fbpx
Wikipedia

Biomechanics

Biomechanics is the study of the structure, function and motion of the mechanical aspects of biological systems, at any level from whole organisms to organs, cells and cell organelles,[1] using the methods of mechanics.[2] Biomechanics is a branch of biophysics.

Page of one of the first works of Biomechanics (De Motu Animalium of Giovanni Alfonso Borelli) in the 17th century

In 2022, computational mechanics goes far beyond pure mechanics, and involves other physical actions: chemistry, heat and mass transfer, electric and magnetic stimuli and many others.

Etymology edit

The word "biomechanics" (1899) and the related "biomechanical" (1856) come from the Ancient Greek βίος bios "life" and μηχανική, mēchanikē "mechanics", to refer to the study of the mechanical principles of living organisms, particularly their movement and structure.[3]

Subfields edit

Biofluid mechanics edit

 
Red blood cells

Biological fluid mechanics, or biofluid mechanics, is the study of both gas and liquid fluid flows in or around biological organisms. An often studied liquid biofluid problem is that of blood flow in the human cardiovascular system. Under certain mathematical circumstances, blood flow can be modeled by the Navier–Stokes equations. In vivo whole blood is assumed to be an incompressible Newtonian fluid. However, this assumption fails when considering forward flow within arterioles. At the microscopic scale, the effects of individual red blood cells become significant, and whole blood can no longer be modeled as a continuum. When the diameter of the blood vessel is just slightly larger than the diameter of the red blood cell the Fahraeus–Lindquist effect occurs and there is a decrease in wall shear stress. However, as the diameter of the blood vessel decreases further, the red blood cells have to squeeze through the vessel and often can only pass in a single file. In this case, the inverse Fahraeus–Lindquist effect occurs and the wall shear stress increases.

An example of a gaseous biofluids problem is that of human respiration. Recently, respiratory systems in insects have been studied for bioinspiration for designing improved microfluidic devices.[4]

Biotribology edit

Biotribology is the study of friction, wear and lubrication of biological systems, especially human joints such as hips and knees.[5][6] In general, these processes are studied in the context of contact mechanics and tribology.

Additional aspects of biotribology include analysis of subsurface damage resulting from two surfaces coming in contact during motion, i.e. rubbing against each other, such as in the evaluation of tissue-engineered cartilage.[7]

Comparative biomechanics edit

 
Chinstrap penguin leaping over water

Comparative biomechanics is the application of biomechanics to non-human organisms, whether used to gain greater insights into humans (as in physical anthropology) or into the functions, ecology and adaptations of the organisms themselves. Common areas of investigation are Animal locomotion and feeding, as these have strong connections to the organism's fitness and impose high mechanical demands. Animal locomotion, has many manifestations, including running, jumping and flying. Locomotion requires energy to overcome friction, drag, inertia, and gravity, though which factor predominates varies with environment.[citation needed]

Comparative biomechanics overlaps strongly with many other fields, including ecology, neurobiology, developmental biology, ethology, and paleontology, to the extent of commonly publishing papers in the journals of these other fields. Comparative biomechanics is often applied in medicine (with regards to common model organisms such as mice and rats) as well as in biomimetics, which looks to nature for solutions to engineering problems.[citation needed]

Computational biomechanics edit

Computational biomechanics is the application of engineering computational tools, such as the Finite element method to study the mechanics of biological systems. Computational models and simulations are used to predict the relationship between parameters that are otherwise challenging to test experimentally, or used to design more relevant experiments reducing the time and costs of experiments. Mechanical modeling using finite element analysis has been used to interpret the experimental observation of plant cell growth to understand how they differentiate, for instance.[8] In medicine, over the past decade, the Finite element method has become an established alternative to in vivo surgical assessment. One of the main advantages of computational biomechanics lies in its ability to determine the endo-anatomical response of an anatomy, without being subject to ethical restrictions.[9] This has led FE modeling (or other discretization techniques) to the point of becoming ubiquitous in several fields of Biomechanics while several projects have even adopted an open source philosophy (e.g. BioSpine)[10] and SOniCS, as well as the SOFA, FEniCS frameworks and FEBio.

Computational biomechanics is an essential ingredient in surgical simulation, which is used for surgical planning, assistance and training. In this case, numerical (discretization) methods are used to compute, as fast as possible, the response of a system to boundary conditions such as forces, heat and mass transfer, electrical and magnetic stimuli.

Experimental biomechanics edit

Experimental biomechanics is the application of experiments and measurements in biomechanics.

Continuum biomechanics edit

The mechanical analysis of biomaterials and biofluids is usually carried forth with the concepts of continuum mechanics. This assumption breaks down when the length scales of interest approach the order of the micro structural details of the material. One of the most remarkable characteristic of biomaterials is their hierarchical structure. In other words, the mechanical characteristics of these materials rely on physical phenomena occurring in multiple levels, from the molecular all the way up to the tissue and organ levels.[citation needed]

Biomaterials are classified in two groups, hard and soft tissues. Mechanical deformation of hard tissues (like wood, shell and bone) may be analysed with the theory of linear elasticity. On the other hand, soft tissues (like skin, tendon, muscle and cartilage) usually undergo large deformations and thus their analysis rely on the finite strain theory and computer simulations. The interest in continuum biomechanics is spurred by the need for realism in the development of medical simulation.[11]: 568 

Plant biomechanics edit

The application of biomechanical principles to plants, plant organs and cells has developed into the subfield of plant biomechanics.[12] Application of biomechanics for plants ranges from studying the resilience of crops to environmental stress[13] to development and morphogenesis at cell and tissue scale, overlapping with mechanobiology.[8]

