fbpx
Wikipedia

Vector space

In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space.

Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is stretched by a factor of 2, yielding the sum v + 2w.

Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrices, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear equations.

Vector spaces are characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. This means that, for two vector spaces over a given field and with the same dimension, the properties that depend only on the vector-space structure are exactly the same (technically the vector spaces are isomorphic). A vector space is finite-dimensional if its dimension is a natural number. Otherwise, it is infinite-dimensional, and its dimension is an infinite cardinal. Finite-dimensional vector spaces occur naturally in geometry and related areas. Infinite-dimensional vector spaces occur in many areas of mathematics. For example, polynomial rings are countably infinite-dimensional vector spaces, and many function spaces have the cardinality of the continuum as a dimension.

Many vector spaces that are considered in mathematics are also endowed with other structures. This is the case of algebras, which include field extensions, polynomial rings, associative algebras and Lie algebras. This is also the case of topological vector spaces, which include function spaces, inner product spaces, normed spaces, Hilbert spaces and Banach spaces.

Definition and basic properties Edit

In this article, vectors are represented in boldface to distinguish them from scalars.[nb 1]

A vector space over a field F is a non-empty set V together with two binary operations that satisfy the eight axioms listed below. In this context, the elements of V are commonly called vectors, and the elements of F are called scalars.

  • The first operation, called vector addition or simply addition assigns to any two vectors v and w in V a third vector in V which is commonly written as v + w, and called the sum of these two vectors.
  • The second operation, called scalar multiplication,assigns to any scalar a in F and any vector v in V another vector in V, which is denoted av.[nb 2]

To have a vector space, the eight following axioms must be satisfied for every u, v and w in V, and a and b in F.[1]

Axiom Meaning
Associativity of vector addition u + (v + w) = (u + v) + w
Commutativity of vector addition u + v = v + u
Identity element of vector addition There exists an element 0V, called the zero vector, such that v + 0 = v for all vV.
Inverse elements of vector addition For every vV, there exists an element vV, called the additive inverse of v, such that v + (−v) = 0.
Compatibility of scalar multiplication with field multiplication a(bv) = (ab)v [nb 3]
Identity element of scalar multiplication 1v = v, where 1 denotes the multiplicative identity in F.
Distributivity of scalar multiplication with respect to vector addition   a(u + v) = au + av
Distributivity of scalar multiplication with respect to field addition (a + b)v = av + bv

When the scalar field is the real numbers the vector space is called a real vector space. When the scalar field is the complex numbers, the vector space is called a complex vector space. These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered. Such a vector space is called an F-vector space or a vector space over F.

An equivalent definition of a vector space can be given, which is much more concise but less elementary: the first four axioms (related to vector addition) say that a vector space is an abelian group under addition, and the four remaining axioms (related to the scalar multiplication), say that this operation defines a ring homomorphism from the field F into the endomorphism ring of this group.

Subtraction of two vectors can be defined as

 

Direct consequences of the axioms include that, for every   and   one has

  •  
  •  
  •  
  •   implies   or  

Even more concisely, a vector space is an  -module, where   is a field.

Related concepts and properties Edit

 
A vector v in R2 (blue) expressed in terms of different bases: using the standard basis of R2: v = xe1 + ye2 (black), and using a different, non-orthogonal basis: v = f1 + f2 (red).
Linear combination
Given a set G of elements of a F-vector space V, a linear combination of elements of G is an element of V of the form
 
where   and   The scalars   are called the coefficients of the linear combination.
Linear independence
The elements of a subset G of a F-vector space V are said to be linearly independent if no element of G can be written as a linear combination of the other elements of G. Equivalently, they are linearly independent if two linear combinations of elements of G define the same element of V if and only if they have the same coefficients. Also equivalently, they are linearly independent if a linear combination results in the zero vector if and only if all its coefficients are zero.
Linear subspace
A linear subspace or vector subspace W of a vector space V is a non-empty subset of V that is closed under vector addition and scalar multiplication; that is, the sum of two elements of W and the product of an element of V by a scalar belong to W. This implies that every linear combination of elements of W belongs to W. A linear subspace is a vector space for the induced addition and scalar multiplication; this means that the closure property implies that the axioms of a vector space are satisfied.
The closure property also implies that every intersection of linear subspaces is a linear subspace.
Linear span
Given a subset G of a vector space V, the linear span or simply the span of G is the smallest linear subspace of V that contains G, in the sense that it is the intersection of all linear subspaces that contain G. The span of G is also the set of all linear combinations of elements of G.
If W is the span of G, one says that G spans or generates W, and that G is a spanning set or a generating set of W.
Basis and dimension
A subset of a vector space is a basis if its elements are linearly independent and span the vector space. Every vector space has at least one basis, generally many (see Basis (linear algebra) § Proof that every vector space has a basis). Moreover, all bases of a vector space have the same cardinality, which is called the dimension of the vector space (see Dimension theorem for vector spaces). This is a fundamental property of vector spaces, which is detailed in the remainder of the section.

Bases are a fundamental tool for the study of vector spaces, especially when the dimension is finite. In the infinite-dimensional case, the existence of infinite bases, often called Hamel bases, depend on the axiom of choice. It follows that, in general, no base can be explicitly described. For example, the real numbers form an infinite-dimensional vector space over the rational numbers, for which no specific basis is known.

Consider a basis   of a vector space V of dimension n over a field F. The definition of a basis implies that every   may be written

 
with   in F, and that this decomposition is unique. The scalars   are called the coordinates of v on the basis. They are also said to be the coefficients of the decomposition of v on the basis. One also says that the n-tuple of the coordinates is the coordinate vector of v on the basis, since the set   of the n-tuples of elements of F is a vector space for componentwise addition and scalar multiplication, whose dimension is n.

The one-to-one correspondence between vectors and their coordinate vectors maps vector addition to vector addition and scalar multiplication to scalar multiplication. It is thus a vector space isomorphism, which allows translating reasonings and computations on vectors into reasonings and computations on their coordinates. If, in turn, these coordinates are arranged as matrices, these reasonings and computations on coordinates can be expressed concisely as reasonings and computations on matrices. Moreover, a linear equation relating matrices can be expanded into a system of linear equations, and, conversely, every such system can be compacted into a linear equation on matrices.

In summary, finite-dimensional linear algebra may be expressed in three equivalent languages:

  • Vector spaces, which provide concise and coordinate-free statements,
  • Matrices, which are convenient for expressing concisely explicit computations,
  • Systems of linear equations, which provide more elementary formulations.

