, Su-Hyeon; Kim, Su-Hyeong; Kim, Yong-Beom; Jeon, Yong-Tark; Lee, Sang-Chul; Song, Yong-Sang (2009). "Genistein Inhibits Cell Growth by Modulating Various Mitogen-Activated Protein Kinases and AKT in Cervical Cancer Cells". Annals of the New York Academy of Sciences. 1171 (1): 495–500. Bibcode:2009NYASA1171..495K. doi:10.1111/j.1749-6632.2009.04899.x. PMID 19723095. S2CID 26111697.
  42. ^ Das, Arabinda; Banik, Naren L.; Ray, Swapan K. (2009). "Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes". Cancer. 116 (1): 164–76. doi:10.1002/cncr.24699. PMC 3159962. PMID 19894226.
  43. ^ Sakamoto, Takako; Horiguchi, Hyogo; Oguma, Etsuko; Kayama, Fujio (2010). "Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells". The Journal of Nutritional Biochemistry. 21 (9): 856–64. doi:10.1016/j.jnutbio.2009.06.010. PMID 19800779.
  44. ^ de Lemos, Mário L (2001). "Effects of Soy Phytoestrogens Genistein and Daidzein on Breast Cancer Growth". The Annals of Pharmacotherapy. 35 (9): 1118–21. doi:10.1345/aph.10257. PMID 11573864. S2CID 208876381.
  45. ^ a b de Assis, Sonia; Hilakivi-Clarke, Leena (2006). "Timing of Dietary Estrogenic Exposures and Breast Cancer Risk". Annals of the New York Academy of Sciences. 1089 (1): 14–35. Bibcode:2006NYASA1089...14D. doi:10.1196/annals.1386.039. PMID 17261753. S2CID 22170442.
  46. ^ López-Lázaro, Miguel; Willmore, Elaine; Austin, Caroline A. (2007). "Cells Lacking DNA Topoisomerase IIβ are Resistant to Genistein". Journal of Natural Products. 70 (5): 763–7. doi:10.1021/np060609z. PMID 17411092.
  47. ^ Traganos, F; Ardelt, B; Halko, N; Bruno, S; Darzynkiewicz, Z (1992). "Effects of genistein on the growth and cell cycle progression of normal human lymphocytes and human leukemic MOLT-4 and HL-60 cells". Cancer Res. 52 (22): 6200–8. PMID 1330289.
  48. ^ Safa, Malek; Foon, Kenneth A.; Oldham, Robert K. (2009). "Drug Immunoconjugates". In Oldham, Robert K.; Dillman, Robert O. (eds.). Principles of Cancer Biotherapy (5th ed.). pp. 451–62. doi:10.1007/978-90-481-2289-9_12. ISBN 978-90-481-2277-6.
  49. ^ Raynal, Noël J. M.; Charbonneau, Michel; Momparler, Louise F.; Momparler, Richard L. (2008). "Synergistic Effect of 5-Aza-2′-Deoxycytidine and Genistein in Combination Against Leukemia". Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics. 17 (5): 223–30. doi:10.3727/096504008786111356. PMID 18980019.
  50. ^ Kuiper, George G. J. M.; Lemmen, Josephine G.; Carlsson, Bo; Corton, J. Christopher; Safe, Stephen H.; van der Saag, Paul T.; van der Burg, Bart; Gustafsson, Jan-Åke (1998). "Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor β". Endocrinology. 139 (10): 4252–63. doi:10.1210/endo.139.10.6216. PMID 9751507.
  51. ^ Ju, Young H.; Allred, Kimberly F.; Allred, Clinton D.; Helferich, William G. (2006). "Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations". Carcinogenesis. 27 (6): 1292–9. doi:10.1093/carcin/bgi370. PMID 16537557.
  52. ^ Chen, Wen-Fang; Wong, Man-Sau (2004). "Genistein Enhances Insulin-Like Growth Factor Signaling Pathway in Human Breast Cancer (MCF-7) Cells". The Journal of Clinical Endocrinology & Metabolism. 89 (5): 2351–9. doi:10.1210/jc.2003-032065. PMID 15126563.
  53. ^ Yang, Xiaohe; Yang, Shihe; McKimmey, Christine; Liu, Bolin; Edgerton, Susan M.; Bales, Wesley; Archer, Linda T.; Thor, Ann D. (2010). "Genistein induces enhanced growth promotion in ER-positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and p27/kip1 downregulation". Carcinogenesis. 31 (4): 695–702. doi:10.1093/carcin/bgq007. PMID 20067990.
  54. ^ Helferich, W. G.; Andrade, J. E.; Hoagland, M. S. (2008). "Phytoestrogens and breast cancer: A complex story". Inflammopharmacology. 16 (5): 219–26. doi:10.1007/s10787-008-8020-0. PMID 18815740. S2CID 11659490.
  55. ^ Tonetti, Debra A.; Zhang, Yiyun; Zhao, Huiping; Lim, Sok-Bee; Constantinou, Andreas I. (2007). "The Effect of the Phytoestrogens Genistein, Daidzein, and Equol on the Growth of Tamoxifen-Resistant T47D/PKCα". Nutrition and Cancer. 58 (2): 222–9. doi:10.1080/01635580701328545. PMID 17640169. S2CID 10831895.
  56. ^ Jiang, Xinguo; Patterson, Nicole M.; Ling, Yan; Xie, Jianwei; Helferich, William G.; Shapiro, David J. (2008). "Low Concentrations of the Soy Phytoestrogen Genistein Induce Proteinase Inhibitor 9 and Block Killing of Breast Cancer Cells by Immune Cells". Endocrinology. 149 (11): 5366–73. doi:10.1210/en.2008-0857. PMC 2584580. PMID 18669594.
  57. ^ Kumi-Diaka, James; Rodriguez, Rosanna; Goudaze, Gould (1998). "Influence of genistein (4′,5,7-trihydroxyisoflavone) on the growth and proliferation of testicular cell lines". Biology of the Cell. 90 (4): 349–54. doi:10.1016/S0248-4900(98)80015-4. PMID 9800352.
