fbpx
Wikipedia

Lagrange reversion theorem

In mathematics, the Lagrange reversion theorem gives series or formal power series expansions of certain implicitly defined functions; indeed, of compositions with such functions.

Let v be a function of x and y in terms of another function f such that

Then for any function g, for small enough y:

If g is the identity, this becomes

In which case the equation can be derived using perturbation theory.

In 1770, Joseph Louis Lagrange (1736–1813) published his power series solution of the implicit equation for v mentioned above. However, his solution used cumbersome series expansions of logarithms.[1][2] In 1780, Pierre-Simon Laplace (1749–1827) published a simpler proof of the theorem, which was based on relations between partial derivatives with respect to the variable x and the parameter y.[3][4][5] Charles Hermite (1822–1901) presented the most straightforward proof of the theorem by using contour integration.[6][7][8]

Lagrange's reversion theorem is used to obtain numerical solutions to Kepler's equation.

Simple proof

We start by writing:

 

Writing the delta-function as an integral we have:

 

The integral over k then gives   and we have:

 

Rearranging the sum and cancelling then gives the result:

 

References

  1. ^ Lagrange, Joseph Louis (1770) "Nouvelle méthode pour résoudre les équations littérales par le moyen des séries," Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, vol. 24, pages 251–326. (Available on-line at: [1] .)
  2. ^ Lagrange, Joseph Louis, Oeuvres, [Paris, 1869], Vol. 2, page 25; Vol. 3, pages 3–73.
  3. ^ Laplace, Pierre Simon de (1777) "Mémoire sur l'usage du calcul aux différences partielles dans la théories des suites," Mémoires de l'Académie Royale des Sciences de Paris, vol. , pages 99–122.
  4. ^ Laplace, Pierre Simon de, Oeuvres [Paris, 1843], Vol. 9, pages 313–335.
  5. ^ Laplace's proof is presented in:
    • Goursat, Édouard, A Course in Mathematical Analysis (translated by E.R. Hedrick and O. Dunkel) [N.Y., N.Y.: Dover, 1959], Vol. I, pages 404–405.
  6. ^ Hermite, Charles (1865) "Sur quelques développements en série de fonctions de plusieurs variables," Comptes Rendus de l'Académie des Sciences des Paris, vol. 60, pages 1–26.
  7. ^ Hermite, Charles, Oeuvres [Paris, 1908], Vol. 2, pages 319–346.
  8. ^ Hermite's proof is presented in:
    • Goursat, Édouard, A Course in Mathematical Analysis (translated by E. R. Hedrick and O. Dunkel) [N.Y., N.Y.: Dover, 1959], Vol. II, Part 1, pages 106–107.
    • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed. [Cambridge, England: Cambridge University Press, 1962] pages 132–133.

External links

  • Lagrange Inversion [Reversion] Theorem on MathWorld
  • , an application of the theorem
  • Article on equation of time contains an application to Kepler's equation.

lagrange, reversion, theorem, reversion, series, lagrange, inversion, theorem, mathematics, gives, series, formal, power, series, expansions, certain, implicitly, defined, functions, indeed, compositions, with, such, functions, function, terms, another, functi. For reversion of series see Lagrange inversion theorem In mathematics the Lagrange reversion theorem gives series or formal power series expansions of certain implicitly defined functions indeed of compositions with such functions Let v be a function of x and y in terms of another function f such that v x y f v displaystyle v x yf v Then for any function g for small enough y g v g x k 1 y k k x k 1 f x k g x displaystyle g v g x sum k 1 infty frac y k k left frac partial partial x right k 1 left f x k g x right If g is the identity this becomes v x k 1 y k k x k 1 f x k displaystyle v x sum k 1 infty frac y k k left frac partial partial x right k 1 left f x k right In which case the equation can be derived using perturbation theory In 1770 Joseph Louis Lagrange 1736 1813 published his power series solution of the implicit equation for v mentioned above However his solution used cumbersome series expansions of logarithms 1 2 In 1780 Pierre Simon Laplace 1749 1827 published a simpler proof of the theorem which was based on relations between partial derivatives with respect to the variable x and the parameter y 3 4 5 Charles Hermite 1822 1901 presented the most straightforward proof of the theorem by using contour integration 6 7 8 Lagrange s reversion theorem is used to obtain numerical solutions to Kepler s equation Simple proof EditWe start by writing g v d y f z z x g z 1 y f z d z displaystyle g v int delta yf z z x g z 1 yf z dz Writing the delta function as an integral we have g v exp i k y f z z x g z 1 y f z d k 2 p d z n 0 i k y f z n n g z 1 y f z e i k x z d k 2 p d z n 0 x n y f z n n g z 1 y f z e i k x z d k 2 p d z displaystyle begin aligned g v amp iint exp ik yf z z x g z 1 yf z frac dk 2 pi dz 10pt amp sum n 0 infty iint frac ikyf z n n g z 1 yf z e ik x z frac dk 2 pi dz 10pt amp sum n 0 infty left frac partial partial x right n iint frac yf z n n g z 1 yf z e ik x z frac dk 2 pi dz end aligned The integral over k then gives d x z displaystyle delta x z and we have g v n 0 x n y f x n n g x 1 y f x n 0 x n y n f x n g x n y n 1 n 1 g x f x n 1 g x f x n 1 displaystyle begin aligned g v amp sum n 0 infty left frac partial partial x right n left frac yf x n n g x 1 yf x right 10pt amp sum n 0 infty left frac partial partial x right n left frac y n f x n g x n frac y n 1 n 1 left g x f x n 1 g x f x n 1 right right end aligned Rearranging the sum and cancelling then gives the result g v g x k 1 y k k x k 1 f x k g x displaystyle g v g x sum k 1 infty frac y k k left frac partial partial x right k 1 left f x k g x right References Edit Lagrange Joseph Louis 1770 Nouvelle methode pour resoudre les equations litterales par le moyen des series Memoires de l Academie Royale des Sciences et Belles Lettres de Berlin vol 24 pages 251 326 Available on line at 1 Lagrange Joseph Louis Oeuvres Paris 1869 Vol 2 page 25 Vol 3 pages 3 73 Laplace Pierre Simon de 1777 Memoire sur l usage du calcul aux differences partielles dans la theories des suites Memoires de l Academie Royale des Sciences de Paris vol pages 99 122 Laplace Pierre Simon de Oeuvres Paris 1843 Vol 9 pages 313 335 Laplace s proof is presented in Goursat Edouard A Course in Mathematical Analysis translated by E R Hedrick and O Dunkel N Y N Y Dover 1959 Vol I pages 404 405 Hermite Charles 1865 Sur quelques developpements en serie de fonctions de plusieurs variables Comptes Rendus de l Academie des Sciences des Paris vol 60 pages 1 26 Hermite Charles Oeuvres Paris 1908 Vol 2 pages 319 346 Hermite s proof is presented in Goursat Edouard A Course in Mathematical Analysis translated by E R Hedrick and O Dunkel N Y N Y Dover 1959 Vol II Part 1 pages 106 107 E T Whittaker and G N Watson A Course of Modern Analysis 4th ed Cambridge England Cambridge University Press 1962 pages 132 133 External links EditLagrange Inversion Reversion Theorem on MathWorld Cornish Fisher expansion an application of the theorem Article on equation of time contains an application to Kepler s equation Retrieved from https en wikipedia org w index php title Lagrange reversion theorem amp oldid 1031043439, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.