History Edit

Vector spaces stem from affine geometry, via the introduction of coordinates in the plane or three-dimensional space. Around 1636, French mathematicians René Descartes and Pierre de Fermat founded analytic geometry by identifying solutions to an equation of two variables with points on a plane curve.[2] To achieve geometric solutions without using coordinates, Bolzano introduced, in 1804, certain operations on points, lines and planes, which are predecessors of vectors.[3] Möbius (1827) introduced the notion of barycentric coordinates. Bellavitis (1833) introduced an equivalence relation on directed line segments that share the same length and direction which he called equipollence. A Euclidean vector is then an equivalence class of that relation.[4]

Vectors were reconsidered with the presentation of complex numbers by Argand and Hamilton and the inception of quaternions by the latter.[5] They are elements in R2 and R4; treating them using linear combinations goes back to Laguerre in 1867, who also defined systems of linear equations.

In 1857, Cayley introduced the matrix notation which allows for a harmonization and simplification of linear maps. Around the same time, Grassmann studied the barycentric calculus initiated by Möbius. He envisaged sets of abstract objects endowed with operations.[6] In his work, the concepts of linear independence and dimension, as well as scalar products are present. Actually Grassmann's 1844 work exceeds the framework of vector spaces, since his considering multiplication, too, led him to what are today called algebras. Italian mathematician Peano was the first to give the modern definition of vector spaces and linear maps in 1888,[7] although he called them "linear systems".[8]

An important development of vector spaces is due to the construction of function spaces by Henri Lebesgue. This was later formalized by Banach and Hilbert, around 1920.[9] At that time, algebra and the new field of functional analysis began to interact, notably with key concepts such as spaces of p-integrable functions and Hilbert spaces.[10] Also at this time, the first studies concerning infinite-dimensional vector spaces were done.

Examples Edit

Arrows in the plane Edit

The first example of a vector space consists of arrows in a fixed plane, starting at one fixed point. This is used in physics to describe forces or velocities. Given any two such arrows, v and w, the parallelogram spanned by these two arrows contains one diagonal arrow that starts at the origin, too. This new arrow is called the sum of the two arrows, and is denoted v + w. In the special case of two arrows on the same line, their sum is the arrow on this line whose length is the sum or the difference of the lengths, depending on whether the arrows have the same direction. Another operation that can be done with arrows is scaling: given any positive real number a, the arrow that has the same direction as v, but is dilated or shrunk by multiplying its length by a, is called multiplication of v by a. It is denoted av. When a is negative, av is defined as the arrow pointing in the opposite direction instead.

The following shows a few examples: if a = 2, the resulting vector aw has the same direction as w, but is stretched to the double length of w (right image below). Equivalently, 2w is the sum w + w. Moreover, (−1)v = −v has the opposite direction and the same length as v (blue vector pointing down in the right image).

   

Second example: ordered pairs of numbers Edit

A second key example of a vector space is provided by pairs of real numbers x and y. (The order of the components x and y is significant, so such a pair is also called an ordered pair.) Such a pair is written as (x, y). The sum of two such pairs and multiplication of a pair with a number is defined as follows:

 
and
 

The first example above reduces to this example, if an arrow is represented by a pair of Cartesian coordinates of its endpoint.

Coordinate space Edit

The simplest example of a vector space over a field F is the field F itself (as it is an abelian group for addition, a part of the requirements to be a field), equipped with its addition (It becomes vector addition.) and multiplication (It becomes scalar multiplication.). More generally, all n-tuples (sequences of length n)

 
of elements ai of F form a vector space that is usually denoted Fn and called a coordinate space.[11] The case n = 1 is the above-mentioned simplest example, in which the field F is also regarded as a vector space over itself. The case F = R and n = 2 (so R2) was discussed in the introduction above.

Complex numbers and other field extensions Edit

The set of complex numbers C, that is, numbers that can be written in the form x + iy for real numbers x and y where i is the imaginary unit, form a vector space over the reals with the usual addition and multiplication: (x + iy) + (a + ib) = (x + a) + i(y + b) and c ⋅ (x + iy) = (cx) + i(cy) for real numbers x, y, a, b and c. The various axioms of a vector space follow from the fact that the same rules hold for complex number arithmetic.

In fact, the example of complex numbers is essentially the same as (that is, it is isomorphic to) the vector space of ordered pairs of real numbers mentioned above: if we think of the complex number x + i y as representing the ordered pair (x, y) in the complex plane then we see that the rules for addition and scalar multiplication correspond exactly to those in the earlier example.

More generally, field extensions provide another class of examples of vector spaces, particularly in algebra and algebraic number theory: a field F containing a smaller field E is an E-vector space, by the given multiplication and addition operations of F.[12] For example, the complex numbers are a vector space over R, and the field extension   is a vector space over Q.

Function spaces Edit

 
Addition of functions: the sum of the sine and the exponential function is   with  .

Functions from any fixed set Ω to a field F also form vector spaces, by performing addition and scalar multiplication pointwise. That is, the sum of two functions f and g is the function   given by

 
and similarly for multiplication. Such function spaces occur in many geometric situations, when Ω is the real line or an interval, or other subsets of R. Many notions in topology and analysis, such as continuity, integrability or differentiability are well-behaved with respect to linearity: sums and scalar multiples of functions possessing such a property still have that property.[13] Therefore, the set of such functions are vector spaces, whose study belongs to functional analysis.

Linear equations Edit

Systems of homogeneous linear equations are closely tied to vector spaces.[14] For example, the solutions of

 
are given by triples with arbitrary     and   They form a vector space: sums and scalar multiples of such triples still satisfy the same ratios of the three variables; thus they are solutions, too. Matrices can be used to condense multiple linear equations as above into one vector equation, namely
 

where   is the matrix containing the coefficients of the given equations,   is the vector     denotes the matrix product, and   is the zero vector. In a similar vein, the solutions of homogeneous linear differential equations form vector spaces. For example,

 

yields   where   and   are arbitrary constants, and   is the natural exponential function.

Linear maps and matrices Edit

The relation of two vector spaces can be expressed by linear map or linear transformation. They are functions that reflect the vector space structure, that is, they preserve sums and scalar multiplication:

 
 
for all   and   in   all   in  [15]

An isomorphism is a linear map f : VW such that there exists an inverse map g : WV, which is a map such that the two possible compositions fg : WW and gf : VV are identity maps. Equivalently, f is both one-to-one (injective) and onto (surjective).[16] If there exists an isomorphism between V and W, the two spaces are said to be isomorphic; they are then essentially identical as vector spaces, since all identities holding in V are, via f, transported to similar ones in W, and vice versa via g.