  58. ^ Mitchell, Julie H.; Cawood, Elizabeth; Kinniburgh, David; Provan, Anne; Collins, Andrew R.; Irvine, D. Stewart (2001). "Effect of a phytoestrogen food supplement on reproductive health in normal males". Clinical Science. 100 (6): 613–8. doi:10.1042/CS20000212. PMID 11352776.
  59. ^ Lutz, Werner K.; Tiedge, Oliver; Lutz, Roman W.; Stopper, Helga (2005). "Different Types of Combination Effects for the Induction of Micronuclei in Mouse Lymphoma Cells by Binary Mixtures of the Genotoxic Agents MMS, MNU, and Genistein". Toxicological Sciences. 86 (2): 318–23. doi:10.1093/toxsci/kfi200. PMID 15901918.
  60. ^ a b Jin, Ying; Wu, Heng; Cohen, Eric M.; Wei, Jianning; Jin, Hong; Prentice, Howard; Wu, Jang-Yen (2007). "Genistein and daidzein induce neurotoxicity at high concentrations in primary rat neuronal cultures". Journal of Biomedical Science. 14 (2): 275–84. doi:10.1007/s11373-006-9142-2. PMID 17245525.
  61. ^ Schmidt, Friederike; Knobbe, Christiane; Frank, Brigitte; Wolburg, Hartwig; Weller, Michael (2008). "The topoisomerase II inhibitor, genistein, induces G2/M arrest and apoptosis in human malignant glioma cell lines". Oncology Reports. 19 (4): 1061–6. doi:10.3892/or.19.4.1061. PMID 18357397.
  62. ^ van Waalwijk van Doorn-Khosrovani, Sahar Barjesteh; Janssen, Jannie; Maas, Lou M.; Godschalk, Roger W. L.; Nijhuis, Jan G.; van Schooten, Frederik J. (2007). "Dietary flavonoids induce MLL translocations in primary human CD34+ cells". Carcinogenesis. 28 (8): 1703–9. doi:10.1093/carcin/bgm102. PMID 17468513.
  63. ^ Spector, Logan G.; Xie, Yang; Robison, Leslie L.; Heerema, Nyla A.; Hilden, Joanne M.; Lange, Beverly; Felix, Carolyn A.; Davies, Stella M.; Slavin, Joanne; Potter, John D.; Blair, Cindy K.; Reaman, Gregory H.; Ross, Julie A. (2005). "Maternal Diet and Infant Leukemia: The DNA Topoisomerase II Inhibitor Hypothesis: A Report from the Children's Oncology Group". Cancer Epidemiology, Biomarkers & Prevention. 14 (3): 651–5. doi:10.1158/1055-9965.EPI-04-0602. PMID 15767345.
  64. ^ Azarova, Anna M.; Lin, Ren-Kuo; Tsai, Yuan-Chin; Liu, Leroy F.; Lin, Chao-Po; Lyu, Yi Lisa (2010). "Genistein induces topoisomerase IIbeta- and proteasome-mediated DNA sequence rearrangements: Implications in infant leukemia". Biochemical and Biophysical Research Communications. 399 (1): 66–71. doi:10.1016/j.bbrc.2010.07.043. PMC 3376163. PMID 20638367.
  65. ^ Piotrowska, Ewa; Jakóbkiewicz-Banecka, Joanna; Barańska, Sylwia; Tylki-Szymańska, Anna; Czartoryska, Barbara; Węgrzyn, Alicja; Węgrzyn, Grzegorz (2006). "Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses". European Journal of Human Genetics. 14 (7): 846–52. doi:10.1038/sj.ejhg.5201623. PMID 16670689.
  66. ^ Ballabio, A. (2009). "Disease pathogenesis explained by basic science: Lysosomal storage diseases as autophagocytic disorders". International Journal of Clinical Pharmacology and Therapeutics. 47 (Suppl 1): S34–8. doi:10.5414/cpp47034. PMID 20040309.
  67. ^ Settembre, Carmine; Fraldi, Alessandro; Jahreiss, Luca; Spampanato, Carmine; Venturi, Consuelo; Medina, Diego; de Pablo, Raquel; Tacchetti, Carlo; Rubinsztein, David C.; Ballabio, Andrea (2007). "A block of autophagy in lysosomal storage disorders". Human Molecular Genetics. 17 (1): 119–29. doi:10.1093/hmg/ddm289. PMID 17913701.
  68. ^ Giampieri, Francesca; Godos, Justyna; Caruso, Giuseppe; Owczarek, Marcin; Jurek, Joanna; Castellano, Sabrina; Ferri, Raffaele; Caraci, Filippo; Grosso, Giuseppe (2022-05-30). "Dietary Phytoestrogen Intake and Cognitive Status in Southern Italian Older Adults". Biomolecules. 12 (6): 760. doi:10.3390/biom12060760. ISSN 2218-273X. PMC 9221352. PMID 35740885.
  69. ^ Xu, Li; Farmer, Rebecca; Huang, Xiaoke; Pavese, Janet; Voll, Eric; Irene, Ogden; Biddle, Margaret; Nibbs, Antoinette; Valsecchi, Matias; Scheidt, Karl; Bergan, Raymond (2010). "Abstract B58: Discovery of a novel drug KBU2046 that inhibits conversion of human prostate cancer to a metastatic phenotype". Cancer Prevention Research. 3 (12 Supplement): B58. doi:10.1158/1940-6207.PREV-10-B58.
  70. ^ "New Drug Stops Spread of Prostate Cancer" (Press release). Northwestern University. April 3, 2012. Retrieved September 27, 2014.
