fbpx
Wikipedia

Agnatha

Agnatha (/ˈæɡnəθə, æɡˈnθə/, Ancient Greek[3] ἀ-γνάθος 'without jaws') is an infraphylum[4] of jawless fish in the phylum Chordata, subphylum Vertebrata, consisting of both present (cyclostomes) and extinct (conodonts and ostracoderms) species. Among recent animals, cyclostomes are sister to all vertebrates with jaws, known as gnathostomes.[5]

Agnatha
Temporal range:
Cambrian Stage 3Present,
518–0 Ma[1]
Lampetra fluviatilis
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Subphylum: Vertebrata
Infraphylum: Agnatha
Cope, 1889
Groups included
Cladistically included but traditionally excluded taxa

Recent molecular data, both from rRNA[6] and from mtDNA[7] as well as embryological data,[8] strongly supports the hypothesis that living agnathans, the cyclostomes, are monophyletic.[9]

The oldest fossil agnathans appeared in the Cambrian, and two groups still survive today: the lampreys and the hagfish, comprising about 120 species in total. Hagfish are considered members of the subphylum Vertebrata, because they secondarily lost vertebrae; before this event was inferred from molecular[6][7][10] and developmental[11] data, the group Craniata was created by Linnaeus (and is still sometimes used as a strictly morphological descriptor) to reference hagfish plus vertebrates.

While a few scientists still regard the living agnathans as only superficially similar, and argue that many of these similarities are probably shared basal characteristics of ancient vertebrates, recent taxonomic studies clearly place hagfish (the Myxini or Hyperotreti) with the lampreys (Hyperoartii) as being more closely related to each other than either is to the jawed fishes.[6][7][12]

Metabolism

Agnathans are ectothermic, meaning they do not regulate their own body temperature. Agnathan metabolism is slow in cold water, and therefore they do not have to eat very much. They have no distinct stomach, but rather a long gut, more or less homogeneous throughout its length. Lampreys feed on other fish and mammals. Anticoagulant fluids preventing blood clotting are injected into the host, causing the host to yield more blood. Hagfish are scavengers, eating mostly dead animals. They use a row of sharp teeth to break down the animal. The fact that Agnathan teeth are unable to move up and down limits their possible food types.

Morphology

In addition to the absence of jaws, modern agnathans are characterised by absence of paired fins; the presence of a notochord both in larvae and adults; and seven or more paired gill pouches. Lampreys have a light sensitive pineal eye (homologous to the pineal gland in mammals). All living and most extinct Agnatha do not have an identifiable stomach or any appendages. Fertilization and development are both external. There is no parental care in the Agnatha class. The Agnatha are ectothermic or cold blooded, with a cartilaginous skeleton, and the heart contains 2 chambers.

Body covering

In modern agnathans, the body is covered in skin, with neither dermal or epidermal scales. The skin of hagfish has copious slime glands, the slime constituting their defense mechanism. The slime can sometimes clog up enemy fishes' gills, causing them to die. In direct contrast, many extinct agnathans sported extensive exoskeletons composed of either massive, heavy dermal armour or small mineralized scales.

Appendages

Almost all agnathans, including all extant agnathans, have no paired appendages, although most do have a dorsal or a caudal fin. Some fossil agnathans, such as osteostracans and pituriaspids, did have paired fins, a trait inherited in their jawed descendants.[13]

Reproduction

Fertilization in lampreys is external. Mode of fertilization in hagfishes is not known. Development in both groups probably is external. There is no known parental care. Not much is known about the hagfish reproductive process. It is believed that hagfish only have 30 eggs over a lifetime.[14] There is very little of the larval stage that characterizes the lamprey. Lamprey are only able to reproduce once. After external fertilization, the lamprey's cloacas remain open, allowing a fungus to enter their intestines, killing them. Lampreys reproduce in freshwater riverbeds, working in pairs to build a nest and burying their eggs about an inch beneath the sediment. The resulting hatchlings go through four years of larval development before becoming adults.

Evolution

 
Evolution of jawless fishes. The diagram is based on Michael Benton, 2005.[15]

Although a minor element of modern marine fauna, agnathans were prominent among the early fish in the early Paleozoic. Two types of Early Cambrian animal apparently having fins, vertebrate musculature, and gills are known from the early Cambrian Maotianshan shales of China: Haikouichthys and Myllokunmingia. They have been tentatively assigned to Agnatha by Janvier. A third possible agnathid from the same region is Haikouella. A possible agnathid that has not been formally described was reported by Simonetti from the Middle Cambrian Burgess Shale of British Columbia. Conodonts, a class of agnathans which arose in the early Cambrian,[16] remained common enough until their extinction in the Triassic that their teeth (the only parts of them that were usually fossilized) are often used as index fossils from the late Cambrian to the Triassic.[17]

Many Ordovician, Silurian, and Devonian agnathans were armored with heavy bony-spiky plates. The first armored agnathans—the Ostracoderms, precursors to the bony fish and hence to the tetrapods (including humans)—are known from the middle Ordovician, and by the Late Silurian the agnathans had reached the high point of their evolution. Most of the ostracoderms, such as thelodonts, osteostracans, and galeaspids, were more closely related to the gnathostomes than to the surviving agnathans, known as cyclostomes. Cyclostomes apparently split from other agnathans before the evolution of dentine and bone, which are present in many fossil agnathans, including conodonts.[18] Agnathans declined in the Devonian and never recovered.

