fbpx
Wikipedia

Coast

The coast, also known as the coastline or seashore, is defined as the area where land meets the ocean,[1] or as a line that forms the boundary between the land and the coastline.[2] The Earth has around 620,000 kilometres (390,000 mi) of coastline. Coasts are important zones in natural ecosystems, often home to a wide range of biodiversity. On land, they harbor important ecosystems such as freshwater or estuarine wetlands, which are important for bird populations and other terrestrial animals. In wave-protected areas they harbor saltmarshes, mangroves or seagrasses, all of which can provide nursery habitat for finfish, shellfish, and other aquatic species.[3][4] Rocky shores are usually found along exposed coasts and provide habitat for a wide range of sessile animals (e.g. mussels, starfish, barnacles) and various kinds of seaweeds. Along tropical coasts with clear, nutrient-poor water, coral reefs can often be found between depths of 1–50 meters (3.3–164.0 feet).

Sunrise on the Jersey Shore coastline at Spring Lake, New Jersey, U.S.
Rugged coastline of the West Coast Region of New Zealand
Southeast coast of Greenland

According to a United Nations atlas, 44% of all people live within 5 km (3.3mi) of the sea.[5] Because of their importance in society and high concentration of population, the coast is important for major parts of the global food and economic system, and they provide many ecosystem services to humankind. For example, important human activities happen in port cities. Coastal fisheries (commercial, recreational, and subsistence) and aquaculture are major economic activities and create jobs, livelihoods, and protein for the majority of coastal human populations. Other coastal spaces like beaches and seaside resorts generate large revenues through tourism. Marine coastal ecosystems can also provide protection against sea level rise and tsunamis. In many countries, mangroves are the primary source of wood for fuel (e.g. charcoal) and building material. Coastal ecosystems like mangroves and seagrasses have a much higher capacity for carbon sequestration than many terrestrial ecosystems, and as such can play a critical role in the near-future to help mitigate climate change effects by uptake of atmospheric anthropogenic carbon dioxide.

However, the economic importance of coasts makes many of these communities vulnerable to climate change, which causes increases in extreme weather and sea level rise, and related issues such as coastal erosion, saltwater intrusion and coastal flooding.[6] Other coastal issues, such as marine pollution, marine debris, coastal development, and marine ecosystem destruction, further complicate the human uses of the coast and threaten coastal ecosystems.[6] The interactive effects of climate change, habitat destruction, overfishing and water pollution (especially eutrophication) have led to the demise of coastal ecosystem around the globe. This has resulted in population collapse of fisheries stocks, loss of biodiversity, increased invasion of alien species, and loss of healthy habitats. International attention to these issues has been captured in Sustainable Development Goal 14 "Life Below Water" which sets goals for international policy focused on preserving marine coastal ecosystems and supporting more sustainable economic practices for coastal communities.[7] Likewise, the United Nations has declared 2021-2030 the UN Decade on Ecosystem Restoration, but restoration of coastal ecosystems has received insufficient attention.[8]

Because coasts are constantly changing, a coastline's exact perimeter cannot be determined; this measurement challenge is called the coastline paradox. The term coastal zone is used to refer to a region where interactions of sea and land processes occur.[9] Both the terms coast and coastal are often used to describe a geographic location or region located on a coastline (e.g., New Zealand's West Coast, or the East, West, and Gulf Coast of the United States.) Coasts with a narrow continental shelf that are close to the open ocean are called pelagic coast, while other coasts are more sheltered coast in a gulf or bay. A shore, on the other hand, may refer to parts of land adjoining any large body of water, including oceans (sea shore) and lakes (lake shore).

Size

 
Somalia has the longest coastline in Africa.[10]

The Earth has approximately 620,000 kilometres (390,000 mi) of coastline. Coastal habitats, which extend to the margins of the continental shelves, make up about 7 percent of the Earth's oceans,[11] but at least 85% of commercially harvested fish depend on coastal environments during at least part of their life cycle.[12] As of October 2010, about 2.86% of exclusive economic zones were part of marine protected areas.[13]

The definition of coasts varies. Marine scientists think of the "wet" (aquatic or intertidal) vegetated habitats as being coastal ecosystems (including seagrass, salt marsh etc.) whilst some terrestrial scientist might only think of coastal ecosystems as purely terrestrial plants that live close to the seashore (see also estuaries and coastal ecosystems).

While there is general agreement in the scientific community regarding the definition of coast, in the political sphere, the delineation of the extents of a coast differ according to jurisdiction.[citation needed] Government authorities in various countries may define coast differently for economic and social policy reasons.

Exact length of coastline

The coastline paradox is the counterintuitive observation that the coastline of a landmass does not have a well-defined length. This results from the fractal curve-like properties of coastlines; i.e., the fact that a coastline typically has a fractal dimension. The first recorded observation of this phenomenon was by Lewis Fry Richardson[14][15] and it was expanded upon by Benoit Mandelbrot.[16][17]

The measured length of the coastline depends on the method used to measure it and the degree of cartographic generalization. Since a landmass has features at all scales, from hundreds of kilometers in size to tiny fractions of a millimeter and below, there is no obvious size of the smallest feature that should be taken into consideration when measuring, and hence no single well-defined perimeter to the landmass. Various approximations exist when specific assumptions are made about minimum feature size.

Formation

 
Atlantic rocky coastline, showing a surf area. Porto Covo, west coast of Portugal

Tides often determine the range over which sediment is deposited or eroded. Areas with high tidal ranges allow waves to reach farther up the shore, and areas with lower tidal ranges produce deposition at a smaller elevation interval. The tidal range is influenced by the size and shape of the coastline. Tides do not typically cause erosion by themselves; however, tidal bores can erode as the waves surge up the river estuaries from the ocean.[18]: 421 

Geologists classify coasts on the basis of tidal range into macrotidal coasts with a tidal range greater than 4 m (13 ft); mesotidal coasts with a tidal range of 2 to 4 m (6.6 to 13 ft); and microtidal coasts with a tidal range of less than 2 m (7 ft). The distinction between macrotidal and mesotidal coasts is more important. Macrotidal coasts lack barrier islands and lagoons, and are characterized by funnel-shaped estuaries containing sand ridges aligned with tidal currents. Wave action is much more important for determining bedforms of sediments deposited along mesotidal and microtidal coasts than in macrotidal coasts.[19]

Waves erode coastline as they break on shore releasing their energy; the larger the wave the more energy it releases and the more sediment it moves. Coastlines with longer shores have more room for the waves to disperse their energy, while coasts with cliffs and short shore faces give little room for the wave energy to be dispersed. In these areas, the wave energy breaking against the cliffs is higher, and air and water are compressed into cracks in the rock, forcing the rock apart, breaking it down. Sediment deposited by waves comes from eroded cliff faces and is moved along the coastline by the waves. This forms an abrasion or cliffed coast.

Sediment deposited by rivers is the dominant influence on the amount of sediment located in the case of coastlines that have estuaries.[20] Today, riverine deposition at the coast is often blocked by dams and other human regulatory devices, which remove the sediment from the stream by causing it to be deposited inland. Coral reefs are a provider of sediment for coastlines of tropical islands.[21]

Like the ocean which shapes them, coasts are a dynamic environment with constant change. The Earth's natural processes, particularly sea level rises, waves and various weather phenomena, have resulted in the erosion, accretion and reshaping of coasts as well as flooding and creation of continental shelves and drowned river valleys (rias).

Importance for humans and ecosystems

Human settlements

 
The Coastal Hazard Wheel system published by UNEP for global coastal management

More and more of the world's people live in coastal regions.[22] According to a United Nations atlas, 44% of all people live within 150 km (93 mi) of the sea.[5] Many major cities are on or near good harbors and have port facilities. Some landlocked places have achieved port status by building canals.

Nations defend their coasts against military invaders, smugglers and illegal migrants. Fixed coastal defenses have long been erected in many nations, and coastal countries typically have a navy and some form of coast guard.

Tourism

Coasts, especially those with beaches and warm water, attract tourists often leading to the development of seaside resort communities. In many island nations such as those of the Mediterranean, South Pacific Ocean and Caribbean, tourism is central to the economy. Coasts offer recreational activities such as swimming, fishing, surfing, boating, and sunbathing.

Growth management and coastal management can be a challenge for coastal local authorities who often struggle to provide the infrastructure required by new residents, and poor management practices of construction often leave these communities and infrastructure vulnerable to processes like coastal erosion and sea level rise. In many of these communities, management practices such as beach nourishment or when the coastal infrastructure is no longer financially sustainable, managed retreat to remove communities from the coast.

Ecosystem services

Estuarine and marine coastal ecosystems are both marine ecosystems. Together, these ecosystems perform the four categories of ecosystem services in a variety of ways: "Regulating services" include climate regulation as well as waste treatment and disease regulation and buffer zones. The "provisioning services" include forest products, marine products, fresh water, raw materials, biochemical and genetic resources. "Cultural services" of coastal ecosystems include inspirational aspects, recreation and tourism, science and education. "Supporting services" of coastal ecosystems include nutrient cycling, biologically mediated habitats and primary production.