  71. ^ Chen, Chun-Lin; Levine, Alexandra; Rao, Asha; O'Neill, Karen; Messinger, Yoav; Myers, Dorothea E.; Goldman, Frederick; Hurvitz, Carole; Casper, James T.; Uckun, Fatih M. (1999). "Clinical Pharmacokinetics of the CD19 Receptor-Directed Tyrosine Kinase Inhibitor B43-Genistein in Patients with B-Lineage Lymphoid Malignancies". The Journal of Clinical Pharmacology. 39 (12): 1248–55. doi:10.1177/00912709922012051. PMID 10586390. S2CID 24445516.

External links

  • Compound Summary at NCBI PubChem
  • Fact Sheet at Zerobreastcancer 2021-04-21 at the Wayback Machine
  • Information at Phytochemicals
  • Information at Chemicalbook
  • Description at SpringerReference
  • Description at NCI Drug Dictionary

genistein, confused, with, genistin, this, article, multiple, issues, please, help, improve, discuss, these, issues, talk, page, learn, when, remove, these, template, messages, this, article, relies, excessively, references, primary, sources, please, improve, . Not to be confused with Genistin This article has multiple issues Please help improve it or discuss these issues on the talk page Learn how and when to remove these template messages This article relies excessively on references to primary sources Please improve this article by adding secondary or tertiary sources Find sources Genistein news newspapers books scholar JSTOR February 2020 Learn how and when to remove this template message This article needs more medical references for verification or relies too heavily on primary sources Please review the contents of the article and add the appropriate references if you can Unsourced or poorly sourced material may be challenged and removed Find sources Genistein news newspapers books scholar JSTOR June 2012 Learn how and when to remove this template message Genistein C15H10O5 is a naturally occurring compound that structurally belongs to a class of compounds known as isoflavones It is described as an angiogenesis inhibitor and a phytoestrogen 1 Genistein NamesIUPAC name 4 5 7 TrihydroxyisoflavonePreferred IUPAC name 5 7 Dihydroxy 3 4 hydroxyphenyl 4H 1 benzopyran 4 oneIdentifiersCAS Number 446 72 0 Y3D model JSmol Interactive imageBeilstein Reference 263823ChEBI CHEBI 28088 YChEMBL ChEMBL44 YChemSpider 4444448 YDrugBank DB01645 YECHA InfoCard 100 006 524EC Number 207 174 9IUPHAR BPS 2826KEGG D11680 YC06563PubChem CID 5280961UNII DH2M523P0H YCompTox Dashboard EPA DTXSID5022308InChI InChI 1S C15H10O5 c16 9 3 1 8 2 4 9 11 7 20 13 6 10 17 5 12 18 14 13 15 11 19 h1 7 16 18H YKey TZBJGXHYKVUXJN UHFFFAOYSA N YInChI 1 C15H10O5 c16 9 3 1 8 2 4 9 11 7 20 13 6 10 17 5 12 18 14 13 15 11 19 h1 7 16 18HKey TZBJGXHYKVUXJN UHFFFAOYAHSMILES Oc1ccc cc1 C 3 C Oc2cc O cc O c2C 3 OPropertiesChemical formula C 15H 10O 5Molar mass 270 240 g mol 1Except where otherwise noted data are given for materials in their standard state at 25 C 77 F 100 kPa Y verify what is Y N Infobox references It was first isolated in 1899 from the dyer s broom Genista tinctoria hence the chemical name The compound structure was established in 1926 when it was found to be identical with that of prunetol It was chemically synthesized in 1928 2 It has been shown to be the primary secondary metabolite of the Trifolium species and Glycine max L 3 Contents 1 Natural occurrences 2 Biological effects 2 1 Molecular function 2 2 Activation of PPARs 2 3 Tyrosine kinase inhibitor 2 4 Redox active not only antioxidant 2 5 Anthelmintic 2 6 Atherosclerosis 2 7 Cancer links 2 8 Estrogen receptor more cancer links 2 9 Effects in males 2 10 Carcinogenic and toxic potential 2 11 Sanfilippo syndrome treatment 2 12 Cognition 3 Related compounds 4 See also 5 References 6 External linksNatural occurrences EditIsoflavones such as genistein and daidzein are found in a number of plants including lupin fava beans soybeans kudzu and psoralea being the primary food source 4 5 also in the medicinal plants Flemingia vestita 6 and F macrophylla 7 8 and coffee 9 It can also be found in Maackia amurensis cell cultures 10 Biological effects EditBesides functioning as an antioxidant and anthelmintic many isoflavones have been shown to interact with animal and human estrogen receptors causing effects in the body similar to those caused by the hormone estrogen Isoflavones also produce non hormonal effects citation needed Molecular function Edit Genistein influences multiple biochemical functions in living cells full agonist of ERb EC50 7 62 nM and to a much lesser extent 20 fold full agonist 11 or partial agonist of ERa 12 agonist of G protein coupled estrogen receptor affinity of 133 nM 13 14 activation of peroxisome proliferator activated receptors PPARs inhibition of several tyrosine kinases inhibition of topoisomerase inhibition of AAAD direct antioxidation with some pro oxidative features activation of Nrf2 antioxidative response stimulation of autophagy 15 16 17 inhibition of the mammalian hexose transporter GLUT1 contraction of several types of smooth muscles modulation of CFTR channel potentiating its opening at low concentration and inhibiting it a higher doses inhibition of cytosine methylation inhibition of DNA methyltransferase 18 inhibition of the glycine receptor inhibition of the nicotinic acetylcholine receptor 19 Activation of