Approximately 500 million years ago, two types of recombinatorial adaptive immune systems (AISs) arose in vertebrates. The jawed vertebrates diversify their repertoire of immunoglobulin domain-based T and B cell antigen receptors mainly through the rearrangement of V(D)J gene segments and somatic hypermutation, but none of the fundamental AIS recognition elements in jawed vertebrates have been found in jawless vertebrates. Instead, the AIS of jawless vertebrates is based on variable lymphocyte receptors (VLRs) that are generated through recombinatorial usage of a large panel of highly diverse leucine-rich-repeat (LRR) sequences.[19] Three VLR genes (VLRA, VLRB, and VLRC) have been identified in lampreys and hagfish, and are expressed on three distinct lymphocytes lineages. VLRA+ cells and VLRC+ cells are T-cell-like and develop in a thymus-like lympho-epithelial structure, termed thymoids. VLRB+ cells are B-cell-like, develop in hematopoietic organs, and differentiate into “VLRB antibody”-secreting plasma cells.[20]

Classification

Subgroups of jawless fish
Subgroup Example Comments
Cyclostomes Myxini   Myxini (hagfish) are eel-shaped slime-producing marine animals (occasionally called slime eels). They are the only known living animals that have a skull but not a vertebral column. Along with lampreys, hagfish are jawless and are living fossils; hagfish are basal to vertebrates, and living hagfish remain similar to hagfish 300 million years ago.[21] The classification of hagfish has been controversial. The issue is whether the hagfish is itself a degenerate type of vertebrate-fish (most closely related to lampreys), or else may represent a stage which precedes the evolution of the vertebral column (as do lancelets). The original scheme groups hagfish and lampreys together as cyclostomes (or historically, Agnatha), as the oldest surviving clade of vertebrates alongside gnathostomes (the now-ubiquitous jawed-vertebrates). An alternative scheme proposed that jawed-vertebrates are more closely related to lampreys than to hagfish (i.e., that vertebrates include lampreys but exclude hagfish), and introduces the category craniata to group vertebrates near hagfish. Recent DNA evidence has supported the original scheme.[9]
Hyperoartia   Hyperoartia is a disputed group of vertebrates that includes the modern lampreys and their fossil relatives. Examples of hyperoartians from early in their fossil record are Endeiolepis and Euphanerops, fish-like animals with hypocercal tails that lived during the Late Devonian Period. Some paleontologists still place these forms among the "ostracoderms" (jawless armored "fishes") of the class Anaspida, but this is increasingly considered an artificial arrangement based on ancestral traits. Placement of this group among the jawless vertebrates is a matter of dispute. While today enough fossil diversity is known to make a close relationship among the "ostracoderms" unlikely, this has muddied the issue of the Hyperoartia's closest relatives. Traditionally the group was placed in a superclass Cyclostomata together with the Myxini (hagfishes). More recently, it has been proposed that the Myxini are more basal among the skull-bearing chordates, while the Hyperoartia are retained among vertebrates. But even though this may be correct, the lampreys represent one of the oldest divergences of the vertebrate lineage, and whether they are better united with some "ostracoderms" in the Cephalaspidomorphi, or not closer to these than to e.g. to other "ostracoderms" of the Pteraspidomorphi, or even the long-extinct conodonts, is still to be resolved. Even the very existence of the Hyperoartia is disputed, with some analyses favoring a treatment of the "basal Hyperoartia" as a monophyletic lineage Jamoytiiformes that may in fact be very close to the ancestral jawed vertebrates.
Myllokunmingiida Myllokunmingiidae
(extinct)
  The myllokunmingiids were a primitive order of agnathans that were endemic to the Cambrian aged Maotianshan Shales lagerstätte in China. These creatures are the earliest known group of craniates (chordates with a skull of hard bone or cartilage). Currently the group includes 3 known genera, Haikouichthys, Myllokunmingia, and Zhongjianichthys.[22][23]
Conodonta

Conodont
(extinct)

 Conodont Conodonts were eel like agnathans that lived from the Cambrian up until the beginning of the Jurassic period. They were very diverse in terms of lifestyles, with some species being filter feeders and others being macropredators. For over a century, these animals were only known because of their microscopic, phosphatic tooth structures called "Conodont elements". It wasn't until the mid 1980s that body fossils of conodonts were found in Scotland and Wisconsin, showing these animals true appearance. Their teeth make great index fossils, as many species lived and died out in a relatively short period of time. These fish reached their peak in diversity during the middle of the Ordovician, but were hit hard by the Ordovician-Silurian extinction event. They then reached another spike in diversity in the mid-late Devonian before again declining in the Carboniferous. They were relatively rare in the Permian, but dramatically increased in numbers in the early Triassic. Despite this, they went extinct at the end of the Triassic, however they weren't wiped out by the large extinction at the end of the period. Instead, it is thought that they were out competed by newer Mesozoic taxa.[24][25][26][27][28]
Ostracoderms Pteraspidomorphi
(extinct)
  Pteraspidomorphi is an extinct group of early jawless fish. The fossils show extensive shielding of the head. Many had hypocercal tails in order to generate lift to increase ease of movement through the water for their armoured bodies, which were covered in dermal bone. They also had sucking mouth parts and some species may have lived in fresh water.

The taxon contains the subgroups Heterostraci, Astraspida, Arandaspida.

Thelodonti
(extinct)
  Thelodonti (nipple teeth) are a group of small, extinct jawless fishes with distinctive scales instead of large plates of armour. There is much debate over whether the group of Palaeozoic fish known as the Thelodonti (formerly coelolepids[29]) represent a monophyletic grouping, or disparate stem groups to the major lines of jawless and jawed fish. Thelodonts are united in possession of "thelodont scales". This defining character is not necessarily a result of shared ancestry, as it may have been evolved independently by different groups. Thus the thelodonts are generally thought to represent a polyphyletic group,[30] although there is no firm agreement on this point; if they are monophyletic, there is no firm evidence on what their ancestral state was.[31]: 206  "Thelodonts" were morphologically very similar, and probably closely related, to fish of the classes Heterostraci and Anaspida, differing mainly in their covering of distinctive, small, spiny scales. These scales were easily dispersed after death; their small size and resilience makes them the most common vertebrate fossil of their time.[32][33] The fish lived in both freshwater and marine environments, first appearing during the Ordovician, and perishing during the Frasnian–Famennian extinction event of the Late Devonian. They occupied a large variety of ecological niches, with a large amount of species preferring reef ecosystems, where their flexible bodies were more at ease than the heavily armoured bulks of other jawless fish.[34]
Anaspida
(extinct)
  Anaspida (without shield) is an extinct group of primitive jawless vertebrates that lived during the Silurian and Devonian periods.[35] They are classically regarded as the ancestors of lampreys.[36] Anaspids were small marine agnathans that lacked heavy bony shield and paired fins, but have a striking highly hypocercal tail. They first appeared in the Early Silurian, and flourished until the Late Devonian extinction,[37] where most species, save for lampreys, became extinct due to the environmental upheaval during that time.
Cephalaspido-
morphi