Sports biomechanics edit

In sports biomechanics, the laws of mechanics are applied to human movement in order to gain a greater understanding of athletic performance and to reduce sport injuries as well. It focuses on the application of the scientific principles of mechanical physics to understand movements of action of human bodies and sports implements such as cricket bat, hockey stick and javelin etc. Elements of mechanical engineering (e.g., strain gauges), electrical engineering (e.g., digital filtering), computer science (e.g., numerical methods), gait analysis (e.g., force platforms), and clinical neurophysiology (e.g., surface EMG) are common methods used in sports biomechanics.[14]

Biomechanics in sports can be stated as the muscular, joint and skeletal actions of the body during the execution of a given task, skill and/or technique. Proper understanding of biomechanics relating to sports skill has the greatest implications on: sport's performance, rehabilitation and injury prevention, along with sport mastery. As noted by Doctor Michael Yessis, one could say that best athlete is the one that executes his or her skill the best.[15]

Vascular biomechanics edit

The main topics of the vascular biomechanics is the description of the mechanical behaviour of vascular tissues.

It is well known that cardiovascular disease is the leading cause of death worldwide.[16] Vascular system in the human body is the main component that is supposed to maintain pressure and allow for blood flow and chemical exchanges. Studying the mechanical properties of this complex tissues improves the possibility to better understanding cardiovascular diseases and drastically improve personalized medicine.

Vascular tissues are inhomogeneous with a strongly non linear behaviour. Generally this study involves complex geometry with intricate load conditions and material properties. The correct description of these mechanisms is based on the study of physiology and biological interaction. Therefore is necessary to study wall mechanics and hemodynamics with their interaction.

It is also necessary to premise that the vascular wall is a dynamic structure in continuous evolution. This evolution directly follows the chemical and mechanical environment in which the tissues are immersed like Wall Shear Stress or biochemical signaling.


Other applied subfields of biomechanics include edit

History edit

Antiquity edit

Aristotle, a student of Plato can be considered the first bio-mechanic, because of his work with animal anatomy. Aristotle wrote the first book on the motion of animals, De Motu Animalium, or On the Movement of Animals.[17] He saw animal's bodies as mechanical systems, pursued questions such as the physiological difference between imagining performing an action and actual performance.[18] In another work, On the Parts of Animals, he provided an accurate description of how the ureter uses peristalsis to carry urine from the kidneys to the bladder.[11]: 2 

With the rise of the Roman Empire, technology became more popular than philosophy and the next bio-mechanic arose. Galen (129 AD-210 AD), physician to Marcus Aurelius, wrote his famous work, On the Function of the Parts (about the human body). This would be the world's standard medical book for the next 1,400 years.[19]

Renaissance edit

The next major biomechanic would not be around until the 1490s, with the studies of human anatomy and biomechanics by Leonardo da Vinci. He had a great understanding of science and mechanics and studied anatomy in a mechanics context. He analyzed muscle forces and movements and studied joint functions. These studies could be considered studies in the realm of biomechanics. Leonardo da Vinci studied anatomy in the context of mechanics. He analyzed muscle forces as acting along lines connecting origins and insertions, and studied joint function. Da Vinci is also known for mimicking some animal features in his machines. For example, he studied the flight of birds to find means by which humans could fly; and because horses were the principal source of mechanical power in that time, he studied their muscular systems to design machines that would better benefit from the forces applied by this animal.[20]

In 1543, Galen's work, On the Function of the Parts was challenged by Andreas Vesalius at the age of 29. Vesalius published his own work called, On the Structure of the Human Body. In this work, Vesalius corrected many errors made by Galen, which would not be globally accepted for many centuries. With the death of Copernicus came a new desire to understand and learn about the world around people and how it works. On his deathbed, he published his work, On the Revolutions of the Heavenly Spheres. This work not only revolutionized science and physics, but also the development of mechanics and later bio-mechanics.[19]

Galileo Galilei, the father of mechanics and part time biomechanic was born 21 years after the death of Copernicus. Over his years of science, Galileo made a lot of biomechanical aspects known. For example, he discovered that  "animals' masses increase disproportionately to their size, and their bones must consequently also disproportionately increase in girth, adapting to loadbearing rather than mere size. The bending strength of a tubular structure such as a bone is increased relative to its weight by making it hollow and increasing its diameter. Marine animals can be larger than terrestrial animals because the water's buoyancy relieves their tissues of weight."[19]

Galileo Galilei was interested in the strength of bones and suggested that bones are hollow because this affords maximum strength with minimum weight. He noted that animals' bone masses increased disproportionately to their size. Consequently, bones must also increase disproportionately in girth rather than mere size. This is because the bending strength of a tubular structure (such as a bone) is much more efficient relative to its weight. Mason suggests that this insight was one of the first grasps of the principles of biological optimization.[20]

In the 17th century, Descartes suggested a philosophic system whereby all living systems, including the human body (but not the soul), are simply machines ruled by the same mechanical laws, an idea that did much to promote and sustain biomechanical study.

Industrial era edit

The next major bio-mechanic, Giovanni Alfonso Borelli, embraced Descartes' mechanical philosophy and studied walking, running, jumping, the flight of birds, the swimming of fish, and even the piston action of the heart within a mechanical framework. He could determine the position of the human center of gravity, calculate and measure inspired and expired air volumes, and he showed that inspiration is muscle-driven and expiration is due to tissue elasticity.

Borelli was the first to understand that "the levers of the musculature system magnify motion rather than force, so that muscles must produce much larger forces than those resisting the motion".[19] Influenced by the work of Galileo, whom he personally knew, he had an intuitive understanding of static equilibrium in various joints of the human body well before Newton published the laws of motion.[21] His work is often considered the most important in the history of bio-mechanics because he made so many new discoveries that opened the way for the future generations to continue his work and studies.

