fbpx
Wikipedia

1000 Genomes Project

The 1000 Genomes Project (1KGP), taken place from January 2008 to 2015, was an international research effort to establish the most detailed catalogue of human genetic variation at the time. Scientists planned to sequence the genomes of at least one thousand anonymous healthy participants from a number of different ethnic groups within the following three years, using advancements in newly developed technologies. In 2010, the project finished its pilot phase, which was described in detail in a publication in the journal Nature.[1] In 2012, the sequencing of 1092 genomes was announced in a Nature publication.[2] In 2015, two papers in Nature reported results and the completion of the project and opportunities for future research.[3][4]

Many rare variations, restricted to closely related groups, were identified, and eight structural-variation classes were analyzed.[5]

The project united multidisciplinary research teams from institutes around the world, including China, Italy, Japan, Kenya, Nigeria, Peru, the United Kingdom, and the United States contributing to the sequence dataset and to a refined human genome map freely accessible through public databases to the scientific community and the general public alike.[2]

The International Genome Sample Resource was created to host and expand on the data set after the project's end.[6]

Changes in the number and order of genes (A-D) create genetic diversity within and between populations.

Background edit

Since the completion of the Human Genome Project advances in human population genetics and comparative genomics enabled further insight into genetic diversity.[7] The understanding about structural variations (insertions/deletions (indels), copy number variations (CNV), retroelements), single-nucleotide polymorphisms (SNPs), and natural selection were being solidified.[8][9][10][11]

The diversity of Human genetic variation such as that Indels were being uncovered and investigating human genomic variations[citation needed]

Natural selection edit

It also aimed to provide evidence that can be used to explore the impact of Natural selection on population differences. Patterns of DNA polymorphisms can be used to reliably detect signatures of selection and may help to identify genes that might underlie variation in disease resistance or drug metabolism.[12][13] Such insights could improve understanding of phenotypic variations, genetic disorders and Mendelian inheritance and their effects on survival and/or reproduction of different human populations.

Project description edit

Goals edit

The 1000 Genomes Project was designed to bridge the gap of knowledge between rare genetic variants that have a severe effect predominantly on simple traits (e.g. cystic fibrosis, Huntington disease) and common genetic variants have a mild effect and are implicated in complex traits (e.g. cognition, diabetes, heart disease).[14]

The primary goal of this project was to create a complete and detailed catalogue of human genetic variations, which can be used for association studies relating genetic variation to disease. The consortium aimed to discover >95 % of the variants (e.g. SNPs, CNVs, indels) with minor allele frequencies as low as 1% across the genome and 0.1-0.5% in gene regions, as well as to estimate the population frequencies, haplotype backgrounds and linkage disequilibrium patterns of variant alleles.[15]

Secondary goals included the support of better SNP and probe selection for genotyping platforms in future studies and the improvement of the human reference sequence. The completed database was expected be a useful tool for studying regions under selection, variation in multiple populations and understanding the underlying processes of mutation and recombination.[15]

Outline edit

The human genome consists of approximately 3 billion DNA base pairs and is estimated to carry around 20,000 protein coding genes. In designing the study the consortium needed to address several critical issues regarding the project metrics such as technology challenges, data quality standards and sequence coverage.[15]

Over the course of the next three years,[clarification needed] scientists at the Sanger Institute, BGI Shenzhen and the National Human Genome Research Institute’s Large-Scale Sequencing Network planned to sequence a minimum of 1,000 human genomes. Due to the large amount of sequence data that was required, recruiting additional participants was maintained.[14]

Almost 10 billion bases were to be sequenced per day over a period of the two year production phase, equating to more than two human genomes every 24 hours. The intended sequence dataset was to comprise 6 trillion DNA bases, 60-fold more sequence data than what has been published in DNA databases at the time.[14]

To determine the final design of the full project three pilot studies were to be carried out within the first year of the project. The first pilot intends to genotype 180 people of 3 major geographic groups at low coverage (2×). For the second pilot study, the genomes of two nuclear families (both parents and an adult child) are going to be sequenced with deep coverage (20× per genome). The third pilot study involves sequencing the coding regions (exons) of 1,000 genes in 1,000 people with deep coverage (20×).[14][15]

It was estimated that the project would likely cost more than $500 million if standard DNA sequencing technologies were used. Several newer technologies (e.g. Solexa, 454, SOLiD) were to be applied, lowering the expected costs to between $30 million and $50 million. The major support will be provided by the Wellcome Trust Sanger Institute in Hinxton, England; the Beijing Genomics Institute, Shenzhen (BGI Shenzhen), China; and the NHGRI, part of the National Institutes of Health (NIH).[14]

In keeping with Fort Lauderdale principles 2013-12-28 at the Wayback Machine, all genome sequence data (including variant calls) is freely available as the project progresses and can be downloaded via ftp from the 1000 genomes project webpage.