(extinct)
  Cephalaspidomorphi is a broad group of extinct armored agnathans found in Silurian and Devonian strata of North America, Europe, and China, and is named in reference to the osteostracan genus Cephalaspis. Most biologists regard this taxon as extinct, but the name is sometimes used in the classification of lampreys, as lampreys are sometimes thought to be related to cephalaspids. If lampreys are included, they would extend the known range of the group from the early Silurian period through the Mesozoic, and into the present day. Cephalaspidomorphi were, like most contemporary fish, very well armoured. Particularly the head shield was well developed, protecting the head, gills and the anterior section of the innards. The body was in most forms well armoured as well. The head shield had a series of grooves over the whole surface forming an extensive lateral line organ. The eyes were rather small and placed on the top of the head. There was no proper jaw. The mouth opening was surrounded by small plates making the lips flexible, but without any ability to bite.[38] Undisputed subgroups traditionally contained with Cephaloaspidomorphi, also called "Monorhina," include the classes Osteostraci, Galeaspida, and Pituriaspida


Groups

Phylogeny based on the work of Mikko Haaramo and Delsuc et al.[39][40]

The new phylogeny from Miyashita et al. (2019) is considered compatible with both morphological and molecular evidence.[41]

See also

References

  1. ^ Yang, Chuan; Li, Xian-Hua; Zhu, Maoyan; Condon, Daniel J.; Chen, Junyuan (2018). "Geochronological constraint on the Cambrian Chengjiang biota, South China" (PDF). Journal of the Geological Society. 175 (4): 659–666. Bibcode:2018JGSoc.175..659Y. doi:10.1144/jgs2017-103. ISSN 0016-7649. S2CID 135091168.
  2. ^ Märss, T.; Miller, C.G. (2004). "Thelodonts and distribution of associated conodonts from the Llandovery-lowermost Lochkovian of the Welsh Borderland". Palaeontology. 47 (5): 1211–1265. doi:10.1111/j.0031-0239.2004.00409.x. [W. Kiessling/M. Krause/E. Ito]
  3. ^ Shorter Oxford English Dictionary
  4. ^ Michael Ruggiero; Dennis P Gordon; Thomas M. Orrell; Nicolas Bailly (April 2015). "A Higher Level Classification of All Living Organisms". PLOS ONE. 10 (4): e0119248. Bibcode:2015PLoSO..1019248R. doi:10.1371/journal.pone.0119248. PMC 4418965. PMID 25923521.
  5. ^ Heimberg, Alysha M.; Cowper-Sal·lari, Richard; Sémon, Marie; Donoghue, Philip C.J.; Peterson, Kevin J. (2010-11-09). "microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate". Proceedings of the National Academy of Sciences. 107 (45): 19379–19383. doi:10.1073/pnas.1010350107. PMC 2984222. PMID 20959416.
  6. ^ a b c Mallatt, J.; Sullivan, J. (December 1998). "28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes". Molecular Biology and Evolution. 15 (12): 1706–1718. doi:10.1093/oxfordjournals.molbev.a025897. PMID 9866205.
  7. ^ a b c Delarbre C, Gallut C, Barriel V, Janvier P, Gachelin G (February 2002). "Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: The comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly". Molecular Phylogenetics and Evolution. 22 (2): 184–92. doi:10.1006/mpev.2001.1045. PMID 11820840.
  8. ^ Oisi Y, Ota KG, Kuraku S, Fujimoto S, Kuratani S (January 2013). "Craniofacial development of hagfishes and the evolution of vertebrates". Nature. 493 (7431): 175–80. Bibcode:2013Natur.493..175O. doi:10.1038/nature11794. PMID 23254938. S2CID 4403344.
  9. ^ a b Janvier, P. (November 2010). "MicroRNAs revive old views about jawless vertebrate divergence and evolution". Proceedings of the National Academy of Sciences of the United States of America. 107 (45): 19137–19138. Bibcode:2010PNAS..10719137J. doi:10.1073/pnas.1014583107. PMC 2984170. PMID 21041649. Although I was among the early supporters of vertebrate paraphyly, I am impressed by the evidence provided by Heimberg et al. and prepared to admit that cyclostomes are, in fact, monophyletic. The consequence is that they may tell us little, if anything, about the dawn of vertebrate evolution, except that the intuitions of 19th century zoologists were correct in assuming that these odd vertebrates (notably, hagfishes) are strongly degenerate and have lost many characters over time.
  10. ^ Stock, D.W.; Whitt, G.S. (August 1992). "Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group". Science. 257 (5071): 787–9. Bibcode:1992Sci...257..787S. doi:10.1126/science.1496398. PMID 1496398.
  11. ^ Ota KG, Fujimoto S, Oisi Y, Kuratani S (June 2011). "Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish". Nature Communications. 2 (6): 373. Bibcode:2011NatCo...2..373O. doi:10.1038/ncomms1355. PMC 3157150. PMID 21712821.
  12. ^ Stock, D.W.; Whitt, G.S. (August 1992). "Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group". Science. 257 (5071): 787–789. Bibcode:1992Sci...257..787S. doi:10.1126/science.1496398. PMID 1496398.
  13. ^ Romer, A.S. & Parsons, T.S. (1985): The Vertebrate Body. (6th ed.) Saunders, Philadelphia.
  14. ^ "Hagfish". Aquaticcommunity.com. Retrieved 2013-06-30.
  15. ^ Benton, M. J. (2005) Vertebrate Palaeontology, Blackwell, 3rd edition, Figure 3.25 on page 73, ISBN 0-632-05637-1.
  16. ^ Stanley, Steven M.; Luczaj, John A. (2015). Earth System History (4th ed.). Macmillan Education. p. 311. Conodonts arose late in the Early Cambrian and diversified into the Ordovician. ... Similar small teeth in very early Cambrian faunas ... may represent conodont ancestors.