It was many years after Borelli before the field of bio-mechanics made any major leaps. After that time, more and more scientists took to learning about the human body and its functions. There are not many notable scientists from the 19th or 20th century in bio-mechanics because the field is far too vast now to attribute one thing to one person. However, the field is continuing to grow every year and continues to make advances in discovering more about the human body. Because the field became so popular, many institutions and labs have opened over the last century and people continue doing research. With the Creation of the American Society of Bio-mechanics in 1977, the field continues to grow and make many new discoveries.[19]

In the 19th century Étienne-Jules Marey used cinematography to scientifically investigate locomotion. He opened the field of modern 'motion analysis' by being the first to correlate ground reaction forces with movement. In Germany, the brothers Ernst Heinrich Weber and Wilhelm Eduard Weber hypothesized a great deal about human gait, but it was Christian Wilhelm Braune who significantly advanced the science using recent advances in engineering mechanics. During the same period, the engineering mechanics of materials began to flourish in France and Germany under the demands of the industrial revolution. This led to the rebirth of bone biomechanics when the railroad engineer Karl Culmann and the anatomist Hermann von Meyer compared the stress patterns in a human femur with those in a similarly shaped crane. Inspired by this finding Julius Wolff proposed the famous Wolff's law of bone remodeling.[22]

Applications edit

The study of biomechanics ranges from the inner workings of a cell to the movement and development of limbs, to the mechanical properties of soft tissue,[7] and bones. Some simple examples of biomechanics research include the investigation of the forces that act on limbs, the aerodynamics of bird and insect flight, the hydrodynamics of swimming in fish, and locomotion in general across all forms of life, from individual cells to whole organisms. With growing understanding of the physiological behavior of living tissues, researchers are able to advance the field of tissue engineering, as well as develop improved treatments for a wide array of pathologies including cancer.[23][citation needed]

Biomechanics is also applied to studying human musculoskeletal systems. Such research utilizes force platforms to study human ground reaction forces and infrared videography to capture the trajectories of markers attached to the human body to study human 3D motion. Research also applies electromyography to study muscle activation, investigating muscle responses to external forces and perturbations.[24]

Biomechanics is widely used in orthopedic industry to design orthopedic implants for human joints, dental parts, external fixations and other medical purposes. Biotribology is a very important part of it. It is a study of the performance and function of biomaterials used for orthopedic implants. It plays a vital role to improve the design and produce successful biomaterials for medical and clinical purposes. One such example is in tissue engineered cartilage.[7] The dynamic loading of joints considered as impact is discussed in detail by Emanuel Willert.[25]

It is also tied to the field of engineering, because it often uses traditional engineering sciences to analyze biological systems. Some simple applications of Newtonian mechanics and/or materials sciences can supply correct approximations to the mechanics of many biological systems. Applied mechanics, most notably mechanical engineering disciplines such as continuum mechanics, mechanism analysis, structural analysis, kinematics and dynamics play prominent roles in the study of biomechanics.[26]

 
A ribosome is a biological machine that utilizes protein dynamics

Usually biological systems are much more complex than man-built systems. Numerical methods are hence applied in almost every biomechanical study. Research is done in an iterative process of hypothesis and verification, including several steps of modeling, computer simulation and experimental measurements.