 
Describing an arrow vector v by its coordinates x and y yields an isomorphism of vector spaces.

For example, the "arrows in the plane" and "ordered pairs of numbers" vector spaces in the introduction are isomorphic: a planar arrow v departing at the origin of some (fixed) coordinate system can be expressed as an ordered pair by considering the x- and y-component of the arrow, as shown in the image at the right. Conversely, given a pair (x, y), the arrow going by x to the right (or to the left, if x is negative), and y up (down, if y is negative) turns back the arrow v.

Linear maps VW between two vector spaces form a vector space HomF(V, W), also denoted L(V, W), or 𝓛(V, W).[17] The space of linear maps from V to F is called the dual vector space, denoted V.[18] Via the injective natural map VV∗∗, any vector space can be embedded into its bidual; the map is an isomorphism if and only if the space is finite-dimensional.[19]

Once a basis of V is chosen, linear maps f : VW are completely determined by specifying the images of the basis vectors, because any element of V is expressed uniquely as a linear combination of them.[20] If dim V = dim W, a 1-to-1 correspondence between fixed bases of V and W gives rise to a linear map that maps any basis element of V to the corresponding basis element of W. It is an isomorphism, by its very definition.[21] Therefore, two vector spaces over a given field are isomorphic if their dimensions agree and vice versa. Another way to express this is that any vector space over a given field is completely classified (up to isomorphism) by its dimension, a single number. In particular, any n-dimensional F-vector space V is isomorphic to Fn. There is, however, no "canonical" or preferred isomorphism; actually an isomorphism φ : FnV is equivalent to the choice of a basis of V, by mapping the standard basis of Fn to V, via φ. The freedom of choosing a convenient basis is particularly useful in the infinite-dimensional context; see below.[clarification needed]

Matrices Edit

 
A typical matrix

Matrices are a useful notion to encode linear maps.[22] They are written as a rectangular array of scalars as in the image at the right. Any m-by-n matrix   gives rise to a linear map from Fn to Fm, by the following

 
where   denotes summation, or, using the matrix multiplication of the matrix   with the coordinate vector  
 

Moreover, after choosing bases of V and W, any linear map f : VW is uniquely represented by a matrix via this assignment.[23]

 
The volume of this parallelepiped is the absolute value of the determinant of the 3-by-3 matrix formed by the vectors r1, r2, and r3.

The determinant det (A) of a square matrix A is a scalar that tells whether the associated map is an isomorphism or not: to be so it is sufficient and necessary that the determinant is nonzero.[24] The linear transformation of Rn corresponding to a real n-by-n matrix is orientation preserving if and only if its determinant is positive.

Eigenvalues and eigenvectors Edit

Endomorphisms, linear maps f : VV, are particularly important since in this case vectors v can be compared with their image under f, f(v). Any nonzero vector v satisfying λv = f(v), where λ is a scalar, is called an eigenvector of f with eigenvalue λ.[nb 4][25] Equivalently, v is an element of the kernel of the difference fλ · Id (where Id is the identity map VV). If V is finite-dimensional, this can be rephrased using determinants: f having eigenvalue λ is equivalent to

 
By spelling out the definition of the determinant, the expression on the left hand side can be seen to be a polynomial function in λ, called the characteristic polynomial of f.[26] If the field F is large enough to contain a zero of this polynomial (which automatically happens for F algebraically closed, such as F = C) any linear map has at least one eigenvector. The vector space V may or may not possess an eigenbasis, a basis consisting of eigenvectors. This phenomenon is governed by the Jordan canonical form of the map.[27][nb 5] The set of all eigenvectors corresponding to a particular eigenvalue of f forms a vector space known as the eigenspace corresponding to the eigenvalue (and f) in question. To achieve the spectral theorem, the corresponding statement in the infinite-dimensional case, the machinery of functional analysis is needed, see below.[clarification needed]

Basic constructions Edit

In addition to the above concrete examples, there are a number of standard linear algebraic constructions that yield vector spaces related to given ones. In addition to the definitions given below, they are also characterized by universal properties, which determine an object   by specifying the linear maps from   to any other vector space.

Subspaces and quotient spaces Edit

 
A line passing through the origin (blue, thick) in R3 is a linear subspace. It is the intersection of two planes (green and yellow).

A nonempty subset   of a vector space   that is closed under addition and scalar multiplication (and therefore contains the  -vector of  ) is called a linear subspace of   or simply a subspace of   when the ambient space is unambiguously a vector space.[28][nb 6] Subspaces of   are vector spaces (over the same field) in their own right. The intersection of all subspaces containing a given set   of vectors is called its span, and it is the smallest subspace of   containing the set  Expressed in terms of elements, the span is the subspace consisting of all the linear combinations of elements of  [29]

A linear subspace of dimension 1 is a vector line. A linear subspace of dimension 2 is a vector plane. A linear subspace that contains all elements but one of a basis of the ambient space is a vector hyperplane. In a vector space of finite dimension   a vector hyperplane is thus a subspace of dimension  

The counterpart to subspaces are quotient vector spaces.[30] Given any subspace   the quotient space   ("  modulo  ") is defined as follows: as a set, it consists of   where   is an arbitrary vector in   The sum of two such elements   and   is   and scalar multiplication is given by   The key point in this definition is that   if and only if the difference of   and   lies in  [nb 7] This way, the quotient space "forgets" information that is contained in the subspace  

The kernel   of a linear map   consists of vectors   that are mapped to   in  [31] The kernel and the image   are subspaces of   and   respectively.[32] The existence of kernels and images is part of the statement that the category of vector spaces (over a fixed field  ) is an abelian category, that is, a corpus of mathematical objects and structure-preserving maps between them (a category) that behaves much like the category of abelian groups.[33] Because of this, many statements such as the first isomorphism theorem (also called rank–nullity theorem in matrix-related terms)

 
and the second and third isomorphism theorem can be formulated and proven in a way very similar to the corresponding statements for groups.

