fbpx
Wikipedia

Wilkinson Microwave Anisotropy Probe

The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic microwave background (CMB) – the radiant heat remaining from the Big Bang.[5][6] Headed by Professor Charles L. Bennett of Johns Hopkins University, the mission was developed in a joint partnership between the NASA Goddard Space Flight Center and Princeton University.[7] The WMAP spacecraft was launched on 30 June 2001 from Florida. The WMAP mission succeeded the COBE space mission and was the second medium-class (MIDEX) spacecraft in the NASA Explorer program. In 2003, MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson (1935–2002),[7] who had been a member of the mission's science team. After nine years of operations, WMAP was switched off in 2010, following the launch of the more advanced Planck spacecraft by European Space Agency (ESA) in 2009.

Wilkinson Microwave Anisotropy Probe
Wilkinson Microwave Anisotropy Probe (WMAP) satellite
NamesExplorer 80
MAP
Microwave Anisotropy Probe
MIDEX-2
WMAP
Mission typeCosmic microwave background Astronomy
OperatorNASA
COSPAR ID2001-027A
SATCAT no.26859
Websitehttp://map.gsfc.nasa.gov/
Mission duration27 months (planned)
9 years (achieved)[1]
Spacecraft properties
SpacecraftExplorer LXXX
Spacecraft typeWilkinson Microwave Anisotropy Probe
BusWMAP
ManufacturerNRAO
Launch mass840 kg (1,850 lb)[2]
Dry mass763 kg (1,682 lb)
Dimensions3.6 × 5.1 m (12 × 17 ft)
Power419 watts
Start of mission
Launch date30 June 2001, 19:46:46 UTC[3]
RocketDelta II 7425-10 (Delta 246)
Launch siteCape Canaveral, SLC-17B
ContractorBoeing Launch Services
Entered service1 October 2001
End of mission
DisposalGraveyard orbit
Deactivated20 October 2010[4]
Last contact19 August 2010
Orbital parameters
Reference system Sun-Earth L2 orbit
RegimeLissajous orbit
Main telescope
TypeGregorian
Diameter1.4 × 1.6 m (4 ft 7 in × 5 ft 3 in)
Wavelengths23 GHz to 94 GHz
Instruments
Pseudo-Correlation Radiometer

Wilkinson Microwave Anisotropy Probe mission patch
Explorer program
← HETE-2 (Explorer 79)
RHESSI (Explorer 81) →
 

WMAP's measurements played a key role in establishing the current Standard Model of Cosmology: the Lambda-CDM model. The WMAP data are very well fit by a universe that is dominated by dark energy in the form of a cosmological constant. Other cosmological data are also consistent, and together tightly constrain the Model. In the Lambda-CDM model of the universe, the age of the universe is 13.772±0.059 billion years. The WMAP mission's determination of the age of the universe is to better than 1% precision.[8] The current expansion rate of the universe is (see Hubble constant) 69.32±0.80 km·s−1·Mpc−1. The content of the universe currently consists of 4.628%±0.093% ordinary baryonic matter; 24.02%+0.88%
−0.87%
cold dark matter (CDM) that neither emits nor absorbs light; and 71.35%+0.95%
−0.96%
of dark energy in the form of a cosmological constant that accelerates the expansion of the universe.[9] Less than 1% of the current content of the universe is in neutrinos, but WMAP's measurements have found, for the first time in 2008, that the data prefer the existence of a cosmic neutrino background[10] with an effective number of neutrino species of 3.26±0.35. The contents point to a Euclidean flat geometry, with curvature () of −0.0027+0.0039
−0.0038
. The WMAP measurements also support the cosmic inflation paradigm in several ways, including the flatness measurement.

The mission has won various awards: according to Science magazine, the WMAP was the Breakthrough of the Year for 2003.[11] This mission's results papers were first and second in the "Super Hot Papers in Science Since 2003" list.[12] Of the all-time most referenced papers in physics and astronomy in the INSPIRE-HEP database, only three have been published since 2000, and all three are WMAP publications. Bennett, Lyman A. Page Jr., and David N. Spergel, the latter both of Princeton University, shared the 2010 Shaw Prize in astronomy for their work on WMAP.[13] Bennett and the WMAP science team were awarded the 2012 Gruber Prize in cosmology. The 2018 Breakthrough Prize in Fundamental Physics was awarded to Bennett, Gary Hinshaw, Norman Jarosik, Page, Spergel, and the WMAP science team.

In October 2010, the WMAP spacecraft was derelict in a heliocentric graveyard orbit after completing nine years of operations.[14] All WMAP data are released to the public and have been subject to careful scrutiny. The final official data release was the nine-year release in 2012.[15][16]

Some aspects of the data are statistically unusual for the Standard Model of Cosmology. For example, the largest angular-scale measurement, the quadrupole moment, is somewhat smaller than the Model would predict, but this discrepancy is not highly significant.[17] A large cold spot and other features of the data are more statistically significant, and research continues into these.

Objectives edit

 
The universe's timeline, from the Big Bang to the WMAP
 
A comparison of the sensitivity of WMAP with COBE and Penzias and Wilson's telescope (simulated data)

The WMAP objective was to measure the temperature differences in the Cosmic Microwave Background (CMB) radiation. The anisotropies then were used to measure the universe's geometry, content, and evolution; and to test the Big Bang model, and the cosmic inflation theory.[18] For that, the mission created a full-sky map of the CMB, with a 13 arcminutes resolution via multi-frequency observation. The map required the fewest systematic errors, no correlated pixel noise, and accurate calibration, to ensure angular-scale accuracy greater than its resolution.[18] The map contains 3,145,728 pixels, and uses the HEALPix scheme to pixelize the sphere.[19] The telescope also measured the CMB's E-mode polarization,[18] and foreground polarization.[10] Its service life was 27 months; 3 to reach the L2 position, and 2 years of observation.[18]

Development edit

The MAP mission was proposed to NASA in 1995, selected for definition study in 1996, and approved for development in 1997.[20][21]

The WMAP was preceded by two missions to observe the CMB; (i) the Soviet RELIKT-1 that reported the upper-limit measurements of CMB anisotropies, and (ii) the U.S. COBE satellite that first reported large-scale CMB fluctuations. The WMAP was 45 times more sensitive, with 33 times the angular resolution of its COBE satellite predecessor.[22] The successor European Planck mission (operational 2009–2013) had a higher resolution and higher sensitivity than WMAP and observed in 9 frequency bands rather than WMAP's 5, allowing improved astrophysical foreground models.

Spacecraft edit

 
WMAP spacecraft diagram
 
Illustration of WMAP's receivers

The telescope's primary reflecting mirrors are a pair of Gregorian 1.4 × 1.6 m (4 ft 7 in × 5 ft 3 in) dishes (facing opposite directions), that focus the signal onto a pair of 0.9 × 1.0 m (2 ft 11 in × 3 ft 3 in) secondary reflecting mirrors. They are shaped for optimal performance: a carbon fibre shell upon a Korex core, thinly-coated with aluminium and silicon oxide. The secondary reflectors transmit the signals to the corrugated feedhorns that sit on a focal plane array box beneath the primary reflectors.[18]

The receivers are polarization-sensitive differential radiometers measuring the difference between two telescope beams. The signal is amplified with High-electron-mobility transistor (HEMT) low-noise amplifiers, built by the National Radio Astronomy Observatory (NRAO). There are 20 feeds, 10 in each direction, from which a radiometer collects a signal; the measure is the difference in the sky signal from opposite directions. The directional separation azimuth is 180°; the total angle is 141°. To improve subtraction of foreground signals from our Milky Way galaxy, the WMAP used five discrete radio frequency bands, from 23 GHz to 94 GHz.[18]

Properties of WMAP at different frequencies[18]
Property K-band Ka-band Q-band V-band W-band
Central wavelength (mm) 13 9.1 7.3 4.9 3.2
Central frequency (GHz) 23 33 41 61 94
Bandwidth (GHz) 5.5 7.0 8.3 14.0 20.5
Beam size (arcminutes) 52.8 39.6 30.6 21 13.2
Number of radiometers 2 2 4 4 8
System temperature (K) 29 39 59 92 145
Sensitivity (mK s ) 0.8 0.8 1.0 1.2 1.6

The WMAP's base is a 5.0 m (16.4 ft)-diameter solar panel array that keeps the instruments in shadow during CMB observations, (by keeping the craft constantly angled at 22°, relative to the Sun). Upon the array sit a bottom deck (supporting the warm components) and a top deck. The telescope's cold components: the focal-plane array and the mirrors, are separated from the warm components with a cylindrical, 33 cm (13 in)-long thermal isolation shell atop the deck.[18]

Passive thermal radiators cool the WMAP to approximately 90 K (−183.2 °C; −297.7 °F); they are connected to the low-noise amplifiers. The telescope consumes 419 W of power. The available telescope heaters are emergency-survival heaters, and there is a transmitter heater, used to warm them when off. The WMAP spacecraft's temperature is monitored with platinum resistance thermometers.[18]