See also edit

References edit

  1. ^ R. McNeill Alexander (2005) Mechanics of animal movement, Current Biology Volume 15, Issue 16, 23 August 2005, Pages R616-R619. doi:10.1016/j.cub.2005.08.016
  2. ^ Hatze, Herbert (1974). "The meaning of the term biomechanics". Journal of Biomechanics. 7 (12): 189–190. doi:10.1016/0021-9290(74)90060-8. PMID 4837555.
  3. ^ Oxford English Dictionary, Third Edition, November 2010, s.vv.
  4. ^ Aboelkassem, Yasser (2013). "Selective pumping in a network: insect-style microscale flow transport". Bioinspiration & Biomimetics. 8 (2): 026004. Bibcode:2013BiBi....8b6004A. doi:10.1088/1748-3182/8/2/026004. PMID 23538838. S2CID 34495501.
  5. ^ Davim, J. Paulo (2013). Biotribology. John Wiley & Sons. ISBN 978-1-118-61705-2.
  6. ^ Ostermeyer, Georg-Peter; Popov, Valentin L.; Shilko, Evgeny V.; Vasiljeva, Olga S., eds. (2021). "Multiscale Biomechanics and Tribology of Inorganic and Organic Systems". Springer Tracts in Mechanical Engineering. doi:10.1007/978-3-030-60124-9. ISBN 978-3-030-60123-2. ISSN 2195-9862.
  7. ^ a b c Whitney, G. A.; Jayaraman, K.; Dennis, J. E.; Mansour, J. M. (2014). "Scaffold-free cartilage subjected to frictional shear stress demonstrates damage by cracking and surface peeling". J Tissue Eng Regen Med. 11 (2): 412–424. doi:10.1002/term.1925. PMC 4641823. PMID 24965503.
  8. ^ a b Bidhendi, Amir J; Geitmann, Anja (January 2018). "Finite element modeling of shape changes in plant cells". Plant Physiology. 176 (1): 41–56. doi:10.1104/pp.17.01684. PMC 5761827. PMID 29229695.
  9. ^ Tsouknidas, Alexander; Savvakis, Savvas; Asaniotis, Yiannis; Anagnostidis, Kleovoulos; Lontos, Antonios; Michailidis, Nikolaos (November 2013). "The effect of kyphoplasty parameters on the dynamic load transfer within the lumbar spine considering the response of a bio-realistic spine segment". Clinical Biomechanics. 28 (9–10): 949–955. doi:10.1016/j.clinbiomech.2013.09.013.
  10. ^ . Archived from the original on 4 April 2022. Retrieved 26 October 2021.
  11. ^ a b Fung 1993
  12. ^ Niklas, Karl J. (1992). Plant Biomechanics: An Engineering Approach to Plant Form and Function (1 ed.). New York, NY: University of Chicago Press. p. 622. ISBN 978-0-226-58631-1.
  13. ^ Forell, G. V.; Robertson, D.; Lee, S. Y.; Cook, D. D. (2015). "Preventing lodging in bioenergy crops: a biomechanical analysis of maize stalks suggests a new approach". J Exp Bot. 66 (14): 4367–4371. doi:10.1093/jxb/erv108. PMID 25873674.
  14. ^ Bartlett, Roger (1997). Introduction to sports biomechanics (1 ed.). New York, NY: Routledge. p. 304. ISBN 978-0-419-20840-2.
  15. ^ Michael Yessis (2008). Secrets of Russian Sports Fitness & Training. ISBN 978-0-9817180-2-6.
  16. ^ "The top 10 causes of death". World Health Organization. WHO.
  17. ^ Abernethy, Bruce; Vaughan Kippers; Stephanie J. Hanrahan; Marcus G. Pandy; Alison M. McManus; Laurel MacKinnon (2013). Biophysical foundations of human movement (3rd ed.). Champaign, IL: Human Kinetics. p. 84. ISBN 978-1-4504-3165-1.
  18. ^ Martin, R. Bruce (23 October 1999). . Presidential Lecture presented at the 23rd Annual Conference of the American Society of Biomechanics University of Pittsburgh, Pittsburgh PA. Archived from the original on 8 August 2013. Retrieved 2 January 2014.
  19. ^ a b c d e "American Society of Biomechanics » The Original Biomechanists". www.asbweb.org. Retrieved 25 October 2017.
  20. ^ a b Mason, Stephen (1962). A History of the Sciences. New York, NY: Collier Books. p. 550.
  21. ^ Humphrey, Jay D. (2003). The Royal Society (ed.). "Continuum biomechanics of soft biological tissues". Proceedings of the Royal Society of London A. 459 (2029): 3–46. Bibcode:2003RSPSA.459....3H. doi:10.1098/rspa.2002.1060. S2CID 108637580.
  22. ^ R. Bruce Martin (23 October 1999). . 23rd Annual Conference of the American Society of Biomechanics. Archived from the original on 17 September 2010. Retrieved 13 October 2010.
  23. ^ Nia, H.T.; et al. (2017). "Solid stress and elastic energy as measures of tumour mechanopathology". Nature Biomedical Engineering. 004: 0004. doi:10.1038/s41551-016-0004. PMC 5621647. PMID 28966873.
  24. ^ Basmajian, J.V, & DeLuca, C.J. (1985) Muscles Alive: Their Functions Revealed, Fifth edition. Williams & Wilkins.
  25. ^ Willert, Emanuel (2020). Stoßprobleme in Physik, Technik und Medizin: Grundlagen und Anwendungen (in German). Springer Vieweg.
  26. ^ Holzapfel, Gerhard A.; Ogden, Ray W. (2009). Biomechanical Modelling at the Molecular, Cellular and Tissue Levels. Springer Science & Business Media. p. 75. ISBN 978-3-211-95875-9.

Further reading edit

  • Cowin, Stephen C., ed. (2008). Bone mechanics handbook (2nd ed.). New York: Informa Healthcare. ISBN 978-0-8493-9117-0.
  • Fischer-Cripps, Anthony C. (2007). Introduction to contact mechanics (2nd ed.). New York: Springer. ISBN 978-0-387-68187-0.
  • Fung, Y.-C. (1993). Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag. ISBN 978-0-387-97947-2.
  • Gurtin, Morton E. (1995). An introduction to continuum mechanics (6 ed.). San Diego: Acad. Press. ISBN 978-0-12-309750-7.
  • Humphrey, Jay D. (2002). Cardiovascular solid mechanics : cells, tissues, and organs. New York: Springer. ISBN 978-0-387-95168-3.
  • Mazumdar, Jagan N. (1993). Biofluids mechanics (Reprint 1998. ed.). Singapore: World Scientific. ISBN 978-981-02-0927-8.
  • Mow, Van C.; Huiskes, Rik, eds. (2005). Basic orthopaedic biomechanics & mechano-biology (3 ed.). Philadelphia: Lippincott Williams & Wilkins. p. 2. ISBN 978-0-7817-3933-7.
  • Peterson, Donald R.; Bronzino, Joseph D., eds. (2008). Biomechanics : principles and applications (2. rev. ed.). Boca Raton: CRC Press. ISBN 978-0-8493-8534-6.
  • Temenoff, J.S.; Mikos, A.G. (2008). Biomaterials : the Intersection of biology and materials science (Internat. ed.). Upper Saddle River, N.J.: Pearson/Prentice Hall. ISBN 978-0-13-009710-1.
  • Totten, George E.; Liang, Hong, eds. (2004). Mechanical tribology : materials, characterization, and applications. New York: Marcel Dekker. ISBN 978-0-8247-4873-9.
  • Waite, Lee; Fine, Jerry (2007). Applied biofluid mechanics. New York: McGraw-Hill. ISBN 978-0-07-147217-3.
  • Young, Donald F.; Bruce R. Munson; Theodore H. Okiishi (2004). A brief introduction to fluid mechanics (3rd ed.). Hoboken, N.J.: Wiley. ISBN 978-0-471-45757-2.