An important example is the kernel of a linear map   for some fixed matrix   as above.[clarification needed] The kernel of this map is the subspace of vectors   such that   which is precisely the set of solutions to the system of homogeneous linear equations belonging to   This concept also extends to linear differential equations

 
where the coefficients   are functions in   too. In the corresponding map
 
the derivatives of the function   appear linearly (as opposed to   for example). Since differentiation is a linear procedure (that is,   and   for a constant  ) this assignment is linear, called a linear differential operator. In particular, the solutions to the differential equation   form a vector space (over R or C).

Direct product and direct sum Edit

The direct product of vector spaces and the direct sum of vector spaces are two ways of combining an indexed family of vector spaces into a new vector space.

The direct product   of a family of vector spaces   consists of the set of all tuples   which specify for each index   in some index set   an element   of  [34] Addition and scalar multiplication is performed componentwise. A variant of this construction is the direct sum   (also called coproduct and denoted  ), where only tuples with finitely many nonzero vectors are allowed. If the index set   is finite, the two constructions agree, but in general they are different.

Tensor product Edit

The tensor product   or simply   of two vector spaces   and   is one of the central notions of multilinear algebra which deals with extending notions such as linear maps to several variables. A map   from the Cartesian product   is called bilinear if   is linear in both variables   and   That is to say, for fixed   the map   is linear in the sense above and likewise for fixed  

 
Commutative diagram depicting the universal property of the tensor product

The tensor product is a particular vector space that is a universal recipient of bilinear maps   as follows. It is defined as the vector space consisting of finite (formal) sums of symbols called tensors

 
subject to the rules[35]
 
These rules ensure that the map   from the   to   that maps a tuple   to   is bilinear. The universality states that given any vector space   and any bilinear map   there exists a unique map   shown in the diagram with a dotted arrow, whose composition with   equals    [36] This is called the universal property of the tensor product, an instance of the method—much used in advanced abstract algebra—to indirectly define objects by specifying maps from or to this object.

Vector spaces with additional structure Edit

From the point of view of linear algebra, vector spaces are completely understood insofar as any vector space over a given field is characterized, up to isomorphism, by its dimension. However, vector spaces per se do not offer a framework to deal with the question—crucial to analysis—whether a sequence of functions converges to another function. Likewise, linear algebra is not adapted to deal with infinite series, since the addition operation allows only finitely many terms to be added. Therefore, the needs of functional analysis require considering additional structures.

A vector space may be given a partial order   under which some vectors can be compared.[37] For example,  -dimensional real space   can be ordered by comparing its vectors componentwise. Ordered vector spaces, for example Riesz spaces, are fundamental to Lebesgue integration, which relies on the ability to express a function as a difference of two positive functions

 
where   denotes the positive part of   and   the negative part.[38]

Normed vector spaces and inner product spaces Edit

"Measuring" vectors is done by specifying a norm, a datum which measures lengths of vectors, or by an inner product, which measures angles between vectors. Norms and inner products are denoted   and   respectively. The datum of an inner product entails that lengths of vectors can be defined too, by defining the associated norm   Vector spaces endowed with such data are known as normed vector spaces and inner product spaces, respectively.[39]

Coordinate space   can be equipped with the standard dot product:

 
In   this reflects the common notion of the angle between two vectors   and   by the law of cosines:
 
Because of this, two vectors satisfying   are called orthogonal. An important variant of the standard dot product is used in Minkowski space:   endowed with the Lorentz product[40]
 
In contrast to the standard dot product, it is not positive definite:   also takes negative values, for example, for   Singling out the fourth coordinate—corresponding to time, as opposed to three space-dimensions—makes it useful for the mathematical treatment of special relativity.

Topological vector spaces Edit

Convergence questions are treated by considering vector spaces   carrying a compatible topology, a structure that allows one to talk about elements being close to each other.[41][42] Compatible here means that addition and scalar multiplication have to be continuous maps. Roughly, if   and   in   and   in   vary by a bounded amount, then so do   and  [nb 8] To make sense of specifying the amount a scalar changes, the field   also has to carry a topology in this context; a common choice are the reals or the complex numbers.

In such topological vector spaces one can consider series of vectors. The infinite sum

 
denotes the limit of the corresponding finite partial sums of the sequence   of elements of   For example, the   could be (real or complex) functions belonging to some function space   in which case the series is a function series. The mode of convergence of the series depends on the topology imposed on the function space. In such cases, pointwise convergence and uniform convergence are two prominent examples.
 
Unit "spheres" in   consist of plane vectors of norm 1. Depicted are the unit spheres in different  -norms, for   and   The bigger diamond depicts points of 1-norm equal to 2.

A way to ensure the existence of limits of certain infinite series is to restrict attention to spaces where any Cauchy sequence has a limit; such a vector space is called complete. Roughly, a vector space is complete provided that it contains all necessary limits. For example, the vector space of polynomials on the unit interval   equipped with the topology of uniform convergence is not complete because any continuous function on   can be uniformly approximated by a sequence of polynomials, by the Weierstrass approximation theorem.[43] In contrast, the space of all continuous functions on   with the same topology is complete.[44] A norm gives rise to a topology by defining that a sequence of vectors   converges to   if and only if

 
Banach and Hilbert spaces are complete topological vector spaces whose topologies are given, respectively, by a norm and an inner product. Their study—a key piece of functional analysis—focuses on infinite-dimensional vector spaces, since all norms on finite-dimensional topological vector spaces give rise to the same notion of convergence.[45] The image at the right shows the equivalence of the  -norm and  -norm on   as the unit "balls" enclose each other, a sequence converges to zero in one norm if and only if it so does in the other norm. In the infinite-dimensional case, however, there will generally be inequivalent topologies, which makes the study of topological vector spaces richer than that of vector spaces without additional data.

From a conceptual point of view, all notions related to topological vector spaces should match the topology. For example, instead of considering all linear maps (also called functionals)   maps between topological vector spaces are required to be continuous.[46] In particular, the (topological) dual space   consists of continuous functionals   (or to  ). The fundamental Hahn–Banach theorem is concerned with separating subspaces of appropriate topological vector spaces by continuous functionals.[47]

Banach spaces Edit

Banach spaces, introduced by Stefan Banach, are complete normed vector spaces.[48]

A first example is the vector space   consisting of infinite vectors with real entries   whose  -norm   given by

 
 

The topologies on the infinite-dimensional space   are inequivalent for different   For example, the sequence of vectors   in which the first   components are   and the following ones are   converges to the zero vector for   but does not for  

 
but
 

More generally than sequences of real numbers, functions   are endowed with a norm that replaces the above sum by the Lebesgue integral

 

The space of integrable functions on a given domain   (for example an interval) satisfying   and equipped with this norm are called Lebesgue spaces, denoted  [nb 9]

These spaces are complete.[49] (If one uses the Riemann integral instead, the space is not complete, which may be seen as a justification for Lebesgue's integration theory.[nb 10]) Concretely this means that for any sequence of Lebesgue-integrable functions   with   satisfying the condition

 
there exists a function   belonging to the vector space   such that
 

Imposing boundedness conditions not only on the function, but also on its derivatives leads to Sobolev spaces.[50]

Hilbert spaces Edit

 
The succeeding snapshots show summation of 1 to 5 terms in approximating a periodic function (blue) by finite sum of sine functions (red).

