fbpx
Wikipedia

Equality (mathematics)

In mathematics, equality is a relationship between two quantities or, more generally, two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced "A equals B".[1] The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct.

For example:

  • means that x and y denote the same object.[2]
  • The identity means that if x is any number, then the two expressions have the same value. This may also be interpreted as saying that the two sides of the equals sign represent the same function.
  • if and only if This assertion, which uses set-builder notation, means that if the elements satisfying the property are the same as the elements satisfying then the two uses of the set-builder notation define the same set. This property is often expressed as "two sets that have the same elements are equal." It is one of the usual axioms of set theory, called axiom of extensionality.[3]

Etymology edit

The etymology of the word is from the Latin aequālis ("equal", "like", "comparable", "similar") from aequus ("equal", "level", "fair", "just").

Basic properties edit

  • Substitution property: For any quantities a and b and any expression F(x), if a = b, then F(a) = F(b) (provided that both sides are well-formed).

    Some specific examples of this are:

    • For any real numbers a, b, and c, if a = b, then a + c = b + c (here, F(x) is x + c);
    • For any real numbers a, b, and c, if a = b, then ac = bc (here, F(x) is xc);
    • For any real numbers a, b, and c, if a = b, then ac = bc (here, F(x) is xc);
    • For any real numbers a, b, and c, if a = b and c is not zero, then a/c = b/c (here, F(x) is x/c).
  • Reflexive property: For any quantity a, a = a.
  • Symmetric property: For any quantities a and b, if a = b, then b = a.
  • Transitive property: For any quantities a, b, and c, if a = b and b = c, then a = c.[4]

These last three properties make equality an equivalence relation. They were originally included among the Peano axioms for natural numbers. Although the symmetric and transitive properties are often seen as fundamental, they can be deduced from substitution and reflexive properties.

Equality as predicate edit

When A and B are not fully specified or depend on some variables, equality is a proposition, which may be true for some values and false for other values. Equality is a binary relation (i.e., a two-argument predicate) which may produce a truth value (false or true) from its arguments. In computer programming, its computation from the two expressions is known as comparison.

Identities edit

When A and B may be viewed as functions of some variables, then A = B means that A and B define the same function. Such an equality of functions is sometimes called an identity. An example is   Sometimes, but not always, an identity is written with a triple bar:  

Equations edit

An equation is a problem of finding values of some variables, called unknowns, for which the specified equality is true. The term "equation" may also refer to an equality relation that is satisfied only for the values of the variables that one is interested in. For example,   is the equation of the unit circle.

There is no standard notation that distinguishes an equation from an identity, or other use of the equality relation: one has to guess an appropriate interpretation from the semantics of expressions and the context. An identity is asserted to be true for all values of variables in a given domain. An "equation" may sometimes mean an identity, but more often than not, it specifies a subset of the variable space to be the subset where the equation is true.

Approximate equality edit

There are some logic systems that do not have any notion of equality. This reflects the undecidability of the equality of two real numbers, defined by formulas involving the integers, the basic arithmetic operations, the logarithm and the exponential function. In other words, there cannot exist any algorithm for deciding such an equality.

The binary relation "is approximately equal" (denoted by the symbol  ) between real numbers or other things, even if more precisely defined, is not transitive (since many small differences can add up to something big). However, equality almost everywhere is transitive.

A questionable equality under test may be denoted using the symbol.

Relation with equivalence, congruence, and isomorphism edit

Viewed as a relation, equality is the archetype of the more general concept of an equivalence relation on a set: those binary relations that are reflexive, symmetric and transitive. The identity relation is an equivalence relation. Conversely, let R be an equivalence relation, and let us denote by xR the equivalence class of x, consisting of all elements z such that x R z. Then the relation x R y is equivalent with the equality xR = yR. It follows that equality is the finest equivalence relation on any set S in the sense that it is the relation that has the smallest equivalence classes (every class is reduced to a single element).

In some contexts, equality is sharply distinguished from equivalence or isomorphism.[5] For example, one may distinguish fractions from rational numbers, the latter being equivalence classes of fractions: the fractions   and   are distinct as fractions (as different strings of symbols) but they "represent" the same rational number (the same point on a number line). This distinction gives rise to the notion of a quotient set.