The WMAP's calibration is effected with the CMB dipole and measurements of Jupiter; the beam patterns are measured against Jupiter. The telescope's data are relayed daily via a 2-GHz transponder providing a 667 kbit/s downlink to a 70 m (230 ft) Deep Space Network station. The spacecraft has two transponders, one a redundant backup; they are minimally active – about 40 minutes daily – to minimize radio frequency interference. The telescope's position is maintained, in its three axes, with three reaction wheels, gyroscopes, two star trackers and Sun sensors, and is steered with eight hydrazine thrusters.[18]

Launch, trajectory, and orbit edit

Animation of WMAP's trajectory
 
Oblique view
 
Viewed from Earth
   Earth ·   WMAP

The WMAP spacecraft arrived at the Kennedy Space Center on 20 April 2001. After being tested for two months, it was launched via Delta II 7425 launch vehicle on 30 June 2001.[20][22] It began operating on its internal power five minutes before its launching, and continued so operating until the solar panel array deployed. The WMAP was activated and monitored while it cooled. On 2 July 2001, it began working, first with in-flight testing (from launching until 17 August 2001), then began constant, formal work.[22] Afterwards, it effected three Earth-Moon phase loops, measuring its sidelobes, then flew by the Moon on 30 July 2001, en route to the Sun-Earth L2 Lagrange point, arriving there on 1 October 2001, becoming the first CMB observation mission posted there.[20]

Locating the spacecraft at Lagrange 2, (1,500,000 km (930,000 mi) from Earth) thermally stabilizes it and minimizes the contaminating solar, terrestrial, and lunar emissions registered. To view the entire sky, without looking to the Sun, the WMAP traces a path around L2 in a Lissajous orbit ca. 1.0° to 10°,[18] with a 6-month period.[20] The telescope rotates once every 2 minutes 9 seconds (0.464 rpm) and precesses at the rate of 1 revolution per hour.[18] WMAP measured the entire sky every six months, and completed its first, full-sky observation in April 2002.[21]

Experiment edit

Pseudo-Correlation Radiometer edit

The WMAP instrument consists of pseudo-correlation differential radiometers fed by two back-to-back 1.5 m (4 ft 11 in) primary Gregorian reflectors. This instrument uses five frequency bands from 22 GHz to 90 GHz to facilitate rejection of foreground signals from our own Galaxy. The WMAP instrument has a 3.5° x 3.5° field of view (FoV).[23]

Foreground radiation subtraction edit

The WMAP observed in five frequencies, permitting the measurement and subtraction of foreground contamination (from the Milky Way and extra-galactic sources) of the CMB. The main emission mechanisms are synchrotron radiation and free-free emission (dominating the lower frequencies), and astrophysical dust emissions (dominating the higher frequencies). The spectral properties of these emissions contribute different amounts to the five frequencies, thus permitting their identification and subtraction.[18]

Foreground contamination is removed in several ways. First, subtract extant emission maps from the WMAP's measurements; second, use the components' known spectral values to identify them; third, simultaneously fit the position and spectra data of the foreground emission, using extra data sets. Foreground contamination was reduced by using only the full-sky map portions with the least foreground contamination, while masking the remaining map portions.[18]

The five-year models of foreground emission, at different frequencies. Red = Synchrotron; Green = free-free; Blue = thermal dust.
         
23 GHz 33 GHz 41 GHz 61 GHz 94 GHz

Measurements and discoveries edit

One-year data release edit

 
One-year WMAP image of background cosmic radiation (2003)

On 11 February 2003, NASA published the first-year's worth of WMAP data. The latest calculated age and composition of the early universe were presented. In addition, an image of the early universe, that "contains such stunning detail, that it may be one of the most important scientific results of recent years" was presented. The newly released data surpass previous CMB measurements.[7]

Based upon the Lambda-CDM model, the WMAP team produced cosmological parameters from the WMAP's first-year results. Three sets are given below; the first and second sets are WMAP data; the difference is the addition of spectral indices, predictions of some inflationary models. The third data set combines the WMAP constraints with those from other CMB experiments (ACBAR and CBI), and constraints from the 2dF Galaxy Redshift Survey and Lyman alpha forest measurements. There are degenerations among the parameters, the most significant is between   and  ; the errors given are at 68% confidence.[24]

Best-fit cosmological parameters from WMAP one-year results[24]
Parameter Symbol Best fit (WMAP only) Best fit (WMAP, extra parameter) Best fit (all data)
Age of the universe (Ga)   13.4±0.3 13.7±0.2
Hubble's constant ( kmMpc·s )   72±5 70±5 71+4
−3
Baryonic content   0.024±0.001 0.023±0.002 0.0224±0.0009
Matter content   0.14±0.02 0.14±0.02 0.135+0.008
−0.009
Optical depth to reionization   0.166+0.076
−0.071
0.20±0.07 0.17±0.06
Amplitude A 0.9±0.1 0.92±0.12 0.83+0.09
−0.08
Scalar spectral index   0.99±0.04 0.93±0.07 0.93±0.03
Running of spectral index   −0.047±0.04 −0.031+0.016
−0.017
Fluctuation amplitude at 8h−1 Mpc   0.9±0.1 0.84±0.04
Total density of the universe   1.02±0.02

Using the best-fit data and theoretical models, the WMAP team determined the times of important universal events, including the redshift of reionization, 17±4; the redshift of decoupling, 1089±1 (and the universe's age at decoupling, 379+8
−7
 kyr
); and the redshift of matter/radiation equality, 3233+194
−210
. They determined the thickness of the surface of last scattering to be 195±2 in redshift, or 118+3
−2
 kyr
. They determined the current density of baryons, (2.5±0.1)×10−7 cm−1, and the ratio of baryons to photons, 6.1+0.3
−0.2
×10−10
. The WMAP's detection of an early reionization excluded warm dark matter.[24]

The team also examined Milky Way emissions at the WMAP frequencies, producing a 208-point source catalogue.

Three-year data release edit

 
Three-year WMAP image of background cosmic radiation (2006)

The three-year WMAP data were released on 17 March 2006. The data included temperature and polarization measurements of the CMB, which provided further confirmation of the standard flat Lambda-CDM model and new evidence in support of inflation.

The 3-year WMAP data alone shows that the universe must have dark matter. Results were computed both only using WMAP data, and also with a mix of parameter constraints from other instruments, including other CMB experiments (Arcminute Cosmology Bolometer Array Receiver (ACBAR), Cosmic Background Imager (CBI) and BOOMERANG), Sloan Digital Sky Survey (SDSS), the 2dF Galaxy Redshift Survey, the Supernova Legacy Survey and constraints on the Hubble constant from the Hubble Space Telescope.[25]

Best-fit cosmological parameters from WMAP three-year results[25]
Parameter Symbol Best fit (WMAP only)
Age of the universe (Ga)   13.73+0.16
−0.15
Hubble's constant ( kmMpc·s )   73.2+3.1
−3.2
Baryonic content   0.0229±0.00073
Matter content   0.1277+0.0080
−0.0079
Optical depth to reionization [a]   0.089±0.030
Scalar spectral index   0.958±0.016
Fluctuation amplitude at 8h−1 Mpc   0.761+0.049
−0.048
Tensor-to-scalar ratio [b] r <0.65

[a] ^ Optical depth to reionization improved due to polarization measurements.[26]
[b] ^ <0.30 when combined with SDSS data. No indication of non-gaussianity.[25]

Five-year data release edit

 
Five-year WMAP image of background cosmic radiation (2008)

The five-year WMAP data were released on 28 February 2008. The data included new evidence for the cosmic neutrino background, evidence that it took over half billion years for the first stars to reionize the universe, and new constraints on cosmic inflation.[27]

 
The five-year total-intensity and polarization spectra from WMAP
 
Matter/energy content in the current universe (top) and at the time of photon decoupling in the recombination epoch 380,000 years after the Big Bang (bottom)

The improvement in the results came from both having an extra two years of measurements (the data set runs between midnight on 10 August 2001 to midnight of 9 August 2006), as well as using improved data processing techniques and a better characterization of the instrument, most notably of the beam shapes. They also make use of the 33-GHz observations for estimating cosmological parameters; previously only the 41-GHz and 61-GHz channels had been used.