Coasts and their adjacent areas on and offshore are an important part of a local ecosystem. The mixture of fresh water and salt water (brackish water) in estuaries provides many nutrients for marine life. Salt marshes, mangroves and beaches also support a diversity of plants, animals and insects crucial to the food chain. The high level of biodiversity creates a high level of biological activity, which has attracted human activity for thousands of years. Coasts also create essential material for organisms to live by, including estuaries, wetland, seagrass, coral reefs, and mangroves. Coasts provide habitats for migratory birds, sea turtles, marine mammals, and coral reefs.[23]

Types

Emergent coastline

According to one principle of classification, an emergent coastline is a coastline that has experienced a fall in sea level, because of either a global sea-level change, or local uplift. Emergent coastlines are identifiable by the coastal landforms, which are above the high tide mark, such as raised beaches. In contrast, a submergent coastline is one where the sea level has risen, due to a global sea-level change, local subsidence, or isostatic rebound. Submergent coastlines are identifiable by their submerged, or "drowned" landforms, such as rias (drowned valleys) and fjords

Concordant coastline

According to the second principle of classification, a concordant coastline is a coastline where bands of different rock types run parallel to the shore. These rock types are usually of varying resistance, so the coastline forms distinctive landforms, such as coves. Discordant coastlines feature distinctive landforms because the rocks are eroded by the ocean waves. The less resistant rocks erode faster, creating inlets or bay; the more resistant rocks erode more slowly, remaining as headlands or outcroppings.

Other coastal categories

  • A cliffed coast or abrasion coast is one where marine action has produced steep declivities known as cliffs.
  • A flat coast is one where the land gradually descends into the sea.
  • A graded shoreline is one where wind and water action has produced a flat and straight coastline.

Landforms

The following articles describe some coastal landforms:

 
Coastal landforms. The feature shown here as a bay would, in certain (mainly southern) parts of Britain, be called a cove. That between the cuspate foreland and the tombolo is a British bay.

Cliff erosion

  • Much of the sediment deposited along a coast is the result of erosion of a surrounding cliff, or bluff. Sea cliffs retreat landward because of the constant undercutting of slopes by waves. If the slope/cliff being undercut is made of unconsolidated sediment it will erode at a much faster rate than a cliff made of bedrock.[20]
  • A natural arch is formed when a headland is eroded through by waves.
  • Sea caves are made when certain rock beds are more susceptible to erosion than the surrounding rock beds because of different areas of weakness. These areas are eroded at a faster pace creating a hole or crevice that, through time, by means of wave action and erosion, becomes a cave.
  • A stack is formed when a headland is eroded away by wave and wind action.
  • A stump is a shortened sea stack that has been eroded away or fallen because of instability.
  • Wave-cut notches are caused by the undercutting of overhanging slopes which leads to increased stress on cliff material and a greater probability that the slope material will fall. The fallen debris accumulates at the bottom of the cliff and is eventually removed by waves.
  • A wave-cut platform forms after erosion and retreat of a sea cliff has been occurring for a long time. Gently sloping wave-cut platforms develop early on in the first stages of cliff retreat. Later, the length of the platform decreases because the waves lose their energy as they break further offshore.[20]

Coastal features formed by sediment

Coastal features formed by another feature

Other features on the coast

Coastal waters

 
Overview of different zones of coastal waters: Input, production, transport and storage pathway of carbon in marine waters, including movement across maritime zones of national jurisdiction: territorial sea, Exclusive Economic Zone (EEZ), continental shelf, high seas (international waters), and deep seabed.

"Coastal waters" (or "coastal seas") is a rather general term used differently in different contexts, ranging geographically from the waters within a few kilometers of the coast, through to the entire continental shelf which may stretch for more than a hundred kilometers from land.[24] Thus the term coastal waters is used in a slightly different way in discussions of legal and economic boundaries[25] (see territorial waters and international waters) or when considering the geography of coastal landforms or the ecological systems operating through the continental shelf (marine coastal ecosystems). The research on coastal waters often divides into these separate areas too.

The dynamic fluid nature of the ocean means that all components of the whole ocean system are ultimately connected, although certain regional classifications are useful and relevant. The waters of the continental shelves represent such a region.[26] The term “coastal waters” has been used in a wide variety of different ways in different contexts. In European Union environmental management it extends from the coast to just a few nautical miles[27] while in the United States the US EPA considers this region to extend much further offshore.[28][29]

"Coastal waters" has specific meanings in the context of commercial coastal shipping, and somewhat different meanings in the context of naval littoral warfare.[citation needed] Oceanographers and marine biologists have yet other takes. Coastal waters have a wide range of marine habitats from enclosed estuaries to the open waters of the continental shelf.

Similarly, the term littoral zone has no single definition. It is the part of a sea, lake, or river that is close to the shore.[30] In coastal environments, the littoral zone extends from the high water mark, which is rarely inundated, to shoreline areas that are permanently submerged.

Coastal waters can be threatened by coastal eutrophication and harmful algal blooms.[31][32][33]

In geology

The identification of bodies of rock formed from sediments deposited in shoreline and nearshore environments (shoreline and nearshore facies) is extremely important to geologists. These provide vital clues for reconstructing the geography of ancient continents (paleogeography). The locations of these beds show the extent of ancient seas at particular points in geological time, and provide clues to the magnitudes of tides in the distant past.[34]

Sediments deposited in the shoreface are preserved as lenses of sandstone in which the upper part of the sandstone is coarser than the lower part (a coarsening upwards sequence). Geologists refer to these are parasequences. Each records an episode of retreat of the ocean from the shoreline over a period of 10,000 to 1,000,000 years. These often show laminations reflecting various kinds of tidal cycles.[34]

Some of the best-studied shoreline deposits in the world are found along the former western shore of the Western Interior Seaway, a shallow sea that flooded central North America during the late Cretaceous Period (about 100 to 66 million years ago). These are beautifully exposed along the Book Cliffs of Utah and Colorado.[35]

Geologic processes

The following articles describe the various geologic processes that affect a coastal zone:

Wildlife

Animals

Larger animals that live in coastal areas include puffins, sea turtles and rockhopper penguins, among many others. Sea snails and various kinds of barnacles live on rocky coasts and scavenge on food deposited by the sea. Some coastal animals are used to humans in developed areas, such as dolphins and seagulls who eat food thrown for them by tourists. Since the coastal areas are all part of the littoral zone, there is a profusion of marine life found just off-coast, including sessile animals such as corals, sponges, starfish, mussels, seaweeds, fishes, and sea anemones.

There are many kinds of seabirds on various coasts. These include pelicans and cormorants, who join up with terns and oystercatchers to forage for fish and shellfish. There are sea lions on the coast of Wales and other countries.

Coastal fish

 
Schooling threadfin, a coastal species

Coastal fish, also called inshore fish or neritic fish, inhabit the sea between the shoreline and the edge of the continental shelf. Since the continental shelf is usually less than 200 metres (660 ft) deep, it follows that pelagic coastal fish are generally epipelagic fish, inhabiting the sunlit epipelagic zone.[36] Coastal fish can be contrasted with oceanic fish or offshore fish, which inhabit the deep seas beyond the continental shelves.

Coastal fish are the most abundant in the world.[37] They can be found in tidal pools, fjords and estuaries, near sandy shores and rocky coastlines, around coral reefs and on or above the continental shelf. Coastal fish include forage fish and the predator fish that feed on them. Forage fish thrive in inshore waters where high productivity results from upwelling and shoreline run off of nutrients. Some are partial residents that spawn in streams, estuaries and bays, but most complete their life cycles in the zone.[37]

Plants

Many coastal areas are famous for their kelp beds. Kelp is a fast-growing seaweed that can grow up to half a meter a day in ideal conditions. Mangroves, seagrasses, macroalgal beds, and salt marsh are important coastal vegetation types in tropical and temperate environments respectively.[3][4] Restinga is another type of coastal vegetation.

Threats

Coasts also face many human-induced environmental impacts and coastal development hazards. The most important ones are:

Pollution

 
A settled coastline in Marblehead, Massachusetts. Once a fishing port, the harbor is now dedicated to tourism and pleasure boating. Observe that the sand and rocks have been darkened by oil slick up to the high-water line.
 
This stretch of coast in Tanzania's capital Dar es Salaam serves as a public waste dump.
 
Dead zones occur when phosphorus and nitrogen from fertilizers cause excessive growth of microorganisms, which depletes oxygen and kills fauna.

The pollution of coastlines is connected to marine pollution which can occur from a number of sources: Marine debris (garbage and industrial debris); the transportation of petroleum in tankers, increasing the probability of large oil spills; small oil spills created by large and small vessels, which flush bilge water into the ocean.

Marine pollution

Marine pollution occurs when substances used or spread by humans, such as industrial, agricultural and residential waste, particles, noise, excess carbon dioxide or invasive organisms enter the ocean and cause harmful effects there. The majority of this waste (80%) comes from land-based activity, although marine transportation significantly contributes as well.[38] Since most inputs come from land, either via the rivers, sewage or the atmosphere, it means that continental shelves are more vulnerable to pollution. Air pollution is also a contributing factor by carrying off iron, carbonic acid, nitrogen, silicon, sulfur, pesticides or dust particles into the ocean.[39] The pollution often comes from nonpoint sources such as agricultural runoff, wind-blown debris, and dust. These nonpoint sources are largely due to runoff that enters the ocean through rivers, but wind-blown debris and dust can also play a role, as these pollutants can settle into waterways and oceans.[40] Pathways of pollution include direct discharge, land runoff, ship pollution, atmospheric pollution and, potentially, deep sea mining.