External links edit

  •   Media related to Biomechanics at Wikimedia Commons
  • Biomechanics and Movement Science Listserver (Biomch-L)

biomechanics, study, structure, function, motion, mechanical, aspects, biological, systems, level, from, whole, organisms, organs, cells, cell, organelles, using, methods, mechanics, branch, biophysics, page, first, works, motu, animalium, giovanni, alfonso, b. Biomechanics is the study of the structure function and motion of the mechanical aspects of biological systems at any level from whole organisms to organs cells and cell organelles 1 using the methods of mechanics 2 Biomechanics is a branch of biophysics Page of one of the first works of Biomechanics De Motu Animalium of Giovanni Alfonso Borelli in the 17th centuryIn 2022 computational mechanics goes far beyond pure mechanics and involves other physical actions chemistry heat and mass transfer electric and magnetic stimuli and many others Contents 1 Etymology 2 Subfields 2 1 Biofluid mechanics 2 2 Biotribology 2 3 Comparative biomechanics 2 4 Computational biomechanics 2 5 Experimental biomechanics 2 6 Continuum biomechanics 2 7 Plant biomechanics 2 8 Sports biomechanics 2 9 Vascular biomechanics 2 10 Other applied subfields of biomechanics include 3 History 3 1 Antiquity 3 2 Renaissance 3 3 Industrial era 4 Applications 5 See also 6 References 7 Further reading 8 External linksEtymology editThe word biomechanics 1899 and the related biomechanical 1856 come from the Ancient Greek bios bios life and mhxanikh mechanike mechanics to refer to the study of the mechanical principles of living organisms particularly their movement and structure 3 Subfields editBiofluid mechanics edit nbsp Red blood cellsBiological fluid mechanics or biofluid mechanics is the study of both gas and liquid fluid flows in or around biological organisms An often studied liquid biofluid problem is that of blood flow in the human cardiovascular system Under certain mathematical circumstances blood flow can be modeled by the Navier Stokes equations In vivo whole blood is assumed to be an incompressible Newtonian fluid However this assumption fails when considering forward flow within arterioles At the microscopic scale the effects of individual red blood cells become significant and whole blood can no longer be modeled as a continuum When the diameter of the blood vessel is just slightly larger than the diameter of the red blood cell the Fahraeus Lindquist effect occurs and there is a decrease in wall shear stress However as the diameter of the blood vessel decreases further the red blood cells have to squeeze through the vessel and often can only pass in a single file In this case the inverse Fahraeus Lindquist effect occurs and the wall shear stress increases An example of a gaseous biofluids problem is that of human respiration Recently respiratory systems in insects have been studied for bioinspiration for designing improved microfluidic devices 4 Biotribology edit Biotribology is the study of friction wear and lubrication of biological systems especially human joints such as hips and knees 5 6 In general these processes are studied in the context of contact mechanics and tribology Additional aspects of biotribology include analysis of subsurface damage resulting from two surfaces coming in contact during motion i e rubbing against each other such as in the evaluation of tissue engineered cartilage 7 Comparative biomechanics edit nbsp Chinstrap penguin leaping over waterComparative biomechanics is the application of biomechanics to non human organisms whether used to gain greater insights into humans as in physical anthropology or into the functions ecology and adaptations of the organisms themselves Common areas of investigation are Animal locomotion and feeding as these have strong connections to the organism s fitness and impose high mechanical demands Animal locomotion has many manifestations including running jumping and flying Locomotion requires energy to overcome friction drag inertia and gravity though which factor predominates varies with environment citation needed Comparative biomechanics overlaps strongly with many other fields including ecology neurobiology developmental biology ethology and paleontology to the extent of commonly publishing papers in the journals of these other fields Comparative biomechanics is often applied in medicine with regards to common model organisms such as mice and rats as well as in biomimetics which looks to nature for solutions to engineering problems citation needed Computational biomechanics edit Computational biomechanics is the application of engineering computational tools such as the Finite element method to study the mechanics of biological systems Computational models and simulations are used to predict the relationship between parameters that are otherwise challenging to test experimentally or used to design more relevant experiments reducing the time and costs of experiments Mechanical modeling using finite element analysis has been used to interpret the experimental observation of plant cell growth to understand how they differentiate for instance 8 In medicine over the past decade the Finite element method has become an established alternative to in vivo surgical assessment One of the main advantages of computational biomechanics lies in its ability to determine the endo anatomical response of an anatomy without being subject to ethical restrictions 9 This has led FE modeling or other discretization techniques to the point of becoming ubiquitous in several fields of Biomechanics while several projects have even adopted an open source philosophy e g BioSpine 10 and SOniCS as well as the SOFA FEniCS frameworks and FEBio Computational biomechanics is an essential ingredient in surgical simulation which is used for surgical planning assistance and training In this case numerical discretization methods are used to compute as fast as possible the response of a system to boundary conditions such as forces heat and mass transfer electrical and magnetic stimuli Experimental biomechanics edit Experimental biomechanics is the application of experiments and measurements in biomechanics Continuum biomechanics edit The mechanical analysis of biomaterials and biofluids is usually carried forth with the concepts of continuum mechanics This assumption breaks down when the length scales of interest approach the order of the micro structural details