fbpx
Wikipedia

Placodermi

Placodermi[b] is a class of armoured prehistoric fish, known from fossils, which lived from the Silurian to the end of the Devonian period. Their head and thorax were covered by articulated armoured plates and the rest of the body was scaled or naked, depending on the species. Placoderms were among the first jawed fish; their jaws likely evolved from the first of their gill arches.

Placodermi
Temporal range: 439–358.9 Ma Late Llandovery – Late Devonian[a]
Fossil of Bothriolepis panderi showing its caliper-like pectoral fins
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Subphylum: Vertebrata
Infraphylum: Gnathostomata
Class: Placodermi
McCoy, 1848
Orders
Synonyms
  • Placodermata

Placoderms are thought to be paraphyletic, consisting of several distinct outgroups or sister taxa to all living jawed vertebrates, which originated among their ranks.[1] In contrast, one 2016 analysis concluded that placodermi are likely monophyletic.[2]

Placoderms were also the first fish to develop pelvic fins, the precursor to hindlimbs in tetrapods, as well as true teeth.[3] 380-million-year-old fossils of three other genera, Incisoscutum, Materpiscis and Austroptyctodus, represent the oldest known examples of live birth.[4]

The first identifiable placoderms appear in the fossil record during the late Llandovery epoch of the early Silurian.[5] The various groups of placoderms were diverse and abundant during the Devonian, but became extinct at the end-Devonian Hangenberg event 358.9 million years ago.[6]

Characteristics edit

Many placoderms, particularly the Rhenanida, Petalichthyida, Phyllolepida, and Antiarchi, were bottom-dwellers. In particular, the antiarchs, with their highly modified, jointed bony pectoral fins, were highly successful inhabitants of Middle-Late Devonian freshwater and shallow marine habitats, with the Middle to Late Devonian genus, Bothriolepis, known from over 100 valid species.[7] The vast majority of placoderms were predators, many of which lived at or near the substrate. Many, primarily the Arthrodires, were active, nektonic predators that dwelled in the middle to upper portions of the water column. A study of the arthrodire Compagopiscis published in 2012 concluded that placoderms (at least this particular genus) likely possessed true teeth contrary to some early studies. The teeth had well defined pulp cavities and were made of both bone and dentine. However, the tooth and jaw development were not as closely integrated as in modern gnathostomes. These teeth were likely homologous to the teeth of other gnathostomes.[3]

 
External anatomy of the placoderm Coccosteus decipiens

One of the largest known arthrodires, Dunkleosteus terrelli, was 8.8 m (29 ft) long,[8][9] and is presumed to have had a large distribution, as its remains have been found in Europe, North America and possibly Morocco. Some paleontologists regard it as the world's first vertebrate "superpredator", preying upon other predators. Other, smaller arthrodires, such as Fallacosteus and Rolfosteus, both of the Gogo Formation of Western Australia, had streamlined, bullet-shaped head armor, and Amazichthys, with morphology like that of other fast-swimming pelagic organisms,[10] strongly supporting the idea that many, if not most, arthrodires were active swimmers, rather than passive ambush-hunters whose armor practically anchored them to the sea floor. Some placoderms were herbivorous, such as the Middle to Late Devonian arthrodire Holonema, and some were planktivores, such as the gigantic arthrodire Titanichthys, various members of Homostiidae, and Heterosteus.

Extraordinary evidence of internal fertilization in a placoderm was afforded by the discovery in the Gogo Formation, near Fitzroy Crossing, Kimberley, Western Australia,[11] of a small female placoderm, about 25 cm (10 in) in length, which died in the process of giving birth to a 6 cm (2+12 in) offspring and was fossilized with the umbilical cord intact.[12] The fossil, named Materpiscis attenboroughi (after scientist David Attenborough), had eggs which were fertilized internally, the mother providing nourishment to the embryo and giving birth to live young. With this discovery, the placoderm became the oldest vertebrate known to have given birth to live young ("viviparous"),[4] pushing the date of first viviparity back some 200 million years earlier than had been previously known. Specimens of the arthrodire Incisoscutum ritchei, also from the Gogo Formation, have been found with embryos inside them indicating this group also had live bearing ability.[13] The males reproduced by inserting a long clasper into the female. Elongated basipterygia are also found on the phyllolepid placoderms, such as Austrophyllolepis[14] and Cowralepis, both from the Middle Devonian of Australia, suggesting that the basipterygia were used in copulation.

The placoderm claspers are not homologous with the claspers in cartilaginous fishes. The similarities between the structures has been revealed to be an example of convergent evolution. While the claspers in cartilaginous fishes are specialized parts of their paired pelvic fins that have been modified for copulation due to changes in the hox genes hoxd13, the origin of the mating organs in placoderms most likely relied on different sets of hox genes and were structures that developed further down the body as an extra and independent pair of appendages, but which during development turned into body parts used for reproduction only. Because they were not attached to the pelvic fins, as are the claspers in fish like sharks, they were much more flexible and could probably be rotated forward.[15]

Evolution and extinction edit

 
Evolution and extinction of placoderms. The diagram is based on Michael Benton, 2005.[16]
 
Dunkleosteus, among the first of the vertebrate apex predators, was a giant armoured placoderm predator.
 
Amazichthys, a pelagic arthrodire from the Middle Famennian of the Late Devonian.
 
Fin spine of Eczematolepis, from the Middle Devonian of Wisconsin.

It was thought for a time that placoderms became extinct due to competition from the first bony fish and early sharks, given a combination of the supposed inherent superiority of bony fish and the presumed sluggishness of placoderms. With more accurate summaries of prehistoric organisms, it is now thought that they systematically died out as marine and freshwater ecologies suffered from the environmental catastrophes of the Late Devonian and end-Devonian extinctions.

Fossil record edit

The earliest identifiable placoderm fossils are of Chinese origin and date to the early Silurian. At that time, they were already differentiated into antiarchs and arthrodires, as well as other, more primitive, groups. Earlier fossils of basal Placodermi have not yet been discovered.

 
Xiushanosteus is one of the oldest known placoderms, living in what is now China during the Telychian stage of the Early Silurian.

The Silurian fossil record of the placoderms is both literally and figuratively fragmented. Until the discovery of Silurolepis (and then, the discoveries of Entelognathus and Qilinyu), Silurian-aged placoderm specimens consisted of fragments. Some of them have been tentatively identified as antiarch or arthrodire due to histological similarities; and many of them have not yet been formally described or even named. The most commonly cited example of a Silurian placoderm, Wangolepis of Silurian China and possibly Vietnam, is known only from a few fragments that currently defy attempts to place them in any of the recognized placoderm orders. So far, only three officially described Silurian placoderms are known from more than scraps:

  • the basal antiarch Silurolepis, from the Ludlow epoch of Yunnan, China, known from an almost complete thoracic armor
  • Entelognathus, a placoderm incertae sedis that combines features of primitive arthrodires with jaw anatomy otherwise only seen in bony fish and tetrapods.
  • Qilinyu, a close relative of Entelognathus that further links Entelognathus as a transitional form between placoderms and other stem-gnathostomes and crown-group gnathostomes.