The types of marine pollution can be grouped as pollution from marine debris, plastic pollution, including microplastics, ocean acidification, nutrient pollution, toxins and underwater noise. Plastic pollution in the ocean is a type of marine pollution by plastics, ranging in size from large original material such as bottles and bags, down to microplastics formed from the fragmentation of plastic material. Marine debris is mainly discarded human rubbish which floats on, or is suspended in the ocean. Plastic pollution is harmful to marine life.

Marine debris

Marine debris, also known as marine litter, is human-created waste that has deliberately or accidentally been released in a sea or ocean. Floating oceanic debris tends to accumulate at the center of gyres and on coastlines, frequently washing aground, when it is known as beach litter or tidewrack. Deliberate disposal of wastes at sea is called ocean dumping. Naturally occurring debris, such as driftwood and drift seeds, are also present. With the increasing use of plastic, human influence has become an issue as many types of (petrochemical) plastics do not biodegrade quickly, as would natural or organic materials.[41] The largest single type of plastic pollution (~10 %) and majority of large plastic in the oceans is discarded and lost nets from the fishing industry.[42] Waterborne plastic poses a serious threat to fish, seabirds, marine reptiles, and marine mammals, as well as to boats and coasts.[43]

Dumping, container spillages, litter washed into storm drains and waterways and wind-blown landfill waste all contribute to this problem. This increased water pollution has caused serious negative effects such as discarded fishing nets capturing animals, concentration of plastic debris in massive marine garbage patches, and increasing concentrations of contaminants in the food chain.

Microplastics

A growing concern regarding plastic pollution in the marine ecosystem is the use of microplastics. Microplastics are beads of plastic less than 5 millimeters wide,[44] and they are commonly found in hand soaps, face cleansers, and other exfoliators. When these products are used, the microplastics go through the water filtration system and into the ocean, but because of their small size they are likely to escape capture by the preliminary treatment screens on wastewater plants.[45] These beads are harmful to the organisms in the ocean, especially filter feeders, because they can easily ingest the plastic and become sick. The microplastics are such a concern because it is difficult to clean them up due to their size, so humans can try to avoid using these harmful plastics by purchasing products that use environmentally safe exfoliates.

Because plastic is so widely used across the planet, microplastics have become widespread in the marine environment. For example, microplastics can be found on sandy beaches[46] and surface waters[47] as well as in the water column and deep sea sediment. Microplastics are also found within the many other types of marine particles such as dead biological material (tissue and shells) and some soil particles (blown in by wind and carried to the ocean by rivers). Upon reaching marine environments, the fate of microplastics is subject to naturally occurring drivers, such as winds and surface oceanic currents. Numerical models are able to trace small plastic debris (micro- and meso-plastics) drifting in the ocean,[48] thus predicting their fate.

Sea level rise due to climate change

Globally, sea levels are rising due to human-caused climate change. Between 1901 and 2018, the globally averaged sea level rose by 15–25 cm (6–10 in), or 1–2 mm per year on average.[49] This rate is accelerating, with sea levels now rising by 3.7 mm per year. Climate scientists expect further acceleration during the 21st century.[50] Climate change heats (and therefore expands) the ocean and melts land-based ice sheets and glaciers.[51] Between 1993 and 2018, the thermal expansion of water contributed 42% to sea level rise; melting of temperate glaciers, 21%; Greenland, 15%; and Antarctica, 8%.[52]: 1576  Over the next 2000 years, the sea level is predicted to rise by 2–3 m (7–10 ft) if global warming is limited to 1.5 °C, by 2–6 m (7–20 ft) if it peaks at 2 °C and by 19–22 metres (62–72 ft) if it peaks at 5 °C.[53]: 21 

Sea level rise has a substantial lag in its response to Earth temperature changes. This means that it is virtually certain to continue for a long time,[54] and that its extent in the short term (i.e. around 2050) is insensitive to temperature changes between now and then. Thus, there's confidence that 2050 levels of sea level rise combined with the 2010 population distribution (i.e. absent the effects of population growth and human migration) would result in ~150 million people under the water line during high tide and ~300 million in places which are flooded every year – an increase of 40 and 50 million people relative to 2010 values for the same.[55][56] At the same time, the impact on temperature from changes in greenhouse gas emissions over the longer term would greatly influence longer-term sea level rise: by 2100, the spread between the lowest and the highest plausible emission trajectories would result in the sea level rise of 0.38–0.77 m (1 ft 3 in – 2 ft 6 in) when using the best-understood median estimates.[53]: 21  When compared to 2050 levels, the difference between the low and high end of that range is equivalent to the difference between ~40 million more people under the water line during high tide and ~50 million more in places which are flooded every year (190 and 350 million people) and ~80 and ~90 million more for the same metrics (230 and 390 million people), respectively.[55] Under the highest emission scenario, less-understood processes may also lead to sea level rise of well over one metre (3+14 ft) by 2100, and the levels of two metres (6+12 ft) cannot be excluded.[57][53]: TS-45  Applying this extent of sea level rise to the 2010 population distribution could mean as many as 520 million more people under the water line during high tide and 640 million in places which are flooded every year.[55]

Global goals

International attention to address the threats of coasts has been captured in Sustainable Development Goal 14 "Life Below Water" which sets goals for international policy focused on preserving marine coastal ecosystems and supporting more sustainable economic practices for coastal communities.[7] Likewise, the United Nations has declared 2021-2030 the UN Decade on Ecosystem Restoration, but restoration of coastal ecosystems has received insufficient attention.[8]