  17. ^ Sweet, W. C.; Donoghue, P. C. J. (2001). "Conodonts: past, present and future" (PDF). Journal of Paleontology. 75 (6): 1174–1184. doi:10.1666/0022-3360(2001)075<1174:CPPF>2.0.CO;2. ISSN 0022-3360. S2CID 53395896. (PDF) from the original on 2022-10-30.
  18. ^ Baker CV (December 2008). "The evolution and elaboration of vertebrate neural crest cells". Current Opinion in Genetics & Development. 18 (6): 536–543. doi:10.1016/j.gde.2008.11.006. PMID 19121930.
  19. ^ Hirano, Masayuki; Das, Sabyasachi; Guo, Peng; Cooper, Max D. (2011-01-01). "Chapter 4 - The Evolution of Adaptive Immunity in Vertebrates". In Alt, Frederick W. (ed.). Advances in Immunology. Vol. 109. Academic Press. pp. 125–157. doi:10.1016/b978-0-12-387664-5.00004-2. ISBN 9780123876645. PMID 21569914. Retrieved 2019-12-03.
  20. ^ Wu, Fenfang; Chen, Liyong; Ren, Yong; Yang, Xiaojing; Yu, Tongzhou; Feng, Bo; Chen, Shangwu; Xu, Anlong (October 2016). "An inhibitory receptor of VLRB in the agnathan lamprey". Scientific Reports. 6 (1): 33760. Bibcode:2016NatSR...633760W. doi:10.1038/srep33760. ISSN 2045-2322. PMC 5071834. PMID 27762335.
  21. ^ Speer, Brian R. (1997). . U.C. Museum of Paleontology. University of California, Berkeley. Archived from the original on 2017-12-15. Retrieved 2013-02-21.
  22. ^ Shu, Degan (April 2003). "A paleontological perspective of vertebrate origin". Chinese Science Bulletin. 48 (8): 725–735. Bibcode:2003ChSBu..48..725S. doi:10.1007/BF03187041. S2CID 85163902.
  23. ^ van der Laan, Richard (2016). "Family-group names of fossil fishes". {{cite journal}}: Cite journal requires |journal= (help)
  24. ^ Sweet, Walter C.; Cooper, Barry J. (December 2008). "C.H. Pander's introduction to conodonts, 1856". Retrieved 3 January 2019.
  25. ^ Gabbott, S.E.; R. J. Aldridge; J. N. Theron (1995). "A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa". Nature. 374 (6525): 800–803. Bibcode:1995Natur.374..800G. doi:10.1038/374800a0. S2CID 4342260.
  26. ^ Quinton, Page C. (2016). "Effects of extraction protocols on the oxygen isotope composition of conodont elements". Chemical Geology. 431: 36–43. Bibcode:2016ChGeo.431...36Q. doi:10.1016/j.chemgeo.2016.03.023.
  27. ^ Bergström, S. M.; Carnes, J. B.; Ethington, R. L.; Votaw, R. B.; Wigley, P. B. (1974). "Appalachignathus, a New Multielement Conodont Genus from the Middle Ordovician of North America". Journal of Paleontology. 48 (2): 227–235. doi:10.1666/0022-3360(2001)075<1174:CPPF>2.0.CO;2. JSTOR 1303249. S2CID 53395896.
  28. ^ Ginot, Samuel; Goudemand, Nicolas (December 2020). "Global climate changes account for the main trends of conodont diversity but not for their final demise". Global and Planetary Change. 195: 103325. Bibcode:2020GPC...19503325G. doi:10.1016/j.gloplacha.2020.103325. S2CID 225005180.
  29. ^ Turner S, Tarling DH (1982). "Thelodont and other agnathan distributions as tests of Lower Paleozoic continental reconstructions". Palaeogeography, Palaeoclimatology, Palaeoecology. 39 (3–4): 295–311. Bibcode:1982PPP....39..295T. doi:10.1016/0031-0182(82)90027-X.
  30. ^ Sarjeant WA, Halstead LB (1995). Vertebrate fossils and the evolution of scientific concepts: Writings in tribute to Beverly Halstead. ISBN 978-2-88124-996-9.
  31. ^ Donoghue PC, Forey PL, Aldridge RJ (May 2000). "Conodont affinity and chordate phylogeny". Biological Reviews of the Cambridge Philosophical Society. 75 (2): 191–251. doi:10.1111/j.1469-185X.1999.tb00045.x. PMID 10881388. S2CID 22803015.
  32. ^ Turner S (1999). "Early Silurian to Early Devonian thelodont assemblages and their possible ecological significance". In A. J. Boucot, J. Lawson (eds.). Palaeocommunities – Project Ecostratigraphy, Final Report (Report). International Geological Correlation Programme. Vol. 53. Cambridge University Press. pp. 42–78.
  33. ^ The early and mid Silurian. See Kazlev MA, White T (March 6, 2001). . Palaeos.com. Archived from the original on 2007-10-28. Retrieved October 30, 2007.
  34. ^ Ferrón HG, Botella H (2017). "Squamation and ecology of thelodonts". PLOS ONE. 12 (2): e0172781. Bibcode:2017PLoSO..1272781F. doi:10.1371/journal.pone.0172781. PMC 5328365. PMID 28241029.
  35. ^ Ahlberg PE (2001). Major events in early vertebrate evolution: Palaeontology, phylogeny, genetics, and development. Washington, DC: Taylor & Francis. p. 188. ISBN 978-0-415-23370-5.
  36. ^ Patterson, Colin (1987). Molecules and Morphology in Evolution: Conflict or compromise?. Cambridge, UK: Cambridge University Press. p. 142. ISBN 978-0-521-32271-3.
  37. ^ Hall, Brian Keith; Hanken, James (1993). The Skull. Chicago, IL: University of Chicago Press. p. 131. ISBN 978-0-226-31568-3.
  38. ^ Colbert, Michael; Morales, Edwin H. (1991). Evolution of the Vertebrates : A history of the backboned animals through time (4th ed.). New York, NY: Wiley-Liss. ISBN 978-0-471-85074-8.
  39. ^ Haaramo, Mikko (2007). "Chordata – lancets, tunicates, and vertebrates". Mikko's Phylogeny Archive. Retrieved 30 December 2016.
  40. ^ Delsuc F, Philippe H, Tsagkogeorga G, Simion P, Tilak MK, Turon X, López-Legentil S, Piette J, Lemaire P, Douzery EJ (April 2018). "A phylogenomic framework and timescale for comparative studies of tunicates". BMC Biology. 16 (1): 39. doi:10.1186/s12915-018-0499-2. PMC 5899321. PMID 29653534.
  41. ^ Miyashita, Tetsuto; Coates, Michael I.; Farrar, Robert; Larson, Peter; Manning, Phillip L.; Wogelius, Roy A.; et al. (2019). "Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny". Proceedings of the National Academy of Sciences of the United States of America. 116 (6): 2146–2151. Bibcode:2019PNAS..116.2146M. doi:10.1073/pnas.1814794116. PMC 6369785. PMID 30670644.