The first officially described Silurian placoderm is an antiarch, Shimenolepis, which is known from distinctively ornamented plates from Hunan, China. It was originally considered to be from the late Llandovery, although later study reconsidered its age at Ludfordian.[17] Shimenolepis plates are very similar to the early Devonian yunnanolepid Zhanjilepis, also known from distinctively ornamented plates.[5][18] In 2022, Xiushanosteus is described from complete fossils from Telychian, late Llandovery of Chongqing, China.[19]

Paleontologists and placoderm specialists suspect that the scarcity of placoderms in the Silurian fossil record is due to placoderms' living in environments unconducive to fossil preservation, rather than a genuine scarcity. This hypothesis helps to explain the placoderms' seemingly instantaneous appearance and diversity at the very beginning of the Devonian.

During the Devonian, placoderms went on to inhabit and dominate almost all known aquatic ecosystems, both freshwater and saltwater.[20] But this diversity ultimately suffered many casualties during the extinction event at the FrasnianFamennian boundary, the Late Devonian extinctions. The remaining species then died out during the end-Devonian extinction; not a single placoderm species has been confirmed to have survived into the Carboniferous.

History of study edit

The earliest studies of placoderms were published by Louis Agassiz, in his five volumes on fossil fishes, 1833–1843. In those days, placoderms were thought to be shelled jawless fish akin to ostracoderms. Some naturalists even suggested that they were shelled invertebrates or even turtle-like vertebrates.

In the late 1920s, Dr. Erik Stensiö, at the Swedish Museum of Natural History in Stockholm, established the details of placoderm anatomy and identified them as true jawed fishes related to sharks. He took fossil specimens with well-preserved skulls and ground them away, one tenth of a millimeter at a time. After each layer had been removed, he made an imprint of the next surface in wax. Once the specimens had been completely ground away (and so destroyed), he made enlarged, three-dimensional models of the skulls to examine the anatomical details more thoroughly. Many other placoderm specialists thought that Stensiö was trying to shoehorn placoderms into a relationship with sharks; however, as more fossils were found, placoderms were accepted as a sister group of chondrichthyans.

Much later, the exquisitely preserved placoderm fossils from Gogo reef changed the picture again. They showed that placoderms shared anatomical features not only with chondrichthyans but with other gnathostome groups as well. For example, Gogo placoderms show separate bones for the nasal capsules as in gnathostomes; in both sharks and bony fish those bones are incorporated into the braincase.[21][22]

Placoderms also share certain anatomical features only with the jawless osteostracans; because of this, the theory that placoderms are the sister group of chondrichthyans has been replaced by the theory that placoderms are a group of stem gnathostomes.

Taxonomy and phylogeny edit

Currently, Placodermi are divided into eight recognized orders. There are two further controversial orders: One is the monotypic Stensioellida, containing the enigmatic Stensioella; the other is the equally enigmatic Pseudopetalichthyida. These orders are considered to be basal or primitive groups within Placodermi, though their precise placement within the class remains unsure. Fossils of both are currently known only from the Hunsruck lagerstatten.

Placoderm orders edit

Arthrodira edit

 
Dunkleosteus
 
Coccosteus
 
Titanichthys

Arthrodira ("jointed neck") were the most diverse and numerically successful of the placoderm orders, occupying roles from giant apex predators to detritus-nibbling bottom dwellers. They had a movable joint between armour surrounding the head and body. As the lower jaw moved down, the head shield moved, allowing for a larger opening. All arthrodires, save for Compagopiscis, lacked teeth, and used instead the sharpened edges of a bony plate, termed a "tooth plate," as a biting surface (Compagopiscis had true teeth in addition to tooth plates). The eye sockets are protected by a bony ring, a feature shared by birds and some ichthyosaurs. Early arthrodires, such as the genus Arctolepis, were well-armoured fishes with flattened bodies. The largest member of this group, Dunkleosteus, was a true "superpredator" of the latest Devonian period, reaching 3 to as much as 8 metres in length. In contrast, the long-nosed Rolfosteus measured just 15 cm. Fossils of Incisoscutum have been found containing unborn fetuses, indicating that arthrodires gave birth to live young.[23]

Antiarchi edit

 
Bothriolepis canadensis

Antiarchi ("opposite anus") were the second most successful order of placoderms known, after the Arthrodira. The order's name was coined by Edward Drinker Cope, who, after incorrectly identifying the first fossils as being those of an armored tunicate, mistakenly thought the eye-hole was the mouth, and the opening for the anal siphon was on the other side of the body, as opposed to having both oral and anal siphons together at one end. The front portions of their bodies were heavily armoured, to the point of literally resembling a box with eyes, with the sometimes scaled, sometimes naked rear portions often becoming sinuous, particularly with later forms. The pair of pectoral fins were modified into a pair of caliper-like, or arthropod-like limbs. In primitive forms, such as Yunnanolepis, the limbs were thick and short, while in advanced forms, such as Bothriolepis, the limbs were long and had elbow-like joints. The function of the limbs is still not perfectly understood, but most hypothesize that they helped their owners pull themselves across the substrate, as well as allowing their owners to bury themselves into the substrate.[citation needed]

Brindabellaspida edit

 
Brindabellaspis stensioi

Brindabellaspida ("Brindabella's shield") was a long-snouted placoderm from the Early Devonian. When it was first discovered in 1980, it was originally regarded as a weejasperaspid acanthothoracid due to anatomical similarities with the other species found at the same locality. According to Philippe Janvier, anatomical similarities in the brain of Brindabellaspis stensioi and the brain of a jawless fish suggest it is a basal placoderm closest to the ancestral placoderm. Various Early to Middle Devonian placoderm incertae sedis have also been inserted in the order.

Phyllolepida edit

 
Phyllolepis orvini

Phyllolepida ("leaf scales") were flattened placoderms found throughout the world. Like other flattened placoderms they were bottom-dwelling predators that ambushed prey. Unlike other flattened placoderms, they were freshwater fish. Their armour was made of whole plates, rather than the numerous tubercles and scales of Petalichthyida. The eyes were on the sides of the head, unlike visual bottom-dwelling predators, such as stargazers or flatfish, which have eyes on the top of their head. The orbits for the eyes were extremely small, suggesting the eyes were vestigial and that the phyllolepids may have been blind.

Ptyctodontida edit

 
Kimbryanodus williamburyensis

Ptyctodontida ("folded teeth") were lightly armoured placoderms with big heads, big eyes and long bodies. They have a strong but superficial resemblance to modern day chimaeras. Their armour was reduced to a pattern of small plates around the head and neck. Like the extinct and related acanthothoracids, and the living and unrelated holocephalians, most of the ptyctodontids are thought to have lived near the sea bottom and preyed on shellfish. On account of their lack of armour, some paleontologists have suggested that the Ptyctodontida were not placoderms, but holocephalians or the ancestors of holocephalians. Anatomical examinations of whole fossil specimens have shown that the similarities between these two groups are superficial. The major differences were that holocephalians have shagreen on their skin, while ptyctodontids do not; the armoured plates and scales of holocephalians are made of dentine, while those of ptyctodontids are made of bone; the craniums of holocephalians are similar to sharks, while those of ptyctodontids are similar to those of other placoderms; and, most importantly, that holocephalians have true teeth, while ptyctodonts have beak-like tooth plates. Ptyctodontids were sexually dimorphic, with the males having pelvic claspers and possibly claspers on the head as well.