See also

References

  1. ^ . The American Heritage Dictionary of the English Language (4th ed.). 2000. Archived from the original on 2009-02-01. Retrieved 2008-12-11.
  2. ^ "Coastline definition". Merriam-Webster. Retrieved 2015-06-13.
  3. ^ a b Nagelkerken, Ivan, ed. (2009). Ecological Connectivity among Tropical Coastal Ecosystems. Dordrecht: Springer Netherlands. doi:10.1007/978-90-481-2406-0. ISBN 978-90-481-2405-3.
  4. ^ a b Nagelkerken, I.; Blaber, S.J.M.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.-O.; Pawlik, J.; Penrose, H.M.; Sasekumar, A.; Somerfield, P.J. (2008). "The habitat function of mangroves for terrestrial and marine fauna: A review". Aquatic Botany. 89 (2): 155–185. doi:10.1016/j.aquabot.2007.12.007.
  5. ^ a b . Archived from the original on 2 November 2013. Retrieved 31 October 2013.
  6. ^ a b "Climate change and the coasts « World Ocean Review". Retrieved 2020-12-19.
  7. ^ a b United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017, Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313)
  8. ^ a b Waltham, Nathan J.; Elliott, Michael; Lee, Shing Yip; Lovelock, Catherine; Duarte, Carlos M.; Buelow, Christina; Simenstad, Charles; Nagelkerken, Ivan; Claassens, Louw; Wen, Colin K-C; Barletta, Mario (2020). "UN Decade on Ecosystem Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems?". Frontiers in Marine Science. 7: 71. doi:10.3389/fmars.2020.00071. hdl:2440/123896. ISSN 2296-7745.
  9. ^ Nelson, Stephen A. (2007). . Archived from the original on 2013-03-16. Retrieved 2008-12-11.
  10. ^ "The Indian Ocean Coast of Somalia". Marine Pollution Bulletin. 41 (1-6): 141–159. December 2000. doi: 10.1016/S0025-326X(00)00107-7
  11. ^ "Ocean Habitats". Oceans, Coasts & Seashores. National Park Service. 1 December 2016. Retrieved 25 September 2021.
  12. ^ Lellis-Dibble, K.A.; McGlynn, K.E.; Bigford, T.E. (2008). "Estuarine fish and shellfish species in US commercial and recreational fisheries: economic value as an incentive to protect and restore estuarine habitat". NOAA Technical Memo. NMFS-F/SPO. Retrieved 24 September 2021.
  13. ^ "Global Ocean Protection: Present Status and Future Possibilities". Iucn.org. 2010-11-23. Retrieved 2012-06-07.
  14. ^ Vulpiani, Angelo (2014). "Lewis Fry Richardson: scientist, visionary and pacifist". Lettera Matematica. 2 (3): 121–128. doi:10.1007/s40329-014-0063-z. MR 3344519.
  15. ^ Richardson, L. F. (1961). "The problem of contiguity: An appendix to statistics of deadly quarrels". General Systems Yearbook. Vol. 6. pp. 139–187.
  16. ^ Mandelbrot, B. (1967). "How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension". Science. 156 (3775): 636–638. Bibcode:1967Sci...156..636M. doi:10.1126/science.156.3775.636. PMID 17837158. S2CID 15662830.
  17. ^ Mandelbrot, Benoit (1983). The Fractal Geometry of Nature. W. H. Freeman and Co. pp. 25–33. ISBN 978-0-7167-1186-5.
  18. ^ Davidson, Jon P. (2002). Exploring earth : an introduction to physical geology. Walter E. Reed, Paul M. Davis (2nd ed.). Upper Saddle River, NJ: Prentice Hall. ISBN 0-13-018372-5. OCLC 45917172.
  19. ^ Blatt, Harvey; Middleton, Gerard; Murray, Raymond (1980). Origin of sedimentary rocks (2d ed.). Englewood Cliffs, N.J.: Prentice-Hall. pp. 656–659. ISBN 0136427103.
  20. ^ a b c Easterbrook, Don J. (1999). Surface processes and landforms (2nd ed.). Upper Saddle River, N.J.: Prentice Hall. ISBN 0-13-860958-6. OCLC 39890526.
  21. ^ "How is beach sand created? - Woods Hole Oceanographic Institution". Woods Hole Oceanographic Institution. from the original on 2021-06-28. Retrieved 2021-08-10.
  22. ^ Goudarzi, Sara (July 18, 2006). "Flocking to the Coast: World's Population Migrating into Danger". Live Science. Retrieved 2008-12-14.
  23. ^ US EPA, ORD (2017-11-02). "Coastal Waters". US EPA. Retrieved 2020-05-04.
  24. ^ Dahlem Workshop on Ocean Margin Processes in Global Change, Mantoura, R. F. C; Martin, Jean-Marie; Wollast, R; Jickells, T. D; Freie Universitaet Berlin; Berlin (Germany : West); Senat; Marga and Kurt Moellgaard Stiftung, eds. (1991). Ocean margin processes in global change: report of the Dahlem Workshop on Ocean Margin Processes in Global Change, Berlin, 1990, March 18-23. Chichester; New York: Wiley. ISBN 978-0-471-92673-3. OCLC 22765791.
  25. ^ "Coastal waters Definition: 255 Samples". Law Insider. Retrieved 2022-06-22.
  26. ^ Simpson, John H.; Sharples, Jonathan (2012). Introduction to the Physical and Biological Oceanography of Shelf Seas (1 ed.). Cambridge University Press. doi:10.1017/CBO9781139034098. ISBN 9780521877626.
  27. ^ "coastal waters — European Environment Agency". www.eea.europa.eu. Retrieved 2022-06-29.
  28. ^ US EPA, ORD (2017-11-02). "Coastal Waters". www.epa.gov. Retrieved 2022-06-29.
  29. ^ USEPA (2001) Nutrient Criteria Technical Guidance Manual, Estuarine and Coastal Marine Waters, U.S. Environmental Protection Agency
  30. ^ Seekell, D.; Cael, B.; Norman, S.; Byström, P. (2021). "Patterns and variation of littoral habitat size among lakes". Geophysical Research Letters. 48 (20): e2021GL095046. Bibcode:2021GeoRL..4895046S. doi:10.1029/2021GL095046. ISSN 1944-8007. S2CID 244253181.
  31. ^ Maúre, Elígio de Raús; Terauchi, Genki; Ishizaka, Joji; Clinton, Nicholas; DeWitt, Michael (2021). "Globally consistent assessment of coastal eutrophication". Nature Communications. 12 (1): 6142. doi:10.1038/s41467-021-26391-9. ISSN 2041-1723. PMC 8536747. PMID 34686688.
  32. ^ Jickells, T. D. (1998). "Nutrient Biogeochemistry of the Coastal Zone". Science. 281 (5374): 217–222. doi:10.1126/science.281.5374.217. ISSN 0036-8075. PMID 9660744.
  33. ^ Glibert, Patricia; Burford, Michele (2017). "Globally Changing Nutrient Loads and Harmful Algal Blooms: Recent Advances, New Paradigms, and Continuing Challenges". Oceanography. 30 (1): 58–69. doi:10.5670/oceanog.2017.110.
  34. ^ a b Leeder, M. R. (2011). Sedimentology and sedimentary basins : from turbulence to tectonics (2nd ed.). Chichester, West Sussex, UK: Wiley-Blackwell. pp. 436–437. ISBN 9781405177832.
  35. ^ Blatt, Middleton & Murray 1980, pp. 673–674.
  36. ^ Moyle and Cech, 2004, page 585
  37. ^ a b Moyle and Cech, 2004, page 572
  38. ^ Charles Sheppard, ed. (2019). World seas : an Environmental Evaluation. Vol. III, Ecological Issues and Environmental Impacts (Second ed.). London. ISBN 978-0128052044. OCLC 1052566532.
  39. ^ Duce, Robert, Galloway, J. and Liss, P. (2009). "The Impacts of Atmospheric Deposition to the Ocean on Marine Ecosystems and Climate WMO Bulletin Vol 58 (1)". Retrieved September 22, 2020.
  40. ^ "What is the biggest source of pollution in the ocean?". National Ocean Service (US). Silver Spring, MD: National Oceanic and Atmospheric Administration. Retrieved 2022-09-21.
  41. ^ Graham, Rachel (10 July 2019). "Euronews Living | Watch: Italy's answer to the problem with plastic". living.
  42. ^ "Dumped fishing gear is biggest plastic polluter in ocean, finds report". The Guardian. 2019-11-06. Retrieved 2021-04-09.
  43. ^ "Facts about marine debris". US NOAA. from the original on 13 February 2009. Retrieved 10 April 2008.
  44. ^ Wiggin, K. J.; Holland, E. B. (2019-06-01). "Validation and application of cost and time effective methods for the detection of 3–500 μm sized microplastics in the urban marine and estuarine environments surrounding Long Beach, California". Marine Pollution Bulletin. 143: 152–162. doi:10.1016/j.marpolbul.2019.03.060. ISSN 0025-326X. PMID 31789151. S2CID 150122831.
  45. ^ Fendall, Lisa S.; Sewell, Mary A. (2009). "Contributing to marine pollution by washing your face: Microplastics in facial cleansers". Marine Pollution Bulletin. 58 (8): 1225–1228. doi:10.1016/j.marpolbul.2009.04.025. PMID 19481226.
  46. ^ De-la-Torre, Gabriel E.; Dioses-Salinas, Diana C.; Castro, Jasmin M.; Antay, Rosabel; Fernández, Naomy Y.; Espinoza-Morriberón, D; Saldaña-Serrano, Miguel (2020). "Abundance and distribution of microplastics on sandy beaches of Lima, Peru". Marine Pollution Bulletin. 151: 110877. doi:10.1016/j.marpolbul.2019.110877. PMID 32056653. S2CID 211112493.
  47. ^ Karlsson, Therese M.; Kärrman, Anna; Rotander, Anna; Hassellöv, Martin (2020). "Comparison between manta trawl and in situ pump filtration methods, and guidance for visual identification of microplastics in surface waters". Environmental Science and Pollution Research. 27 (5): 5559–5571. doi:10.1007/s11356-019-07274-5. PMC 7028838. PMID 31853844.
  48. ^ Iwasaki, Shinsuke; Isobe, Atsuhiko; Kako, Shin'ichiro; Uchida, Keiichi; Tokai, Tadashi (2017). "Fate of microplastics and mesoplastics carried by surface currents and wind waves: A numerical model approach in the Sea of Japan". Marine Pollution Bulletin. 112 (1–2): 85–96. doi:10.1016/j.marpolbul.2017.05.057. PMID 28559056.
  49. ^ IPCC, 2019: Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M.  Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781009157964.001.
  50. ^ Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G.  Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021: Chapter 9: Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L.  Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362, doi:10.1017/9781009157896.011.
  51. ^ Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda (8 March 2016). "Future sea level rise constrained by observations and long-term commitment". Proceedings of the National Academy of Sciences. 113 (10): 2597–2602. Bibcode:2016PNAS..113.2597M. doi:10.1073/pnas.1500515113. PMC 4791025. PMID 26903648.
  52. ^ WCRP Global Sea Level Budget Group (2018). "Global sea-level budget 1993–present". Earth System Science Data. 10 (3): 1551–1590. Bibcode:2018ESSD...10.1551W. doi:10.5194/essd-10-1551-2018. This corresponds to a mean sea-level rise of about 7.5 cm over the whole altimetry period. More importantly, the GMSL curve shows a net acceleration, estimated to be at 0.08mm/yr2.
  53. ^ a b c IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3−32, doi:10.1017/9781009157896.001.
  54. ^ National Academies of Sciences, Engineering, and Medicine (2011). "Synopsis". Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia. Washington, DC: The National Academies Press. p. 5. doi:10.17226/12877. ISBN 978-0-309-15176-4. Box SYN-1: Sustained warming could lead to severe impacts
  55. ^ a b c Kulp, Scott A.; Strauss, Benjamin H. (29 October 2019). "New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding". Nature Communications. 10 (1): 4844. Bibcode:2019NatCo..10.4844K. doi:10.1038/s41467-019-12808-z. PMC 6820795. PMID 31664024.
  56. ^ Rosane, Olivia (October 30, 2019). "300 Million People Worldwide Could Suffer Yearly Flooding by 2050". Ecowatch. Retrieved 31 October 2019.
  57. ^ "2022 Sea Level Rise Technical Report". oceanservice.noaa.gov. Retrieved 2022-07-04.