Improved masks were used to remove foregrounds.[10] Improvements to the spectra were in the 3rd acoustic peak, and the polarization spectra.[10]

The measurements put constraints on the content of the universe at the time that the CMB was emitted; at the time 10% of the universe was made up of neutrinos, 12% of atoms, 15% of photons and 63% dark matter. The contribution of dark energy at the time was negligible.[27] It also constrained the content of the present-day universe; 4.6% atoms, 23% dark matter and 72% dark energy.[10]

The WMAP five-year data was combined with measurements from Type Ia supernova (SNe) and Baryon acoustic oscillations (BAO).[10]

The elliptical shape of the WMAP skymap is the result of a Mollweide projection.[28]

Best-fit cosmological parameters from WMAP five-year results[10]
Parameter Symbol Best fit (WMAP only) Best fit (WMAP + SNe + BAO)
Age of the universe (Ga)   13.69±0.13 13.72±0.12
Hubble's constant ( kmMpc·s )   71.9+2.6
−2.7
70.5±1.3
Baryonic content   0.02273±0.00062 0.02267+0.00058
−0.00059
Cold dark matter content   0.1099±0.0062 0.1131±0.0034
Dark energy content   0.742±0.030 0.726±0.015
Optical depth to reionization   0.087±0.017 0.084±0.016
Scalar spectral index   0.963+0.014
−0.015
0.960±0.013
Running of spectral index   −0.037±0.028 −0.028±0.020
Fluctuation amplitude at 8h−1 Mpc   0.796±0.036 0.812±0.026
Total density of the universe   1.099+0.100
−0.085
1.0050+0.0060
−0.0061
Tensor-to-scalar ratio r <0.43 <0.22

The data puts limits on the value of the tensor-to-scalar ratio, r <0.22 (95% certainty), which determines the level at which gravitational waves affect the polarization of the CMB, and also puts limits on the amount of primordial non-gaussianity. Improved constraints were put on the redshift of reionization, which is 10.9±1.4, the redshift of decoupling, 1090.88±0.72 (as well as age of universe at decoupling, 376.971+3.162
−3.167
 kyr
) and the redshift of matter/radiation equality, 3253+89
−87
.[10]

The extragalactic source catalogue was expanded to include 390 sources, and variability was detected in the emission from Mars and Saturn.[10]

The five-year maps at different frequencies from WMAP with foregrounds (the red band)
         
23 GHz 33 GHz 41 GHz 61 GHz 94 GHz

Seven-year data release edit

 
7-year WMAP image of background cosmic radiation (2010)

The seven-year WMAP data were released on 26 January 2010. As part of this release, claims for inconsistencies with the standard model were investigated.[29] Most were shown not to be statistically significant, and likely due to a posteriori selection (where one sees a weird deviation, but fails to consider properly how hard one has been looking; a deviation with 1:1000 likelihood will typically be found if one tries one thousand times). For the deviations that do remain, there are no alternative cosmological ideas (for instance, there seem to be correlations with the ecliptic pole). It seems most likely these are due to other effects, with the report mentioning uncertainties in the precise beam shape and other possible small remaining instrumental and analysis issues.

The other confirmation of major significance is of the total amount of matter/energy in the universe in the form of dark energy – 72.8% (within 1.6%) as non 'particle' background, and dark matter – 22.7% (within 1.4%) of non baryonic (sub-atomic) 'particle' energy. This leaves matter, or baryonic particles (atoms) at only 4.56% (within 0.16%).

Best-fit cosmological parameters from WMAP seven-year results[30]
Parameter Symbol Best fit (WMAP only) Best fit (WMAP + BAO[31] + H0[32])
Age of the universe (Ga)   13.75±0.13 13.75±0.11
Hubble's constant ( kmMpc·s )   71.0±2.5 70.4+1.3
−1.4
Baryon density   0.0449±0.0028 0.0456±0.0016
Physical baryon density   0.02258+0.00057
−0.00056
0.02260±0.00053
Dark matter density   0.222±0.026 0.227±0.014
Physical dark matter density   0.1109±0.0056 0.1123±0.0035
Dark energy density   0.734±0.029 0.728+0.015
−0.016
Fluctuation amplitude at 8h−1 Mpc   0.801±0.030 0.809±0.024
Scalar spectral index   0.963±0.014 0.963±0.012
Reionization optical depth   0.088±0.015 0.087±0.014
*Total density of the universe   1.080+0.093
−0.071
1.0023+0.0056
−0.0054
*Tensor-to-scalar ratio, k0 = 0.002 Mpc−1 r < 0.36 (95% CL) < 0.24 (95% CL)
*Running of spectral index, k0 = 0.002 Mpc−1   −0.034±0.026 −0.022±0.020
Note: * = Parameters for extended models
(parameters place limits on deviations
from the Lambda-CDM model)[30]
The Seven-year maps at different frequencies from WMAP with foregrounds (the red band)
         
23-GHz 33-GHz 41-GHz 61-GHz 94-GHz

Nine-year data release edit

 
9-year WMAP image of background cosmic radiation (2012)

On 29 December 2012, the nine-year WMAP data and related images were released. 13.772±0.059 billion-year-old temperature fluctuations and a temperature range of ± 200 microkelvins are shown in the image. In addition, the study found that 95% of the early universe is composed of dark matter and dark energy, the curvature of space is less than 0.4% of "flat" and the universe emerged from the cosmic Dark Ages "about 400 million years" after the Big Bang.[15][16][33]

Best-fit cosmological parameters from WMAP nine-year results[16]
Parameter Symbol Best fit (WMAP only) Best fit (WMAP + eCMB + BAO + H0)
Age of the universe (Ga)   13.74±0.11 13.772±0.059
Hubble's constant ( kmMpc·s )   70.0±2.2 69.32±0.80
Baryon density   0.0463±0.0024 0.04628±0.00093
Physical baryon density   0.02264±0.00050 0.02223±0.00033
Cold dark matter density   0.233±0.023 0.2402+0.0088
−0.0087
Physical cold dark matter density   0.1138±0.0045 0.1153±0.0019
Dark energy density   0.721±0.025 0.7135+0.0095
−0.0096
Density fluctuations at 8h−1 Mpc   0.821±0.023 0.820+0.013
−0.014
Scalar spectral index   0.972±0.013 0.9608±0.0080
Reionization optical depth   0.089±0.014 0.081±0.012
Curvature 1     −0.037+0.044
−0.042
−0.0027+0.0039
−0.0038
Tensor-to-scalar ratio (k0 = 0.002 Mpc−1) r < 0.38 (95% CL) < 0.13 (95% CL)
Running scalar spectral index   −0.019±0.025 −0.023±0.011

Main result edit

Interviews with Charles Bennett and Lyman Page about WMAP

The main result of the mission is contained in the various oval maps of the CMB temperature differences. These oval images present the temperature distribution derived by the WMAP team from the observations by the telescope during the mission. Measured is the temperature obtained from a Planck's law interpretation of the microwave background. The oval map covers the whole sky. The results are a snapshot of the universe around 375,000 years after the Big Bang, which happened about 13.8 billion years ago. The microwave background is very homogeneous in temperature (the relative variations from the mean, which presently is still 2.7 kelvins, are only of the order of 5×10−5). The temperature variations corresponding to the local directions are presented through different colors (the "red" directions are hotter, the "blue" directions cooler than the average).[citation needed]

Follow-on missions and future measurements edit

 
Comparison of CMB results from COBE, WMAP and Planck – 21 March 2013

The original timeline for WMAP gave it two years of observations; these were completed by September 2003. Mission extensions were granted in 2002, 2004, 2006, and 2008 giving the spacecraft a total of 9 observing years, which ended August 2010[20] and in October 2010 the spacecraft was moved to a heliocentric "graveyard" orbit.[14]

The Planck spacecraft also measured the CMB from 2009 to 2013 and aims to refine the measurements made by WMAP, both in total intensity and polarization. Various ground- and balloon-based instruments have also made CMB contributions, and others are being constructed to do so. Many are aimed at searching for the B-mode polarization expected from the simplest models of inflation, including The E and B Experiment (EBEX), Spider, BICEP and Keck Array (BICEP2), Keck, QUIET, Cosmology Large Angular Scale Surveyor (CLASS), South Pole Telescope (SPTpol) and others.

On 21 March 2013, the European-led research team behind the Planck spacecraft released the mission's all-sky map of the cosmic microwave background.[34][35] The map suggests the universe is slightly older than previously thought. According to the map, subtle fluctuations in temperature were imprinted on the deep sky when the cosmos was about 370,000 years old. The imprint reflects ripples that arose as early, in the existence of the universe, as the first nonillionth (10−30) of a second. Apparently, these ripples gave rise to the present vast cosmic web of galaxy clusters and dark matter. Based on the 2013 data, the universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. On 5 February 2015, new data was released by the Planck mission, according to which the age of the universe is 13.799 ± 0.021 billion years and the Hubble constant is 67.74 ± 0.46 (km/s)/Mpc.[36]