Similarly, the sets

  and  

are not equal sets — the first consists of letters, while the second consists of numbers — but they are both sets of three elements and thus isomorphic, meaning that there is a bijection between them. For example

 

However, there are other choices of isomorphism, such as

 

and these sets cannot be identified without making such a choice — any statement that identifies them "depends on choice of identification". This distinction, between equality and isomorphism, is of fundamental importance in category theory and is one motivation for the development of category theory.

In some cases, one may consider as equal two mathematical objects that are only equivalent for the properties and structure being considered. The word congruence (and the associated symbol  ) is frequently used for this kind of equality, and is defined as the quotient set of the isomorphism classes between the objects. In geometry for instance, two geometric shapes are said to be equal or congruent when one may be moved to coincide with the other, and the equality/congruence relation is the isomorphism classes of isometries between shapes. Similarly to isomorphisms of sets, the difference between isomorphisms and equality/congruence between such mathematical objects with properties and structure was one motivation for the development of category theory, as well as for homotopy type theory and univalent foundations.

Logical definitions edit

Leibniz characterized the notion of equality as follows:

Given any x and y, x = y if and only if, given any predicate P, P(x) if and only if P(y).

Equality in set theory edit

Equality of sets is axiomatized in set theory in two different ways, depending on whether the axioms are based on a first-order language with or without equality.

Set equality based on first-order logic with equality edit

In first-order logic with equality, the axiom of extensionality states that two sets which contain the same elements are the same set.[6]

  • Logic axiom:  
  • Logic axiom:  
  • Set theory axiom:  

Incorporating half of the work into the first-order logic may be regarded as a mere matter of convenience, as noted by Lévy.

"The reason why we take up first-order predicate calculus with equality is a matter of convenience; by this we save the labor of defining equality and proving all its properties; this burden is now assumed by the logic."[7]

Set equality based on first-order logic without equality edit

In first-order logic without equality, two sets are defined to be equal if they contain the same elements. Then the axiom of extensionality states that two equal sets are contained in the same sets.[8]

  • Set theory definition:  
  • Set theory axiom:  

See also edit

Notes edit

  1. ^ Weisstein, Eric W. "Equality". mathworld.wolfram.com. Retrieved 1 September 2020.
  2. ^ Rosser 2008, p. 163.
  3. ^ Lévy 2002, pp. 13, 358. Mac Lane & Birkhoff 1999, p. 2. Mendelson 1964, p. 5.
  4. ^ Weisstein, Eric W. "Equal". mathworld.wolfram.com. Retrieved 1 September 2020.
  5. ^ (Mazur 2007)
  6. ^ Kleene 2002, p. 189. Lévy 2002, p. 13. Shoenfield 2001, p. 239.
  7. ^ Lévy 2002, p. 4.
  8. ^ Mendelson 1964, pp. 159–161. Rosser 2008, pp. 211–213