Rhenanida edit

 
Asterosteus

Rhenanida ("Rhine fish") were flattened, ray-like, bottom-dwelling predators with large, upturned mouths that lived in marine environments. The rhenanids were once presumed to be the most primitive, or at least the closest to the ancestral placoderm, as their armour was made of unfused components—a mosaic of tubercles—as opposed to the solidified plates of "advanced" placoderms, such as antiarchs and arthrodires. However, through comparisons of skull anatomies, rhenanids are now considered to be the sister group of the antiarchs. When rhenanids die, their "mosaics" come apart, and it has been suggested that the rarity of rhenanids in the fossil record reflects postmortem disassociation, and is not an actual rarity of the species.

Acanthothoraci edit

 
Palaeacanthaspis

Acanthothoraci ("spine chests") were a group of chimaera-like placoderms closely related to the rhenanid placoderms. Superficially, acanthoracids resembled scaly chimaeras or small, scaly arthrodires with blunt rostrums. They were distinguished from chimaeras by a pair of large spines that emanate from their chests, the presence of large scales and plates, tooth-like beak plates, and the typical bone-enhanced placoderm eyeball. They were distinguished from other placoderms due to differences in the anatomy of their skulls, and due to patterns on the skull plates and thoracic plates that are unique to this order. From what can be inferred from the mouthplates of fossil specimens, acanthothoracids were shellfish hunters ecologically similar to modern-day chimaeras. Competition with their relatives, the ptyctodont placoderms, may have been one of the main reasons for the acanthothoracids' extinction prior to the mid-Devonian extinction event.

Petalichthyida edit

 
Lunaspis

Petalichthyida ("thin-plated fish") were small, flattened placoderms, typified by their splayed fins and numerous tubercles that decorated all of the plates and scales of their armour. They reached a peak in diversity during the Early Devonian and were found throughout the world. The petalichthids Lunaspis and Wijdeaspis are among the best known. There was an independent diversification event that occurred in what is now Southern China, producing a handful of unique genera that were once placed in their own order, "Quasipetalichthyida", named after the first discovered species there, Quasipetalichthys haikouensis. Soon after the petalichthids' diversification, they went into decline. Because they had compressed body forms, it is supposed they were bottom-dwellers that pursued or ambushed smaller fish. Their diet is not clear, as none of the fossil specimens found have preserved mouth parts.

Pseudopetalichthyida edit

 
Pseudopetalicthys problematica

Pseudopetalichthyida ("false petalichthyids") is a group of elongated, possibly flattened fishes comprising three, poorly preserved and poorly studied genera. It is known only from rare fossils in Lower Devonian strata in Hunsrück, Germany. Like Stensioella heintzi, and the Rhenanida, the pseudopetalichthids had armour made up of a mosaic of tubercles. Like Stensioella heintzi, the pseudopetalichthids' placement within Placodermi is suspect. The matter is not easy to resolve because there are no complete, undamaged and articulated specimens. The anatomical studies done on the crushed specimens that have been found indicate that if they are placoderms, they may be a group more advanced than the ptyctodonts. As such, placoderm experts consider Pseudopetalichthyida to be the sister group of the Arthrodires + Phyllolepida + Antiarchi trichotomy and the Acanthothoraci + Rhenanida dichotomy.

Stensioellida edit

 
Stensioella heintzi

Stensioellida ("[Heintz's] little Stensio") contains another problematic placoderm of uncertain affinity, known only from the Lower Devonian Hunsrück slates of Germany. Stensioella was a thin fish that, when alive, looked vaguely like an elongated ratfish, or a skinny Gemuendina with thin, strap-like pectoral fins. Similar to those of the Rhenanida, its armour was a complex mosaic of small, scale-like tubercles. The shoulder joints of its armour are similar to other placoderms, and there are superficial similarities in skull plates, and even more superficial similarities between its tubercles and the tubercles of the rhenanids. It is tentatively placed within Placodermi as a primitive placoderm, though some paleontologists believe the rationale for the placement is inadequate. The paleontologist Philippe Janvier, as well as other paleontologists, has suggested that Stensioella is not a placoderm, but instead is a holocephalian.[24][25] If this is true, then the holocephalians diverged from sharks before the Chondrichthyan Devonian radiation. Critics of Janvier's position say that aside from a bodyplan superficially similar to primitive holocephalians, the two groups have little else in common anatomically.

Cladogram edit

The following cladogram shows the interrelationships of placoderms according to Carr et al. (2009):[26]

 
Homostius and Pterichthys
 
Diandongpetalichthys

However, the cladogram had changed significantly over the years, and the placoderms are now thought to be paraphyletic,[27] with some being more closer to the Eugnathostomata than others. The updated cladogram (Zhu et al., 2016):[28]

See also edit

Notes edit

  1. ^ If paraphyletic in relation to the rest of Gnathostomata, then modern jawed vertebrates represent extant forms.
  2. ^ The name Placodermi is from Greek πλάξ 'plate' and δέρμα 'skin', literally 'plate-skinned'.