PPARs Edit Isoflavones genistein and daidzein bind to and transactivate all three PPAR isoforms a d and g 20 For example membrane bound PPARg binding assay showed that genistein can directly interact with the PPARg ligand binding domain and has a measurable Ki of 5 7 mM 21 Gene reporter assays showed that genistein at concentrations between 1 and 100 uM activated PPARs in a dose dependent way in KS483 mesenchymal progenitor cells breast cancer MCF 7 cells T47D cells and MDA MD 231 cells murine macrophage like RAW 264 7 cells endothelial cells and in Hela cells Several studies have shown that both ERs and PPARs influenced each other and therefore induce differential effects in a dose dependent way The final biological effects of genistein are determined by the balance among these pleiotrophic actions 20 22 23 Tyrosine kinase inhibitor Edit The main known activity of genistein is tyrosine kinase inhibitor mostly of epidermal growth factor receptor EGFR Tyrosine kinases are less widespread than their ser thr counterparts but implicated in almost all cell growth and proliferation signal cascades citation needed Redox active not only antioxidant Edit Genistein may act as direct antioxidant similar to many other isoflavones and thus may alleviate damaging effects of free radicals in tissues 24 25 The same molecule of genistein similar to many other isoflavones by generation of free radicals poison topoisomerase II an enzyme important for maintaining DNA stability 26 27 28 Human cells turn on beneficial detoxifying Nrf2 factor in response to genistein insult This pathway may be responsible for observed health maintaining properties of small doses of genistein 29 Anthelmintic Edit The root tuber peel extract of the leguminous plant Flemingia vestita is the traditional anthelmintic of the Khasi tribes of India While investigating its anthelmintic activity genistein was found to be the major isoflavone responsible for the deworming property 6 30 Genistein was subsequently demonstrated to be highly effective against intestinal parasites such as the poultry cestode Raillietina echinobothrida 30 the pork trematode Fasciolopsis buski 31 and the sheep liver fluke Fasciola hepatica 32 It exerts its anthelmintic activity by inhibiting the enzymes of glycolysis and glycogenolysis 33 34 and disturbing the Ca2 homeostasis and NO activity in the parasites 35 36 It has also been investigated in human tapeworms such as Echinococcus multilocularis and E granulosus metacestodes that genistein and its derivatives Rm6423 and Rm6426 are potent cestocides 37 Atherosclerosis Edit Genistein protects against pro inflammatory factor induced vascular endothelial barrier dysfunction and inhibits leukocyte endothelium interaction thereby modulating vascular inflammation a major event in the pathogenesis of atherosclerosis 38 Cancer links Edit Genistein and other isoflavones have been identified as angiogenesis inhibitors and found to inhibit the uncontrolled cell growth of cancer most likely by inhibiting the activity of substances in the body that regulate cell division and cell survival growth factors Various studies have found that moderate doses of genistein have inhibitory effects on cancers of the prostate 39 40 cervix 41 brain 42 breast 39 43 44 and colon 17 It has also been shown that genistein makes some cells more sensitive to radio therapy 45 although timing of phytoestrogen use is also important 45 Genistein s chief method of activity is as a tyrosine kinase inhibitor Tyrosine kinases are less widespread than their ser thr counterparts but implicated in almost all cell growth and proliferation signal cascades Inhibition of DNA topoisomerase II also plays an important role in the cytotoxic activity of genistein 27 46 The observation that transition of normal lymphocytes from quiescence G0 to the G1 phase of the cell cycle is particularly sensitive to genistein prompted the authors to suggest that this isoflavone may be potential immunosuppressant 47 Genistein has been used to selectively target pre B cells via conjugation with an anti CD19 antibody 48 Studies on rodents have found genistein to be useful in the treatment of leukemia and that it can be used in combination with certain other antileukemic drugs to improve their efficacy 49 Estrogen receptor more cancer links Edit Due to its structure similarity to 17b estradiol estrogen genistein can compete with it and bind to estrogen receptors However genistein shows much higher affinity toward estrogen receptor b than toward estrogen receptor a 50 Data from in vitro and in vivo research confirms that genistein can increase rate of growth of some ER expressing breast cancers Genistein was found to increase the rate of proliferation of estrogen dependent breast cancer when not cotreated with an estrogen antagonist 51 52 53 It was also found to decrease efficiency of tamoxifen and letrozole drugs commonly used in breast cancer therapy 54 55 Genistein was found to inhibit immune response towards cancer cells allowing their survival 56 Effects in males Edit Isoflavones can act like estrogen stimulating development and maintenance of female characteristics or they can block cells from using cousins of estrogen In vitro studies have shown genistein to