References edit

External links edit

equality, mathematics, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, equality, mathematics, news, newspapers, book. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Equality mathematics news newspapers books scholar JSTOR December 2015 Learn how and when to remove this template message In mathematics equality is a relationship between two quantities or more generally two mathematical expressions asserting that the quantities have the same value or that the expressions represent the same mathematical object The equality between A and B is written A B and pronounced A equals B 1 The symbol is called an equals sign Two objects that are not equal are said to be distinct For example x y displaystyle x y means that x and y denote the same object 2 The identity x 1 2 x 2 2 x 1 displaystyle x 1 2 x 2 2x 1 means that if x is any number then the two expressions have the same value This may also be interpreted as saying that the two sides of the equals sign represent the same function x P x x Q x displaystyle x mid P x x mid Q x if and only if P x Q x displaystyle P x Leftrightarrow Q x This assertion which uses set builder notation means that if the elements satisfying the property P x displaystyle P x are the same as the elements satisfying Q x displaystyle Q x then the two uses of the set builder notation define the same set This property is often expressed as two sets that have the same elements are equal It is one of the usual axioms of set theory called axiom of extensionality 3 Contents 1 Etymology 2 Basic properties 3 Equality as predicate 4 Identities 5 Equations 6 Approximate equality 7 Relation with equivalence congruence and isomorphism 8 Logical definitions 9 Equality in set theory 9 1 Set equality based on first order logic with equality 9 2 Set equality based on first order logic without equality 10 See also 11 Notes 12 References 13 External linksEtymology editThe etymology of the word is from the Latin aequalis equal like comparable similar from aequus equal level fair just Basic properties editSubstitution property For any quantities a and b and any expression F x if a b then F a F b provided that both sides are well formed Some specific examples of this are For any real numbers a b and c if a b then a c b c here F x is x c For any real numbers a b and c if a b then a c b c here F x is x c For any real numbers a b and c if a b then ac bc here F x is xc For any real numbers a b and c if a b and c is not zero then a c b c here F x is x c Reflexive property For any quantity a a a Symmetric property For any quantities a and b if a b then b a Transitive property For any quantities a b and c if a b and b c then a c 4 These last three properties make equality an equivalence relation They were originally included among the Peano axioms for natural numbers Although the symmetric and transitive properties are often seen as fundamental they can be deduced from substitution and reflexive properties Equality as predicate editWhen A and B are not fully specified or depend on some variables equality is a proposition which may be true for some values and false for other values Equality is a binary relation i e a two argument predicate which may produce a truth value false or true from its arguments In computer programming its computation from the two expressions is known as comparison Identities editMain article Identity mathematics When A and B may be viewed as functions of some variables then A B means that A and B define the same function Such an equality of functions is sometimes called an identity An example is x 1 x 1 x 2 2 x 1 displaystyle left x 1 right left x 1 right x 2 2x 1 nbsp Sometimes but not always an identity is written with a triple bar x 1 x 1 x 2 2 x 1 displaystyle left x 1 right left x 1 right equiv x 2 2x 1 nbsp Equations editAn equation is a problem of finding values of some variables called unknowns for which the specified equality is true The term equation may also refer to an equality relation that is satisfied only for the values of the variables that one is interested in For example x 2 y 2 1 displaystyle x 2 y 2 1 nbsp is the equation of the unit circle There is no standard notation that distinguishes an equation from an identity or other use of the equality relation one has to guess an appropriate interpretation from the semantics of expressions and the context An identity is asserted to be true for all values of variables in a given domain An equation may sometimes mean an identity but more often than not it specifies a subset of the variable space to be the subset where the equation is true Approximate equality editThere are some logic systems that do not have any notion of equality This reflects the undecidability of the equality of two real numbers defined by formulas involving the integers the basic arithmetic operations the logarithm and the exponential function In other words there cannot exist any algorithm for deciding such an equality The binary relation is approximately equal denoted by the symbol displaystyle approx nbsp between real numbers or other things even if more precisely defined is not transitive since many small differences can add up to something big However equality almost everywhere is transitive A questionable equality under test may be denoted using the symbol Relation with equivalence congruence and isomorphism editMain articles Equivalence relation Isomorphism Congruence relation and Congruence geometry Viewed as a relation equality is the archetype of the more general concept of an equivalence relation on a set those binary relations that are reflexive symmetric and transitive The