agnatha, ancient, greek, γνάθος, without, jaws, infraphylum, jawless, fish, phylum, chordata, subphylum, vertebrata, consisting, both, present, cyclostomes, extinct, conodonts, ostracoderms, species, among, recent, animals, cyclostomes, sister, vertebrates, wi. Agnatha ˈ ae ɡ n e 8 e ae ɡ ˈ n eɪ 8 e Ancient Greek 3 ἀ gna8os without jaws is an infraphylum 4 of jawless fish in the phylum Chordata subphylum Vertebrata consisting of both present cyclostomes and extinct conodonts and ostracoderms species Among recent animals cyclostomes are sister to all vertebrates with jaws known as gnathostomes 5 AgnathaTemporal range Cambrian Stage 3 Present 518 0 Ma 1 PreꞒ Ꞓ O S D C P T J K Pg NLampetra fluviatilisScientific classificationKingdom AnimaliaPhylum ChordataSubphylum VertebrataInfraphylum AgnathaCope 1889Groups included Myllokunmingiida Metaspriggina Haikouellidae Conodonta Ostracoderms Pteraspidomorphi Thelodontomorphi Thelodonti 2 Anaspidomorphi Cephalaspidomorphi Cyclostomi Palaeospondylus Cladistically included but traditionally excluded taxaGnathostomata from Cephalaspidomorphi Recent molecular data both from rRNA 6 and from mtDNA 7 as well as embryological data 8 strongly supports the hypothesis that living agnathans the cyclostomes are monophyletic 9 The oldest fossil agnathans appeared in the Cambrian and two groups still survive today the lampreys and the hagfish comprising about 120 species in total Hagfish are considered members of the subphylum Vertebrata because they secondarily lost vertebrae before this event was inferred from molecular 6 7 10 and developmental 11 data the group Craniata was created by Linnaeus and is still sometimes used as a strictly morphological descriptor to reference hagfish plus vertebrates While a few scientists still regard the living agnathans as only superficially similar and argue that many of these similarities are probably shared basal characteristics of ancient vertebrates recent taxonomic studies clearly place hagfish the Myxini or Hyperotreti with the lampreys Hyperoartii as being more closely related to each other than either is to the jawed fishes 6 7 12 Contents 1 Metabolism 2 Morphology 2 1 Body covering 2 2 Appendages 3 Reproduction 4 Evolution 5 Classification 6 Groups 7 See also 8 ReferencesMetabolism EditAgnathans are ectothermic meaning they do not regulate their own body temperature Agnathan metabolism is slow in cold water and therefore they do not have to eat very much They have no distinct stomach but rather a long gut more or less homogeneous throughout its length Lampreys feed on other fish and mammals Anticoagulant fluids preventing blood clotting are injected into the host causing the host to yield more blood Hagfish are scavengers eating mostly dead animals They use a row of sharp teeth to break down the animal The fact that Agnathan teeth are unable to move up and down limits their possible food types Morphology EditIn addition to the absence of jaws modern agnathans are characterised by absence of paired fins the presence of a notochord both in larvae and adults and seven or more paired gill pouches Lampreys have a light sensitive pineal eye homologous to the pineal gland in mammals All living and most extinct Agnatha do not have an identifiable stomach or any appendages Fertilization and development are both external There is no parental care in the Agnatha class The Agnatha are ectothermic or cold blooded with a cartilaginous skeleton and the heart contains 2 chambers Body covering Edit In modern agnathans the body is covered in skin with neither dermal or epidermal scales The skin of hagfish has copious slime glands the slime constituting their defense mechanism The slime can sometimes clog up enemy fishes gills causing them to die In direct contrast many extinct agnathans sported extensive exoskeletons composed of either massive heavy dermal armour or small mineralized scales Appendages Edit Almost all agnathans including all extant agnathans have no paired appendages although most do have a dorsal or a caudal fin Some fossil agnathans such as osteostracans and pituriaspids did have paired fins a trait inherited in their jawed descendants 13 Reproduction EditFertilization in lampreys is external Mode of fertilization in hagfishes is not known Development in both groups probably is external There is no known parental care Not much is known about the hagfish reproductive process It is believed that hagfish only have 30 eggs over a lifetime 14 There is very little of the larval stage that characterizes the lamprey Lamprey are only able to reproduce once After external fertilization the lamprey s cloacas remain open allowing a fungus to enter their intestines killing them Lampreys reproduce in freshwater riverbeds working in pairs to build a nest and burying their eggs about an inch beneath the sediment The resulting hatchlings go through four years of larval development before becoming adults Evolution Edit Evolution of jawless fishes The diagram is based on Michael Benton 2005 15 See also Evolution of fish Although a minor element of modern marine fauna agnathans were prominent among the early fish in the early Paleozoic Two types of Early Cambrian animal apparently having fins vertebrate musculature and gills are known from the early Cambrian Maotianshan shales of China Haikouichthys and Myllokunmingia They have been tentatively assigned to Agnatha by Janvier A third possible agnathid from the same region is Haikouella A possible agnathid that has not been formally described was reported by Simonetti from the Middle Cambrian Burgess Shale of British Columbia Conodonts a class of agnathans which arose in the early Cambrian 16 remained common enough until their extinction in the Triassic that their teeth the only parts of them that were usually fossilized are often used as index fossils from the late Cambrian to the Triassic 17 Many Ordovician Silurian and Devonian agnathans were armored with heavy bony spiky plates The first armored agnathans the Ostracoderms precursors to the bony fish and hence to the tetrapods including humans are known from the middle Ordovician and by the Late Silurian the agnathans had reached the high point of their evolution Most of the ostracoderms such as thelodonts osteostracans and galeaspids were more closely related to the gnathostomes than to the surviving