induce apoptosis of testicular cells at certain levels thus raising concerns about effects it could have on male fertility 57 however one study found that isoflavones had no observable effect on endocrine measurements testicular volume or semen parameters over the study period in healthy males given isoflavone supplements daily over a 2 month period 58 Carcinogenic and toxic potential Edit Genistein was among other flavonoids found to be a strong topoisomerase inhibitor similarly to some chemotherapeutic anticancer drugs ex etoposide and doxorubicin 26 59 In high doses it was found to be strongly toxic to normal cells 60 This effect may be responsible for both anticarcinogenic and carcinogenic potential of the substance 28 61 It was found to deteriorate DNA of cultured blood stem cells which may lead to leukemia 62 Genistein among other flavonoids is suspected to increase risk of infant leukemia when consumed during pregnancy 63 64 Sanfilippo syndrome treatment Edit Genistein decreases pathological accumulation of glycosaminoglycans in Sanfilippo syndrome In vitro animal studies and clinical experiments suggest that the symptoms of the disease may be alleviated by adequate dose of genistein 65 Genistein was found to also possess toxic properties toward brain cells 60 Among many pathways stimulated by genistein autophagy may explain the observed efficiency of the substance as autophagy is significantly impaired in the disease 66 67 Cognition Edit A study looking at Italians older than 50 found that those with the highest genistein intake had the lowest odds of cognitive impairment 68 Related compounds EditGenistin is the 7 O beta D glucoside of genistein citation needed Wighteone can be described as 6 isopentenyl genistein KBU2046 under investigation for prostate cancer 69 70 B43 genistein an anti CD19 antibody linked to genistein e g for leukemia 71 See also Edit S Equol Liquiritigenin MenerbaReferences Edit Sail Vibhavari Hadden M Kyle 2012 01 01 Desai Manoj C ed Chapter Eighteen Notch Pathway Modulators as Anticancer Chemotherapeutics Annual Reports in Medicinal Chemistry vol 47 Academic Press pp 267 280 doi 10 1016 B978 0 12 396492 2 00018 7 retrieved 2020 09 14 Walter E D 1941 Genistin an Isoflavone Glucoside and its Aglucone Genistein from Soybeans Journal of the American Chemical Society 63 12 3273 76 doi 10 1021 ja01857a013 Popiolkiewicz Joanna Polkowski Krzysztof Skierski Janusz S Mazurek Aleksander P November 2005 In vitro toxicity evaluation in the development of new anticancer drugs genistein glycosides Cancer Letters 229 1 67 75 doi 10 1016 j canlet 2005 01 014 ISSN 0304 3835 PMID 16157220 Coward Lori Barnes Neil C Setchell Kenneth D R Barnes Stephen 1993 Genistein daidzein and their b glycoside conjugates Antitumor isoflavones in soybean foods from American and Asian diets Journal of Agricultural and Food Chemistry 41 11 1961 7 doi 10 1021 jf00035a027 Kaufman Peter B Duke James A Brielmann Harry Boik John Hoyt James E 1997 A Comparative Survey of Leguminous Plants as Sources of the Isoflavones Genistein and Daidzein Implications for Human Nutrition and Health The Journal of Alternative and Complementary Medicine 3 1 7 12 CiteSeerX 10 1 1 320 9747 doi 10 1089 acm 1997 3 7 PMID 9395689 a b Rao H S P Reddy K S 1991 Isoflavones from Flemingia vestita Fitoterapia 62 5 458 Rao K Nageswara Srimannarayana G 1983 Fleminone a flavanone from the stems of Flemingia macrophylla Phytochemistry 22 10 2287 90 doi 10 1016 S0031 9422 00 80163 6 Wang Bor Sen Juang Lih Jeng Yang Jeng Jer Chen Li Ying Tai Huo Mu Huang Ming Hsing 2012 Antioxidant and Antityrosinase Activity of Flemingia macrophylla and Glycine tomentella Roots Evidence Based Complementary and Alternative Medicine 2012 1 7 doi 10 1155 2012 431081 PMC 3444970 PMID 22997529 Alves Rita C Almeida Ivone M C Casal Susana Oliveira M Beatriz P P 2010 Isoflavones in Coffee Influence of Species Roast Degree and Brewing Method Journal of Agricultural and Food Chemistry 58 5 3002 7 doi 10 1021 jf9039205 PMID 20131840 Fedoreyev S A Pokushalova T V Veselova M V Glebko L I Kulesh N I Muzarok T I Seletskaya L D Bulgakov V P Zhuravlev Yu N 2000 Isoflavonoid production by callus cultures of Maackia amurensis Fitoterapia 71 4 365 72 doi 10 1016 S0367 326X 00 00129 5 PMID 10925005 Patisaul Heather B Melby Melissa Whitten Patricia L Young Larry J 2002 Genistein Affects ERb But Not ERa Dependent Gene Expression in the Hypothalamus Endocrinology 143 6 2189 2197 doi 10 1210 endo 143 6 8843 ISSN 0013 7227 PMID 12021182 Green Sarah E 2015 In Vitro Comparison of Estrogenic Activities of Popular Women s Health Botanicals archived from the original on 2016 02 22 retrieved 2016 01 01 Prossnitz ER Arterburn JB July 2015 International Union of Basic and Clinical Pharmacology XCVII G Protein Coupled Estrogen Receptor and Its Pharmacologic Modulators Pharmacol Rev 67 3 505 40 doi 10 1124 pr 114 009712 PMC 4485017 PMID 26023144 Prossnitz Eric R Barton Matthias 2014 Estrogen biology New insights into GPER function and clinical opportunities Molecular and Cellular Endocrinology 389 1 2 71 83 doi 10 1016 j mce 2014 02 002 ISSN 0303 7207 PMC 4040308 PMID 24530924 Gossner G Choi M Tan L Fogoros S Griffith K Kuenker M Liu J 2007 Genistein induced