References edit

Citations edit

  1. ^ Li, Qiang; Zhu, You-an; Lu, Jing; Chen, Yang; Wang, Jianhua; Peng, Lijian; Wei, Guangbiao; Zhu, Min (August 2021). "A new Silurian fish close to the common ancestor of modern gnathostomes". Current Biology. 31 (16): 3613–3620.e2. doi:10.1016/j.cub.2021.05.053. PMID 34146483. S2CID 235477130.
  2. ^ King, Benedict; Qiao, Tuo; Lee, Michael S. Y.; Zhu, Min; Long, John A. (5 December 2016). "Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates". Systematic Biology. 66 (4): 499–516. doi:10.1093/sysbio/syw107. PMID 27920231.
  3. ^ a b Rücklin, M.; Donoghue, P. C. J.; Johanson, Z.; Trinajstic, K.; Marone, F.; Stampanoni, M. (2012). "Development of teeth and jaws in the earliest jawed vertebrates". Nature. 491 (7426): 748–751. Bibcode:2012Natur.491..748R. doi:10.1038/nature11555. PMID 23075852. S2CID 4302415.
  4. ^ a b "Fossil reveals oldest live birth". BBC. May 28, 2008. Retrieved May 30, 2008.
  5. ^ a b Burrow, Carol & Turner, Susan (September 1998). "A review of placoderm scales, and their significance in placoderm phylogeny". Journal of Vertebrate Paleontology. 19 (2): 204–219. doi:10.1080/02724634.1999.10011135.
  6. ^ Sallan, Lauren & Coates, Michael (June 2010). "End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates". Proceedings of the National Academy of Sciences. 107 (22): 10131–10135. Bibcode:2010PNAS..10710131S. doi:10.1073/pnas.0914000107. PMC 2890420. PMID 20479258.
  7. ^ Long 1983.
  8. ^ Anderson, P.S.L.; Westneat, M. (2009). "A biomechanical model of feeding kinematics for Dunkleosteus terrelli (Arthrodira, Placodermi)". Paleobiology. 35 (2): 251–269. doi:10.1666/08011.1. S2CID 86203770.
  9. ^ Carr, Robert K. (2010). "Paleoecology of Dunkleosteus terrelli (Placodermi: Arthrodira)". Kirtlandia. 57: 36–45.
  10. ^ Jobbins, Melina; Rücklin, Martin; Ferrón, Humberto G.; Klug, Christian (2022). "A new selenosteid placoderm from the Late Devonian of the eastern Anti-Atlas (Morocco) with preserved body outline and its ecomorphology". Frontiers in Ecology and Evolution. 10. doi:10.3389/fevo.2022.969158. ISSN 2296-701X.
  11. ^ Long & Trinajstic 2010.
  12. ^ Long et al. 2008.
  13. ^ Long, Trinajstic & Johanson 2009.
  14. ^ Long 1984.
  15. ^ . Archived from the original on 2016-12-20. Retrieved 2014-06-27.
  16. ^ Benton, M. J. (2005) Vertebrate Palaeontology, Blackwell, 3rd edition, Figure 3.25 on page 73.
  17. ^ Pan, Zhaohui; Niu, Zhibin; Xian, Zumin; Zhu, Min (2023-01-03). "A novel specimen-based mid-Paleozoic dataset of antiarch placoderms (the most basal jawed vertebrates)". Earth System Science Data. 15 (1): 41–51. doi:10.5194/essd-15-41-2023. ISSN 1866-3508.
  18. ^ Wang Junqing (1991). (PDF). Vertebrata PalAsiatica. 21 (3): 240–244. INIST 19733953. Archived from the original (PDF) on 2013-12-12.
  19. ^ Zhu, You-an; Li, Qiang; Lu, Jing; Chen, Yang; Wang, Jianhua; Gai, Zhikun; Zhao, Wenjin; Wei, Guangbiao; Yu, Yilun; Ahlberg, Per E.; Zhu, Min (2022). "The oldest complete jawed vertebrates from the early Silurian of China". Nature. 609 (7929): 954–958. doi:10.1038/s41586-022-05136-8. ISSN 1476-4687.
  20. ^ Waggoner, Ben. "Introduction to the Placodermi". UCMP. Retrieved 18 July 2011.
  21. ^ Young, G.C.; Goujet, D.; Lelievre, H. (2001). "Extraocular muscles and cranial segmentation in primitive gnathostomes – fossil evidence". Journal of Morphology. 248: 304.
  22. ^ Goujet, Daniel; Young, Gavin (2004). "Placoderm anatomy and phylogeny: new insights" (PDF). In Arratia, G.; Wilson, M. V. H.; Cloutier, R. (eds.). Recent Advances in the Origin and Early Radiation of Vertebrates. Munchen, Germany: Verlag Dr. Friedrich Pfeil. ISBN 3-89937-052-X.
  23. ^ "Fish 380 Million Years Old Found With Unborn Embryo". Science Daily. June 6, 2008.
  24. ^ Carr, Robert K.; et al. (2010). "The ancestral morphotype for the gnathostome pectoral fin revisited and the placoderm condition". Academia.
  25. ^ "Philippe Janvier Tree of Life Contributor Profile".
  26. ^ Carr, Robert K.; Johanson, Zerina; Ritchie, Alex (July 2009). "The phyllolepid placoderm Cowralepis mclachlani: Insights into the evolution of feeding mechanisms in jawed vertebrates". Journal of Morphology. 270 (7): 775–804. doi:10.1002/jmor.10719. PMID 19215000. S2CID 45258255.
  27. ^   Giles, Sam; Friedman, Matt; Brazeau, Martin D. (2015-01-12). "Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome". Nature. 520 (7545): 82–85. Bibcode:2015Natur.520...82G. doi:10.1038/nature14065. ISSN 1476-4687. PMC 5536226. PMID 25581798.
  28. ^ Zhu, Min; Ahlberg, Per E.; Pan, Zhaohui; Zhu, Youan; Qiao, Tuo; Zhao, Wenjin; Jia, Liantao; Lu, Jing (21 October 2016). "A Silurian maxillate placoderm illuminates jaw evolution". Science. 354 (6310): 334–336. Bibcode:2016Sci...354..334Z. doi:10.1126/science.aah3764. PMID 27846567. S2CID 45922669.

Other references edit

  • Ahlberg, P.E.; Trinajstic, K.; Johanson, Z.; Long, J.A. (2009). "Pelvic claspers confirm chondrichthyan-like internal fertilization in arthrodires". Nature. 460 (7257): 888–889. Bibcode:2009Natur.460..888A. doi:10.1038/nature08176. PMID 19597477. S2CID 205217467.
  • Janvier, P. Early Vertebrates Oxford, New York: Oxford University Press, 1998. ISBN 0-19-854047-7
  • Long, J. A. (May 1983). "New bothriolepid fish from the Late Devonian of Victoria, Australia | The Palaeontological Association". Palaeontology. 26 (2): 295–320.
  • Long, J.A. (1984). "New phyllolepids from Victoria and the relationships of the group". Proceedings of the Linnean Society of New South Wales. 107: 263–308.
  • Long, J.A. The Rise of Fishes: 500 Million Years of Evolution Baltimore: The Johns Hopkins University Press, 1996. ISBN 0-8018-5438-5
  • Long, J.A.; Trinajstic, K. (2010). "The Late Devonian Gogo Formation Lagerstatte – Exceptional preservation and Diversity in early Vertebrates". Annual Review of Earth and Planetary Sciences. 38: 255–279. Bibcode:2010AREPS..38..255L. doi:10.1146/annurev-earth-040809-152416.
  • Long, J.A.; Trinajstic, K.; Young, G.C.; Senden, T. (2008). "Live birth in the Devonian". Nature. 453 (7195): 650–652. Bibcode:2008Natur.453..650L. doi:10.1038/nature06966. PMID 18509443. S2CID 205213348.
  • Long, J.A.; Trinajstic, K.; Johanson, Z. (2009). "Devonian arthrodire embryos and the origin of internal fertilization in vertebrates". Nature. 457 (7233): 1124–1127. Bibcode:2009Natur.457.1124L. doi:10.1038/nature07732. PMID 19242474. S2CID 205215898.
  • Zhu, Min; Yu, Xiaobo; Choo, Brian; Wang, Junqing; Jia, Liantao (23 June 2012). "An antiarch placoderm shows that pelvic girdles arose at the root of jawed vertebrates". Biology Letters. 8 (3): 453–456. doi:10.1098/rsbl.2011.1033. PMC 3367742. PMID 22219394.