See also edit

References edit

  1. ^ "WMAP News: Events Timeline".
  2. ^ Siddiqi, Asif (2018). Beyond Earth: A Chronicle of Deep Space Exploration, 1958–2016 (PDF) (second ed.). NASA History Program Office.
  3. ^ "WMAP News: Events Timeline". NASA. 27 December 2010. Retrieved 8 July 2015.
  4. ^ NASA.gov   This article incorporates text from this source, which is in the public domain.
  5. ^ "Wilkinson Microwave Anisotropy Probe: Overview". Goddard Space Flight Center. 4 August 2009. Retrieved 24 September 2009. The WMAP (Wilkinson Microwave Anisotropy Probe) mission is designed to determine the geometry, content, and evolution of the universe via a 13 arcminutes FWHM resolution full sky map of the temperature anisotropy of the cosmic microwave background radiation.   This article incorporates text from this source, which is in the public domain.
  6. ^ "Tests of Big Bang: The CMB". Goddard Space Flight Center. July 2009. Retrieved 24 September 2009. Only with very sensitive instruments, such as COBE and WMAP, can cosmologists detect fluctuations in the cosmic microwave background temperature. By studying these fluctuations, cosmologists can learn about the origin of galaxies and large-scale structures of galaxies, and they can measure the basic parameters of the Big Bang theory.   This article incorporates text from this source, which is in the public domain.
  7. ^ a b c . NASA / WMAP team. 11 February 2003. Archived from the original on 27 February 2008. Retrieved 27 April 2008.
  8. ^ Glenday, C., ed. (2010). Guinness World Records 2010: Thousands of new records in The Book of the Decade!. Bantam Books. p. 7. ISBN 978-0553593372.
  9. ^ Beringer, J.; et al. (Particle Data Group) (2013). "Astrophysics and Cosmology". Review of Particle Physics.   This article incorporates text from this source, which is in the public domain.
  10. ^ a b c d e f g h i Hinshaw et al. (2009)
  11. ^ Seife (2003)
  12. ^ ""Super Hot" Papers in Science". unafold. October 2005. Retrieved 2 December 2022.
  13. ^ . Archived from the original on 4 June 2010.
  14. ^ a b "Mission Complete! WMAP Fires Its Thrusters For The Last Time". Discovery News. 7 October 2010. Retrieved 3 September 2021.
  15. ^ a b Gannon, M. (21 December 2012). "New 'Baby Picture' of Universe Unveiled". Space.com. Retrieved 21 December 2012.
  16. ^ a b c Bennett, C. L.; et al. (2013). "Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results". Astrophysical Journal Supplement. 208 (2): 20. arXiv:1212.5225. Bibcode:2013ApJS..208...20B. doi:10.1088/0067-0049/208/2/20. S2CID 119271232.
  17. ^ O'Dwyer, I. J.; et al. (2004). "Bayesian Power Spectrum Analysis of the First-Year Wilkinson Microwave Anisotropy Probe Data". Astrophysical Journal Letters. 617 (2): L99–L102. arXiv:astro-ph/0407027. Bibcode:2004ApJ...617L..99O. doi:10.1086/427386. S2CID 118150531.
  18. ^ a b c d e f g h i j k l m n Bennett et al. (2003a)
  19. ^ Bennett et al. (2003b)
  20. ^ a b c d e "WMAP News: Facts". NASA. 22 April 2008. Retrieved 27 April 2008.   This article incorporates text from this source, which is in the public domain.
  21. ^ a b "WMAP News: Events". NASA. 17 April 2008. Retrieved 27 April 2008.   This article incorporates text from this source, which is in the public domain.
  22. ^ a b c Limon et al. (2008)
  23. ^ "Experiment: Pseudo-Correlation Radiometer". NASA. 28 October 2021. Retrieved 3 December 2021.   This article incorporates text from this source, which is in the public domain.
  24. ^ a b c Spergel et al. (2003)
  25. ^ a b c Spergel et al. (2007)
  26. ^ Hinshaw et al. (2007)
  27. ^ a b "WMAP reveals neutrinos, end of dark ages, first second of universe". NASA / WMAP team. 7 March 2008. Retrieved 27 April 2008.   This article incorporates text from this source, which is in the public domain.
  28. ^ WMAP 1-year Paper Figures, Bennett, et al.   This article incorporates text from this source, which is in the public domain.
  29. ^ Bennett, C. L.; et al. (2011). "Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?". Astrophysical Journal Supplement Series. 192 (2): 17. arXiv:1001.4758. Bibcode:2011ApJS..192...17B. doi:10.1088/0067-0049/192/2/17. S2CID 53521938.
  30. ^ a b Table 8 on p. 39 of Jarosik, N.; et al. "Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results" (PDF). WMAP Collaboration. NASA. Retrieved 4 December 2010. (from NASA's WMAP Documents page)   This article incorporates text from this source, which is in the public domain.
  31. ^ Percival, Will J.; et al. (February 2010). "Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample". Monthly Notices of the Royal Astronomical Society. 401 (4): 2148–2168. arXiv:0907.1660. Bibcode:2010MNRAS.401.2148P. doi:10.1111/j.1365-2966.2009.15812.x. S2CID 9350615.
  32. ^ Riess, Adam G.; et al. "A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder" (PDF). hubblesite.org. Retrieved 4 December 2010.
  33. ^ Hinshaw, et al., 2013
  34. ^ Clavin, Whitney; Harrington, J. D. (21 March 2013). "Planck Mission Brings Universe Into Sharp Focus". NASA. Retrieved 21 March 2013.   This article incorporates text from this source, which is in the public domain.
  35. ^ "Mapping the Early Universe". The New York Times. 21 March 2013. Retrieved 23 March 2013.
  36. ^ Ade, P. A.; et al. (2016). "Planck 2015 results. XIII. Cosmological parameters". Astronomy & Astrophysics. 594: A13. arXiv:1502.01589. Bibcode:2016A&A...594A..13P. doi:10.1051/0004-6361/201525830. S2CID 119262962.

Primary sources edit

  • Bennett, C.; et al. (2003). "The Microwave Anisotropy Probe (MAP) Mission". Astrophysical Journal. 583 (1): 1–23. arXiv:astro-ph/0301158. Bibcode:2003ApJ...583....1B. doi:10.1086/345346. S2CID 8530058.
  • Bennett, C.; et al. (2003). "First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission". Astrophysical Journal Supplement. 148 (1): 97–117. arXiv:astro-ph/0302208. Bibcode:2003ApJS..148...97B. doi:10.1086/377252. S2CID 10612050.
  • Hinshaw, G.; et al. (2007). "Three-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations: Temperature Analysis". Astrophysical Journal Supplement. 170 (2): 288–334. arXiv:astro-ph/0603451. Bibcode:2007ApJS..170..288H. doi:10.1086/513698. S2CID 15554608.
  • Hinshaw, G.; et al. (February 2009). "Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps, and Basic Results". The Astrophysical Journal Supplement. 180 (2). WMAP Collaboration: 225–245. arXiv:0803.0732. Bibcode:2009ApJS..180..225H. doi:10.1088/0067-0049/180/2/225. S2CID 3629998.
  • "Wilkinson Microwave Anisotropy Probe (WMAP): Five–Year Explanatory Supplement" (PDF). 20 March 2008.
  • Seife, Charles (2003). "Breakthrough of the Year: Illuminating the Dark Universe". Science. 302 (5653): 2038–2039. doi:10.1126/science.302.5653.2038. PMID 14684787. S2CID 120116611.
  • Spergel, D. N.; et al. (2003). "First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters". Astrophysical Journal Supplement. 148 (1): 175–194. arXiv:astro-ph/0302209. Bibcode:2003ApJS..148..175S. doi:10.1086/377226. S2CID 10794058.
  • Sergel, D. N.; et al. (2007). "Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology". Astrophysical Journal Supplement. 170 (2): 377–408. arXiv:astro-ph/0603449. Bibcode:2007ApJS..170..377S. doi:10.1086/513700. S2CID 1386346.
  • Komatsu; Dunkley; Nolta; Bennett; Gold; Hinshaw; Jarosik; Larson; et al. (2009). "Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation". The Astrophysical Journal Supplement Series. 180 (2): 330–376. arXiv:0803.0547. Bibcode:2009ApJS..180..330K. doi:10.1088/0067-0049/180/2/330. S2CID 119290314.

Further reading edit

  • Bennett, Charles (2007). "Wilkinson microwave anisotropy probe". Scholarpedia. 2 (10): 4731. Bibcode:2007SchpJ...2.4731B. doi:10.4249/scholarpedia.4731.