apoptosis and autophagocytosis in ovarian cancer cells Gynecologic Oncology 105 1 23 30 doi 10 1016 j ygyno 2006 11 009 PMID 17234261 Singletary K Milner J 2008 Diet Autophagy and Cancer A Review Cancer Epidemiology Biomarkers amp Prevention 17 7 1596 610 doi 10 1158 1055 9965 EPI 07 2917 PMID 18628411 a b Nakamura Yoshitaka Yogosawa Shingo Izutani Yasuyuki Watanabe Hirotsuna Otsuji Eigo Sakai Tosiyuki 2009 A combination of indol 3 carbinol and genistein synergistically induces apoptosis in human colon cancer HT 29 cells by inhibiting Akt phosphorylation and progression of autophagy Molecular Cancer 8 100 doi 10 1186 1476 4598 8 100 PMC 2784428 PMID 19909554 Fang Mingzhu Chen Dapeng Yang Chung S January 2007 Dietary polyphenols may affect DNA methylation The Journal of Nutrition 137 1 Suppl 223S 228S doi 10 1093 jn 137 1 223S PMID 17182830 Glushakov A V Glushakova H Y Skok V I 1999 01 15 Modulation of nicotinic acetylcholine receptor activity in submucous neurons by intracellular messengers Journal of the Autonomic Nervous System 75 1 16 22 doi 10 1016 S0165 1838 98 00165 9 ISSN 0165 1838 PMID 9935265 a b Wang Limei Waltenberger Birgit Pferschy Wenzig Eva Maria Blunder Martina Liu Xin Malainer Clemens Blazevic Tina Schwaiger Stefan Rollinger Judith M Heiss Elke H Schuster Daniela Kopp Brigitte Bauer Rudolf Stuppner Hermann Dirsch Verena M Atanasov Atanas G 2014 Natural product agonists of peroxisome proliferator activated receptor gamma PPARg A review Biochemical Pharmacology 92 1 73 89 doi 10 1016 j bcp 2014 07 018 PMC 4212005 PMID 25083916 Dang Zhi Chao Audinot Valerie Papapoulos Socrates E Boutin Jean A Lowik Clemens W G M 2002 Peroxisome Proliferator activated Receptor g PPARg as a Molecular Target for the Soy Phytoestrogen Genistein Journal of Biological Chemistry 278 2 962 7 doi 10 1074 jbc M209483200 PMID 12421816 Dang Zhi Chao Lowik Clemens 2005 Dose dependent effects of phytoestrogens on bone Trends in Endocrinology and Metabolism 16 5 207 13 doi 10 1016 j tem 2005 05 001 PMID 15922618 S2CID 35366615 Dang Z C 2009 Dose dependent effects of soy phyto oestrogen genistein on adipocytes Mechanisms of action Obesity Reviews 10 3 342 9 doi 10 1111 j 1467 789X 2008 00554 x PMID 19207876 S2CID 13804244 Han Rui Min Tian Yu Xi Liu Yin Chen Chang Hui Ai Xi Cheng Zhang Jian Ping Skibsted Leif H 2009 Comparison of Flavonoids and Isoflavonoids as Antioxidants Journal of Agricultural and Food Chemistry 57 9 3780 5 doi 10 1021 jf803850p PMID 19296660 Borras Consuelo Gambini Juan Lopez Grueso Raul Pallardo Federico V Vina Jose 2010 Direct antioxidant and protective effect of estradiol on isolated mitochondria PDF Biochimica et Biophysica Acta BBA Molecular Basis of Disease 1802 1 205 11 doi 10 1016 j bbadis 2009 09 007 PMID 19751829 a b Bandele Omari J Osheroff Neil 2007 Bioflavonoids as Poisons of Human Topoisomerase IIa and IIb Biochemistry 46 20 6097 108 doi 10 1021 bi7000664 PMC 2893030 PMID 17458941 a b Markovits Judith Linassier Claude Fosse Philippe Couprie Jeanine Pierre Josiane Jacquemin Sablon Alain Saucier Jean Marie Le Pecq Jean Bernard Larsen Annette K September 1989 Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II Cancer Research 49 18 5111 7 PMID 2548712 a b Lopez Lazaro Miguel Willmore Elaine Austin Caroline A 2007 Cells Lacking DNA Topoisomerase IIb are Resistant to Genistein Journal of Natural Products 70 5 763 7 doi 10 1021 np060609z PMID 17411092 Mann Giovanni E Bonacasa Barbara Ishii Tetsuro Siow Richard CM 2009 Targeting the redox sensitive Nrf2 Keap1 defense pathway in cardiovascular disease Protection afforded by dietary isoflavones Current Opinion in Pharmacology 9 2 139 45 doi 10 1016 j coph 2008 12 012 PMID 19157984 a b Tandon V Pal P Roy B Rao H S P Reddy K S 1997 In vitro anthelmintic activity of root tuber extract of Flemingia vestita an indigenous plant in Shillong India Parasitology Research 83 5 492 8 doi 10 1007 s004360050286 PMID 9197399 S2CID 25086153 Kar Pradip K Tandon Veena Saha Nirmalendu 2002 Anthelmintic efficacy of Flemingia vestita Genistein induced effect on the activity of nitric oxide synthase and nitric oxide in the trematode parasite Fasciolopsis buski Parasitology International 51 3 249 57 doi 10 1016 S1383 5769 02 00032 6 PMID 12243779 Toner E Brennan G P Wells K McGeown J G Fairweather I 2008 Physiological and morphological effects of genistein against the liver fluke Fasciola hepatica Parasitology 135 10 1189 203 doi 10 1017 S0031182008004630 PMID 18771609 S2CID 6525410 Tandon Veena Das Bidyadhar Saha Nirmalendu 2003 Anthelmintic efficacy of Flemingia vestita Fabaceae Effect of genistein on glycogen metabolism in the cestode Raillietina echinobothrida Parasitology International 52 2 179 86 doi 10 1016 S1383 5769 03 00006 0 PMID 12798931 Das B Tandon V Saha N 2004 Anthelmintic efficacy of Flemingia vestita Fabaceae Alteration in the activities of some glycolytic enzymes in the cestode Raillietina echinobothrida Parasitology Research 93 4 253 61 doi 10 1007 s00436 004 1122 8 PMID 15138892 S2CID 9491127 Das Bidyadhar Tandon Veena Saha Nirmalendu 2006 Effect of isoflavone from Flemingia vestita Fabaceae on the Ca2 homeostasis in Raillietina echinobothrida the cestode of domestic fowl Parasitology International 55 1 17 21 doi 10 