External links edit

  • Annetta Markussen-Brown, "Devonian Armoured Fish" 2000
  • Introduction to the Placodermi Extinct armored fishes with jaws
  • "PALAEOZOIC FOSSILS UK". Archived from the original on 17 October 2012.
  • BBC—report on Dunkleosteus terrelli

placodermi, class, armoured, prehistoric, fish, known, from, fossils, which, lived, from, silurian, devonian, period, their, head, thorax, were, covered, articulated, armoured, plates, rest, body, scaled, naked, depending, species, placoderms, were, among, fir. Placodermi b is a class of armoured prehistoric fish known from fossils which lived from the Silurian to the end of the Devonian period Their head and thorax were covered by articulated armoured plates and the rest of the body was scaled or naked depending on the species Placoderms were among the first jawed fish their jaws likely evolved from the first of their gill arches PlacodermiTemporal range 439 358 9 Ma PreꞒ Ꞓ O S D C P T J K Pg N Late Llandovery Late Devonian a Fossil of Bothriolepis panderi showing its caliper like pectoral finsScientific classificationDomain EukaryotaKingdom AnimaliaPhylum ChordataSubphylum VertebrataInfraphylum GnathostomataClass PlacodermiMcCoy 1848Orders Antiarchi Arthrodira includes Phyllolepida Petalichthyida Ptyctodontida Rhenanida Acanthothoraci paraphyletic Maxillate placoderms Qilinyu Entelognathus Silurolepis Bianchengichthys Minjinia Eugnathostomata Xiushanosteus Brindabellaspis Pseudopetalichthyida StensioellaSynonymsPlacodermataPlacoderms are thought to be paraphyletic consisting of several distinct outgroups or sister taxa to all living jawed vertebrates which originated among their ranks 1 In contrast one 2016 analysis concluded that placodermi are likely monophyletic 2 Placoderms were also the first fish to develop pelvic fins the precursor to hindlimbs in tetrapods as well as true teeth 3 380 million year old fossils of three other genera Incisoscutum Materpiscis and Austroptyctodus represent the oldest known examples of live birth 4 The first identifiable placoderms appear in the fossil record during the late Llandovery epoch of the early Silurian 5 The various groups of placoderms were diverse and abundant during the Devonian but became extinct at the end Devonian Hangenberg event 358 9 million years ago 6 Contents 1 Characteristics 2 Evolution and extinction 2 1 Fossil record 2 2 History of study 3 Taxonomy and phylogeny 3 1 Placoderm orders 3 1 1 Arthrodira 3 1 2 Antiarchi 3 1 3 Brindabellaspida 3 1 4 Phyllolepida 3 1 5 Ptyctodontida 3 1 6 Rhenanida 3 1 7 Acanthothoraci 3 1 8 Petalichthyida 3 1 9 Pseudopetalichthyida 3 1 10 Stensioellida 4 Cladogram 5 See also 6 Notes 7 References 7 1 Citations 7 2 Other references 8 External linksCharacteristics editMany placoderms particularly the Rhenanida Petalichthyida Phyllolepida and Antiarchi were bottom dwellers In particular the antiarchs with their highly modified jointed bony pectoral fins were highly successful inhabitants of Middle Late Devonian freshwater and shallow marine habitats with the Middle to Late Devonian genus Bothriolepis known from over 100 valid species 7 The vast majority of placoderms were predators many of which lived at or near the substrate Many primarily the Arthrodires were active nektonic predators that dwelled in the middle to upper portions of the water column A study of the arthrodire Compagopiscis published in 2012 concluded that placoderms at least this particular genus likely possessed true teeth contrary to some early studies The teeth had well defined pulp cavities and were made of both bone and dentine However the tooth and jaw development were not as closely integrated as in modern gnathostomes These teeth were likely homologous to the teeth of other gnathostomes 3 nbsp External anatomy of the placoderm Coccosteus decipiens One of the largest known arthrodires Dunkleosteus terrelli was 8 8 m 29 ft long 8 9 and is presumed to have had a large distribution as its remains have been found in Europe North America and possibly Morocco Some paleontologists regard it as the world s first vertebrate superpredator preying upon other predators Other smaller arthrodires such as Fallacosteus and Rolfosteus both of the Gogo Formation of Western Australia had streamlined bullet shaped head armor and Amazichthys with morphology like that of other fast swimming pelagic organisms 10 strongly supporting the idea that many if not most arthrodires were active swimmers rather than passive ambush hunters whose armor practically anchored them to the sea floor Some placoderms were herbivorous such as the Middle to Late Devonian arthrodire Holonema and some were planktivores such as the gigantic arthrodire Titanichthys various members of Homostiidae and Heterosteus Extraordinary evidence of internal fertilization in a placoderm was afforded by the discovery in the Gogo Formation near Fitzroy Crossing Kimberley Western Australia 11 of a small female placoderm about 25 cm 10 in in length which died in the process of giving birth to a 6 cm 2 1 2 in offspring and was fossilized with the umbilical cord intact 12 The fossil named Materpiscis attenboroughi after scientist David Attenborough had eggs which were fertilized internally the mother providing nourishment to the embryo and giving birth to live young With this discovery the placoderm became the oldest vertebrate known to have given birth to live young viviparous 4 pushing the date of first viviparity back some 200 million years earlier than had been previously known Specimens of the arthrodire Incisoscutum ritchei also from the Gogo Formation have been found with embryos inside them indicating this group also had live bearing ability 13 The males reproduced by inserting a long clasper into the female Elongated basipterygia are also found on the phyllolepid placoderms such as Austrophyllolepis 14 and Cowralepis both from the Middle Devonian of Australia suggesting that the basipterygia were used in copulation The placoderm claspers are not homologous with the claspers in cartilaginous fishes The similarities between the structures has been revealed to be an example of convergent evolution While the claspers in cartilaginous fishes are specialized parts of their paired pelvic fins that have been modified for copulation due to changes in the hox genes hoxd13 the origin of the mating organs in placoderms most likely relied on different sets of hox genes and were structures that developed further down the body as an extra and independent pair of appendages but which during development turned into body parts used for reproduction only Because they were not attached to the pelvic fins as are the claspers in fish like sharks they were much more flexible and could probably be rotated forward 15 Evolution and extinction edit nbsp Evolution and extinction of placoderms The diagram is based on Michael Benton 2005 16 nbsp Dunkleosteus among the first of the vertebrate apex predators was a giant armoured placoderm predator nbsp Amazichthys a pelagic arthrodire from the Middle Famennian of the Late Devonian nbsp Fin spine of Eczematolepis from the Middle Devonian of Wisconsin See also Evolution of fish It was thought for a time that placoderms became extinct due to competition from the first bony fish and early sharks given a combination of the supposed inherent superiority of bony fish and the presumed sluggishness of placoderms With more accurate summaries of prehistoric organisms it is now thought that they systematically died out as marine and freshwater ecologies