Human genome samples edit

 
Locations of population samples of 1000 Genomes Project.[16] Each circle represents the number of sequences in the final release.

Based on the overall goals for the project, the samples will be chosen to provide power in populations where association studies for common diseases are being carried out. Furthermore, the samples do not need to have medical or phenotype information since the proposed catalogue will be a basic resource on human variation.[15]

For the pilot studies human genome samples from the HapMap collection will be sequenced. It will be useful to focus on samples that have additional data available (such as ENCODE sequence, genome-wide genotypes, fosmid-end sequence, structural variation assays, and gene expression) to be able to compare the results with those from other projects.[15]

Complying with extensive ethical procedures, the 1000 Genomes Project will then use samples from volunteer donors. The following populations will be included in the study: Yoruba in Ibadan (YRI), Nigeria; Japanese in Tokyo (JPT); Chinese in Beijing (CHB); Utah residents with ancestry from northern and western Europe (CEU); Luhya in Webuye, Kenya (LWK); Maasai in Kinyawa, Kenya (MKK); Toscani in Italy (TSI); Peruvians in Lima, Peru (PEL); Gujarati Indians in Houston (GIH); Chinese in metropolitan Denver (CHD); people of Mexican ancestry in Los Angeles (MXL); and people of African ancestry in the southwestern United States (ASW).[14]

ID Place Population Detail
ASW  * African Ancestry in Southwestern USA Detail
ACB  * African Caribbean in Barbados Detail
BEB   Bengali in Bangladesh Detail
GBR   British from England and Scotland Detail
CDX   Chinese Dai in Xishuangbanna, China Detail
CLM   Colombian in Medellín, Colombia Detail
ESN   Esan in Nigeria Detail
FIN   Finnish in Finland Detail
GWD   Gambian in Western DivisionMandinka Detail
GIH  * Gujarati Indians in Houston, Texas, United States Detail
CHB   Han Chinese in Beijing, China Detail
CHS   Han Chinese South, China Detail
IBS   Iberian populations in Spain Detail
ITU  * Indian Telugu in the U.K. Detail
JPT   Japanese in Tokyo, Japan Detail
KHV   Kinh in Ho Chi Minh City, Vietnam Detail
LWK   Luhya in Webuye, Kenya Detail
MSL   Mende in Sierra Leone Detail
MXL  * Mexican Ancestry in Los Angeles, California, United States Detail
PEL   Peruvian in Lima, Peru Detail
PUR   Puerto Rican in Puerto Rico Detail
PJL   Punjabi in Lahore, Pakistan Detail
STU  * Sri Lankan Tamil in the U.K. Detail
TSI   Toscani in Italia Detail
YRI   Yoruba in Ibadan, Nigeria Detail
CEU  * Utah residents with Northern and Western European ancestry from the CEPH collection Detail

* Population that was collected in diaspora

Community meeting edit

Data generated by the 1000 Genomes Project is widely used by the genetics community, making the first 1000 Genomes Project one of the most cited papers in biology.[17] To support this user community, the project held a community analysis meeting in July 2012 that included talks highlighting key project discoveries, their impact on population genetics and human disease studies, and summaries of other large-scale sequencing studies.[18]

Project findings edit

Pilot phase edit

The pilot phase consisted of three projects:

  • low-coverage whole-genome sequencing of 179 individuals from 4 populations
  • high-coverage sequencing of 2 trios (mother-father-child)
  • exon-targeted sequencing of 697 individuals from 7 populations

It was found that on average, each person carries around 250–300 loss-of-function variants in annotated genes and 50-100 variants previously implicated in inherited disorders. Based on the two trios, it is estimated that the rate of de novo germline mutation is approximately 10−8 per base per generation.[1]