1016 j parint 2005 08 002 PMID 16198617 Das Bidyadhar Tandon Veena Lyndem Larisha M Gray Alexander I Ferro Valerie A 2009 Phytochemicals from Flemingia vestita Fabaceae and Stephania glabra Menispermeaceae alter cGMP concentration in the cestode Raillietina echinobothrida Comparative Biochemistry and Physiology C 149 3 397 403 doi 10 1016 j cbpc 2008 09 012 PMID 18854226 Naguleswaran Arunasalam Spicher Martin Vonlaufen Nathalie Ortega Mora Luis M Torgerson Paul Gottstein Bruno Hemphill Andrew 2006 In Vitro Metacestodicidal Activities of Genistein and Other Isoflavones againstEchinococcus multilocularis and Echinococcus granulosus Antimicrobial Agents and Chemotherapy 50 11 3770 8 doi 10 1128 AAC 00578 06 PMC 1635224 PMID 16954323 Si Hongwei Liu Dongmin Si Hongwei Liu Dongmin 2007 Phytochemical Genistein in the Regulation of Vascular Function New Insights Current Medicinal Chemistry 14 24 2581 9 doi 10 2174 092986707782023325 PMID 17979711 a b Morito Keiko Hirose Toshiharu Kinjo Junei Hirakawa Tomoki Okawa Masafumi Nohara Toshihiro Ogawa Sumito Inoue Satoshi Muramatsu Masami Masamune Yukito 2001 Interaction of Phytoestrogens with Estrogen Receptors a and b Biological amp Pharmaceutical Bulletin 24 4 351 6 doi 10 1248 bpb 24 351 PMID 11305594 Hwang Ye Won Kim Soo Young Jee Sun Ha Kim Youn Nam Nam Chung Mo 2009 Soy Food Consumption and Risk of Prostate Cancer A Meta Analysis of Observational Studies Nutrition and Cancer 61 5 598 606 doi 10 1080 01635580902825639 PMID 19838933 S2CID 19719873 Kim Su Hyeon Kim Su Hyeong Kim Yong Beom Jeon Yong Tark Lee Sang Chul Song Yong Sang 2009 Genistein Inhibits Cell Growth by Modulating Various Mitogen Activated Protein Kinases and AKT in Cervical Cancer Cells Annals of the New York Academy of Sciences 1171 1 495 500 Bibcode 2009NYASA1171 495K doi 10 1111 j 1749 6632 2009 04899 x PMID 19723095 S2CID 26111697 Das Arabinda Banik Naren L Ray Swapan K 2009 Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes Cancer 116 1 164 76 doi 10 1002 cncr 24699 PMC 3159962 PMID 19894226 Sakamoto Takako Horiguchi Hyogo Oguma Etsuko Kayama Fujio 2010 Effects of diverse dietary phytoestrogens on cell growth cell cycle and apoptosis in estrogen receptor positive breast cancer cells The Journal of Nutritional Biochemistry 21 9 856 64 doi 10 1016 j jnutbio 2009 06 010 PMID 19800779 de Lemos Mario L 2001 Effects of Soy Phytoestrogens Genistein and Daidzein on Breast Cancer Growth The Annals of Pharmacotherapy 35 9 1118 21 doi 10 1345 aph 10257 PMID 11573864 S2CID 208876381 a b de Assis Sonia Hilakivi Clarke Leena 2006 Timing of Dietary Estrogenic Exposures and Breast Cancer Risk Annals of the New York Academy of Sciences 1089 1 14 35 Bibcode 2006NYASA1089 14D doi 10 1196 annals 1386 039 PMID 17261753 S2CID 22170442 Lopez Lazaro Miguel Willmore Elaine Austin Caroline A 2007 Cells Lacking DNA Topoisomerase IIb are Resistant to Genistein Journal of Natural Products 70 5 763 7 doi 10 1021 np060609z PMID 17411092 Traganos F Ardelt B Halko N Bruno S Darzynkiewicz Z 1992 Effects of genistein on the growth and cell cycle progression of normal human lymphocytes and human leukemic MOLT 4 and HL 60 cells Cancer Res 52 22 6200 8 PMID 1330289 Safa Malek Foon Kenneth A Oldham Robert K 2009 Drug Immunoconjugates In Oldham Robert K Dillman Robert O eds Principles of Cancer Biotherapy 5th ed pp 451 62 doi 10 1007 978 90 481 2289 9 12 ISBN 978 90 481 2277 6 Raynal Noel J M Charbonneau Michel Momparler Louise F Momparler Richard L 2008 Synergistic Effect of 5 Aza 2 Deoxycytidine and Genistein in Combination Against Leukemia Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics 17 5 223 30 doi 10 3727 096504008786111356 PMID 18980019 Kuiper George G J M Lemmen Josephine G Carlsson Bo Corton J Christopher Safe Stephen H van der Saag Paul T van der Burg Bart Gustafsson Jan Ake 1998 Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor b Endocrinology 139 10 4252 63 doi 10 1210 endo 139 10 6216 PMID 9751507 Ju Young H Allred Kimberly F Allred Clinton D Helferich William G 2006 Genistein stimulates growth of human breast cancer cells in a novel postmenopausal animal model with low plasma estradiol concentrations Carcinogenesis 27 6 1292 9 doi 10 1093 carcin bgi370 PMID 16537557 Chen Wen Fang Wong Man Sau 2004 Genistein Enhances Insulin Like Growth Factor Signaling Pathway in Human Breast Cancer MCF 7 Cells The Journal of Clinical Endocrinology amp Metabolism 89 5 2351 9 doi 10 1210 jc 2003 032065 PMID 15126563 Yang Xiaohe Yang Shihe McKimmey Christine Liu Bolin Edgerton Susan M Bales Wesley Archer Linda T Thor Ann D 2010 Genistein induces enhanced growth promotion in ER positive erbB 2 overexpressing breast cancers by ER erbB 2 cross talk and p27 kip1 downregulation Carcinogenesis 31 4 695 702 doi 10 1093 carcin bgq007 PMID 20067990 Helferich W G Andrade J E Hoagland M S 2008 Phytoestrogens and breast cancer A complex story Inflammopharmacology 16 5 219 26 doi 10 1007 s10787 008 8020 0 PMID 18815740 S2CID 11659490 Tonetti Debra A Zhang Yiyun Zhao Huiping Lim Sok Bee Constantinou Andreas I 2007 The Effect of the Phytoestrogens Genistein Daidzein and Equol on the Growth of Tamoxifen Resistant T47D PKCa Nutrition and Cancer 58 2 222 9 doi 10 1080 01635580701328545 PMID 17640169 