suffered from the environmental catastrophes of the Late Devonian and end Devonian extinctions Fossil record edit The earliest identifiable placoderm fossils are of Chinese origin and date to the early Silurian At that time they were already differentiated into antiarchs and arthrodires as well as other more primitive groups Earlier fossils of basal Placodermi have not yet been discovered nbsp Xiushanosteus is one of the oldest known placoderms living in what is now China during the Telychian stage of the Early Silurian The Silurian fossil record of the placoderms is both literally and figuratively fragmented Until the discovery of Silurolepis and then the discoveries of Entelognathus and Qilinyu Silurian aged placoderm specimens consisted of fragments Some of them have been tentatively identified as antiarch or arthrodire due to histological similarities and many of them have not yet been formally described or even named The most commonly cited example of a Silurian placoderm Wangolepis of Silurian China and possibly Vietnam is known only from a few fragments that currently defy attempts to place them in any of the recognized placoderm orders So far only three officially described Silurian placoderms are known from more than scraps the basal antiarch Silurolepis from the Ludlow epoch of Yunnan China known from an almost complete thoracic armor Entelognathus a placoderm incertae sedis that combines features of primitive arthrodires with jaw anatomy otherwise only seen in bony fish and tetrapods Qilinyu a close relative of Entelognathus that further links Entelognathus as a transitional form between placoderms and other stem gnathostomes and crown group gnathostomes The first officially described Silurian placoderm is an antiarch Shimenolepis which is known from distinctively ornamented plates from Hunan China It was originally considered to be from the late Llandovery although later study reconsidered its age at Ludfordian 17 Shimenolepis plates are very similar to the early Devonian yunnanolepid Zhanjilepis also known from distinctively ornamented plates 5 18 In 2022 Xiushanosteus is described from complete fossils from Telychian late Llandovery of Chongqing China 19 Paleontologists and placoderm specialists suspect that the scarcity of placoderms in the Silurian fossil record is due to placoderms living in environments unconducive to fossil preservation rather than a genuine scarcity This hypothesis helps to explain the placoderms seemingly instantaneous appearance and diversity at the very beginning of the Devonian During the Devonian placoderms went on to inhabit and dominate almost all known aquatic ecosystems both freshwater and saltwater 20 But this diversity ultimately suffered many casualties during the extinction event at the Frasnian Famennian boundary the Late Devonian extinctions The remaining species then died out during the end Devonian extinction not a single placoderm species has been confirmed to have survived into the Carboniferous History of study edit The earliest studies of placoderms were published by Louis Agassiz in his five volumes on fossil fishes 1833 1843 In those days placoderms were thought to be shelled jawless fish akin to ostracoderms Some naturalists even suggested that they were shelled invertebrates or even turtle like vertebrates In the late 1920s Dr Erik Stensio at the Swedish Museum of Natural History in Stockholm established the details of placoderm anatomy and identified them as true jawed fishes related to sharks He took fossil specimens with well preserved skulls and ground them away one tenth of a millimeter at a time After each layer had been removed he made an imprint of the next surface in wax Once the specimens had been completely ground away and so destroyed he made enlarged three dimensional models of the skulls to examine the anatomical details more thoroughly Many other placoderm specialists thought that Stensio was trying to shoehorn placoderms into a relationship with sharks however as more fossils were found placoderms were accepted as a sister group of chondrichthyans Much later the exquisitely preserved placoderm fossils from Gogo reef changed the picture again They showed that placoderms shared anatomical features not only with chondrichthyans but with other gnathostome groups as well For example Gogo placoderms show separate bones for the nasal capsules as in gnathostomes in both sharks and bony fish those bones are incorporated into the braincase 21 22 Placoderms also share certain anatomical features only with the jawless osteostracans because of this the theory that placoderms are the sister group of chondrichthyans has been replaced by the theory that placoderms are a group of stem gnathostomes Taxonomy and phylogeny editCurrently Placodermi are divided into eight recognized orders There are two further controversial orders One is the monotypic Stensioellida containing the enigmatic Stensioella the other is the equally enigmatic Pseudopetalichthyida These orders are considered to be basal or primitive groups within Placodermi though their precise placement within the class remains unsure Fossils of both are currently known only from the Hunsruck lagerstatten Placoderm orders edit Arthrodira edit nbsp Dunkleosteus nbsp Coccosteus nbsp TitanichthysArthrodira jointed neck were the most diverse and numerically successful of the placoderm orders occupying roles from giant apex predators to detritus nibbling bottom dwellers They had a movable joint between armour surrounding the head and body As the lower jaw moved down the head shield moved allowing for a larger opening All arthrodires save for Compagopiscis lacked teeth and used instead the sharpened edges of a bony plate termed a tooth plate as a biting surface Compagopiscis had true teeth in addition to tooth plates The eye sockets are protected by a bony ring a feature shared by birds and some ichthyosaurs Early arthrodires such as the genus Arctolepis were well armoured fishes with flattened bodies The largest member of this group Dunkleosteus was a true superpredator of the latest Devonian period reaching 3 to as much as 8 metres in length In contrast the long nosed Rolfosteus measured just 15 cm Fossils of Incisoscutum have been found containing unborn fetuses indicating that arthrodires gave birth to live young 23 Antiarchi edit nbsp Bothriolepis canadensisAntiarchi opposite anus were the second most successful order of placoderms known after the Arthrodira The order s name was coined by Edward Drinker Cope who after incorrectly identifying the first fossils as being those of an armored tunicate mistakenly thought the eye hole was the mouth and the opening for the anal siphon was on the other side of the body as opposed to having both oral and anal siphons together at one end The front portions of their bodies were heavily armoured to the point of literally resembling a box with eyes with the sometimes scaled sometimes naked rear portions often becoming sinuous particularly with later forms The pair of pectoral fins were modified into a pair of caliper like or arthropod like limbs In primitive forms such as Yunnanolepis the limbs were thick and short while in advanced forms such as Bothriolepis the limbs were long and had elbow like joints The function of the limbs is still not perfectly understood but most hypothesize that they helped their owners pull themselves across the substrate as well as allowing their owners to bury themselves into the substrate citation needed Brindabellaspida edit nbsp Brindabellaspis