See also edit

References edit

  1. ^ a b Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, et al. (October 2010). "A map of human genome variation from population-scale sequencing". Nature. 467 (7319): 1061–73. Bibcode:2010Natur.467.1061T. doi:10.1038/nature09534. PMC 3042601. PMID 20981092.
  2. ^ a b Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. (November 2012). "An integrated map of genetic variation from 1,092 human genomes". Nature. 491 (7422): 56–65. Bibcode:2012Natur.491...56T. doi:10.1038/nature11632. PMC 3498066. PMID 23128226.
  3. ^ Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. (October 2015). "A global reference for human genetic variation". Nature. 526 (7571): 68–74. Bibcode:2015Natur.526...68T. doi:10.1038/nature15393. PMC 4750478. PMID 26432245.
  4. ^ Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. (October 2015). "An integrated map of structural variation in 2,504 human genomes". Nature. 526 (7571): 75–81. Bibcode:2015Natur.526...75.. doi:10.1038/nature15394. PMC 4617611. PMID 26432246.
  5. ^ "Variety of life". Nature News & Comment. 2015-09-30. Retrieved 2015-10-15.
  6. ^ "1000 Genomes Project | Scientific Computing and Data". Mount Sinai School of Medicine. 2020-07-07. Retrieved 2023-10-01.
  7. ^ Nielsen R (October 2010). "Genomics: In search of rare human variants". Nature. 467 (7319): 1050–1. Bibcode:2010Natur.467.1050N. doi:10.1038/4671050a. PMID 20981085.
  8. ^ JC Long, Human Genetic Variation: The mechanisms and results of microevolution, American Anthropological Association (2004)
  9. ^ Anzai T, Shiina T, Kimura N, Yanagiya K, Kohara S, Shigenari A, et al. (June 2003). "Comparative sequencing of human and chimpanzee MHC class I regions unveils insertions/deletions as the major path to genomic divergence". Proceedings of the National Academy of Sciences of the United States of America. 100 (13): 7708–13. Bibcode:2003PNAS..100.7708A. doi:10.1073/pnas.1230533100. PMC 164652. PMID 12799463.
  10. ^ Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. (November 2006). "Global variation in copy number in the human genome". Nature. 444 (7118): 444–54. Bibcode:2006Natur.444..444R. doi:10.1038/nature05329. PMC 2669898. PMID 17122850.
  11. ^ Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L (March 2008). "Natural selection has driven population differentiation in modern humans". Nature Genetics. 40 (3): 340–5. doi:10.1038/ng.78. PMID 18246066. S2CID 205357396.
  12. ^ EE Harris et al., The molecular signature of selection underlying human adaptations, Yearbook of Physical Anthropology 49: 89-130 (2006)
  13. ^ Bamshad M, Wooding SP (February 2003). "Signatures of natural selection in the human genome". Nature Reviews. Genetics. 4 (2): 99–111. doi:10.1038/nrg999. PMID 12560807. S2CID 13722452.
  14. ^ a b c d e f G Spencer, International Consortium Announces the 1000 Genomes Project, EMBARGOED (2008) http://www.nih.gov/news/health/jan2008/nhgri-22.htm
  15. ^ a b c d e f Meeting Report: A Workshop to Plan a Deep Catalog of Human Genetic Variation, (2007) http://www.1000genomes.org/sites/1000genomes.org/files/docs/1000Genomes-MeetingReport.pdf
  16. ^ Oleksyk TK, Brukhin V, O'Brien SJ (2015). "The Genome Russia project: closing the largest remaining omission on the world Genome map". GigaScience. 4: 53. doi:10.1186/s13742-015-0095-0. PMC 4644275. PMID 26568821.
  17. ^ C. King (2012) The Hottest Research of 2011. Science Watch http://archive.sciencewatch.com/newsletter/2012/201203/hottest_research_2012/
  18. ^ 1000 Genomes Project Community Analysis Meeting http://1000gconference.sph.umich.edu/

External links edit

  • 1000 Genomes - A Deep Catalog of Human Genetic Variation - official web page
  • International HapMap Project 2014-04-16 at the Wayback Machine - official web page
  • Human Genome Project Information