Complete inner product spaces are known as Hilbert spaces, in honor of David Hilbert.[51] The Hilbert space   with inner product given by

 
where   denotes the complex conjugate of  [52][nb 11] is a key case.

By definition, in a Hilbert space any Cauchy sequence converges to a limit. Conversely, finding a sequence of functions   with desirable properties that approximates a given limit function, is equally crucial. Early analysis, in the guise of the Taylor approximation, established an approximation of differentiable functions   by polynomials.[53] By the Stone–Weierstrass theorem, every continuous function on   can be approximated as closely as desired by a polynomial.[54] A similar approximation technique by trigonometric functions is commonly called Fourier expansion, and is much applied in engineering, see below.[clarification needed] More generally, and more conceptually, the theorem yields a simple description of what "basic functions", or, in abstract Hilbert spaces, what basic vectors suffice to generate a Hilbert space   in the sense that the closure of their span (that is, finite linear combinations and limits of those) is the whole space. Such a set of functions is called a basis of   its cardinality is known as the Hilbert space dimension.[nb 12] Not only does the theorem exhibit suitable basis functions as sufficient for approximation purposes, but also together with the Gram–Schmidt process, it enables one to construct a basis of orthogonal vectors.[55] Such orthogonal bases are the Hilbert space generalization of the coordinate axes in finite-dimensional Euclidean space.

The solutions to various differential equations can be interpreted in terms of Hilbert spaces. For example, a great many fields in physics and engineering lead to such equations and frequently solutions with particular physical properties are used as basis functions, often orthogonal.[56] As an example from physics, the time-dependent Schrödinger equation in quantum mechanics describes the change of physical properties in time by means of a partial differential equation, whose solutions are called wavefunctions.[57] Definite values for physical properties such as energy, or momentum, correspond to eigenvalues of a certain (linear) differential operator and the associated wavefunctions are called eigenstates. The spectral theorem decomposes a linear compact operator acting on functions in terms of these eigenfunctions and their eigenvalues.[58]

Algebras over fields Edit

 
A hyperbola, given by the equation   The coordinate ring of functions on this hyperbola is given by   an infinite-dimensional vector space over  

General vector spaces do not possess a multiplication between vectors. A vector space equipped with an additional bilinear operator defining the multiplication of two vectors is an algebra over a field.[59] Many algebras stem from functions on some geometrical object: since functions with values in a given field can be multiplied pointwise, these entities form algebras. The Stone–Weierstrass theorem, for example, relies on Banach algebras which are both Banach spaces and algebras.

Commutative algebra makes great use of rings of polynomials in one or several variables, introduced above.[clarification needed] Their multiplication is both commutative and associative. These rings and their quotients form the basis of algebraic geometry, because they are rings of functions of algebraic geometric objects.[60]

Another crucial example are Lie algebras, which are neither commutative nor associative, but the failure to be so is limited by the constraints (  denotes the product of   and  ):

  •   (anticommutativity), and
  •   (Jacobi identity).[61]

Examples include the vector space of  -by-  matrices, with   the commutator of two matrices, and   endowed with the cross product.

The tensor algebra   is a formal way of adding products to any vector space   to obtain an algebra.[62] As a vector space, it is spanned by symbols, called simple tensors

 
where the degree   varies. The multiplication is given by concatenating such symbols, imposing the distributive law under addition, and requiring that scalar multiplication commute with the tensor product ⊗, much the same way as with the tensor product of two vector spaces introduced above.[clarification needed] In general, there are no relations between   and   Forcing two such elements to be equal leads to the symmetric algebra, whereas forcing   yields the exterior algebra.[63]

When a field,   is explicitly stated, a common term used is  -algebra.

Related structures Edit

Vector bundles Edit

 
A Möbius strip. Locally, it looks like U × R.

A vector bundle is a family of vector spaces parametrized continuously by a topological space X.[64] More precisely, a vector bundle over X is a topological space E equipped with a continuous map

 
such that for every x in X, the fiber π−1(x) is a vector space. The case dim V = 1 is called a line bundle. For any vector space V, the projection X × VX makes the product X × V into a "trivial" vector bundle. Vector bundles over X are required to be locally a product of X and some (fixed) vector space V: for every x in X, there is a neighborhood U of x such that the restriction of π to π−1(U) is isomorphic[nb 13] to the trivial bundle U × VU. Despite their locally trivial character, vector bundles may (depending on the shape of the underlying space X) be "twisted" in the large (that is, the bundle need not be (globally isomorphic to) the trivial bundle X × V). For example, the Möbius strip can be seen as a line bundle over the circle S1 (by identifying open intervals with the real line). It is, however, different from the cylinder S1 × R, because the latter is orientable whereas the former is not.[65]

Properties of certain vector bundles provide information about the underlying topological space. For example, the tangent bundle consists of the collection of tangent spaces parametrized by the points of a differentiable manifold. The tangent bundle of the circle S1 is globally isomorphic to S1 × R, since there is a global nonzero vector field on S1.[nb 14] In contrast, by the hairy ball theorem, there is no (tangent) vector field on the 2-sphere S2 which is everywhere nonzero.[66] K-theory studies the isomorphism classes of all vector bundles over some topological space.[67] In addition to deepening topological and geometrical insight, it has purely algebraic consequences, such as the classification of finite-dimensional real division algebras: R, C, the quaternions H and the octonions O.

The cotangent bundle of a differentiable manifold consists, at every point of the manifold, of the dual of the tangent space, the cotangent space. Sections of that bundle are known as differential one-forms.