stensioiBrindabellaspida Brindabella s shield was a long snouted placoderm from the Early Devonian When it was first discovered in 1980 it was originally regarded as a weejasperaspid acanthothoracid due to anatomical similarities with the other species found at the same locality According to Philippe Janvier anatomical similarities in the brain of Brindabellaspis stensioi and the brain of a jawless fish suggest it is a basal placoderm closest to the ancestral placoderm Various Early to Middle Devonian placoderm incertae sedis have also been inserted in the order Phyllolepida edit nbsp Phyllolepis orviniPhyllolepida leaf scales were flattened placoderms found throughout the world Like other flattened placoderms they were bottom dwelling predators that ambushed prey Unlike other flattened placoderms they were freshwater fish Their armour was made of whole plates rather than the numerous tubercles and scales of Petalichthyida The eyes were on the sides of the head unlike visual bottom dwelling predators such as stargazers or flatfish which have eyes on the top of their head The orbits for the eyes were extremely small suggesting the eyes were vestigial and that the phyllolepids may have been blind Ptyctodontida edit nbsp Kimbryanodus williamburyensisPtyctodontida folded teeth were lightly armoured placoderms with big heads big eyes and long bodies They have a strong but superficial resemblance to modern day chimaeras Their armour was reduced to a pattern of small plates around the head and neck Like the extinct and related acanthothoracids and the living and unrelated holocephalians most of the ptyctodontids are thought to have lived near the sea bottom and preyed on shellfish On account of their lack of armour some paleontologists have suggested that the Ptyctodontida were not placoderms but holocephalians or the ancestors of holocephalians Anatomical examinations of whole fossil specimens have shown that the similarities between these two groups are superficial The major differences were that holocephalians have shagreen on their skin while ptyctodontids do not the armoured plates and scales of holocephalians are made of dentine while those of ptyctodontids are made of bone the craniums of holocephalians are similar to sharks while those of ptyctodontids are similar to those of other placoderms and most importantly that holocephalians have true teeth while ptyctodonts have beak like tooth plates Ptyctodontids were sexually dimorphic with the males having pelvic claspers and possibly claspers on the head as well Rhenanida edit nbsp AsterosteusRhenanida Rhine fish were flattened ray like bottom dwelling predators with large upturned mouths that lived in marine environments The rhenanids were once presumed to be the most primitive or at least the closest to the ancestral placoderm as their armour was made of unfused components a mosaic of tubercles as opposed to the solidified plates of advanced placoderms such as antiarchs and arthrodires However through comparisons of skull anatomies rhenanids are now considered to be the sister group of the antiarchs When rhenanids die their mosaics come apart and it has been suggested that the rarity of rhenanids in the fossil record reflects postmortem disassociation and is not an actual rarity of the species Acanthothoraci edit nbsp PalaeacanthaspisAcanthothoraci spine chests were a group of chimaera like placoderms closely related to the rhenanid placoderms Superficially acanthoracids resembled scaly chimaeras or small scaly arthrodires with blunt rostrums They were distinguished from chimaeras by a pair of large spines that emanate from their chests the presence of large scales and plates tooth like beak plates and the typical bone enhanced placoderm eyeball They were distinguished from other placoderms due to differences in the anatomy of their skulls and due to patterns on the skull plates and thoracic plates that are unique to this order From what can be inferred from the mouthplates of fossil specimens acanthothoracids were shellfish hunters ecologically similar to modern day chimaeras Competition with their relatives the ptyctodont placoderms may have been one of the main reasons for the acanthothoracids extinction prior to the mid Devonian extinction event Petalichthyida edit nbsp LunaspisPetalichthyida thin plated fish were small flattened placoderms typified by their splayed fins and numerous tubercles that decorated all of the plates and scales of their armour They reached a peak in diversity during the Early Devonian and were found throughout the world The petalichthids Lunaspis and Wijdeaspis are among the best known There was an independent diversification event that occurred in what is now Southern China producing a handful of unique genera that were once placed in their own order Quasipetalichthyida named after the first discovered species there Quasipetalichthys haikouensis Soon after the petalichthids diversification they went into decline Because they had compressed body forms it is supposed they were bottom dwellers that pursued or ambushed smaller fish Their diet is not clear as none of the fossil specimens found have preserved mouth parts Pseudopetalichthyida edit nbsp Pseudopetalicthys problematicaPseudopetalichthyida false petalichthyids is a group of elongated possibly flattened fishes comprising three poorly preserved and poorly studied genera It is known only from rare fossils in Lower Devonian strata in Hunsruck Germany Like Stensioella heintzi and the Rhenanida the pseudopetalichthids had armour made up of a mosaic of tubercles Like Stensioella heintzi the pseudopetalichthids placement within Placodermi is suspect The matter is not easy to resolve because there are no complete undamaged and articulated specimens The anatomical studies done on the crushed specimens that have been found indicate that if they are placoderms they may be a group more advanced than the ptyctodonts As such placoderm experts consider Pseudopetalichthyida to be the sister group of the Arthrodires Phyllolepida Antiarchi trichotomy and the Acanthothoraci Rhenanida dichotomy Stensioellida edit nbsp Stensioella heintziStensioellida Heintz s little Stensio contains another problematic placoderm of uncertain affinity known only from the Lower Devonian Hunsruck slates of Germany Stensioella was a thin fish that when alive looked vaguely like an elongated ratfish or a skinny Gemuendina with thin strap like pectoral fins Similar to those of the Rhenanida its armour was a complex mosaic of small scale like tubercles The shoulder joints of its armour are similar to other placoderms and there are superficial similarities in skull plates and even more superficial similarities between its tubercles and the tubercles of the rhenanids It is tentatively placed within Placodermi as a primitive placoderm though some paleontologists believe the rationale for the placement is inadequate The paleontologist Philippe Janvier as well as other paleontologists has suggested that Stensioella is not a placoderm but instead is a holocephalian 24 25 If this is true then the holocephalians diverged from sharks before the Chondrichthyan Devonian radiation Critics of Janvier s position say that aside from a bodyplan superficially similar to primitive holocephalians the two groups have little else in common anatomically Cladogram editSee also Agnatha Groups The following cladogram shows the interrelationships of placoderms according to Carr et al 2009 26 nbsp Homostius and Pterichthys nbsp DiandongpetalichthysStensioellaPlacodermi