External links edit

  • Sizing up the universe
  • Big Bang glow hints at funnel-shaped Universe, New Scientist, 15 April 2004
  • NASA 16 March 2006 WMAP inflation related press release 22 November 2013 at the Wayback Machine
  • Seife, Charles (2003). "With Its Ingredients MAPped, Universe's Recipe Beckons". Science. 300 (5620): 730–731. doi:10.1126/science.300.5620.730. PMID 12730575. S2CID 585072.

wilkinson, microwave, anisotropy, probe, wmap, originally, known, microwave, anisotropy, probe, explorer, nasa, spacecraft, operating, from, 2001, 2010, which, measured, temperature, differences, across, cosmic, microwave, background, radiant, heat, remaining,. The Wilkinson Microwave Anisotropy Probe WMAP originally known as the Microwave Anisotropy Probe MAP and Explorer 80 was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic microwave background CMB the radiant heat remaining from the Big Bang 5 6 Headed by Professor Charles L Bennett of Johns Hopkins University the mission was developed in a joint partnership between the NASA Goddard Space Flight Center and Princeton University 7 The WMAP spacecraft was launched on 30 June 2001 from Florida The WMAP mission succeeded the COBE space mission and was the second medium class MIDEX spacecraft in the NASA Explorer program In 2003 MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson 1935 2002 7 who had been a member of the mission s science team After nine years of operations WMAP was switched off in 2010 following the launch of the more advanced Planck spacecraft by European Space Agency ESA in 2009 Wilkinson Microwave Anisotropy ProbeWilkinson Microwave Anisotropy Probe WMAP satelliteNamesExplorer 80MAPMicrowave Anisotropy ProbeMIDEX 2WMAPMission typeCosmic microwave background AstronomyOperatorNASACOSPAR ID2001 027ASATCAT no 26859Websitehttp map gsfc nasa gov Mission duration27 months planned 9 years achieved 1 Spacecraft propertiesSpacecraftExplorer LXXXSpacecraft typeWilkinson Microwave Anisotropy ProbeBusWMAPManufacturerNRAOLaunch mass840 kg 1 850 lb 2 Dry mass763 kg 1 682 lb Dimensions3 6 5 1 m 12 17 ft Power419 wattsStart of missionLaunch date30 June 2001 19 46 46 UTC 3 RocketDelta II 7425 10 Delta 246 Launch siteCape Canaveral SLC 17BContractorBoeing Launch ServicesEntered service1 October 2001End of missionDisposalGraveyard orbitDeactivated20 October 2010 4 Last contact19 August 2010Orbital parametersReference systemSun Earth L2 orbitRegimeLissajous orbitMain telescopeTypeGregorianDiameter1 4 1 6 m 4 ft 7 in 5 ft 3 in Wavelengths23 GHz to 94 GHzInstrumentsPseudo Correlation RadiometerWilkinson Microwave Anisotropy Probe mission patch Explorer program HETE 2 Explorer 79 RHESSI Explorer 81 WMAP s measurements played a key role in establishing the current Standard Model of Cosmology the Lambda CDM model The WMAP data are very well fit by a universe that is dominated by dark energy in the form of a cosmological constant Other cosmological data are also consistent and together tightly constrain the Model In the Lambda CDM model of the universe the age of the universe is 13 772 0 059 billion years The WMAP mission s determination of the age of the universe is to better than 1 precision 8 The current expansion rate of the universe is see Hubble constant 69 32 0 80 km s 1 Mpc 1 The content of the universe currently consists of 4 628 0 093 ordinary baryonic matter 24 02 0 88 0 87 cold dark matter CDM that neither emits nor absorbs light and 71 35 0 95 0 96 of dark energy in the form of a cosmological constant that accelerates the expansion of the universe 9 Less than 1 of the current content of the universe is in neutrinos but WMAP s measurements have found for the first time in 2008 that the data prefer the existence of a cosmic neutrino background 10 with an effective number of neutrino species of 3 26 0 35 The contents point to a Euclidean flat geometry with curvature W k displaystyle Omega k of 0 0027 0 0039 0 0038 The WMAP measurements also support the cosmic inflation paradigm in several ways including the flatness measurement The mission has won various awards according to Science magazine the WMAP was the Breakthrough of the Year for 2003 11 This mission s results papers were first and second in the Super Hot Papers in Science Since 2003 list 12 Of the all time most referenced papers in physics and astronomy in the INSPIRE HEP database only three have been published since 2000 and all three are WMAP publications Bennett Lyman A Page Jr and David N Spergel the latter both of Princeton University shared the 2010 Shaw Prize in astronomy for their work on WMAP 13 Bennett and the WMAP science team were awarded the 2012 Gruber Prize in cosmology The 2018 Breakthrough Prize in Fundamental Physics was awarded to Bennett Gary Hinshaw Norman Jarosik Page Spergel and the WMAP science team In October 2010 the WMAP spacecraft was derelict in a heliocentric graveyard orbit after completing nine years of operations 14 All WMAP data are released to the public and have been subject to careful scrutiny The final official data release was the nine year release in 2012 15 16 Some aspects of the data are statistically unusual for the Standard Model of Cosmology For example the largest angular scale measurement the quadrupole moment is somewhat smaller than the Model would predict but this discrepancy is not highly significant 17 A large cold spot and other features of the data are more statistically significant and research continues into these Contents 1 Objectives 2 Development 3 Spacecraft 4 Launch trajectory and orbit 5 Experiment 5 1 Pseudo Correlation Radiometer 6 Foreground radiation subtraction 7 Measurements and discoveries 7 1 One year data release 7 2 Three year data release 7 3 Five year data release 7 4 Seven year data release 7 5 Nine year data release 8 Main result 9 Follow on missions and future measurements 10 See also 11 References 11 1 Primary sources 12 Further reading 13 External linksObjectives edit nbsp The universe s timeline from the Big Bang to the WMAP nbsp A comparison of the sensitivity of WMAP with COBE and Penzias and Wilson s telescope simulated data The WMAP objective was to measure the temperature differences in the Cosmic Microwave Background CMB radiation The anisotropies then were used to measure the universe s geometry content and evolution and to test the Big Bang model and the cosmic inflation theory 18 For that the mission created a full sky map of the CMB with a 13 arcminutes resolution via multi frequency observation The map required the fewest systematic errors no correlated pixel noise and accurate calibration to ensure angular scale accuracy greater than its resolution 18 The map contains 3 145 728 pixels and uses the HEALPix scheme to pixelize the sphere 19 The telescope also measured the CMB s E mode polarization 18 and foreground polarization 10 Its service life was 27 months 3 to reach the L2 position and 2 years of observation 18 Development editThe MAP mission was proposed to NASA in 1995 selected for definition study in 1996 and approved for development in 1997 20 21 The WMAP was preceded by two missions to observe the CMB i the Soviet RELIKT 1 that reported the upper limit measurements of CMB anisotropies and ii the U S COBE satellite that first reported large scale CMB fluctuations The WMAP was 45 times more sensitive with 33 times the angular resolution of its COBE satellite predecessor 22 The successor European Planck mission operational 2009 2013 had a higher resolution and higher sensitivity than WMAP and observed in 9 frequency bands rather than WMAP s 5 allowing improved astrophysical foreground models Spacecraft edit nbsp WMAP spacecraft diagram nbsp Illustration of WMAP s receivers The telescope s primary reflecting mirrors are a pair of Gregorian 1 4 1 6 m 4 ft 7 in 5 ft 3 in dishes facing opposite directions that focus the signal onto a pair of 0 9 1 0 m 2 ft 11 in 3 ft 3 in secondary reflecting mirrors They are shaped for optimal performance a carbon fibre shell upon a Korex core thinly coated with aluminium and silicon oxide The secondary reflectors transmit the signals to the corrugated feedhorns that sit on a focal plane array box beneath the primary reflectors 18 The receivers are polarization sensitive differential radiometers measuring the difference between two telescope beams The signal is amplified with High electron mobility transistor HEMT low noise amplifiers built by the National Radio Astronomy Observatory NRAO There are 20 feeds 10 in each direction from which a radiometer collects a signal the measure is the difference in the sky signal from opposite directions The directional separation azimuth is 180 the total angle is 141 To improve subtraction of foreground signals from our Milky Way galaxy the WMAP used five discrete radio frequency bands from 23 GHz to 94 GHz 18 Properties of WMAP at different frequencies 18 Property K band Ka band Q band V band W band Central wavelength mm 13 9 1 7 3 4 9 3 2 Central frequency GHz 23 33 41 61 94 Bandwidth GHz 5 5 7 0 8 3 14 0 20 5 Beam size arcminutes 52 8 39 6 30 6 21 13 2 Number of radiometers 2 2 4 4 8 System temperature K 29 39 59 92 145 Sensitivity mK s1 2 displaystyle 1 2 nbsp 0 8 0 8 1 0 1 2 1 6 The