1000, genomes, project, this, article, needs, updated, please, help, update, this, article, reflect, recent, events, newly, available, information, october, 2023, 1kgp, taken, place, from, january, 2008, 2015, international, research, effort, establish, most, . This article needs to be updated Please help update this article to reflect recent events or newly available information October 2023 The 1000 Genomes Project 1KGP taken place from January 2008 to 2015 was an international research effort to establish the most detailed catalogue of human genetic variation at the time Scientists planned to sequence the genomes of at least one thousand anonymous healthy participants from a number of different ethnic groups within the following three years using advancements in newly developed technologies In 2010 the project finished its pilot phase which was described in detail in a publication in the journal Nature 1 In 2012 the sequencing of 1092 genomes was announced in a Nature publication 2 In 2015 two papers in Nature reported results and the completion of the project and opportunities for future research 3 4 Many rare variations restricted to closely related groups were identified and eight structural variation classes were analyzed 5 The project united multidisciplinary research teams from institutes around the world including China Italy Japan Kenya Nigeria Peru the United Kingdom and the United States contributing to the sequence dataset and to a refined human genome map freely accessible through public databases to the scientific community and the general public alike 2 The International Genome Sample Resource was created to host and expand on the data set after the project s end 6 Changes in the number and order of genes A D create genetic diversity within and between populations Contents 1 Background 1 1 Natural selection 2 Project description 2 1 Goals 2 2 Outline 2 3 Human genome samples 2 4 Community meeting 3 Project findings 3 1 Pilot phase 4 See also 5 References 6 External linksBackground editSince the completion of the Human Genome Project advances in human population genetics and comparative genomics enabled further insight into genetic diversity 7 The understanding about structural variations insertions deletions indels copy number variations CNV retroelements single nucleotide polymorphisms SNPs and natural selection were being solidified 8 9 10 11 The diversity of Human genetic variation such as that Indels were being uncovered and investigating human genomic variations citation needed Natural selection edit It also aimed to provide evidence that can be used to explore the impact of Natural selection on population differences Patterns of DNA polymorphisms can be used to reliably detect signatures of selection and may help to identify genes that might underlie variation in disease resistance or drug metabolism 12 13 Such insights could improve understanding of phenotypic variations genetic disorders and Mendelian inheritance and their effects on survival and or reproduction of different human populations Project description editThis section needs to be updated Please help update this article to reflect recent events or newly available information April 2021 Goals edit The 1000 Genomes Project was designed to bridge the gap of knowledge between rare genetic variants that have a severe effect predominantly on simple traits e g cystic fibrosis Huntington disease and common genetic variants have a mild effect and are implicated in complex traits e g cognition diabetes heart disease 14 The primary goal of this project was to create a complete and detailed catalogue of human genetic variations which can be used for association studies relating genetic variation to disease The consortium aimed to discover gt 95 of the variants e g SNPs CNVs indels with minor allele frequencies as low as 1 across the genome and 0 1 0 5 in gene regions as well as to estimate the population frequencies haplotype backgrounds and linkage disequilibrium patterns of variant alleles 15 Secondary goals included the support of better SNP and probe selection for genotyping platforms in future studies and the improvement of the human reference sequence The completed database was expected be a useful tool for studying regions under selection variation in multiple populations and understanding the underlying processes of mutation and recombination 15 Outline edit The human genome consists of approximately 3 billion DNA base pairs and is estimated to carry around 20 000 protein coding genes In designing the study the consortium needed to address several critical issues regarding the project metrics such as technology challenges data quality standards and sequence coverage 15 Over