of the material One of the most remarkable characteristic of biomaterials is their hierarchical structure In other words the mechanical characteristics of these materials rely on physical phenomena occurring in multiple levels from the molecular all the way up to the tissue and organ levels citation needed Biomaterials are classified in two groups hard and soft tissues Mechanical deformation of hard tissues like wood shell and bone may be analysed with the theory of linear elasticity On the other hand soft tissues like skin tendon muscle and cartilage usually undergo large deformations and thus their analysis rely on the finite strain theory and computer simulations The interest in continuum biomechanics is spurred by the need for realism in the development of medical simulation 11 568 Plant biomechanics edit The application of biomechanical principles to plants plant organs and cells has developed into the subfield of plant biomechanics 12 Application of biomechanics for plants ranges from studying the resilience of crops to environmental stress 13 to development and morphogenesis at cell and tissue scale overlapping with mechanobiology 8 Sports biomechanics edit Main article Sports biomechanics In sports biomechanics the laws of mechanics are applied to human movement in order to gain a greater understanding of athletic performance and to reduce sport injuries as well It focuses on the application of the scientific principles of mechanical physics to understand movements of action of human bodies and sports implements such as cricket bat hockey stick and javelin etc Elements of mechanical engineering e g strain gauges electrical engineering e g digital filtering computer science e g numerical methods gait analysis e g force platforms and clinical neurophysiology e g surface EMG are common methods used in sports biomechanics 14 Biomechanics in sports can be stated as the muscular joint and skeletal actions of the body during the execution of a given task skill and or technique Proper understanding of biomechanics relating to sports skill has the greatest implications on sport s performance rehabilitation and injury prevention along with sport mastery As noted by Doctor Michael Yessis one could say that best athlete is the one that executes his or her skill the best 15 Vascular biomechanics edit The main topics of the vascular biomechanics is the description of the mechanical behaviour of vascular tissues It is well known that cardiovascular disease is the leading cause of death worldwide 16 Vascular system in the human body is the main component that is supposed to maintain pressure and allow for blood flow and chemical exchanges Studying the mechanical properties of this complex tissues improves the possibility to better understanding cardiovascular diseases and drastically improve personalized medicine Vascular tissues are inhomogeneous with a strongly non linear behaviour Generally this study involves complex geometry with intricate load conditions and material properties The correct description of these mechanisms is based on the study of physiology and biological interaction Therefore is necessary to study wall mechanics and hemodynamics with their interaction It is also necessary to premise that the vascular wall is a dynamic structure in continuous evolution This evolution directly follows the chemical and mechanical environment in which the tissues are immersed like Wall Shear Stress or biochemical signaling Other applied subfields of biomechanics include edit Allometry Animal locomotion amp Gait analysis Biotribology Biofluid mechanics Cardiovascular biomechanics Comparative biomechanics Computational biomechanics Ergonomy Forensic Biomechanics Human factors engineering amp occupational biomechanics Injury biomechanics Implant medicine Orthotics amp Prosthesis Kinaesthetics Kinesiology kinetics physiology Musculoskeletal amp orthopedic biomechanics Rehabilitation Soft body dynamics Sports biomechanicsHistory editAntiquity edit Aristotle a student of Plato can be considered the first bio mechanic because of his work with animal anatomy Aristotle wrote the first book on the motion of animals De Motu Animalium or On the Movement of Animals 17 He saw animal s bodies as mechanical systems pursued questions such as the physiological difference between imagining performing an action and actual performance 18 In another work On the Parts of Animals he provided an accurate description of how the ureter uses peristalsis to carry urine from the kidneys to the bladder 11 2 With the rise of the Roman Empire technology became more popular than philosophy and the next bio mechanic arose Galen 129 AD 210 AD physician to Marcus Aurelius wrote his famous work On the Function of the Parts about the human body This would be the world s standard medical book for the next 1 400 years 19 Renaissance edit The next major biomechanic would not be around until the 1490s with the studies of human anatomy and biomechanics by Leonardo da Vinci He had a great understanding of science and mechanics and studied anatomy in a mechanics context He analyzed muscle forces and movements and studied joint functions These studies could be considered studies in the realm of biomechanics Leonardo da Vinci studied anatomy in the context of mechanics He analyzed muscle forces as acting along lines connecting origins and insertions and studied joint function Da Vinci is also known for mimicking some animal features in his machines For example he studied the flight of birds to find means by which humans could fly and because horses were the principal source of mechanical power in that time he studied their muscular systems to design machines that would better benefit from the forces applied by this animal 20 In 1543 Galen s work On the Function of the Parts was challenged by Andreas Vesalius at the age of 29 Vesalius published his own work called On the Structure of the Human Body In this work Vesalius corrected many errors made by Galen which would not be globally accepted for many centuries With the death of Copernicus came a new desire to understand and learn about the world around people and how it works On his deathbed he published his work On the Revolutions of the Heavenly Spheres This work not only revolutionized science and physics but also the development of mechanics and later bio mechanics 19 Galileo Galilei the father of mechanics and part time biomechanic was born 21 