WMAP s base is a 5 0 m 16 4 ft diameter solar panel array that keeps the instruments in shadow during CMB observations by keeping the craft constantly angled at 22 relative to the Sun Upon the array sit a bottom deck supporting the warm components and a top deck The telescope s cold components the focal plane array and the mirrors are separated from the warm components with a cylindrical 33 cm 13 in long thermal isolation shell atop the deck 18 Passive thermal radiators cool the WMAP to approximately 90 K 183 2 C 297 7 F they are connected to the low noise amplifiers The telescope consumes 419 W of power The available telescope heaters are emergency survival heaters and there is a transmitter heater used to warm them when off The WMAP spacecraft s temperature is monitored with platinum resistance thermometers 18 The WMAP s calibration is effected with the CMB dipole and measurements of Jupiter the beam patterns are measured against Jupiter The telescope s data are relayed daily via a 2 GHz transponder providing a 667 kbit s downlink to a 70 m 230 ft Deep Space Network station The spacecraft has two transponders one a redundant backup they are minimally active about 40 minutes daily to minimize radio frequency interference The telescope s position is maintained in its three axes with three reaction wheels gyroscopes two star trackers and Sun sensors and is steered with eight hydrazine thrusters 18 Launch trajectory and orbit editAnimation of WMAP s trajectory nbsp Oblique view nbsp Viewed from Earth Earth WMAP The WMAP spacecraft arrived at the Kennedy Space Center on 20 April 2001 After being tested for two months it was launched via Delta II 7425 launch vehicle on 30 June 2001 20 22 It began operating on its internal power five minutes before its launching and continued so operating until the solar panel array deployed The WMAP was activated and monitored while it cooled On 2 July 2001 it began working first with in flight testing from launching until 17 August 2001 then began constant formal work 22 Afterwards it effected three Earth Moon phase loops measuring its sidelobes then flew by the Moon on 30 July 2001 en route to the Sun Earth L2 Lagrange point arriving there on 1 October 2001 becoming the first CMB observation mission posted there 20 Locating the spacecraft at Lagrange 2 1 500 000 km 930 000 mi from Earth thermally stabilizes it and minimizes the contaminating solar terrestrial and lunar emissions registered To view the entire sky without looking to the Sun the WMAP traces a path around L2 in a Lissajous orbit ca 1 0 to 10 18 with a 6 month period 20 The telescope rotates once every 2 minutes 9 seconds 0 464 rpm and precesses at the rate of 1 revolution per hour 18 WMAP measured the entire sky every six months and completed its first full sky observation in April 2002 21 nbsp WMAP launches from Kennedy Space Center 30 June 2001 nbsp The WMAP s trajectory and orbit nbsp WMAP s orbit and sky scan strategyExperiment editPseudo Correlation Radiometer edit The WMAP instrument consists of pseudo correlation differential radiometers fed by two back to back 1 5 m 4 ft 11 in primary Gregorian reflectors This instrument uses five frequency bands from 22 GHz to 90 GHz to facilitate rejection of foreground signals from our own Galaxy The WMAP instrument has a 3 5 x 3 5 field of view FoV 23 Foreground radiation subtraction editThe WMAP observed in five frequencies permitting the measurement and subtraction of foreground contamination from the Milky Way and extra galactic sources of the CMB The main emission mechanisms are synchrotron radiation and free free emission dominating the lower frequencies and astrophysical dust emissions dominating the higher frequencies The spectral properties of these emissions contribute different amounts to the five frequencies thus permitting their identification and subtraction 18 Foreground contamination is removed in several ways First subtract extant emission maps from the WMAP s measurements second use the components known spectral values to identify them third simultaneously fit the position and spectra data of the foreground emission using extra data sets Foreground contamination was reduced by using only the full sky map portions with the least foreground contamination while masking the remaining map portions 18 The five year models of foreground emission at different frequencies Red Synchrotron Green free free Blue thermal dust nbsp nbsp nbsp nbsp nbsp 23 GHz 33 GHz 41 GHz 61 GHz 94 GHzMeasurements and discoveries editOne year data release edit nbsp One year WMAP image of background cosmic radiation 2003 On 11 February 2003 NASA published the first year s worth of WMAP data The latest calculated age and composition of the early universe were presented In addition an image of the early universe that contains such stunning detail that it may be one of the most important scientific results of recent years was presented The newly released data surpass previous CMB measurements 7 Based upon the Lambda CDM model the WMAP team produced cosmological parameters from the WMAP s first year results Three sets are given below the first and second sets are WMAP data the difference is the addition of spectral indices predictions of some inflationary models The third data set combines the WMAP constraints with those from other CMB experiments ACBAR and CBI and constraints from the 2dF Galaxy Redshift Survey and Lyman alpha forest measurements There are degenerations among the parameters the most significant is between n s displaystyle n s nbsp and t displaystyle tau nbsp the errors given are at 68 confidence 24 Best fit cosmological parameters from WMAP one year results 24 Parameter Symbol Best fit WMAP only Best fit WMAP extra parameter Best fit all data Age of the universe Ga t 0 displaystyle t 0 nbsp 13 4 0 3 13 7 0 2 Hubble s constant km Mpc s H 0 displaystyle H 0 nbsp 72 5 70 5 71 4 3 Baryonic content W b h 2 displaystyle Omega b h 2 nbsp 0 024 0 001 0 023 0 002 0 0224 0 0009 Matter content W m h 2 displaystyle Omega m h 2 nbsp 0 14 0 02 0 14 0 02 0 135 0 008 0 009 Optical depth to reionization t displaystyle tau nbsp 0 166 0 076 0 071 0 20 0 07 0 17 0 06 Amplitude A 0 9 0 1 0 92 0 12 0 83 0 09 0 08 Scalar spectral index n s displaystyle n s nbsp 0 99 0 04 0 93 0 07 0 93 0 03 Running of spectral index d n s d k displaystyle dn s dk nbsp 0 047 0 04 0 031 0 016 0 017 Fluctuation amplitude at 8h 1 Mpc s 8 displaystyle sigma 8 nbsp 0 9 0 1 0 84 0 04 Total density of the universe W t o t displaystyle Omega tot nbsp 1 02 0 02 Using the best fit data and theoretical models the WMAP team determined the times of important universal events including the redshift of reionization 17 4 the redshift of decoupling 1089 1 and the universe s age at decoupling 379 8 7 kyr and the redshift of matter radiation equality 3233 194 210 They determined the thickness of the surface of last scattering to be 195 2 in redshift or 118 3 2 kyr They determined the current density of baryons 2 5 0 1 10 7 cm 1 and the ratio of baryons to photons 6 1 0 3 0 2 10 10 The WMAP s detection of an early reionization excluded warm dark matter 24 The team also examined Milky Way emissions at the WMAP frequencies producing a 208 point source catalogue Three year data release edit nbsp Three year WMAP image of background cosmic radiation 2006 The three year WMAP data were released on 17 March 2006 The data included temperature and polarization measurements of the CMB which provided further confirmation of the standard flat Lambda CDM model and new evidence in support of inflation The 3 year WMAP data alone shows that the universe must have dark matter Results were computed both only using WMAP data and also with a mix of parameter constraints from other instruments including other CMB experiments Arcminute Cosmology Bolometer Array Receiver ACBAR Cosmic Background Imager CBI and BOOMERANG Sloan Digital Sky Survey SDSS the 2dF Galaxy Redshift Survey the Supernova Legacy Survey and constraints on the Hubble constant from the Hubble Space Telescope 25 Best fit cosmological parameters from WMAP three year results 25 Parameter Symbol Best fit WMAP only Age of the universe Ga t 0 displaystyle t 0 nbsp 13 73 0 16 0 15 Hubble s constant km Mpc s H 0 displaystyle H 0 nbsp 73 2 3 1 3 2 Baryonic content W b h 2 displaystyle Omega b h 2 nbsp 0 0229 0 00073 Matter content W m h 2 displaystyle Omega m h 2 nbsp 0 1277 0 0080 0 0079 Optical depth to reionization a t displaystyle tau nbsp 0 089 0 030 Scalar spectral index n s displaystyle n s nbsp 0 958 0 016 Fluctuation amplitude at 8h 1 Mpc s 8 displaystyle sigma 8 nbsp 0 761 0 049 0 048 Tensor to scalar ratio b r lt 0 65 a Optical depth to reionization improved due to polarization measurements 26 b lt 0 30 when combined with SDSS data No indication of non gaussianity 25 Five year data release edit nbsp Five year WMAP image of background cosmic radiation 2008 The five year WMAP data were released on 28 February 2008 The data included new evidence for the cosmic neutrino background evidence that it took over half billion years for the first stars to reionize the universe and new constraints on cosmic inflation 27 nbsp The five year total intensity and