the course of the next three years clarification needed scientists at the Sanger Institute BGI Shenzhen and the National Human Genome Research Institute s Large Scale Sequencing Network planned to sequence a minimum of 1 000 human genomes Due to the large amount of sequence data that was required recruiting additional participants was maintained 14 Almost 10 billion bases were to be sequenced per day over a period of the two year production phase equating to more than two human genomes every 24 hours The intended sequence dataset was to comprise 6 trillion DNA bases 60 fold more sequence data than what has been published in DNA databases at the time 14 To determine the final design of the full project three pilot studies were to be carried out within the first year of the project The first pilot intends to genotype 180 people of 3 major geographic groups at low coverage 2 For the second pilot study the genomes of two nuclear families both parents and an adult child are going to be sequenced with deep coverage 20 per genome The third pilot study involves sequencing the coding regions exons of 1 000 genes in 1 000 people with deep coverage 20 14 15 It was estimated that the project would likely cost more than 500 million if standard DNA sequencing technologies were used Several newer technologies e g Solexa 454 SOLiD were to be applied lowering the expected costs to between 30 million and 50 million The major support will be provided by the Wellcome Trust Sanger Institute in Hinxton England the Beijing Genomics Institute Shenzhen BGI Shenzhen China and the NHGRI part of the National Institutes of Health NIH 14 In keeping with Fort Lauderdale principles Archived 2013 12 28 at the Wayback Machine all genome sequence data including variant calls is freely available as the project progresses and can be downloaded via ftp from the 1000 genomes project webpage Human genome samples edit nbsp Locations of population samples of 1000 Genomes Project 16 Each circle represents the number of sequences in the final release Based on the overall goals for the project the samples will be chosen to provide power in populations where association studies for common diseases are being carried out Furthermore the samples do not need to have medical or phenotype information since the proposed catalogue will be a basic resource on human variation 15 For the pilot studies human genome samples from the HapMap collection will be sequenced It will be useful to focus on samples that have additional data available such as ENCODE sequence genome wide genotypes fosmid end sequence structural variation assays and gene expression to be able to compare the results with those from other projects 15 Complying with extensive ethical procedures the 1000 Genomes Project will then use samples from volunteer donors The following populations will be included in the study Yoruba in Ibadan YRI Nigeria Japanese in Tokyo JPT Chinese in Beijing CHB Utah residents with ancestry from northern and western Europe CEU Luhya in Webuye Kenya LWK Maasai in Kinyawa Kenya MKK Toscani in Italy TSI Peruvians in Lima Peru PEL Gujarati Indians in Houston GIH Chinese in metropolitan Denver CHD people of Mexican ancestry in Los Angeles MXL and people of African ancestry in the southwestern United States ASW 14 ID Place Population Detail ASW nbsp African Ancestry in Southwestern USA Detail ACB nbsp African Caribbean in Barbados Detail BEB nbsp Bengali in Bangladesh Detail GBR nbsp British from England and Scotland Detail CDX nbsp Chinese Dai in Xishuangbanna China Detail CLM nbsp Colombian in Medellin Colombia Detail ESN nbsp Esan in Nigeria Detail FIN nbsp Finnish in Finland Detail GWD nbsp Gambian in Western Division Mandinka Detail GIH nbsp Gujarati Indians in Houston Texas United States Detail CHB nbsp Han Chinese in Beijing China Detail CHS nbsp Han Chinese South China Detail IBS nbsp Iberian populations in Spain Detail ITU nbsp Indian Telugu in the U K Detail JPT nbsp Japanese in Tokyo Japan Detail KHV nbsp Kinh in Ho Chi Minh City Vietnam Detail LWK nbsp Luhya in Webuye Kenya Detail MSL nbsp Mende in Sierra Leone Detail MXL nbsp Mexican Ancestry in Los Angeles California United States Detail PEL nbsp Peruvian in Lima Peru Detail PUR nbsp Puerto Rican in Puerto Rico Detail PJL nbsp Punjabi in Lahore Pakistan Detail STU nbsp Sri Lankan Tamil in the U K Detail TSI nbsp Toscani in Italia Detail YRI nbsp Yoruba in Ibadan Nigeria Detail CEU nbsp Utah residents with Northern and Western European ancestry from the CEPH collection Detail Population that was collected in diaspora Community meeting edit Data generated by the 1000 Genomes Project is widely used by the genetics community making the first 1000 Genomes Project