S2CID 10831895 Jiang Xinguo Patterson Nicole M Ling Yan Xie Jianwei Helferich William G Shapiro David J 2008 Low Concentrations of the Soy Phytoestrogen Genistein Induce Proteinase Inhibitor 9 and Block Killing of Breast Cancer Cells by Immune Cells Endocrinology 149 11 5366 73 doi 10 1210 en 2008 0857 PMC 2584580 PMID 18669594 Kumi Diaka James Rodriguez Rosanna Goudaze Gould 1998 Influence of genistein 4 5 7 trihydroxyisoflavone on the growth and proliferation of testicular cell lines Biology of the Cell 90 4 349 54 doi 10 1016 S0248 4900 98 80015 4 PMID 9800352 Mitchell Julie H Cawood Elizabeth Kinniburgh David Provan Anne Collins Andrew R Irvine D Stewart 2001 Effect of a phytoestrogen food supplement on reproductive health in normal males Clinical Science 100 6 613 8 doi 10 1042 CS20000212 PMID 11352776 Lutz Werner K Tiedge Oliver Lutz Roman W Stopper Helga 2005 Different Types of Combination Effects for the Induction of Micronuclei in Mouse Lymphoma Cells by Binary Mixtures of the Genotoxic Agents MMS MNU and Genistein Toxicological Sciences 86 2 318 23 doi 10 1093 toxsci kfi200 PMID 15901918 a b Jin Ying Wu Heng Cohen Eric M Wei Jianning Jin Hong Prentice Howard Wu Jang Yen 2007 Genistein and daidzein induce neurotoxicity at high concentrations in primary rat neuronal cultures Journal of Biomedical Science 14 2 275 84 doi 10 1007 s11373 006 9142 2 PMID 17245525 Schmidt Friederike Knobbe Christiane Frank Brigitte Wolburg Hartwig Weller Michael 2008 The topoisomerase II inhibitor genistein induces G2 M arrest and apoptosis in human malignant glioma cell lines Oncology Reports 19 4 1061 6 doi 10 3892 or 19 4 1061 PMID 18357397 van Waalwijk van Doorn Khosrovani Sahar Barjesteh Janssen Jannie Maas Lou M Godschalk Roger W L Nijhuis Jan G van Schooten Frederik J 2007 Dietary flavonoids induce MLL translocations in primary human CD34 cells Carcinogenesis 28 8 1703 9 doi 10 1093 carcin bgm102 PMID 17468513 Spector Logan G Xie Yang Robison Leslie L Heerema Nyla A Hilden Joanne M Lange Beverly Felix Carolyn A Davies Stella M Slavin Joanne Potter John D Blair Cindy K Reaman Gregory H Ross Julie A 2005 Maternal Diet and Infant Leukemia The DNA Topoisomerase II Inhibitor Hypothesis A Report from the Children s Oncology Group Cancer Epidemiology Biomarkers amp Prevention 14 3 651 5 doi 10 1158 1055 9965 EPI 04 0602 PMID 15767345 Azarova Anna M Lin Ren Kuo Tsai Yuan Chin Liu Leroy F Lin Chao Po Lyu Yi Lisa 2010 Genistein induces topoisomerase IIbeta and proteasome mediated DNA sequence rearrangements Implications in infant leukemia Biochemical and Biophysical Research Communications 399 1 66 71 doi 10 1016 j bbrc 2010 07 043 PMC 3376163 PMID 20638367 Piotrowska Ewa Jakobkiewicz Banecka Joanna Baranska Sylwia Tylki Szymanska Anna Czartoryska Barbara Wegrzyn Alicja Wegrzyn Grzegorz 2006 Genistein mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression targeted isoflavone therapy for mucopolysaccharidoses European Journal of Human Genetics 14 7 846 52 doi 10 1038 sj ejhg 5201623 PMID 16670689 Ballabio A 2009 Disease pathogenesis explained by basic science Lysosomal storage diseases as autophagocytic disorders International Journal of Clinical Pharmacology and Therapeutics 47 Suppl 1 S34 8 doi 10 5414 cpp47034 PMID 20040309 Settembre Carmine Fraldi Alessandro Jahreiss Luca Spampanato Carmine Venturi Consuelo Medina Diego de Pablo Raquel Tacchetti Carlo Rubinsztein David C Ballabio Andrea 2007 A block of autophagy in lysosomal storage disorders Human Molecular Genetics 17 1 119 29 doi 10 1093 hmg ddm289 PMID 17913701 Giampieri Francesca Godos Justyna Caruso Giuseppe Owczarek Marcin Jurek Joanna Castellano Sabrina Ferri Raffaele Caraci Filippo Grosso Giuseppe 2022 05 30 Dietary Phytoestrogen Intake and Cognitive Status in Southern Italian Older Adults Biomolecules 12 6 760 doi 10 3390 biom12060760 ISSN 2218 273X PMC 9221352 PMID 35740885 Xu Li Farmer Rebecca Huang Xiaoke Pavese Janet Voll Eric Irene Ogden Biddle Margaret Nibbs Antoinette Valsecchi Matias Scheidt Karl Bergan Raymond 2010 Abstract B58 Discovery of a novel drug KBU2046 that inhibits conversion of human prostate cancer to a metastatic phenotype Cancer Prevention Research 3 12 Supplement B58 doi 10 1158 1940 6207 PREV 10 B58 New Drug Stops Spread of Prostate Cancer Press release Northwestern University April 3 2012 Retrieved September 27 2014 Chen Chun Lin Levine Alexandra Rao Asha O Neill Karen Messinger Yoav Myers Dorothea E Goldman Frederick Hurvitz Carole Casper James T Uckun Fatih M 1999 Clinical Pharmacokinetics of the CD19 Receptor Directed Tyrosine Kinase Inhibitor B43 Genistein in Patients with B Lineage Lymphoid Malignancies The Journal of Clinical Pharmacology 39 12 1248 55 doi 10 1177 00912709922012051 PMID 10586390 S2CID 24445516 External links Edit Wikimedia Commons has media related to Genistein Compound Summary at NCBI PubChem Fact Sheet at Zerobreastcancer Archived 2021 04 21 at the Wayback Machine Information at Phytochemicals Chemical Compound Review at Wikigenes Information at Chemicalbook Description at SpringerReference Description at NCI Drug Dictionary Retrieved from https en wikipedia org w index php title Genistein amp oldid 1136730486, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.