agnathans known as cyclostomes Cyclostomes apparently split from other agnathans before the evolution of dentine and bone which are present in many fossil agnathans including conodonts 18 Agnathans declined in the Devonian and never recovered Approximately 500 million years ago two types of recombinatorial adaptive immune systems AISs arose in vertebrates The jawed vertebrates diversify their repertoire of immunoglobulin domain based T and B cell antigen receptors mainly through the rearrangement of V D J gene segments and somatic hypermutation but none of the fundamental AIS recognition elements in jawed vertebrates have been found in jawless vertebrates Instead the AIS of jawless vertebrates is based on variable lymphocyte receptors VLRs that are generated through recombinatorial usage of a large panel of highly diverse leucine rich repeat LRR sequences 19 Three VLR genes VLRA VLRB and VLRC have been identified in lampreys and hagfish and are expressed on three distinct lymphocytes lineages VLRA cells and VLRC cells are T cell like and develop in a thymus like lympho epithelial structure termed thymoids VLRB cells are B cell like develop in hematopoietic organs and differentiate into VLRB antibody secreting plasma cells 20 Classification EditSubgroups of jawless fish Subgroup Example CommentsCyclostomes Myxini hagfish Myxini hagfish are eel shaped slime producing marine animals occasionally called slime eels They are the only known living animals that have a skull but not a vertebral column Along with lampreys hagfish are jawless and are living fossils hagfish are basal to vertebrates and living hagfish remain similar to hagfish 300 million years ago 21 The classification of hagfish has been controversial The issue is whether the hagfish is itself a degenerate type of vertebrate fish most closely related to lampreys or else may represent a stage which precedes the evolution of the vertebral column as do lancelets The original scheme groups hagfish and lampreys together as cyclostomes or historically Agnatha as the oldest surviving clade of vertebrates alongside gnathostomes the now ubiquitous jawed vertebrates An alternative scheme proposed that jawed vertebrates are more closely related to lampreys than to hagfish i e that vertebrates include lampreys but exclude hagfish and introduces the category craniata to group vertebrates near hagfish Recent DNA evidence has supported the original scheme 9 Hyperoartia lamprey Hyperoartia is a disputed group of vertebrates that includes the modern lampreys and their fossil relatives Examples of hyperoartians from early in their fossil record are Endeiolepis and Euphanerops fish like animals with hypocercal tails that lived during the Late Devonian Period Some paleontologists still place these forms among the ostracoderms jawless armored fishes of the class Anaspida but this is increasingly considered an artificial arrangement based on ancestral traits Placement of this group among the jawless vertebrates is a matter of dispute While today enough fossil diversity is known to make a close relationship among the ostracoderms unlikely this has muddied the issue of the Hyperoartia s closest relatives Traditionally the group was placed in a superclass Cyclostomata together with the Myxini hagfishes More recently it has been proposed that the Myxini are more basal among the skull bearing chordates while the Hyperoartia are retained among vertebrates But even though this may be correct the lampreys represent one of the oldest divergences of the vertebrate lineage and whether they are better united with some ostracoderms in the Cephalaspidomorphi or not closer to these than to e g to other ostracoderms of the Pteraspidomorphi or even the long extinct conodonts is still to be resolved Even the very existence of the Hyperoartia is disputed with some analyses favoring a treatment of the basal Hyperoartia as a monophyletic lineage Jamoytiiformes that may in fact be very close to the ancestral jawed vertebrates Myllokunmingiida Myllokunmingiidae extinct Haikouichthys The myllokunmingiids were a primitive order of agnathans that were endemic to the Cambrian aged Maotianshan Shales lagerstatte in China These creatures are the earliest known group of craniates chordates with a skull of hard bone or cartilage Currently the group includes 3 known genera Haikouichthys Myllokunmingia and Zhongjianichthys 22 23 Conodonta Conodont extinct Conodont Conodonts were eel like agnathans that lived from the Cambrian up until the beginning of the Jurassic period They were very diverse in terms of lifestyles with some species being filter feeders and others being macropredators For over a century these animals were only known because of their microscopic phosphatic tooth structures called Conodont elements It wasn t until the mid 1980s that body fossils of conodonts were found in Scotland and Wisconsin showing these animals true appearance Their teeth make great index fossils as many species lived and died out in a relatively short period of time These fish reached their peak in diversity during the middle of the Ordovician but were hit hard by the Ordovician Silurian extinction event They then reached another spike in diversity in the mid late Devonian before again declining in the Carboniferous They were relatively rare in the Permian but dramatically increased in numbers in the early Triassic Despite this they went extinct at the end of the Triassic however they weren t wiped out by the large extinction at the end of the period Instead it is thought that they were out competed by newer Mesozoic taxa 24 25 26 27 28 Ostracoderms Pteraspidomorphi extinct Pteraspidomorphi is an extinct group of early jawless fish The fossils show extensive shielding of the head Many had hypocercal tails in order to generate lift to increase ease of movement through the water for their armoured bodies which were covered in dermal bone They also had sucking mouth parts and some species may have lived in fresh water The taxon contains the subgroups Heterostraci Astraspida Arandaspida Thelodonti extinct Thelodonti nipple teeth are a group of small extinct jawless fishes with distinctive scales instead of large plates of armour There is much debate over whether the group of Palaeozoic fish known as the Thelodonti formerly coelolepids 29 represent a monophyletic grouping