Modules Edit

Modules are to rings what vector spaces are to fields: the same axioms, applied to a ring R instead of a field F, yield modules.[68] The theory of modules, compared to that of vector spaces, is complicated by the presence of ring elements that do not have multiplicative inverses. For example, modules need not have bases, as the Z-module (that is, abelian group) Z/2Z shows; those modules that do (including all vector spaces) are known as free modules. Nevertheless, a vector space can be compactly defined as a module over a ring which is a field, with the elements being called vectors. Some authors use the term vector space to mean modules over a division ring.[69] The algebro-geometric interpretation of commutative rings via their spectrum allows the development of concepts such as locally free modules, the algebraic counterpart to vector bundles.

Affine and projective spaces Edit

 
An affine plane (light blue) in R3. It is a two-dimensional subspace shifted by a vector x (red).

Roughly, affine spaces are vector spaces whose origins are not specified.[70] More precisely, an affine space is a set with a free transitive vector space action. In particular, a vector space is an affine space over itself, by the map

 
If W is a vector space, then an affine subspace is a subset of W obtained by translating a linear subspace V by a fixed vector xW; this space is denoted by x + V (it is a coset of V in W) and consists of all vectors of the form x + v for vV. An important example is the space of solutions of a system of inhomogeneous linear equations
 
generalizing the homogeneous case above, which can be found by setting   in this equation.[clarification needed][71] The space of solutions is the affine subspace x + V where x is a particular solution of the equation, and V is the space of solutions of the homogeneous equation (the nullspace of A).

The set of one-dimensional subspaces of a fixed finite-dimensional vector space V is known as projective space; it may be used to formalize the idea of parallel lines intersecting at infinity.[72] Grassmannians and flag manifolds generalize this by parametrizing linear subspaces of fixed dimension k and flags of subspaces, respectively.

Related concepts Edit

Specific vectors in a vector space
Vectors in specific vector spaces
  • Column vector, a matrix with only one column. The column vectors with a fixed number of rows form a vector space.
  • Row vector, a matrix with only one row. The row vectors with a fixed number of columns form a vector space.
  • Coordinate vector, the n-tuple of the coordinates of a vector on a basis of n elements. For a vector space over a field F, these n-tuples form the vector space   (where the operation are pointwise addition and scalar multiplication).
  • Displacement vector, a vector that specifies the change in position of a point relative to a previous position. Displacement vectors belong to the vector space of translations.
  • Position vector of a point, the displacement vector from a reference point (called the origin) to the point. A position vector represents the position of a point in a Euclidean space or an affine space.
  • Velocity vector, the derivative, with respect to time, of the position vector. It does not depend of the choice of the origin, and, thus belongs to the vector space of translations.
  • Pseudovector, also called axial vector
  • Covector, an element of the dual of a vector space. In an inner product space, the inner product defines an isomorphism between the space and its dual, which may make difficult to distinguish a covector from a vector. The distinction becomes apparent when one changes coordinates (non-orthogonally).
  • Tangent vector, an element of the tangent space of a curve, a surface or, more generally, a differential manifold at a given point (these tangent spaces are naturally endowed with a structure of vector space)
  • Normal vector or simply normal, in a Euclidean space or, more generally, in an inner product space, a vector that is perpendicular to a tangent space at a point.
  • Gradient, the coordinates vector of the partial derivatives of a function of several real variables. In a Euclidean space the gradient gives the magnitude and direction of maximum increase of a scalar field. The gradient is a covector that is normal to a level curve.
  • Four-vector, in the theory of relativity, a vector in a four-dimensional real vector space called Minkowski space

See also Edit

Notes Edit

  1. ^ It is also common, especially in physics, to denote vectors with an arrow on top:   It is also common, especially in higher mathematics, to not use any typographical method for distinguishing vectors from other mathematical objects.
  2. ^ Scalar multiplication is not to be confused with the scalar product, which is an additional operation on some specific vector spaces, called inner product spaces. Scalar multiplication is a multiplication of a vector by a scalar that produces a vector, while the scalar product is a multiplication of two vectors that produces a scalar.
  3. ^ This axiom is not an associative property, since it refers to two different operations, scalar multiplication and field multiplication. So, it is independent from the associativity of field multiplication, which is assumed by field axioms.
  4. ^ The nomenclature derives from German "eigen", which means own or proper.
  5. ^ See also Jordan–Chevalley decomposition.
  6. ^ This is typically the case when a vector space is also considered as an affine space. In this case, a linear subspace contains the zero vector, while an affine subspace does not necessarily contain it.
  7. ^ Some authors (such as Roman 2005) choose to start with this equivalence relation and derive the concrete shape of   from this.
  8. ^ This requirement implies that the topology gives rise to a uniform structure, Bourbaki 1989, ch. II
  9. ^ The triangle inequality for   is provided by the Minkowski inequality. For technical reasons, in the context of functions one has to identify functions that agree almost everywhere to get a norm, and not only a seminorm.
  10. ^ "Many functions in   of Lebesgue measure, being unbounded, cannot be integrated with the classical Riemann integral. So spaces of Riemann integrable functions would not be complete in the   norm, and the orthogonal decomposition would not apply to them. This shows one of the advantages of Lebesgue integration.", Dudley 1989, §5.3, p. 125
  11. ^ For     is not a Hilbert space.
  12. ^ A basis of a Hilbert space is not the same thing as a basis in the sense of linear algebra above.[clarification needed] For distinction, the latter is then called a Hamel basis.
  13. ^ That is, there is a homeomorphism from π−1(U) to V × U which restricts to linear isomorphisms between fibers.
  14. ^ A line bundle, such as the tangent bundle of S1 is trivial if and only if there is a section that vanishes nowhere, see Husemoller 1994, Corollary 8.3. The sections of the tangent bundle are just vector fields.