years after the death of Copernicus Over his years of science Galileo made a lot of biomechanical aspects known For example he discovered that animals masses increase disproportionately to their size and their bones must consequently also disproportionately increase in girth adapting to loadbearing rather than mere size The bending strength of a tubular structure such as a bone is increased relative to its weight by making it hollow and increasing its diameter Marine animals can be larger than terrestrial animals because the water s buoyancy relieves their tissues of weight 19 Galileo Galilei was interested in the strength of bones and suggested that bones are hollow because this affords maximum strength with minimum weight He noted that animals bone masses increased disproportionately to their size Consequently bones must also increase disproportionately in girth rather than mere size This is because the bending strength of a tubular structure such as a bone is much more efficient relative to its weight Mason suggests that this insight was one of the first grasps of the principles of biological optimization 20 In the 17th century Descartes suggested a philosophic system whereby all living systems including the human body but not the soul are simply machines ruled by the same mechanical laws an idea that did much to promote and sustain biomechanical study Industrial era edit The next major bio mechanic Giovanni Alfonso Borelli embraced Descartes mechanical philosophy and studied walking running jumping the flight of birds the swimming of fish and even the piston action of the heart within a mechanical framework He could determine the position of the human center of gravity calculate and measure inspired and expired air volumes and he showed that inspiration is muscle driven and expiration is due to tissue elasticity Borelli was the first to understand that the levers of the musculature system magnify motion rather than force so that muscles must produce much larger forces than those resisting the motion 19 Influenced by the work of Galileo whom he personally knew he had an intuitive understanding of static equilibrium in various joints of the human body well before Newton published the laws of motion 21 His work is often considered the most important in the history of bio mechanics because he made so many new discoveries that opened the way for the future generations to continue his work and studies It was many years after Borelli before the field of bio mechanics made any major leaps After that time more and more scientists took to learning about the human body and its functions There are not many notable scientists from the 19th or 20th century in bio mechanics because the field is far too vast now to attribute one thing to one person However the field is continuing to grow every year and continues to make advances in discovering more about the human body Because the field became so popular many institutions and labs have opened over the last century and people continue doing research With the Creation of the American Society of Bio mechanics in 1977 the field continues to grow and make many new discoveries 19 In the 19th century Etienne Jules Marey used cinematography to scientifically investigate locomotion He opened the field of modern motion analysis by being the first to correlate ground reaction forces with movement In Germany the brothers Ernst Heinrich Weber and Wilhelm Eduard Weber hypothesized a great deal about human gait but it was Christian Wilhelm Braune who significantly advanced the science using recent advances in engineering mechanics During the same period the engineering mechanics of materials began to flourish in France and Germany under the demands of the industrial revolution This led to the rebirth of bone biomechanics when the railroad engineer Karl Culmann and the anatomist Hermann von Meyer compared the stress patterns in a human femur with those in a similarly shaped crane Inspired by this finding Julius Wolff proposed the famous Wolff s law of bone remodeling 22 Applications editThe study of biomechanics ranges from the inner workings of a cell to the movement and development of limbs to the mechanical properties of soft tissue 7 and bones Some simple examples of biomechanics research include the investigation of the forces that act on limbs the aerodynamics of bird and insect flight the hydrodynamics of swimming in fish and locomotion in general across all forms of life from individual cells to whole organisms With growing understanding of the physiological behavior of living tissues researchers are able to advance the field of tissue engineering as well as develop improved treatments for a wide array of pathologies including cancer 23 citation needed Biomechanics is also applied to studying human musculoskeletal systems Such research utilizes force platforms to study human ground reaction forces and infrared videography to capture the trajectories of markers attached to the human body to study human 3D motion Research also applies electromyography to study muscle activation investigating muscle responses to external forces and perturbations 24 Biomechanics is widely used in orthopedic industry to design orthopedic implants for human joints dental parts external fixations and other medical purposes Biotribology is a very important part of it It is a study of the performance and function of biomaterials used for orthopedic implants It plays a vital role to improve the design and produce successful biomaterials for medical and clinical purposes One such example is in tissue engineered cartilage 7 The dynamic loading of joints considered as impact is discussed in detail by Emanuel Willert 25 This section needs expansion You can help by adding to it March 2019 It is also tied to the field of engineering because it often uses traditional engineering sciences to analyze biological systems Some simple applications of Newtonian mechanics and or materials sciences can supply correct approximations to the mechanics of many biological systems Applied mechanics most notably mechanical engineering disciplines such as continuum mechanics mechanism analysis structural analysis kinematics and dynamics play prominent roles in the study of biomechanics 26 nbsp A ribosome is a biological machine that utilizes protein dynamicsUsually biological systems are much more complex than man built systems Numerical methods are hence applied in