or disparate stem groups to the major lines of jawless and jawed fish Thelodonts are united in possession of thelodont scales This defining character is not necessarily a result of shared ancestry as it may have been evolved independently by different groups Thus the thelodonts are generally thought to represent a polyphyletic group 30 although there is no firm agreement on this point if they are monophyletic there is no firm evidence on what their ancestral state was 31 206 Thelodonts were morphologically very similar and probably closely related to fish of the classes Heterostraci and Anaspida differing mainly in their covering of distinctive small spiny scales These scales were easily dispersed after death their small size and resilience makes them the most common vertebrate fossil of their time 32 33 The fish lived in both freshwater and marine environments first appearing during the Ordovician and perishing during the Frasnian Famennian extinction event of the Late Devonian They occupied a large variety of ecological niches with a large amount of species preferring reef ecosystems where their flexible bodies were more at ease than the heavily armoured bulks of other jawless fish 34 Anaspida extinct Anaspida without shield is an extinct group of primitive jawless vertebrates that lived during the Silurian and Devonian periods 35 They are classically regarded as the ancestors of lampreys 36 Anaspids were small marine agnathans that lacked heavy bony shield and paired fins but have a striking highly hypocercal tail They first appeared in the Early Silurian and flourished until the Late Devonian extinction 37 where most species save for lampreys became extinct due to the environmental upheaval during that time Cephalaspido morphi extinct Cephalaspidomorphi is a broad group of extinct armored agnathans found in Silurian and Devonian strata of North America Europe and China and is named in reference to the osteostracan genus Cephalaspis Most biologists regard this taxon as extinct but the name is sometimes used in the classification of lampreys as lampreys are sometimes thought to be related to cephalaspids If lampreys are included they would extend the known range of the group from the early Silurian period through the Mesozoic and into the present day Cephalaspidomorphi were like most contemporary fish very well armoured Particularly the head shield was well developed protecting the head gills and the anterior section of the innards The body was in most forms well armoured as well The head shield had a series of grooves over the whole surface forming an extensive lateral line organ The eyes were rather small and placed on the top of the head There was no proper jaw The mouth opening was surrounded by small plates making the lips flexible but without any ability to bite 38 Undisputed subgroups traditionally contained with Cephaloaspidomorphi also called Monorhina include the classes Osteostraci Galeaspida and PituriaspidaGroups EditSee also Placodermi Cladogram Phylogeny based on the work of Mikko Haaramo and Delsuc et al 39 40 Vertebrata Cyclostomata Hyperotreti Myxini hagfishes Petromyzontomorpha lampreys Conodonta PteraspidomorphaMyopterygii Anaspidomorphi Jamoytiiformes Euphanerida Anaspida Thelodonti Galeaspida Pituriaspida OsteostraciGnathostomata vertebrates with jaws CephalaspidomorphaCraniataThe new phylogeny from Miyashita et al 2019 is considered compatible with both morphological and molecular evidence 41 Anaspida Pipiscius EuconodontaCyclostomi Pteraspidomorphi Thelodonti Pituriaspida Galeaspida OsteostraciGnathostomes MyllokunmingiidaeSee also Edit Wikispecies has information related to Agnatha Gnathostomata Amphirhina an alternate name for the above parallel or sister classification CyclostomataReferences Edit Yang Chuan Li Xian Hua Zhu Maoyan Condon Daniel J Chen Junyuan 2018 Geochronological constraint on the Cambrian Chengjiang biota South China PDF Journal of the Geological Society 175 4 659 666 Bibcode 2018JGSoc 175 659Y doi 10 1144 jgs2017 103 ISSN 0016 7649 S2CID 135091168 Marss T Miller C G 2004 Thelodonts and distribution of associated conodonts from the Llandovery lowermost Lochkovian of the Welsh Borderland Palaeontology 47 5 1211 1265 doi 10 1111 j 0031 0239 2004 00409 x W Kiessling M Krause E Ito Shorter Oxford English Dictionary Michael Ruggiero Dennis P Gordon Thomas M Orrell Nicolas Bailly April 2015 A Higher Level Classification of All Living Organisms PLOS ONE 10 4 e0119248 Bibcode 2015PLoSO 1019248R doi 10 1371 journal pone 0119248 PMC 4418965 PMID 25923521 Heimberg Alysha M Cowper Sal lari Richard Semon Marie Donoghue Philip C J Peterson Kevin J 2010 11 09 microRNAs reveal the interrelationships of hagfish lampreys and gnathostomes and the nature of the ancestral vertebrate Proceedings of the National Academy of Sciences 107 45 19379 19383 doi 10 1073 pnas 1010350107 PMC 2984222 PMID 20959416 a b c Mallatt J Sullivan J December 1998 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes Molecular Biology and Evolution 15 12 1706 1718 doi 10 1093 oxfordjournals molbev a025897 PMID 9866205 a b c Delarbre C Gallut C Barriel V Janvier P Gachelin G February 2002 Complete mitochondrial DNA of the hagfish Eptatretus burgeri The comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly Molecular Phylogenetics and Evolution 22 2 184 92 doi 10 1006 mpev 2001 1045 PMID 11820840 Oisi Y Ota KG Kuraku S Fujimoto S Kuratani S January 2013 Craniofacial development of hagfishes and the evolution of vertebrates Nature 493 7431 175 80 Bibcode 2013Natur 493 175O doi 10 1038 nature11794 PMID 23254938 S2CID 4403344 a b Janvier P November 2010 MicroRNAs revive old views about jawless vertebrate divergence and evolution Proceedings of the National Academy of Sciences of the United States of America 107 45 19137 19138 Bibcode 2010PNAS 10719137J doi 10 1073 pnas 1014583107 PMC 2984170 PMID 21041649 Although I was among the early supporters of vertebrate paraphyly I am impressed by the evidence provided by Heimberg et al and prepared to admit that cyclostomes are in fact monophyletic The consequence is that they may tell us little if anything about the dawn of vertebrate evolution except that the intuitions of 19th century zoologists were correct in assuming that these odd vertebrates notably hagfishes are strongly degenerate and have lost many