Citations Edit

  1. ^ Roman 2005, ch. 1, p. 27
  2. ^ Bourbaki 1969, ch. "Algèbre linéaire et algèbre multilinéaire", pp. 78–91.
  3. ^ Bolzano 1804.
  4. ^ Dorier (1995)
  5. ^ Hamilton 1853.
  6. ^ Grassmann 2000.
  7. ^ Peano 1888, ch. IX.
  8. ^ Guo, Hongyu (2021-06-16). What Are Tensors Exactly?. World Scientific. ISBN 978-981-12-4103-1.
  9. ^ Banach 1922.
  10. ^ Dorier 1995, Moore 1995.
  11. ^ Lang 1987, ch. I.1
  12. ^ Lang 2002, ch. V.1
  13. ^ Lang 1993, ch. XII.3., p. 335
  14. ^ Lang 1987, ch. VI.3.
  15. ^ Roman 2005, ch. 2, p. 45
  16. ^ Lang 1987, ch. IV.4, Corollary, p. 106
  17. ^ Lang 1987, Example IV.2.6
  18. ^ Lang 1987, ch. VI.6
  19. ^ Halmos 1974, p. 28, Ex. 9
  20. ^ Lang 1987, Theorem IV.2.1, p. 95
  21. ^ Roman 2005, Th. 2.5 and 2.6, p. 49
  22. ^ Lang 1987, ch. V.1
  23. ^ Lang 1987, ch. V.3., Corollary, p. 106
  24. ^ Lang 1987, Theorem VII.9.8, p. 198
  25. ^ Roman 2005, ch. 8, p. 135–156
  26. ^ Lang 1987, ch. IX.4
  27. ^ Roman 2005, ch. 8, p. 140.
  28. ^ Roman 2005, ch. 1, p. 29
  29. ^ Roman 2005, ch. 1, p. 35
  30. ^ Roman 2005, ch. 3, p. 64
  31. ^ Lang 1987, ch. IV.3.
  32. ^ Roman 2005, ch. 2, p. 48
  33. ^ Mac Lane 1998
  34. ^ Roman 2005, ch. 1, pp. 31–32
  35. ^ Lang 2002, ch. XVI.1
  36. ^ Roman 2005, Th. 14.3. See also Yoneda lemma.
  37. ^ Schaefer & Wolff 1999, pp. 204–205
  38. ^ Bourbaki 2004, ch. 2, p. 48
  39. ^ Roman 2005, ch. 9
  40. ^ Naber 2003, ch. 1.2
  41. ^ Treves 1967
  42. ^ Bourbaki 1987
  43. ^ Kreyszig 1989, §4.11-5
  44. ^ Kreyszig 1989, §1.5-5
  45. ^ Choquet 1966, Proposition III.7.2
  46. ^ Treves 1967, p. 34–36
  47. ^ Lang 1983, Cor. 4.1.2, p. 69
  48. ^ Treves 1967, ch. 11
  49. ^ Treves 1967, Theorem 11.2, p. 102
  50. ^ Evans 1998, ch. 5
  51. ^ Treves 1967, ch. 12
  52. ^ Dennery & Krzywicki 1996, p.190
  53. ^ Lang 1993, Th. XIII.6, p. 349
  54. ^ Lang 1993, Th. III.1.1
  55. ^ Choquet 1966, Lemma III.16.11
  56. ^ Kreyszig 1999, Chapter 11
  57. ^ Griffiths 1995, Chapter 1
  58. ^ Lang 1993, ch. XVII.3
  59. ^ Lang 2002, ch. III.1, p. 121
  60. ^ Eisenbud 1995, ch. 1.6
  61. ^ Varadarajan 1974
  62. ^ Lang 2002, ch. XVI.7
  63. ^ Lang 2002, ch. XVI.8
  64. ^ Spivak 1999, ch. 3
  65. ^ Kreyszig 1991, §34, p. 108
  66. ^ Eisenberg & Guy 1979
  67. ^ Atiyah 1989
  68. ^ Artin 1991, ch. 12
  69. ^ Grillet, Pierre Antoine. Abstract algebra. Vol. 242. Springer Science & Business Media, 2007.
  70. ^ Meyer 2000, Example 5.13.5, p. 436
  71. ^ Meyer 2000, Exercise 5.13.15–17, p. 442
  72. ^ Coxeter 1987
  73. ^ a b Weisstein, Eric W. "Vector". mathworld.wolfram.com. Retrieved 2020-08-19.