External links

  • Woods Hole Oceanographic Institution - organization dedicated to ocean research, exploration, and education

coast, other, uses, disambiguation, been, suggested, that, shore, merged, into, this, article, discuss, proposed, since, october, 2022, coast, also, known, coastline, seashore, defined, area, where, land, meets, ocean, line, that, forms, boundary, between, lan. For other uses see Coast disambiguation It has been suggested that Shore be merged into this article Discuss Proposed since October 2022 The coast also known as the coastline or seashore is defined as the area where land meets the ocean 1 or as a line that forms the boundary between the land and the coastline 2 The Earth has around 620 000 kilometres 390 000 mi of coastline Coasts are important zones in natural ecosystems often home to a wide range of biodiversity On land they harbor important ecosystems such as freshwater or estuarine wetlands which are important for bird populations and other terrestrial animals In wave protected areas they harbor saltmarshes mangroves or seagrasses all of which can provide nursery habitat for finfish shellfish and other aquatic species 3 4 Rocky shores are usually found along exposed coasts and provide habitat for a wide range of sessile animals e g mussels starfish barnacles and various kinds of seaweeds Along tropical coasts with clear nutrient poor water coral reefs can often be found between depths of 1 50 meters 3 3 164 0 feet Sunrise on the Jersey Shore coastline at Spring Lake New Jersey U S Rugged coastline of the West Coast Region of New Zealand Southeast coast of Greenland According to a United Nations atlas 44 of all people live within 5 km 3 3mi of the sea 5 Because of their importance in society and high concentration of population the coast is important for major parts of the global food and economic system and they provide many ecosystem services to humankind For example important human activities happen in port cities Coastal fisheries commercial recreational and subsistence and aquaculture are major economic activities and create jobs livelihoods and protein for the majority of coastal human populations Other coastal spaces like beaches and seaside resorts generate large revenues through tourism Marine coastal ecosystems can also provide protection against sea level rise and tsunamis In many countries mangroves are the primary source of wood for fuel e g charcoal and building material Coastal ecosystems like mangroves and seagrasses have a much higher capacity for carbon sequestration than many terrestrial ecosystems and as such can play a critical role in the near future to help mitigate climate change effects by uptake of atmospheric anthropogenic carbon dioxide However the economic importance of coasts makes many of these communities vulnerable to climate change which causes increases in extreme weather and sea level rise and related issues such as coastal erosion saltwater intrusion and coastal flooding 6 Other coastal issues such as marine pollution marine debris coastal development and marine ecosystem destruction further complicate the human uses of the coast and threaten coastal ecosystems 6 The interactive effects of climate change habitat destruction overfishing and water pollution especially eutrophication have led to the demise of coastal ecosystem around the globe This has resulted in population collapse of fisheries stocks loss of biodiversity increased invasion of alien species and loss of healthy habitats International attention to these issues has been captured in Sustainable Development Goal 14 Life Below Water which sets goals for international policy focused on preserving marine coastal ecosystems and supporting more sustainable economic practices for coastal communities 7 Likewise the United Nations has declared 2021 2030 the UN Decade on Ecosystem Restoration but restoration of coastal ecosystems has received insufficient attention 8 Because coasts are constantly changing a coastline s exact perimeter cannot be determined this measurement challenge is called the coastline paradox The term coastal zone is used to refer to a region where interactions of sea and land processes occur 9 Both the terms coast and coastal are often used to describe a geographic location or region located on a coastline e g New Zealand s West Coast or the East West and Gulf Coast of the United States Coasts with a narrow continental shelf that are close to the open ocean are called pelagic coast while other coasts are more sheltered coast in a gulf or bay A shore on the other hand may refer to parts of land adjoining any large body of water including oceans sea shore and lakes lake shore Contents 1 Size 1 1 Exact length of coastline 2 Formation 3 Importance for humans and ecosystems 3 1 Human settlements 3 1 1 Tourism 3 2 Ecosystem services 4 Types 4 1 Emergent coastline 4 2 Concordant coastline 4 3 Other coastal categories 5 Landforms 5 1 Cliff erosion 5 2 Coastal features formed by sediment 5 3 Coastal features formed by another feature 5 4 Other features on the coast 6 Coastal waters 7 In geology 7 1 Geologic processes 8 Wildlife 8 1 Animals 8 1 1 Coastal fish 8 2 Plants 9 Threats 9 1 Pollution 9 1 1 Marine pollution 9 1 2 Marine debris 9 1 3 Microplastics 9 2 Sea level rise due to climate change 10 Global goals 11 See also 12 References 13 External linksSize Edit Somalia has the longest coastline in Africa 10 The Earth has approximately 620 000 kilometres 390 000 mi of coastline Coastal habitats which extend to the margins of the continental shelves make up about 7 percent of the Earth s oceans 11 but at least 85 of commercially harvested fish depend on coastal environments during at least part of their life cycle 12 As of October 2010 about 2 86 of exclusive economic zones were part of marine protected areas 13 The definition of coasts varies Marine scientists think of the wet aquatic or intertidal vegetated habitats as being coastal ecosystems including seagrass salt marsh etc whilst some terrestrial scientist might only think of coastal ecosystems as purely terrestrial plants that live close to the seashore see also estuaries and coastal ecosystems While there is general agreement in the scientific community regarding the definition of coast in the political sphere the delineation of the extents of a coast differ according to jurisdiction citation needed Government authorities in various countries may define coast differently for economic and social policy reasons Exact length of coastline Edit This section is an excerpt from Coastline paradox edit The coastline paradox is the counterintuitive observation that the coastline of a landmass does not have a well defined length This results from the fractal curve like properties of coastlines i e the fact that a coastline typically has a fractal dimension The first recorded observation of this phenomenon was by Lewis Fry Richardson 14 15 and it was expanded upon by Benoit Mandelbrot 16 17 The measured length of the coastline depends on the method used to measure it and the degree of cartographic generalization Since a landmass has features at all scales from hundreds of kilometers in size to tiny fractions of a millimeter and below there is no obvious size of the smallest feature that should be taken into consideration when measuring and hence no single well defined perimeter to the landmass Various approximations exist when specific assumptions are made about minimum feature size Formation Edit Atlantic rocky coastline showing a surf area Porto Covo west coast of Portugal Tides often determine the range over which sediment is deposited or eroded Areas with high tidal ranges allow waves to reach farther up the shore and areas with lower tidal ranges produce deposition at a smaller elevation interval The tidal range is influenced by the size and shape of the coastline Tides do not typically cause erosion by themselves however tidal bores can erode as the waves surge up the river estuaries from the ocean 18 421 Geologists classify coasts on the basis of tidal range into macrotidal coasts with a tidal range greater than 4 m 13 ft mesotidal coasts with a tidal range of 2 to 4 m 6 6 to 13 ft and microtidal coasts with a tidal range of less than 2 m 7 ft The distinction between macrotidal and mesotidal coasts is more important Macrotidal coasts lack barrier islands and lagoons and are characterized by funnel shaped estuaries containing sand ridges aligned with tidal currents Wave action is much more important for determining bedforms of sediments deposited along mesotidal and microtidal coasts than in macrotidal coasts 19 Waves erode coastline as they break on shore releasing their energy the larger the wave the more energy it releases and the more sediment it moves Coastlines with longer shores have more room for the waves to disperse their energy while coasts with cliffs and short shore faces give little room for the wave energy to be dispersed In these areas the wave energy breaking against the cliffs is higher and air and water are compressed into cracks in the rock forcing the rock apart breaking it down Sediment deposited by waves comes from eroded cliff faces and is moved along the coastline by the waves This forms an abrasion or cliffed coast Sediment deposited by rivers is the dominant influence on the amount of sediment located in the case of coastlines that have estuaries 20 Today riverine deposition at the coast is often blocked by dams and other human regulatory devices which remove the sediment from the stream by causing it to be deposited inland Coral reefs are a provider of sediment for coastlines of tropical islands 21 Like the ocean which shapes them coasts are a dynamic environment with constant change The Earth s natural processes particularly sea level rises waves and various weather phenomena have resulted in the erosion accretion and reshaping of coasts as well as flooding and creation of continental shelves and drowned river valleys rias Importance for humans and ecosystems EditHuman settlements Edit Further information Port island nation Coastal management and Coastal development hazards The Coastal Hazard Wheel system published by UNEP for global coastal management More and more of the world s people live in coastal regions 22 According to a United Nations atlas 44 of all people live within 150 km 93 mi of the sea 5 Many major cities are on or near good harbors and have port facilities Some landlocked places have achieved port status by building canals Nations defend their coasts against military invaders smugglers and illegal migrants Fixed coastal defenses have long been erected in many nations and coastal countries typically have a navy and some form of coast guard Paddy fields by the coast of Fengbin Hualien Coastline of Barcelona as viewed from Port Forum with Montjuic and Port Vell can also be seen Tourism Edit Coasts especially those with beaches and warm water attract