one of the most cited papers in biology 17 To support this user community the project held a community analysis meeting in July 2012 that included talks highlighting key project discoveries their impact on population genetics and human disease studies and summaries of other large scale sequencing studies 18 Project findings editPilot phase edit The pilot phase consisted of three projects low coverage whole genome sequencing of 179 individuals from 4 populations high coverage sequencing of 2 trios mother father child exon targeted sequencing of 697 individuals from 7 populations It was found that on average each person carries around 250 300 loss of function variants in annotated genes and 50 100 variants previously implicated in inherited disorders Based on the two trios it is estimated that the rate of de novo germline mutation is approximately 10 8 per base per generation 1 See also edit nbsp Biology portal Human Genome Project HapMap Project Personal genomics Population groups in biomedicine 1000 Plant Genomes Project List of biological databasesReferences edit a b Abecasis GR Altshuler D Auton A Brooks LD Durbin RM Gibbs RA et al October 2010 A map of human genome variation from population scale sequencing Nature 467 7319 1061 73 Bibcode 2010Natur 467 1061T doi 10 1038 nature09534 PMC 3042601 PMID 20981092 a b Abecasis GR Auton A Brooks LD DePristo MA Durbin RM Handsaker RE et al November 2012 An integrated map of genetic variation from 1 092 human genomes Nature 491 7422 56 65 Bibcode 2012Natur 491 56T doi 10 1038 nature11632 PMC 3498066 PMID 23128226 Auton A Brooks LD Durbin RM Garrison EP Kang HM Korbel JO et al October 2015 A global reference for human genetic variation Nature 526 7571 68 74 Bibcode 2015Natur 526 68T doi 10 1038 nature15393 PMC 4750478 PMID 26432245 Sudmant PH Rausch T Gardner EJ Handsaker RE Abyzov A Huddleston J et al October 2015 An integrated map of structural variation in 2 504 human genomes Nature 526 7571 75 81 Bibcode 2015Natur 526 75 doi 10 1038 nature15394 PMC 4617611 PMID 26432246 Variety of life Nature News amp Comment 2015 09 30 Retrieved 2015 10 15 1000 Genomes Project Scientific Computing and Data Mount Sinai School of Medicine 2020 07 07 Retrieved 2023 10 01 Nielsen R October 2010 Genomics In search of rare human variants Nature 467 7319 1050 1 Bibcode 2010Natur 467 1050N doi 10 1038 4671050a PMID 20981085 JC Long Human Genetic Variation The mechanisms and results of microevolution American Anthropological Association 2004 Anzai T Shiina T Kimura N Yanagiya K Kohara S Shigenari A et al June 2003 Comparative sequencing of human and chimpanzee MHC class I regions unveils insertions deletions as the major path to genomic divergence Proceedings of the National Academy of Sciences of the United States of America 100 13 7708 13 Bibcode 2003PNAS 100 7708A doi 10 1073 pnas 1230533100 PMC 164652 PMID 12799463 Redon R Ishikawa S Fitch KR Feuk L Perry GH Andrews TD et al November 2006 Global variation in copy number in the human genome Nature 444 7118 444 54 Bibcode 2006Natur 444 444R doi 10 1038 nature05329 PMC 2669898 PMID 17122850 Barreiro LB Laval G Quach H Patin E Quintana Murci L March 2008 Natural selection has driven population differentiation in modern humans Nature Genetics 40 3 340 5 doi 10 1038 ng 78 PMID 18246066 S2CID 205357396 EE Harris et al The molecular signature of selection underlying human adaptations Yearbook of Physical Anthropology 49 89 130 2006 Bamshad M Wooding SP February 2003 Signatures of natural selection in the human genome Nature Reviews Genetics 4 2 99 111 doi 10 1038 nrg999 PMID 12560807 S2CID 13722452 a b c d e f G Spencer International Consortium Announces the 1000 Genomes Project EMBARGOED 2008 http www nih gov news health jan2008 nhgri 22 htm a b c d e f Meeting Report A Workshop to Plan a Deep Catalog of Human Genetic Variation 2007 http www 1000genomes org sites 1000genomes org files docs 1000Genomes MeetingReport pdf Oleksyk TK Brukhin V O Brien SJ 2015 The Genome Russia project closing the largest remaining omission on the world Genome map GigaScience 4 53 doi 10 1186 s13742 015 0095 0 PMC 4644275 PMID 26568821 C King 2012 The Hottest Research of 2011 Science Watch http archive sciencewatch com newsletter 2012 201203 hottest research 2012 1000 Genomes Project Community Analysis Meeting http 1000gconference sph umich edu External links edit1000 Genomes A Deep Catalog of Human Genetic Variation official web page International HapMap Project Archived 2014 04 16 at the Wayback Machine official web page Human Genome Project Information Retrieved from https en wikipedia org w index php title 1000 Genomes Project amp oldid 1200501820, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.