characters over time Stock D W Whitt G S August 1992 Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group Science 257 5071 787 9 Bibcode 1992Sci 257 787S doi 10 1126 science 1496398 PMID 1496398 Ota KG Fujimoto S Oisi Y Kuratani S June 2011 Identification of vertebra like elements and their possible differentiation from sclerotomes in the hagfish Nature Communications 2 6 373 Bibcode 2011NatCo 2 373O doi 10 1038 ncomms1355 PMC 3157150 PMID 21712821 Stock D W Whitt G S August 1992 Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group Science 257 5071 787 789 Bibcode 1992Sci 257 787S doi 10 1126 science 1496398 PMID 1496398 Romer A S amp Parsons T S 1985 The Vertebrate Body 6th ed Saunders Philadelphia Hagfish Aquaticcommunity com Retrieved 2013 06 30 Benton M J 2005 Vertebrate Palaeontology Blackwell 3rd edition Figure 3 25 on page 73 ISBN 0 632 05637 1 Stanley Steven M Luczaj John A 2015 Earth System History 4th ed Macmillan Education p 311 Conodonts arose late in the Early Cambrian and diversified into the Ordovician Similar small teeth in very early Cambrian faunas may represent conodont ancestors Sweet W C Donoghue P C J 2001 Conodonts past present and future PDF Journal of Paleontology 75 6 1174 1184 doi 10 1666 0022 3360 2001 075 lt 1174 CPPF gt 2 0 CO 2 ISSN 0022 3360 S2CID 53395896 Archived PDF from the original on 2022 10 30 Baker CV December 2008 The evolution and elaboration of vertebrate neural crest cells Current Opinion in Genetics amp Development 18 6 536 543 doi 10 1016 j gde 2008 11 006 PMID 19121930 Hirano Masayuki Das Sabyasachi Guo Peng Cooper Max D 2011 01 01 Chapter 4 The Evolution of Adaptive Immunity in Vertebrates In Alt Frederick W ed Advances in Immunology Vol 109 Academic Press pp 125 157 doi 10 1016 b978 0 12 387664 5 00004 2 ISBN 9780123876645 PMID 21569914 Retrieved 2019 12 03 Wu Fenfang Chen Liyong Ren Yong Yang Xiaojing Yu Tongzhou Feng Bo Chen Shangwu Xu Anlong October 2016 An inhibitory receptor of VLRB in the agnathan lamprey Scientific Reports 6 1 33760 Bibcode 2016NatSR 633760W doi 10 1038 srep33760 ISSN 2045 2322 PMC 5071834 PMID 27762335 Speer Brian R 1997 Introduction to the Myxini U C Museum of Paleontology University of California Berkeley Archived from the original on 2017 12 15 Retrieved 2013 02 21 Shu Degan April 2003 A paleontological perspective of vertebrate origin Chinese Science Bulletin 48 8 725 735 Bibcode 2003ChSBu 48 725S doi 10 1007 BF03187041 S2CID 85163902 van der Laan Richard 2016 Family group names of fossil fishes a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Sweet Walter C Cooper Barry J December 2008 C H Pander s introduction to conodonts 1856 Retrieved 3 January 2019 Gabbott S E R J Aldridge J N Theron 1995 A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa Nature 374 6525 800 803 Bibcode 1995Natur 374 800G doi 10 1038 374800a0 S2CID 4342260 Quinton Page C 2016 Effects of extraction protocols on the oxygen isotope composition of conodont elements Chemical Geology 431 36 43 Bibcode 2016ChGeo 431 36Q doi 10 1016 j chemgeo 2016 03 023 Bergstrom S M Carnes J B Ethington R L Votaw R B Wigley P B 1974 Appalachignathus a New Multielement Conodont Genus from the Middle Ordovician of North America Journal of Paleontology 48 2 227 235 doi 10 1666 0022 3360 2001 075 lt 1174 CPPF gt 2 0 CO 2 JSTOR 1303249 S2CID 53395896 Ginot Samuel Goudemand Nicolas December 2020 Global climate changes account for the main trends of conodont diversity but not for their final demise Global and Planetary Change 195 103325 Bibcode 2020GPC 19503325G doi 10 1016 j gloplacha 2020 103325 S2CID 225005180 Turner S Tarling DH 1982 Thelodont and other agnathan distributions as tests of Lower Paleozoic continental reconstructions Palaeogeography Palaeoclimatology Palaeoecology 39 3 4 295 311 Bibcode 1982PPP 39 295T doi 10 1016 0031 0182 82 90027 X Sarjeant WA Halstead LB 1995 Vertebrate fossils and the evolution of scientific concepts Writings in tribute to Beverly Halstead ISBN 978 2 88124 996 9 Donoghue PC Forey PL Aldridge RJ May 2000 Conodont affinity and chordate phylogeny Biological Reviews of the Cambridge Philosophical Society 75 2 191 251 doi 10 1111 j 1469 185X 1999 tb00045 x PMID 10881388 S2CID 22803015 Turner S 1999 Early Silurian to Early Devonian thelodont assemblages and their possible ecological significance In A J Boucot J Lawson eds Palaeocommunities Project Ecostratigraphy Final Report Report International Geological Correlation Programme Vol 53 Cambridge University Press pp 42 78 The early and mid Silurian See Kazlev MA White T March 6 2001 Thelodonti Palaeos com Archived from the original on 2007 10 28 Retrieved October 30 2007 Ferron HG Botella H 2017 Squamation and ecology of thelodonts PLOS ONE 12 2 e0172781 Bibcode 2017PLoSO 1272781F doi 10 1371 journal pone 0172781 PMC 5328365 PMID 28241029 Ahlberg PE 2001 Major events in early vertebrate evolution Palaeontology phylogeny genetics and development Washington DC Taylor amp Francis p 188 ISBN 978 0 415 23370 5 Patterson Colin 1987 Molecules and Morphology in Evolution Conflict or compromise Cambridge UK Cambridge University Press p 142 ISBN 978 0 521 32271 3 Hall Brian Keith Hanken James 1993 The Skull Chicago IL University of Chicago Press p 131 ISBN 978 0 226 31568 3 Colbert Michael Morales Edwin H 1991 Evolution of the Vertebrates A history of the backboned animals through time 4th ed New York NY Wiley Liss ISBN 978 0 471 85074 8 Haaramo Mikko 2007 Chordata lancets tunicates and vertebrates Mikko s Phylogeny Archive Retrieved 30 December 2016 Delsuc F Philippe H Tsagkogeorga G Simion P Tilak MK Turon X Lopez Legentil S Piette J Lemaire P Douzery EJ April 2018 A phylogenomic framework and timescale for comparative studies of tunicates BMC Biology 16 1 39 doi 10 1186 s12915 018 0499 2 PMC 5899321 PMID 29653534 Miyashita Tetsuto Coates Michael I Farrar Robert Larson Peter Manning Phillip L Wogelius Roy A et al 2019 Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological molecular conflict in early vertebrate phylogeny Proceedings of the National Academy of Sciences of the United States of America 116 6 2146 2151 Bibcode 2019PNAS 116 2146M doi 10 1073 pnas 1814794116 PMC 6369785 PMID 30670644 Retrieved from https en wikipedia org w index php title Agnatha amp oldid 1136159821, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.