almost every biomechanical study Research is done in an iterative process of hypothesis and verification including several steps of modeling computer simulation and experimental measurements See also editBiomechatronics Biomedical engineering Cardiovascular System Dynamics Society Evolutionary physiology Forensic biomechanics International Society of Biomechanics List of biofluid mechanics research groups Mechanics of human sexuality OpenSim simulation toolkit Physical oncologyReferences edit R McNeill Alexander 2005 Mechanics of animal movement Current Biology Volume 15 Issue 16 23 August 2005 Pages R616 R619 doi 10 1016 j cub 2005 08 016 Hatze Herbert 1974 The meaning of the term biomechanics Journal of Biomechanics 7 12 189 190 doi 10 1016 0021 9290 74 90060 8 PMID 4837555 Oxford English Dictionary Third Edition November 2010 s vv Aboelkassem Yasser 2013 Selective pumping in a network insect style microscale flow transport Bioinspiration amp Biomimetics 8 2 026004 Bibcode 2013BiBi 8b6004A doi 10 1088 1748 3182 8 2 026004 PMID 23538838 S2CID 34495501 Davim J Paulo 2013 Biotribology John Wiley amp Sons ISBN 978 1 118 61705 2 Ostermeyer Georg Peter Popov Valentin L Shilko Evgeny V Vasiljeva Olga S eds 2021 Multiscale Biomechanics and Tribology of Inorganic and Organic Systems Springer Tracts in Mechanical Engineering doi 10 1007 978 3 030 60124 9 ISBN 978 3 030 60123 2 ISSN 2195 9862 a b c Whitney G A Jayaraman K Dennis J E Mansour J M 2014 Scaffold free cartilage subjected to frictional shear stress demonstrates damage by cracking and surface peeling J Tissue Eng Regen Med 11 2 412 424 doi 10 1002 term 1925 PMC 4641823 PMID 24965503 a b Bidhendi Amir J Geitmann Anja January 2018 Finite element modeling of shape changes in plant cells Plant Physiology 176 1 41 56 doi 10 1104 pp 17 01684 PMC 5761827 PMID 29229695 Tsouknidas Alexander Savvakis Savvas Asaniotis Yiannis Anagnostidis Kleovoulos Lontos Antonios Michailidis Nikolaos November 2013 The effect of kyphoplasty parameters on the dynamic load transfer within the lumbar spine considering the response of a bio realistic spine segment Clinical Biomechanics 28 9 10 949 955 doi 10 1016 j clinbiomech 2013 09 013 Computational Biomechanics BLOGS Archived from the original on 4 April 2022 Retrieved 26 October 2021 a b Fung 1993 Niklas Karl J 1992 Plant Biomechanics An Engineering Approach to Plant Form and Function 1 ed New York NY University of Chicago Press p 622 ISBN 978 0 226 58631 1 Forell G V Robertson D Lee S Y Cook D D 2015 Preventing lodging in bioenergy crops a biomechanical analysis of maize stalks suggests a new approach J Exp Bot 66 14 4367 4371 doi 10 1093 jxb erv108 PMID 25873674 Bartlett Roger 1997 Introduction to sports biomechanics 1 ed New York NY Routledge p 304 ISBN 978 0 419 20840 2 Michael Yessis 2008 Secrets of Russian Sports Fitness amp Training ISBN 978 0 9817180 2 6 The top 10 causes of death World Health Organization WHO Abernethy Bruce Vaughan Kippers Stephanie J Hanrahan Marcus G Pandy Alison M McManus Laurel MacKinnon 2013 Biophysical foundations of human movement 3rd ed Champaign IL Human Kinetics p 84 ISBN 978 1 4504 3165 1 Martin R Bruce 23 October 1999 A genealogy of biomechanics Presidential Lecture presented at the 23rd Annual Conference of the American Society of Biomechanics University of Pittsburgh Pittsburgh PA Archived from the original on 8 August 2013 Retrieved 2 January 2014 a b c d e American Society of Biomechanics The Original Biomechanists www asbweb org Retrieved 25 October 2017 a b Mason Stephen 1962 A History of the Sciences New York NY Collier Books p 550 Humphrey Jay D 2003 The Royal Society ed Continuum biomechanics of soft biological tissues Proceedings of the Royal Society of London A 459 2029 3 46 Bibcode 2003RSPSA 459 3H doi 10 1098 rspa 2002 1060 S2CID 108637580 R Bruce Martin 23 October 1999 A Genealogy of Biomechanics 23rd Annual Conference of the American Society of Biomechanics Archived from the original on 17 September 2010 Retrieved 13 October 2010 Nia H T et al 2017 Solid stress and elastic energy as measures of tumour mechanopathology Nature Biomedical Engineering 004 0004 doi 10 1038 s41551 016 0004 PMC 5621647 PMID 28966873 Basmajian J V amp DeLuca C J 1985 Muscles Alive Their Functions Revealed Fifth edition Williams amp Wilkins Willert Emanuel 2020 Stossprobleme in Physik Technik und Medizin Grundlagen und Anwendungen in German Springer Vieweg Holzapfel Gerhard A Ogden Ray W 2009 Biomechanical Modelling at the Molecular Cellular and Tissue Levels Springer Science amp Business Media p 75 ISBN 978 3 211 95875 9 Further reading editCowin Stephen C ed 2008 Bone mechanics handbook 2nd ed New York Informa Healthcare ISBN 978 0 8493 9117 0 Fischer Cripps Anthony C 2007 Introduction to contact mechanics 2nd ed New York Springer ISBN 978 0 387 68187 0 Fung Y C 1993 Biomechanics Mechanical Properties of Living Tissues New York Springer Verlag ISBN 978 0 387 97947 2 Gurtin Morton E 1995 An introduction to continuum mechanics 6 ed San Diego Acad Press ISBN 978 0 12 309750 7 Humphrey Jay D 2002 Cardiovascular solid mechanics cells tissues and organs New York Springer ISBN 978 0 387 95168 3 Mazumdar Jagan N 1993 Biofluids mechanics Reprint 1998 ed Singapore World Scientific ISBN 978 981 02 0927 8 Mow Van C Huiskes Rik eds 2005 Basic orthopaedic biomechanics amp mechano biology 3 ed Philadelphia Lippincott Williams amp Wilkins p 2 ISBN 978 0 7817 3933 7 Peterson Donald R Bronzino Joseph D eds 2008 Biomechanics principles and applications 2 rev ed Boca Raton CRC Press ISBN 978 0 8493 8534 6 Temenoff J S Mikos A G 2008 Biomaterials the Intersection of biology and materials science Internat ed Upper Saddle River N J Pearson Prentice Hall ISBN 978 0 13 009710 1 Totten George E Liang Hong eds 2004 Mechanical tribology materials characterization and applications New York Marcel Dekker ISBN 978 0 8247 4873 9 Waite Lee Fine Jerry 2007 Applied biofluid mechanics New York McGraw Hill ISBN 978 0 07 147217 3 Young Donald F Bruce R Munson Theodore H Okiishi 2004 A brief introduction to fluid mechanics 3rd ed Hoboken N J Wiley ISBN 978 0 471 45757 2 External links edit nbsp Media related to Biomechanics at Wikimedia Commons Biomechanics and Movement Science Listserver Biomch L Biomechanics Links A Genealogy of Biomechanics Retrieved from https en wikipedia org w index php title Biomechanics amp oldid 1183598004, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.