tourists often leading to the development of seaside resort communities In many island nations such as those of the Mediterranean South Pacific Ocean and Caribbean tourism is central to the economy Coasts offer recreational activities such as swimming fishing surfing boating and sunbathing Growth management and coastal management can be a challenge for coastal local authorities who often struggle to provide the infrastructure required by new residents and poor management practices of construction often leave these communities and infrastructure vulnerable to processes like coastal erosion and sea level rise In many of these communities management practices such as beach nourishment or when the coastal infrastructure is no longer financially sustainable managed retreat to remove communities from the coast A passenger car ferry arrives at the coast of Mariehamn Aland Houses close to the coast like these in Tiburon California may be especially desirable properties Ecosystem services Edit See also Marine coastal ecosystem This section is an excerpt from Ecosystem service Estuarine and coastal ecosystem services edit Estuarine and marine coastal ecosystems are both marine ecosystems Together these ecosystems perform the four categories of ecosystem services in a variety of ways Regulating services include climate regulation as well as waste treatment and disease regulation and buffer zones The provisioning services include forest products marine products fresh water raw materials biochemical and genetic resources Cultural services of coastal ecosystems include inspirational aspects recreation and tourism science and education Supporting services of coastal ecosystems include nutrient cycling biologically mediated habitats and primary production Coasts and their adjacent areas on and offshore are an important part of a local ecosystem The mixture of fresh water and salt water brackish water in estuaries provides many nutrients for marine life Salt marshes mangroves and beaches also support a diversity of plants animals and insects crucial to the food chain The high level of biodiversity creates a high level of biological activity which has attracted human activity for thousands of years Coasts also create essential material for organisms to live by including estuaries wetland seagrass coral reefs and mangroves Coasts provide habitats for migratory birds sea turtles marine mammals and coral reefs 23 Types EditEmergent coastline Edit Further information Emergent coastline and Submergent coastline According to one principle of classification an emergent coastline is a coastline that has experienced a fall in sea level because of either a global sea level change or local uplift Emergent coastlines are identifiable by the coastal landforms which are above the high tide mark such as raised beaches In contrast a submergent coastline is one where the sea level has risen due to a global sea level change local subsidence or isostatic rebound Submergent coastlines are identifiable by their submerged or drowned landforms such as rias drowned valleys and fjords Concordant coastline Edit Further information Concordant coastline and Discordant coastline According to the second principle of classification a concordant coastline is a coastline where bands of different rock types run parallel to the shore These rock types are usually of varying resistance so the coastline forms distinctive landforms such as coves Discordant coastlines feature distinctive landforms because the rocks are eroded by the ocean waves The less resistant rocks erode faster creating inlets or bay the more resistant rocks erode more slowly remaining as headlands or outcroppings Other coastal categories Edit A cliffed coast or abrasion coast is one where marine action has produced steep declivities known as cliffs A flat coast is one where the land gradually descends into the sea A graded shoreline is one where wind and water action has produced a flat and straight coastline Landforms EditThe following articles describe some coastal landforms Coastal landforms The feature shown here as a bay would in certain mainly southern parts of Britain be called a cove That between the cuspate foreland and the tombolo is a British bay Barrier island Bay Headland Cove Peninsula Cliff erosion Edit Much of the sediment deposited along a coast is the result of erosion of a surrounding cliff or bluff Sea cliffs retreat landward because of the constant undercutting of slopes by waves If the slope cliff being undercut is made of unconsolidated sediment it will erode at a much faster rate than a cliff made of bedrock 20 A natural arch is formed when a headland is eroded through by waves Sea caves are made when certain rock beds are more susceptible to erosion than the surrounding rock beds because of different areas of weakness These areas are eroded at a faster pace creating a hole or crevice that through time by means of wave action and erosion becomes a cave A stack is formed when a headland is eroded away by wave and wind action A stump is a shortened sea stack that has been eroded away or fallen because of instability Wave cut notches are caused by the undercutting of overhanging slopes which leads to increased stress on cliff material and a greater probability that the slope material will fall The fallen debris accumulates at the bottom of the cliff and is eventually removed by waves A wave cut platform forms after erosion and retreat of a sea cliff has been occurring for a long time Gently sloping wave cut platforms develop early on in the first stages of cliff retreat Later the length of the platform decreases because the waves lose their energy as they break further offshore 20 Coastal features formed by sediment Edit Beach Beach cusps Cuspate foreland Dune system Mudflat Raised beach Ria Shoal Spit Strand plain Surge channel Tombolo Coastal features formed by another feature Edit Estuary Lagoon Salt marsh Mangrove forests Kelp forests Coral reefs Oyster reefsOther features on the coast Edit Concordant coastline Discordant coastline Fjord Island Island arc MachairCoastal waters EditSee also Eutrophication Coastal waters Overview of different zones of coastal waters Input production transport and storage pathway of carbon in marine waters including movement across maritime zones of national jurisdiction territorial sea Exclusive Economic Zone EEZ continental shelf high seas international waters and deep seabed Coastal waters or coastal seas is a rather general term used differently in different contexts ranging geographically from the waters within a few kilometers of the coast through to the entire continental shelf which may stretch for more than a hundred kilometers from land 24 Thus the term coastal waters is used in a slightly different way in discussions of legal and economic boundaries 25 see territorial waters and international waters or when considering the geography of coastal landforms or the ecological systems operating through the continental shelf marine coastal ecosystems The research on coastal waters often divides into these separate areas too The dynamic fluid nature of the ocean means that all components of the whole ocean system are ultimately connected although certain regional classifications are useful and relevant The waters of the continental shelves represent such a region 26 The term coastal waters has been used in a wide variety of different ways in different contexts In European Union environmental management it extends from the coast to just a few nautical miles 27 while in the United States the US EPA considers this region to extend much further offshore 28 29 Coastal waters has specific meanings in the context of commercial coastal shipping and somewhat different meanings in the context of naval littoral warfare citation needed Oceanographers and marine biologists have yet other takes Coastal waters have a wide range of marine habitats from enclosed estuaries to the open waters of the continental shelf Similarly the term littoral zone has no single definition It is the part of a sea lake or river that is close to the shore 30 In coastal environments the littoral zone extends from the high water mark which is rarely inundated to shoreline areas that are permanently submerged Coastal waters can be threatened by coastal eutrophication and harmful algal blooms 31 32 33 In geology EditThe identification of bodies of rock formed from sediments deposited in shoreline and nearshore environments shoreline and nearshore facies is extremely important to geologists These provide vital clues for reconstructing the geography of ancient continents paleogeography The locations of these beds show the extent of ancient seas at particular points in geological time and provide clues to the magnitudes of tides in the distant past 34 Sediments deposited in the shoreface are preserved as lenses of sandstone in which the upper part of the sandstone is coarser than the lower part a coarsening upwards sequence Geologists refer to these are parasequences Each records an episode of retreat of the ocean from the shoreline over a period of 10 000 to 1 000 000 years These often show laminations reflecting various kinds of tidal cycles 34 Some of the best studied shoreline deposits in the world are found along the former western shore of the Western Interior Seaway a shallow sea that flooded central North America during the late Cretaceous Period about 100 to 66 million years ago These are beautifully exposed along the Book Cliffs of Utah and Colorado 35 Geologic processes Edit The following articles describe the various geologic processes that affect a coastal zone Attrition Currents Denudation Deposition Erosion Flooding Longshore drift Marine sediments Saltation Sea level change eustatic isostatic Sedimentation Coastal sediment supply sediment transport solution subaerial processes suspension Tides Water waves diffraction refraction wave breaking wave shoaling WeatheringWildlife EditSee also Coastal ecology and Marine coastal ecosystem Animals Edit See also Seashore wildlife This section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed April 2018 Learn how and when to remove this template message Larger animals that live in coastal areas include puffins sea turtles and rockhopper penguins among many others Sea snails and various kinds of barnacles live on rocky coasts and scavenge on food deposited by the sea Some coastal animals are used to humans in developed areas such as dolphins and seagulls who eat food thrown for them by tourists Since the coastal areas are all part of the littoral zone there is a profusion of marine life found just off coast including sessile animals such as corals sponges starfish mussels seaweeds fishes and sea anemones There are many kinds of seabirds on various coasts These include pelicans and cormorants who join up with terns and oystercatchers to forage for fish and shellfish There are sea lions on the coast