identity relation is an equivalence relation Conversely let R be an equivalence relation and let us denote by xR the equivalence class of x consisting of all elements z such that x R z Then the relation x R y is equivalent with the equality xR yR It follows that equality is the finest equivalence relation on any set S in the sense that it is the relation that has the smallest equivalence classes every class is reduced to a single element In some contexts equality is sharply distinguished from equivalence or isomorphism 5 For example one may distinguish fractions from rational numbers the latter being equivalence classes of fractions the fractions 1 2 displaystyle 1 2 nbsp and 2 4 displaystyle 2 4 nbsp are distinct as fractions as different strings of symbols but they represent the same rational number the same point on a number line This distinction gives rise to the notion of a quotient set Similarly the sets A B C displaystyle text A text B text C nbsp and 1 2 3 displaystyle 1 2 3 nbsp are not equal sets the first consists of letters while the second consists of numbers but they are both sets of three elements and thus isomorphic meaning that there is a bijection between them For example A 1 B 2 C 3 displaystyle text A mapsto 1 text B mapsto 2 text C mapsto 3 nbsp However there are other choices of isomorphism such as A 3 B 2 C 1 displaystyle text A mapsto 3 text B mapsto 2 text C mapsto 1 nbsp and these sets cannot be identified without making such a choice any statement that identifies them depends on choice of identification This distinction between equality and isomorphism is of fundamental importance in category theory and is one motivation for the development of category theory In some cases one may consider as equal two mathematical objects that are only equivalent for the properties and structure being considered The word congruence and the associated symbol displaystyle cong nbsp is frequently used for this kind of equality and is defined as the quotient set of the isomorphism classes between the objects In geometry for instance two geometric shapes are said to be equal or congruent when one may be moved to coincide with the other and the equality congruence relation is the isomorphism classes of isometries between shapes Similarly to isomorphisms of sets the difference between isomorphisms and equality congruence between such mathematical objects with properties and structure was one motivation for the development of category theory as well as for homotopy type theory and univalent foundations Logical definitions editSee also First order logic Equality and its axioms and Identity of indiscernibles Leibniz characterized the notion of equality as follows Given any x and y x y if and only if given any predicate P P x if and only if P y Equality in set theory editMain article Axiom of extensionality Equality of sets is axiomatized in set theory in two different ways depending on whether the axioms are based on a first order language with or without equality Set equality based on first order logic with equality edit In first order logic with equality the axiom of extensionality states that two sets which contain the same elements are the same set 6 Logic axiom x y z z x z y displaystyle x y implies forall z z in x iff z in y nbsp Logic axiom x y z x z y z displaystyle x y implies forall z x in z iff y in z nbsp Set theory axiom z z x z y x y displaystyle forall z z in x iff z in y implies x y nbsp Incorporating half of the work into the first order logic may be regarded as a mere matter of convenience as noted by Levy The reason why we take up first order predicate calculus with equality is a matter of convenience by this we save the labor of defining equality and proving all its properties this burden is now assumed by the logic 7 Set equality based on first order logic without equality edit In first order logic without equality two sets are defined to be equal if they contain the same elements Then the axiom of extensionality states that two equal sets are contained in the same sets 8 Set theory definition x y z z x z y displaystyle x y forall z z in x iff z in y nbsp Set theory axiom x y z x z y z displaystyle x y implies forall z x in z iff y in z nbsp See also editExtensionality Homotopy type theory Inequality List of mathematical symbols Logical equality Proportionality mathematics Notes edit Weisstein Eric W Equality mathworld wolfram com Retrieved 1 September 2020 Rosser 2008 p 163 Levy 2002 pp 13 358 Mac Lane amp Birkhoff 1999 p 2 Mendelson 1964 p 5 Weisstein Eric W Equal mathworld wolfram com Retrieved 1 September 2020 Mazur 2007 Kleene 2002 p 189 Levy 2002 p 13 Shoenfield 2001 p 239 Levy 2002 p 4 Mendelson 1964 pp 159 161 Rosser 2008 pp 211 213References editKleene Stephen Cole 2002 1967 Mathematical Logic Mineola New York Dover Publications ISBN 978 0 486 42533 7 Levy Azriel 2002 1979 Basic set theory Mineola New York Dover Publications ISBN 978 0 486 42079 0 Mac Lane Saunders Birkhoff Garrett 1999 1967 Algebra Third ed Providence Rhode Island American Mathematical Society Mazur Barry 12 June 2007 When is one thing equal to some other thing PDF Mendelson Elliott 1964 Introduction to Mathematical Logic New York Van Nostrand Reinhold Rosser John Barkley 2008 1953 Logic for mathematicians Mineola New York Dover Publication ISBN 978 0 486 46898 3 Shoenfield Joseph Robert 2001 1967 Mathematical Logic 2nd ed A K Peters ISBN 978 1 56881 135 2 External links edit Equality axioms Encyclopedia of Mathematics EMS Press 2001 1994 Retrieved from https en wikipedia org w index php title Equality mathematics amp oldid 1184599268, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.