polarization spectra from WMAP nbsp Matter energy content in the current universe top and at the time of photon decoupling in the recombination epoch 380 000 years after the Big Bang bottom The improvement in the results came from both having an extra two years of measurements the data set runs between midnight on 10 August 2001 to midnight of 9 August 2006 as well as using improved data processing techniques and a better characterization of the instrument most notably of the beam shapes They also make use of the 33 GHz observations for estimating cosmological parameters previously only the 41 GHz and 61 GHz channels had been used Improved masks were used to remove foregrounds 10 Improvements to the spectra were in the 3rd acoustic peak and the polarization spectra 10 The measurements put constraints on the content of the universe at the time that the CMB was emitted at the time 10 of the universe was made up of neutrinos 12 of atoms 15 of photons and 63 dark matter The contribution of dark energy at the time was negligible 27 It also constrained the content of the present day universe 4 6 atoms 23 dark matter and 72 dark energy 10 The WMAP five year data was combined with measurements from Type Ia supernova SNe and Baryon acoustic oscillations BAO 10 The elliptical shape of the WMAP skymap is the result of a Mollweide projection 28 Best fit cosmological parameters from WMAP five year results 10 Parameter Symbol Best fit WMAP only Best fit WMAP SNe BAO Age of the universe Ga t 0 displaystyle t 0 nbsp 13 69 0 13 13 72 0 12 Hubble s constant km Mpc s H 0 displaystyle H 0 nbsp 71 9 2 6 2 7 70 5 1 3 Baryonic content W b h 2 displaystyle Omega b h 2 nbsp 0 02273 0 00062 0 02267 0 00058 0 00059 Cold dark matter content W c h 2 displaystyle Omega c h 2 nbsp 0 1099 0 0062 0 1131 0 0034 Dark energy content W L displaystyle Omega Lambda nbsp 0 742 0 030 0 726 0 015 Optical depth to reionization t displaystyle tau nbsp 0 087 0 017 0 084 0 016 Scalar spectral index n s displaystyle n s nbsp 0 963 0 014 0 015 0 960 0 013 Running of spectral index d n s d l n k displaystyle dn s dlnk nbsp 0 037 0 028 0 028 0 020 Fluctuation amplitude at 8h 1 Mpc s 8 displaystyle sigma 8 nbsp 0 796 0 036 0 812 0 026 Total density of the universe W t o t displaystyle Omega tot nbsp 1 099 0 100 0 085 1 0050 0 0060 0 0061 Tensor to scalar ratio r lt 0 43 lt 0 22 The data puts limits on the value of the tensor to scalar ratio r lt 0 22 95 certainty which determines the level at which gravitational waves affect the polarization of the CMB and also puts limits on the amount of primordial non gaussianity Improved constraints were put on the redshift of reionization which is 10 9 1 4 the redshift of decoupling 1090 88 0 72 as well as age of universe at decoupling 376 971 3 162 3 167 kyr and the redshift of matter radiation equality 3253 89 87 10 The extragalactic source catalogue was expanded to include 390 sources and variability was detected in the emission from Mars and Saturn 10 The five year maps at different frequencies from WMAP with foregrounds the red band nbsp nbsp nbsp nbsp nbsp 23 GHz 33 GHz 41 GHz 61 GHz 94 GHz Seven year data release edit nbsp 7 year WMAP image of background cosmic radiation 2010 The seven year WMAP data were released on 26 January 2010 As part of this release claims for inconsistencies with the standard model were investigated 29 Most were shown not to be statistically significant and likely due to a posteriori selection where one sees a weird deviation but fails to consider properly how hard one has been looking a deviation with 1 1000 likelihood will typically be found if one tries one thousand times For the deviations that do remain there are no alternative cosmological ideas for instance there seem to be correlations with the ecliptic pole It seems most likely these are due to other effects with the report mentioning uncertainties in the precise beam shape and other possible small remaining instrumental and analysis issues The other confirmation of major significance is of the total amount of matter energy in the universe in the form of dark energy 72 8 within 1 6 as non particle background and dark matter 22 7 within 1 4 of non baryonic sub atomic particle energy This leaves matter or baryonic particles atoms at only 4 56 within 0 16 Best fit cosmological parameters from WMAP seven year results 30 Parameter Symbol Best fit WMAP only Best fit WMAP BAO 31 H0 32 Age of the universe Ga t 0 displaystyle t 0 nbsp 13 75 0 13 13 75 0 11 Hubble s constant km Mpc s H 0 displaystyle H 0 nbsp 71 0 2 5 70 4 1 3 1 4 Baryon density W b displaystyle Omega b nbsp 0 0449 0 0028 0 0456 0 0016 Physical baryon density W b h 2 displaystyle Omega b h 2 nbsp 0 02258 0 00057 0 00056 0 02260 0 00053 Dark matter density W c displaystyle Omega c nbsp 0 222 0 026 0 227 0 014 Physical dark matter density W c h 2 displaystyle Omega c h 2 nbsp 0 1109 0 0056 0 1123 0 0035 Dark energy density W L displaystyle Omega Lambda nbsp 0 734 0 029 0 728 0 015 0 016 Fluctuation amplitude at 8h 1 Mpc s 8 displaystyle sigma 8 nbsp 0 801 0 030 0 809 0 024 Scalar spectral index n s displaystyle n s nbsp 0 963 0 014 0 963 0 012 Reionization optical depth t displaystyle tau nbsp 0 088 0 015 0 087 0 014 Total density of the universe W t o t displaystyle Omega tot nbsp 1 080 0 093 0 071 1 0023 0 0056 0 0054 Tensor to scalar ratio k0 0 002 Mpc 1 r lt 0 36 95 CL lt 0 24 95 CL Running of spectral index k0 0 002 Mpc 1 d n s d ln k displaystyle dn s d ln k nbsp 0 034 0 026 0 022 0 020 Note Parameters for extended models parameters place limits on deviationsfrom the Lambda CDM model 30 The Seven year maps at different frequencies from WMAP with foregrounds the red band nbsp nbsp nbsp nbsp nbsp 23 GHz 33 GHz 41 GHz 61 GHz 94 GHz Nine year data release edit nbsp 9 year WMAP image of background cosmic radiation 2012 On 29 December 2012 the nine year WMAP data and related images were released 13 772 0 059 billion year old temperature fluctuations and a temperature range of 200 microkelvins are shown in the image In addition the study found that 95 of the early universe is composed of dark matter and dark energy the curvature of space is less than 0 4 of flat and the universe emerged from the cosmic Dark Ages about 400 million years after the Big Bang 15 16 33 Best fit cosmological parameters from WMAP nine year results 16 Parameter Symbol Best fit WMAP only Best fit WMAP eCMB BAO H0 Age of the universe Ga t 0 displaystyle t 0 nbsp 13 74 0 11 13 772 0 059 Hubble s constant km Mpc s H 0 displaystyle H 0 nbsp 70 0 2 2 69 32 0 80 Baryon density W b displaystyle Omega b nbsp 0 0463 0 0024 0 04628 0 00093 Physical baryon density W b h 2 displaystyle Omega b h 2 nbsp 0 02264 0 00050 0 02223 0 00033 Cold dark matter density W c displaystyle Omega c nbsp 0 233 0 023 0 2402 0 0088 0 0087 Physical cold dark matter density W c h 2 displaystyle Omega c h 2 nbsp 0 1138 0 0045 0 1153 0 0019 Dark energy density W L displaystyle Omega Lambda nbsp 0 721 0 025 0 7135 0 0095 0 0096 Density fluctuations at 8h 1 Mpc s 8 displaystyle sigma 8 nbsp 0 821 0 023 0 820 0 013 0 014 Scalar spectral index n s displaystyle n s nbsp 0 972 0 013 0 9608 0 0080 Reionization optical depth t displaystyle tau nbsp 0 089 0 014 0 081 0 012 Curvature 1 displaystyle nbsp W t o t displaystyle Omega rm tot nbsp 0 037 0 044 0 042 0 0027 0 0039 0 0038 Tensor to scalar ratio k0 0 002 Mpc 1 r lt 0 38 95 CL lt 0 13 95 CL Running scalar spectral index d n s d ln k displaystyle dn s d ln k nbsp 0 019 0 025 0 023 0 011Main result edit source source source source source source source Interviews with Charles Bennett and Lyman Page about WMAP The main result of the mission is contained in the various oval maps of the CMB temperature differences These oval images present the temperature distribution derived by the WMAP team from the observations by the telescope during the mission Measured is the temperature obtained from a Planck s law interpretation of the microwave background The oval map covers the whole sky The results are a snapshot of the universe around 375 000 years after the Big Bang which happened about 13 8 billion years ago The microwave background is very homogeneous in temperature the relative variations from the mean which presently is still 2 7 kelvins are only of the order of 5 10 5 The temperature variations corresponding to the local directions are presented through different colors the red directions are hotter the blue directions cooler than the average citation needed Follow on missions and future measurements edit nbsp Comparison of CMB results from COBE WMAP and Planck 21 March 2013 The original timeline for WMAP gave it two years of observations these were completed by September 2003 Mission extensions were granted in 2002 2004 2006 and 2008 giving the spacecraft a total of 9 observing years which ended August 2010 20 and in October 2010 the spacecraft was moved to a heliocentric graveyard orbit 14 The Planck spacecraft also measured the CMB from 2009 to 2013 and aims to refine the measurements made by WMAP both in total intensity and polarization Various ground and balloon based instruments have also made CMB contributions and others are being constructed to do so Many are