of Wales and other countries Coastal fish Edit This section is an excerpt from Coastal fish edit Schooling threadfin a coastal species Coastal fish also called inshore fish or neritic fish inhabit the sea between the shoreline and the edge of the continental shelf Since the continental shelf is usually less than 200 metres 660 ft deep it follows that pelagic coastal fish are generally epipelagic fish inhabiting the sunlit epipelagic zone 36 Coastal fish can be contrasted with oceanic fish or offshore fish which inhabit the deep seas beyond the continental shelves Coastal fish are the most abundant in the world 37 They can be found in tidal pools fjords and estuaries near sandy shores and rocky coastlines around coral reefs and on or above the continental shelf Coastal fish include forage fish and the predator fish that feed on them Forage fish thrive in inshore waters where high productivity results from upwelling and shoreline run off of nutrients Some are partial residents that spawn in streams estuaries and bays but most complete their life cycles in the zone 37 Plants Edit Many coastal areas are famous for their kelp beds Kelp is a fast growing seaweed that can grow up to half a meter a day in ideal conditions Mangroves seagrasses macroalgal beds and salt marsh are important coastal vegetation types in tropical and temperate environments respectively 3 4 Restinga is another type of coastal vegetation Threats EditSee also Coastal development hazards and marine coastal ecosystem Coasts also face many human induced environmental impacts and coastal development hazards The most important ones are Pollution which can be in the form of water pollution nutrient pollution leading to coastal eutrophication and harmful algal blooms oil spills or marine debris that is contaminating coasts with plastic and other trash Sea level rise and associated issues like coastal erosion and saltwater intrusion Pollution Edit See also Human impact on marine life A settled coastline in Marblehead Massachusetts Once a fishing port the harbor is now dedicated to tourism and pleasure boating Observe that the sand and rocks have been darkened by oil slick up to the high water line This stretch of coast in Tanzania s capital Dar es Salaam serves as a public waste dump Dead zones occur when phosphorus and nitrogen from fertilizers cause excessive growth of microorganisms which depletes oxygen and kills fauna The pollution of coastlines is connected to marine pollution which can occur from a number of sources Marine debris garbage and industrial debris the transportation of petroleum in tankers increasing the probability of large oil spills small oil spills created by large and small vessels which flush bilge water into the ocean Marine pollution Edit This section is an excerpt from Marine pollution edit Marine pollution occurs when substances used or spread by humans such as industrial agricultural and residential waste particles noise excess carbon dioxide or invasive organisms enter the ocean and cause harmful effects there The majority of this waste 80 comes from land based activity although marine transportation significantly contributes as well 38 Since most inputs come from land either via the rivers sewage or the atmosphere it means that continental shelves are more vulnerable to pollution Air pollution is also a contributing factor by carrying off iron carbonic acid nitrogen silicon sulfur pesticides or dust particles into the ocean 39 The pollution often comes from nonpoint sources such as agricultural runoff wind blown debris and dust These nonpoint sources are largely due to runoff that enters the ocean through rivers but wind blown debris and dust can also play a role as these pollutants can settle into waterways and oceans 40 Pathways of pollution include direct discharge land runoff ship pollution atmospheric pollution and potentially deep sea mining The types of marine pollution can be grouped as pollution from marine debris plastic pollution including microplastics ocean acidification nutrient pollution toxins and underwater noise Plastic pollution in the ocean is a type of marine pollution by plastics ranging in size from large original material such as bottles and bags down to microplastics formed from the fragmentation of plastic material Marine debris is mainly discarded human rubbish which floats on or is suspended in the ocean Plastic pollution is harmful to marine life Marine debris Edit This section is an excerpt from Marine debris edit Marine debris also known as marine litter is human created waste that has deliberately or accidentally been released in a sea or ocean Floating oceanic debris tends to accumulate at the center of gyres and on coastlines frequently washing aground when it is known as beach litter or tidewrack Deliberate disposal of wastes at sea is called ocean dumping Naturally occurring debris such as driftwood and drift seeds are also present With the increasing use of plastic human influence has become an issue as many types of petrochemical plastics do not biodegrade quickly as would natural or organic materials 41 The largest single type of plastic pollution 10 and majority of large plastic in the oceans is discarded and lost nets from the fishing industry 42 Waterborne plastic poses a serious threat to fish seabirds marine reptiles and marine mammals as well as to boats and coasts 43 Dumping container spillages litter washed into storm drains and waterways and wind blown landfill waste all contribute to this problem This increased water pollution has caused serious negative effects such as discarded fishing nets capturing animals concentration of plastic debris in massive marine garbage patches and increasing concentrations of contaminants in the food chain Microplastics Edit This section is an excerpt from Marine plastic pollution Microplastics edit A growing concern regarding plastic pollution in the marine ecosystem is the use of microplastics Microplastics are beads of plastic less than 5 millimeters wide 44 and they are commonly found in hand soaps face cleansers and other exfoliators When these products are used the microplastics go through the water filtration system and into the ocean but because of their small size they are likely to escape capture by the preliminary treatment screens on wastewater plants 45 These beads are harmful to the organisms in the ocean especially filter feeders because they can easily ingest the plastic and become sick The microplastics are such a concern because it is difficult to clean them up due to their size so humans can try to avoid using these harmful plastics by purchasing products that use environmentally safe exfoliates Because plastic is so widely used across the planet microplastics have become widespread in the marine environment For example microplastics can be found on sandy beaches 46 and surface waters 47 as well as in the water column and deep sea sediment Microplastics are also found within the many other types of marine particles such as dead biological material tissue and shells and some soil particles blown in by wind and carried to the ocean by rivers Upon reaching marine environments the fate of microplastics is subject to naturally occurring drivers such as winds and surface oceanic currents Numerical models are able to trace small plastic debris micro and meso plastics drifting in the ocean 48 thus predicting their fate Sea level rise due to climate change Edit This section is an excerpt from Sea level rise edit Globally sea levels are rising due to human caused climate change Between 1901 and 2018 the globally averaged sea level rose by 15 25 cm 6 10 in or 1 2 mm per year on average 49 This rate is accelerating with sea levels now rising by 3 7 mm per year Climate scientists expect further acceleration during the 21st century 50 Climate change heats and therefore expands the ocean and melts land based ice sheets and glaciers 51 Between 1993 and 2018 the thermal expansion of water contributed 42 to sea level rise melting of temperate glaciers 21 Greenland 15 and Antarctica 8 52 1576 Over the next 2000 years the sea level is predicted to rise by 2 3 m 7 10 ft if global warming is limited to 1 5 C by 2 6 m 7 20 ft if it peaks at 2 C and by 19 22 metres 62 72 ft if it peaks at 5 C 53 21 Sea level rise has a substantial lag in its response to Earth temperature changes This means that it is virtually certain to continue for a long time 54 and that its extent in the short term i e around 2050 is insensitive to temperature changes between now and then Thus there s confidence that 2050 levels of sea level rise combined with the 2010 population distribution i e absent the effects of population growth and human migration would result in 150 million people under the water line during high tide and 300 million in places which are flooded every year an increase of 40 and 50 million people relative to 2010 values for the same 55 56 At the same time the impact on temperature from changes in greenhouse gas emissions over the longer term would greatly influence longer term sea level rise by 2100 the spread between the lowest and the highest plausible emission trajectories would result in the sea level rise of 0 38 0 77 m 1 ft 3 in 2 ft 6 in when using the best understood median estimates 53 21 When compared to 2050 levels the difference between the low and high end of that range is equivalent to the difference between 40 million more people under the water line during high tide and 50 million more in places which are flooded every year 190 and 350 million people and 80 and 90 million more for the same metrics 230 and 390 million people respectively 55 Under the highest emission scenario less understood processes may also lead to sea level rise of well over one metre 3 1 4 ft by 2100 and the levels of two metres 6 1 2 ft cannot be excluded 57 53 TS 45 Applying this extent of sea level rise to the 2010 population distribution could mean as many as 520 million more people under the water line during high tide and 640 million in places which are flooded every year 55 Global goals EditInternational attention to address the threats of coasts has been captured in Sustainable Development Goal 14 Life Below Water which sets goals for international policy focused on preserving marine coastal ecosystems and supporting more sustainable economic practices for coastal communities 7 Likewise the United Nations has declared 2021 2030 the UN Decade on Ecosystem Restoration but restoration of coastal ecosystems has received insufficient attention 8 See also Edit Geography portal Oceans portalBeach cleaning Coastal and Estuarine Research Federation European Atlas of the Seas Intertidal zone Land reclamation List of countries by length of coastline List of U S states by coastlineReferences Edit Coast The American Heritage Dictionary of the English Language 4th ed 2000 Archived from the original on 2009 02 01 Retrieved 2008 12 11 Coastline