PseudopetalichthysBrindabellaspisAcanthothoraciRhenanidaYunnanolepisEuantiarchaPetalichthyidaPtyctodontidaArthrodira WuttagoonaspisActinolepidaePhyllolepidaPhlyctaeniidaBrachythoraci HolonemaAntineosteusBuchanosteidaeEubrachythoraci PholidosteusTapinosteusCoccosteusTorosteusPlourdosteusDunkleosteusBrachyosteusErromenosteusGorgonichthysTitanichthysHowever the cladogram had changed significantly over the years and the placoderms are now thought to be paraphyletic 27 with some being more closer to the Eugnathostomata than others The updated cladogram Zhu et al 2016 28 CephalaspidomorphiGnathostomata AntiarchiPetalichthyidaArthrodiraPtyctodontidaQilinyuEntelognathusJanusiscusEugnathostomata Chondrichthyes total group including Acanthodii as stem lineages OsteichthyesSee also edit nbsp Paleontology portal nbsp Fish portalAcanthodii List of placoderms Ostracoderm Chondrichthyes EntelognathusNotes edit If paraphyletic in relation to the rest of Gnathostomata then modern jawed vertebrates represent extant forms The name Placodermi is from Greek pla3 plate and derma skin literally plate skinned References editCitations edit Li Qiang Zhu You an Lu Jing Chen Yang Wang Jianhua Peng Lijian Wei Guangbiao Zhu Min August 2021 A new Silurian fish close to the common ancestor of modern gnathostomes Current Biology 31 16 3613 3620 e2 doi 10 1016 j cub 2021 05 053 PMID 34146483 S2CID 235477130 King Benedict Qiao Tuo Lee Michael S Y Zhu Min Long John A 5 December 2016 Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates Systematic Biology 66 4 499 516 doi 10 1093 sysbio syw107 PMID 27920231 a b Rucklin M Donoghue P C J Johanson Z Trinajstic K Marone F Stampanoni M 2012 Development of teeth and jaws in the earliest jawed vertebrates Nature 491 7426 748 751 Bibcode 2012Natur 491 748R doi 10 1038 nature11555 PMID 23075852 S2CID 4302415 a b Fossil reveals oldest live birth BBC May 28 2008 Retrieved May 30 2008 a b Burrow Carol amp Turner Susan September 1998 A review of placoderm scales and their significance in placoderm phylogeny Journal of Vertebrate Paleontology 19 2 204 219 doi 10 1080 02724634 1999 10011135 Sallan Lauren amp Coates Michael June 2010 End Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates Proceedings of the National Academy of Sciences 107 22 10131 10135 Bibcode 2010PNAS 10710131S doi 10 1073 pnas 0914000107 PMC 2890420 PMID 20479258 Long 1983 Anderson P S L Westneat M 2009 A biomechanical model of feeding kinematics for Dunkleosteus terrelli Arthrodira Placodermi Paleobiology 35 2 251 269 doi 10 1666 08011 1 S2CID 86203770 Carr Robert K 2010 Paleoecology of Dunkleosteus terrelli Placodermi Arthrodira Kirtlandia 57 36 45 Jobbins Melina Rucklin Martin Ferron Humberto G Klug Christian 2022 A new selenosteid placoderm from the Late Devonian of the eastern Anti Atlas Morocco with preserved body outline and its ecomorphology Frontiers in Ecology and Evolution 10 doi 10 3389 fevo 2022 969158 ISSN 2296 701X Long amp Trinajstic 2010 Long et al 2008 Long Trinajstic amp Johanson 2009 Long 1984 The first vertebrate sexual organs evolved as an extra pair of legs Archived from the original on 2016 12 20 Retrieved 2014 06 27 Benton M J 2005 Vertebrate Palaeontology Blackwell 3rd edition Figure 3 25 on page 73 Pan Zhaohui Niu Zhibin Xian Zumin Zhu Min 2023 01 03 A novel specimen based mid Paleozoic dataset of antiarch placoderms the most basal jawed vertebrates Earth System Science Data 15 1 41 51 doi 10 5194 essd 15 41 2023 ISSN 1866 3508 Wang Junqing 1991 The Antiarchi from Early Silurian Hunan PDF Vertebrata PalAsiatica 21 3 240 244 INIST 19733953 Archived from the original PDF on 2013 12 12 Zhu You an Li Qiang Lu Jing Chen Yang Wang Jianhua Gai Zhikun Zhao Wenjin Wei Guangbiao Yu Yilun Ahlberg Per E Zhu Min 2022 The oldest complete jawed vertebrates from the early Silurian of China Nature 609 7929 954 958 doi 10 1038 s41586 022 05136 8 ISSN 1476 4687 Waggoner Ben Introduction to the Placodermi UCMP Retrieved 18 July 2011 Young G C Goujet D Lelievre H 2001 Extraocular muscles and cranial segmentation in primitive gnathostomes fossil evidence Journal of Morphology 248 304 Goujet Daniel Young Gavin 2004 Placoderm anatomy and phylogeny new insights PDF In Arratia G Wilson M V H Cloutier R eds Recent Advances in the Origin and Early Radiation of Vertebrates Munchen Germany Verlag Dr Friedrich Pfeil ISBN 3 89937 052 X Fish 380 Million Years Old Found With Unborn Embryo Science Daily June 6 2008 Carr Robert K et al 2010 The ancestral morphotype for the gnathostome pectoral fin revisited and the placoderm condition Academia Philippe Janvier Tree of Life Contributor Profile Carr Robert K Johanson Zerina Ritchie Alex July 2009 The phyllolepid placoderm Cowralepis mclachlani Insights into the evolution of feeding mechanisms in jawed vertebrates Journal of Morphology 270 7 775 804 doi 10 1002 jmor 10719 PMID 19215000 S2CID 45258255 nbsp Giles Sam Friedman Matt Brazeau Martin D 2015 01 12 Osteichthyan like cranial conditions in an Early Devonian stem gnathostome Nature 520 7545 82 85 Bibcode 2015Natur 520 82G doi 10 1038 nature14065 ISSN 1476 4687 PMC 5536226 PMID 25581798 Zhu Min Ahlberg Per E Pan Zhaohui Zhu Youan Qiao Tuo Zhao Wenjin Jia Liantao Lu Jing 21 October 2016 A Silurian maxillate placoderm illuminates jaw evolution Science 354 6310 334 336 Bibcode 2016Sci 354 334Z doi 10 1126 science aah3764 PMID 27846567 S2CID 45922669 Other references edit Ahlberg P E Trinajstic K Johanson Z Long J A 2009 Pelvic claspers confirm chondrichthyan like internal fertilization in arthrodires Nature 460 7257 888 889 Bibcode 2009Natur 460 888A doi 10 1038 nature08176 PMID 19597477 S2CID 205217467 Janvier P Early Vertebrates Oxford New York Oxford University Press 1998 ISBN 0 19 854047 7 Long J A May 1983 New bothriolepid fish from the Late Devonian of Victoria Australia The Palaeontological Association Palaeontology 26 2 295 320 Long J A 1984 New phyllolepids from Victoria and the relationships of the group Proceedings of the Linnean Society of New South Wales 107 263 308 Long J A The Rise of Fishes 500 Million Years of Evolution Baltimore The Johns Hopkins University Press 1996 ISBN 0 8018 5438 5 Long J A Trinajstic K 2010 The Late Devonian Gogo Formation Lagerstatte Exceptional preservation and Diversity in early Vertebrates Annual Review of Earth and Planetary Sciences 38 255 279 Bibcode 2010AREPS 38 255L doi 10 1146 annurev earth 040809 152416 Long J A Trinajstic K Young G C Senden T 2008 Live birth in the Devonian Nature 453 7195 650 652 Bibcode 2008Natur 453 650L doi 10 1038 nature06966 PMID 18509443 S2CID 205213348 Long J A Trinajstic K Johanson Z 2009 Devonian arthrodire embryos and the origin of internal fertilization in vertebrates Nature 457 7233 1124 1127 Bibcode 2009Natur 457 1124L doi 10 1038 nature07732 PMID 19242474 S2CID 205215898 Zhu Min Yu Xiaobo Choo Brian Wang Junqing Jia Liantao 23 June 2012 An antiarch placoderm shows that pelvic girdles arose at the root of jawed vertebrates Biology Letters 8 3 453 456 doi 10 1098 rsbl 2011 1033 PMC 3367742 PMID 22219394 External links edit nbsp Wikimedia Commons has media related to Placodermi Annetta Markussen Brown Devonian Armoured Fish 2000 Introduction to the Placodermi Extinct armored fishes with jaws PALAEOZOIC FOSSILS UK Archived from the original on 17 October 2012 Placoderms Placodermi Overview BBC report on Dunkleosteus terrelli Retrieved from https en wikipedia org w index php title Placodermi amp oldid 1194723376, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.