aimed at searching for the B mode polarization expected from the simplest models of inflation including The E and B Experiment EBEX Spider BICEP and Keck Array BICEP2 Keck QUIET Cosmology Large Angular Scale Surveyor CLASS South Pole Telescope SPTpol and others On 21 March 2013 the European led research team behind the Planck spacecraft released the mission s all sky map of the cosmic microwave background 34 35 The map suggests the universe is slightly older than previously thought According to the map subtle fluctuations in temperature were imprinted on the deep sky when the cosmos was about 370 000 years old The imprint reflects ripples that arose as early in the existence of the universe as the first nonillionth 10 30 of a second Apparently these ripples gave rise to the present vast cosmic web of galaxy clusters and dark matter Based on the 2013 data the universe contains 4 9 ordinary matter 26 8 dark matter and 68 3 dark energy On 5 February 2015 new data was released by the Planck mission according to which the age of the universe is 13 799 0 021 billion years and the Hubble constant is 67 74 0 46 km s Mpc 36 See also edit nbsp Spaceflight portal Explorers Program Illustris project List of cosmic microwave background experiments List of cosmological computation software S150 Galactic X Ray MappingReferences edit WMAP News Events Timeline Siddiqi Asif 2018 Beyond Earth A Chronicle of Deep Space Exploration 1958 2016 PDF second ed NASA History Program Office WMAP News Events Timeline NASA 27 December 2010 Retrieved 8 July 2015 NASA gov nbsp This article incorporates text from this source which is in the public domain Wilkinson Microwave Anisotropy Probe Overview Goddard Space Flight Center 4 August 2009 Retrieved 24 September 2009 The WMAP Wilkinson Microwave Anisotropy Probe mission is designed to determine the geometry content and evolution of the universe via a 13 arcminutes FWHM resolution full sky map of the temperature anisotropy of the cosmic microwave background radiation nbsp This article incorporates text from this source which is in the public domain Tests of Big Bang The CMB Goddard Space Flight Center July 2009 Retrieved 24 September 2009 Only with very sensitive instruments such as COBE and WMAP can cosmologists detect fluctuations in the cosmic microwave background temperature By studying these fluctuations cosmologists can learn about the origin of galaxies and large scale structures of galaxies and they can measure the basic parameters of the Big Bang theory nbsp This article incorporates text from this source which is in the public domain a b c New image of infant universe reveals era of first stars age of cosmos and more NASA WMAP team 11 February 2003 Archived from the original on 27 February 2008 Retrieved 27 April 2008 Glenday C ed 2010 Guinness World Records 2010 Thousands of new records in The Book of the Decade Bantam Books p 7 ISBN 978 0553593372 Beringer J et al Particle Data Group 2013 Astrophysics and Cosmology Review of Particle Physics nbsp This article incorporates text from this source which is in the public domain a b c d e f g h i Hinshaw et al 2009 Seife 2003 Super Hot Papers in Science unafold October 2005 Retrieved 2 December 2022 Announcement of the Shaw Laureates 2010 Archived from the original on 4 June 2010 a b Mission Complete WMAP Fires Its Thrusters For The Last Time Discovery News 7 October 2010 Retrieved 3 September 2021 a b Gannon M 21 December 2012 New Baby Picture of Universe Unveiled Space com Retrieved 21 December 2012 a b c Bennett C L et al 2013 Nine Year Wilkinson Microwave Anisotropy Probe WMAP Observations Final Maps and Results Astrophysical Journal Supplement 208 2 20 arXiv 1212 5225 Bibcode 2013ApJS 208 20B doi 10 1088 0067 0049 208 2 20 S2CID 119271232 O Dwyer I J et al 2004 Bayesian Power Spectrum Analysis of the First Year Wilkinson Microwave Anisotropy Probe Data Astrophysical Journal Letters 617 2 L99 L102 arXiv astro ph 0407027 Bibcode 2004ApJ 617L 99O doi 10 1086 427386 S2CID 118150531 a b c d e f g h i j k l m n Bennett et al 2003a Bennett et al 2003b a b c d e WMAP News Facts NASA 22 April 2008 Retrieved 27 April 2008 nbsp This article incorporates text from this source which is in the public domain a b WMAP News Events NASA 17 April 2008 Retrieved 27 April 2008 nbsp This article incorporates text from this source which is in the public domain a b c Limon et al 2008 Experiment Pseudo Correlation Radiometer NASA 28 October 2021 Retrieved 3 December 2021 nbsp This article incorporates text from this source which is in the public domain a b c Spergel et al 2003 a b c Spergel et al 2007 Hinshaw et al 2007 a b WMAP reveals neutrinos end of dark ages first second of universe NASA WMAP team 7 March 2008 Retrieved 27 April 2008 nbsp This article incorporates text from this source which is in the public domain WMAP 1 year Paper Figures Bennett et al nbsp This article incorporates text from this source which is in the public domain Bennett C L et al 2011 Seven Year Wilkinson Microwave Anisotropy Probe WMAP Observations Are There Cosmic Microwave Background Anomalies Astrophysical Journal Supplement Series 192 2 17 arXiv 1001 4758 Bibcode 2011ApJS 192 17B doi 10 1088 0067 0049 192 2 17 S2CID 53521938 a b Table 8 on p 39 of Jarosik N et al Seven Year Wilkinson Microwave Anisotropy Probe WMAP Observations Sky Maps Systematic Errors and Basic Results PDF WMAP Collaboration NASA Retrieved 4 December 2010 from NASA s WMAP Documents page nbsp This article incorporates text from this source which is in the public domain Percival Will J et al February 2010 Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample Monthly Notices of the Royal Astronomical Society 401 4 2148 2168 arXiv 0907 1660 Bibcode 2010MNRAS 401 2148P doi 10 1111 j 1365 2966 2009 15812 x S2CID 9350615 Riess Adam G et al A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder PDF hubblesite org Retrieved 4 December 2010 Hinshaw et al 2013 Clavin Whitney Harrington J D 21 March 2013 Planck Mission Brings Universe Into Sharp Focus NASA Retrieved 21 March 2013 nbsp This article incorporates text from this source which is in the public domain Mapping the Early Universe The New York Times 21 March 2013 Retrieved 23 March 2013 Ade P A et al 2016 Planck 2015 results XIII Cosmological parameters Astronomy amp Astrophysics 594 A13 arXiv 1502 01589 Bibcode 2016A amp A 594A 13P doi 10 1051 0004 6361 201525830 S2CID 119262962 Primary sources edit Bennett C et al 2003 The Microwave Anisotropy Probe MAP Mission Astrophysical Journal 583 1 1 23 arXiv astro ph 0301158 Bibcode 2003ApJ 583 1B doi 10 1086 345346 S2CID 8530058 Bennett C et al 2003 First Year Wilkinson Microwave Anisotropy Probe WMAP Observations Foreground Emission Astrophysical Journal Supplement 148 1 97 117 arXiv astro ph 0302208 Bibcode 2003ApJS 148 97B doi 10 1086 377252 S2CID 10612050 Hinshaw G et al 2007 Three Year Wilkinson Microwave Anisotropy Probe WMAP1 Observations Temperature Analysis Astrophysical Journal Supplement 170 2 288 334 arXiv astro ph 0603451 Bibcode 2007ApJS 170 288H doi 10 1086 513698 S2CID 15554608 Hinshaw G et al February 2009 Five Year Wilkinson Microwave Anisotropy Probe Observations Data Processing Sky Maps and Basic Results The Astrophysical Journal Supplement 180 2 WMAP Collaboration 225 245 arXiv 0803 0732 Bibcode 2009ApJS 180 225H doi 10 1088 0067 0049 180 2 225 S2CID 3629998 Wilkinson Microwave Anisotropy Probe WMAP Five Year Explanatory Supplement PDF 20 March 2008 Seife Charles 2003 Breakthrough of the Year Illuminating the Dark Universe Science 302 5653 2038 2039 doi 10 1126 science 302 5653 2038 PMID 14684787 S2CID 120116611 Spergel D N et al 2003 First Year Wilkinson Microwave Anisotropy Probe WMAP Observations Determination of Cosmological Parameters Astrophysical Journal Supplement 148 1 175 194 arXiv astro ph 0302209 Bibcode 2003ApJS 148 175S doi 10 1086 377226 S2CID 10794058 Sergel D N et al 2007 Three Year Wilkinson Microwave Anisotropy Probe WMAP Observations Implications for Cosmology Astrophysical Journal Supplement 170 2 377 408 arXiv astro ph 0603449 Bibcode 2007ApJS 170 377S doi 10 1086 513700 S2CID 1386346 Komatsu Dunkley Nolta Bennett Gold Hinshaw Jarosik Larson et al 2009 Five Year Wilkinson Microwave Anisotropy Probe WMAP Observations Cosmological Interpretation The Astrophysical Journal Supplement Series 180 2 330 376 arXiv 0803 0547 Bibcode 2009ApJS 180 330K doi 10 1088 0067 0049 180 2 330 S2CID 119290314 Further reading editBennett Charles 2007 Wilkinson microwave anisotropy probe Scholarpedia 2 10 4731 Bibcode 2007SchpJ 2 4731B doi 10 4249 scholarpedia 4731 External links edit nbsp Wikimedia Commons has media related to WMAP Sizing up the universe Big Bang glow hints at funnel shaped Universe New Scientist 15 April 2004 NASA 16 March 2006 WMAP inflation related press release Archived 22 November 2013 at the Wayback Machine Seife Charles 2003 With Its Ingredients MAPped Universe s Recipe Beckons Science 300 5620 730 731 doi 10 1126 science 300 5620 730 PMID 12730575 S2CID 585072 Retrieved from https en wikipedia org w index php title Wilkinson Microwave Anisotropy Probe amp oldid 1193245408, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.