definition Merriam Webster Retrieved 2015 06 13 a b Nagelkerken Ivan ed 2009 Ecological Connectivity among Tropical Coastal Ecosystems Dordrecht Springer Netherlands doi 10 1007 978 90 481 2406 0 ISBN 978 90 481 2405 3 a b Nagelkerken I Blaber S J M Bouillon S Green P Haywood M Kirton L G Meynecke J O Pawlik J Penrose H M Sasekumar A Somerfield P J 2008 The habitat function of mangroves for terrestrial and marine fauna A review Aquatic Botany 89 2 155 185 doi 10 1016 j aquabot 2007 12 007 a b UN Atlas Archived from the original on 2 November 2013 Retrieved 31 October 2013 a b Climate change and the coasts World Ocean Review Retrieved 2020 12 19 a b United Nations 2017 Resolution adopted by the General Assembly on 6 July 2017 Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development A RES 71 313 a b Waltham Nathan J Elliott Michael Lee Shing Yip Lovelock Catherine Duarte Carlos M Buelow Christina Simenstad Charles Nagelkerken Ivan Claassens Louw Wen Colin K C Barletta Mario 2020 UN Decade on Ecosystem Restoration 2021 2030 What Chance for Success in Restoring Coastal Ecosystems Frontiers in Marine Science 7 71 doi 10 3389 fmars 2020 00071 hdl 2440 123896 ISSN 2296 7745 Nelson Stephen A 2007 Coastal Zones Archived from the original on 2013 03 16 Retrieved 2008 12 11 The Indian Ocean Coast of Somalia Marine Pollution Bulletin 41 1 6 141 159 December 2000 doi 10 1016 S0025 326X 00 00107 7 Ocean Habitats Oceans Coasts amp Seashores National Park Service 1 December 2016 Retrieved 25 September 2021 Lellis Dibble K A McGlynn K E Bigford T E 2008 Estuarine fish and shellfish species in US commercial and recreational fisheries economic value as an incentive to protect and restore estuarine habitat NOAA Technical Memo NMFS F SPO Retrieved 24 September 2021 Global Ocean Protection Present Status and Future Possibilities Iucn org 2010 11 23 Retrieved 2012 06 07 Vulpiani Angelo 2014 Lewis Fry Richardson scientist visionary and pacifist Lettera Matematica 2 3 121 128 doi 10 1007 s40329 014 0063 z MR 3344519 Richardson L F 1961 The problem of contiguity An appendix to statistics of deadly quarrels General Systems Yearbook Vol 6 pp 139 187 Mandelbrot B 1967 How Long is the Coast of Britain Statistical Self Similarity and Fractional Dimension Science 156 3775 636 638 Bibcode 1967Sci 156 636M doi 10 1126 science 156 3775 636 PMID 17837158 S2CID 15662830 Mandelbrot Benoit 1983 The Fractal Geometry of Nature W H Freeman and Co pp 25 33 ISBN 978 0 7167 1186 5 Davidson Jon P 2002 Exploring earth an introduction to physical geology Walter E Reed Paul M Davis 2nd ed Upper Saddle River NJ Prentice Hall ISBN 0 13 018372 5 OCLC 45917172 Blatt Harvey Middleton Gerard Murray Raymond 1980 Origin of sedimentary rocks 2d ed Englewood Cliffs N J Prentice Hall pp 656 659 ISBN 0136427103 a b c Easterbrook Don J 1999 Surface processes and landforms 2nd ed Upper Saddle River N J Prentice Hall ISBN 0 13 860958 6 OCLC 39890526 How is beach sand created Woods Hole Oceanographic Institution Woods Hole Oceanographic Institution Archived from the original on 2021 06 28 Retrieved 2021 08 10 Goudarzi Sara July 18 2006 Flocking to the Coast World s Population Migrating into Danger Live Science Retrieved 2008 12 14 US EPA ORD 2017 11 02 Coastal Waters US EPA Retrieved 2020 05 04 Dahlem Workshop on Ocean Margin Processes in Global Change Mantoura R F C Martin Jean Marie Wollast R Jickells T D Freie Universitaet Berlin Berlin Germany West Senat Marga and Kurt Moellgaard Stiftung eds 1991 Ocean margin processes in global change report of the Dahlem Workshop on Ocean Margin Processes in Global Change Berlin 1990 March 18 23 Chichester New York Wiley ISBN 978 0 471 92673 3 OCLC 22765791 Coastal waters Definition 255 Samples Law Insider Retrieved 2022 06 22 Simpson John H Sharples Jonathan 2012 Introduction to the Physical and Biological Oceanography of Shelf Seas 1 ed Cambridge University Press doi 10 1017 CBO9781139034098 ISBN 9780521877626 coastal waters European Environment Agency www eea europa eu Retrieved 2022 06 29 US EPA ORD 2017 11 02 Coastal Waters www epa gov Retrieved 2022 06 29 USEPA 2001 Nutrient Criteria Technical Guidance Manual Estuarine and Coastal Marine Waters U S Environmental Protection Agency Seekell D Cael B Norman S Bystrom P 2021 Patterns and variation of littoral habitat size among lakes Geophysical Research Letters 48 20 e2021GL095046 Bibcode 2021GeoRL 4895046S doi 10 1029 2021GL095046 ISSN 1944 8007 S2CID 244253181 Maure Eligio de Raus Terauchi Genki Ishizaka Joji Clinton Nicholas DeWitt Michael 2021 Globally consistent assessment of coastal eutrophication Nature Communications 12 1 6142 doi 10 1038 s41467 021 26391 9 ISSN 2041 1723 PMC 8536747 PMID 34686688 Jickells T D 1998 Nutrient Biogeochemistry of the Coastal Zone Science 281 5374 217 222 doi 10 1126 science 281 5374 217 ISSN 0036 8075 PMID 9660744 Glibert Patricia Burford Michele 2017 Globally Changing Nutrient Loads and Harmful Algal Blooms Recent Advances New Paradigms and Continuing Challenges Oceanography 30 1 58 69 doi 10 5670 oceanog 2017 110 a b Leeder M R 2011 Sedimentology and sedimentary basins from turbulence to tectonics 2nd ed Chichester West Sussex UK Wiley Blackwell pp 436 437 ISBN 9781405177832 Blatt Middleton amp Murray 1980 pp 673 674 Moyle and Cech 2004 page 585 a b Moyle and Cech 2004 page 572 Charles Sheppard ed 2019 World seas an Environmental Evaluation Vol III Ecological Issues and Environmental Impacts Second ed London ISBN 978 0128052044 OCLC 1052566532 Duce Robert Galloway J and Liss P 2009 The Impacts of Atmospheric Deposition to the Ocean on Marine Ecosystems and Climate WMO Bulletin Vol 58 1 Retrieved September 22 2020 What is the biggest source of pollution in the ocean National Ocean Service US Silver Spring MD National Oceanic and Atmospheric Administration Retrieved 2022 09 21 Graham Rachel 10 July 2019 Euronews Living Watch Italy s answer to the problem with plastic living Dumped fishing gear is biggest plastic polluter in ocean finds report The Guardian 2019 11 06 Retrieved 2021 04 09 Facts about marine debris US NOAA Archived from the original on 13 February 2009 Retrieved 10 April 2008 Wiggin K J Holland E B 2019 06 01 Validation and application of cost and time effective methods for the detection of 3 500 mm sized microplastics in the urban marine and estuarine environments surrounding Long Beach California Marine Pollution Bulletin 143 152 162 doi 10 1016 j marpolbul 2019 03 060 ISSN 0025 326X PMID 31789151 S2CID 150122831 Fendall Lisa S Sewell Mary A 2009 Contributing to marine pollution by washing your face Microplastics in facial cleansers Marine Pollution Bulletin 58 8 1225 1228 doi 10 1016 j marpolbul 2009 04 025 PMID 19481226 De la Torre Gabriel E Dioses Salinas Diana C Castro Jasmin M Antay Rosabel Fernandez Naomy Y Espinoza Morriberon D Saldana Serrano Miguel 2020 Abundance and distribution of microplastics on sandy beaches of Lima Peru Marine Pollution Bulletin 151 110877 doi 10 1016 j marpolbul 2019 110877 PMID 32056653 S2CID 211112493 Karlsson Therese M Karrman Anna Rotander Anna Hassellov Martin 2020 Comparison between manta trawl and in situ pump filtration methods and guidance for visual identification of microplastics in surface waters Environmental Science and Pollution Research 27 5 5559 5571 doi 10 1007 s11356 019 07274 5 PMC 7028838 PMID 31853844 Iwasaki Shinsuke Isobe Atsuhiko Kako Shin ichiro Uchida Keiichi Tokai Tadashi 2017 Fate of microplastics and mesoplastics carried by surface currents and wind waves A numerical model approach in the Sea of Japan Marine Pollution Bulletin 112 1 2 85 96 doi 10 1016 j marpolbul 2017 05 057 PMID 28559056 IPCC 2019 Summary for Policymakers In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate H O Portner D C Roberts V Masson Delmotte P Zhai M Tignor E Poloczanska K Mintenbeck A Alegria M Nicolai A Okem J Petzold B Rama N M Weyer eds Cambridge University Press Cambridge UK and New York NY USA https doi org 10 1017 9781009157964 001 Fox Kemper B H T Hewitt C Xiao G Adalgeirsdottir S S Drijfhout T L Edwards N R Golledge M Hemer R E Kopp G Krinner A Mix D Notz S Nowicki I S Nurhati L Ruiz J B Sallee A B A Slangen and Y Yu 2021 Chapter 9 Ocean Cryosphere and Sea Level Change In Climate Change 2021 The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Masson Delmotte V P Zhai A Pirani S L Connors C Pean S Berger N Caud Y Chen L Goldfarb M I Gomis M Huang K Leitzell E Lonnoy J B R Matthews T K Maycock T Waterfield O Yelekci R Yu and B Zhou eds Cambridge University Press Cambridge United Kingdom and New York NY USA pp 1211 1362 doi 10 1017 9781009157896 011 Mengel Matthias Levermann Anders Frieler Katja Robinson Alexander Marzeion Ben Winkelmann Ricarda 8 March 2016 Future sea level rise constrained by observations and long term commitment Proceedings of the National Academy of Sciences 113 10 2597 2602 Bibcode 2016PNAS 113 2597M doi 10 1073 pnas 1500515113 PMC 4791025 PMID 26903648 WCRP Global Sea Level Budget Group 2018 Global sea level budget 1993 present Earth System Science Data 10 3 1551 1590 Bibcode 2018ESSD 10 1551W doi 10 5194 essd 10 1551 2018 This corresponds to a mean sea level rise of about 7 5 cm over the whole altimetry period More importantly the GMSL curve shows a net acceleration estimated to be at 0 08mm yr2 a b c IPCC 2021 Summary for Policymakers In Climate Change 2021 The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Masson Delmotte V P Zhai A Pirani S L Connors C Pean S Berger N Caud Y Chen L Goldfarb M I Gomis M Huang K Leitzell E Lonnoy J B R Matthews T K Maycock T Waterfield O Yelekci R Yu and B Zhou eds Cambridge University Press Cambridge United Kingdom and New York NY USA pp 3 32 doi 10 1017 9781009157896 001 National Academies of Sciences Engineering and Medicine 2011 Synopsis Climate Stabilization Targets Emissions Concentrations and Impacts over Decades to Millennia Washington DC The National Academies Press p 5 doi 10 17226 12877 ISBN 978 0 309 15176 4 Box SYN 1 Sustained warming could lead to severe impacts a b c Kulp Scott A Strauss Benjamin H 29 October 2019 New elevation data triple estimates of global vulnerability to sea level rise and coastal flooding Nature Communications 10 1 4844 Bibcode 2019NatCo 10 4844K doi 10 1038 s41467 019 12808 z PMC 6820795 PMID 31664024 Rosane Olivia October 30 2019 300 Million People Worldwide Could Suffer Yearly Flooding by 2050 Ecowatch Retrieved 31 October 2019 2022 Sea Level Rise Technical Report oceanservice noaa gov Retrieved 2022 07 04 External links EditWoods Hole Oceanographic Institution organization dedicated to ocean research exploration and education Wikimedia Commons has media related to Coasts Wikiquote has quotations related to Coast Look up coast in Wiktionary the free dictionary Wikiversity has learning resources about Coast Retrieved from https en wikipedia org w index php title Coast amp oldid 1131359964, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.