References Edit

Algebra Edit

Analysis Edit

vector, space, confused, with, vector, field, linear, space, redirects, here, structure, incidence, geometry, linear, space, geometry, also, feature, space, mathematics, physics, vector, space, also, called, linear, space, whose, elements, often, called, vecto. Not to be confused with Vector field Linear space redirects here For a structure in incidence geometry see Linear space geometry See also Feature space In mathematics and physics a vector space also called a linear space is a set whose elements often called vectors may be added together and multiplied scaled by numbers called scalars Scalars are often real numbers but can be complex numbers or more generally elements of any field The operations of vector addition and scalar multiplication must satisfy certain requirements called vector axioms The terms real vector space and complex vector space are often used to specify the nature of the scalars real coordinate space or complex coordinate space Vector addition and scalar multiplication a vector v blue is added to another vector w red upper illustration Below w is stretched by a factor of 2 yielding the sum v 2w Vector spaces generalize Euclidean vectors which allow modeling of physical quantities such as forces and velocity that have not only a magnitude but also a direction The concept of vector spaces is fundamental for linear algebra together with the concept of matrices which allows computing in vector spaces This provides a concise and synthetic way for manipulating and studying systems of linear equations Vector spaces are characterized by their dimension which roughly speaking specifies the number of independent directions in the space This means that for two vector spaces over a given field and with the same dimension the properties that depend only on the vector space structure are exactly the same technically the vector spaces are isomorphic A vector space is finite dimensional if its dimension is a natural number Otherwise it is infinite dimensional and its dimension is an infinite cardinal Finite dimensional vector spaces occur naturally in geometry and related areas Infinite dimensional vector spaces occur in many areas of mathematics For example polynomial rings are countably infinite dimensional vector spaces and many function spaces have the cardinality of the continuum as a dimension Many vector spaces that are considered in mathematics are also endowed with other structures This is the case of algebras which include field extensions polynomial rings associative algebras and Lie algebras This is also the case of topological vector spaces which include function spaces inner product spaces normed spaces Hilbert spaces and Banach spaces Contents 1 Definition and basic properties 2 Related concepts and properties 3 History 4 Examples 4 1 Arrows in the plane 4 2 Second example ordered pairs of numbers 4 3 Coordinate space 4 4 Complex numbers and other field extensions 4 5 Function spaces 4 6 Linear equations 5 Linear maps and matrices 5 1 Matrices 5 2 Eigenvalues and eigenvectors 6 Basic constructions 6 1 Subspaces and quotient spaces 6 2 Direct product and direct sum 6 3 Tensor product 7 Vector spaces with additional structure 7 1 Normed vector spaces and inner product spaces 7 2 Topological vector spaces 7 2 1 Banach spaces 7 2 2 Hilbert spaces 7 3 Algebras over fields 8 Related structures 8 1 Vector bundles 8 2 Modules 8 3 Affine and projective spaces 9 Related concepts 10 See also 11 Notes 12 Citations 13 References 13 1 Algebra 13 2 Analysis 13 3 Historical references 13 4 Further references 14 External linksDefinition and basic properties EditIn this article vectors are represented in boldface to distinguish them from scalars nb 1 A vector space over a field F is a non empty set V together with two binary operations that satisfy the eight axioms listed below In this context the elements of V are commonly called vectors and the elements of F are called scalars The first operation called vector addition or simply addition assigns to any two vectors v and w in V a third vector in V which is commonly written as v w and called the sum of these two vectors The second operation called scalar multiplication assigns to any scalar a in F and any vector v in V another vector in V which is denoted av nb 2 To have a vector space the eight following axioms must be satisfied for every u v and w in V and a and b in F 1 Axiom MeaningAssociativity of vector addition u v w u v wCommutativity of vector addition u v v uIdentity element of vector addition There exists an element 0 V called the zero vector such that v 0 v for all v V Inverse elements of vector addition For every v V there exists an element v V called the additive inverse of v such that v v 0 Compatibility of scalar multiplication with field multiplication a bv ab v nb 3 Identity element of scalar multiplication 1v v where 1 denotes the multiplicative identity in F Distributivity of scalar multiplication with respect to vector addition a u v au avDistributivity of scalar multiplication with respect to field addition a b v av bvWhen the scalar field is the real numbers the vector space is called a real vector space When the scalar field is the complex numbers the vector space is called a complex vector space These two cases are the most common ones but vector spaces with scalars in an arbitrary field F are also commonly considered Such a vector space is called an F vector space or a vector space over F An equivalent definition of a vector space can be given which is much more concise but less elementary the first four axioms related to vector addition say that a vector space is an abelian group under addition and the four remaining axioms related to the scalar multiplication say that this operation defines a ring homomorphism from the field F into the endomorphism ring of this group Subtraction of two vectors can be defined asv w v w displaystyle mathbf v mathbf w mathbf v mathbf w Direct consequences of the axioms include that for every s F displaystyle s in F and v V displaystyle mathbf v in V one has 0 v 0 displaystyle 0 mathbf v mathbf 0 s 0 0 displaystyle s mathbf 0 mathbf 0 1 v v displaystyle 1 mathbf v mathbf v s v 0 displaystyle s mathbf v mathbf 0 implies s 0 displaystyle s 0 or v 0 displaystyle mathbf v mathbf 0 Even more concisely a vector space is an F displaystyle F module where F displaystyle F is a field Related concepts and properties Edit A vector v in R2 blue expressed in terms of different bases using the standard basis of R2 v xe1 ye2 black and using a different non orthogonal basis v f1 f2 red Linear combination Given a set G of elements of a F vector space V a linear combination of elements of G is an element of V of the form a 1 g 1 a 2 g 2 a k g k displaystyle a 1 mathbf g 1 a 2 mathbf g 2 cdots a k mathbf g k where a 1 a k F displaystyle a 1 ldots a k in F and g 1 g k G displaystyle mathbf g 1 ldots mathbf g k in G The scalars a 1 a k displaystyle a 1 ldots a k are called the coefficients of the linear combination Linear independence The elements of a subset G of a F vector space V are said to be linearly independent if no element of G can be written as a linear combination of the other elements of G Equivalently they are linearly independent if two linear combinations of elements of G define the same element of V if and only if they have the same coefficients Also equivalently they are linearly independent if a linear combination results in the zero vector if and only if all its coefficients are zero Linear subspace A linear subspace or vector subspace W of a vector space V is a non empty subset of V that is closed under vector addition and scalar multiplication that is the sum of two elements of W and the product of an element of V by a scalar belong to W This implies that every linear combination of elements of W belongs to W A linear subspace is a vector space for the induced addition and scalar multiplication this means that the closure property implies that the axioms of a vector space are satisfied The closure property also implies that every intersection of linear subspaces is a linear subspace Linear span Given a subset G of a vector space V the linear span or simply the span of G is the smallest linear subspace of V that contains G in the sense that it is the intersection of all linear subspaces that contain G The span of G is also the set of all linear combinations of elements of G If W is the span of G one says that G spans or generates W and that G is a spanning set or a generating set of W Basis and dimension A subset of a vector space is a basis if its elements are linearly independent and span the vector space Every vector space has at least one basis generally many see Basis linear algebra Proof that every vector space has a basis Moreover all bases of a vector space have the same cardinality which is called the dimension of the vector space see Dimension theorem for vector spaces This is a fundamental property of vector spaces which is detailed in the remainder of the section Bases are a fundamental tool for the study of vector spaces especially when the dimension is finite In the infinite dimensional case the existence of infinite bases often called Hamel bases depend on the axiom of choice It follows that in general no base can be explicitly described For example the real numbers form an infinite dimensional vector space over the rational numbers for which no specific basis is known Consider a basis b 1 b 2 b n displaystyle mathbf b 1 mathbf b 2 ldots mathbf b n of a vector space V of dimension n over a field F The definition of a basis implies that every v V displaystyle mathbf v in V may be writtenv a 1 b 1 a n b n displaystyle mathbf v a 1 mathbf b 1 cdots a n mathbf b n with a 1 a n displaystyle a 1 dots a n in F and that this decomposition is unique The scalars a 1 a n displaystyle a 1 ldots a n are called the coordinates of v on the basis They are also said to be the coefficients of the decomposition of v on the basis One also says that the n tuple of the coordinates is the coordinate vector of v on the basis since the set F n displaystyle F n of the n tuples of elements of F is a vector space for componentwise addition and scalar multiplication whose dimension is n The one to one correspondence between vectors and their coordinate vectors maps vector addition to vector addition and scalar multiplication to scalar multiplication It is thus a vector space isomorphism which allows translating reasonings and computations on vectors into reasonings and computations on their coordinates If in turn these coordinates are arranged as matrices these reasonings and computations on coordinates can be expressed concisely as reasonings and computations on matrices Moreover a linear equation relating matrices can be expanded into a system of linear equations and conversely every such system can be compacted into a linear equation on matrices In summary finite dimensional linear algebra may be expressed in three equivalent languages Vector spaces which provide concise and coordinate free statements Matrices which are convenient for expressing concisely explicit computations Systems of linear equations which provide more elementary formulations History EditVector spaces stem from affine geometry via the introduction of coordinates in the plane or three dimensional space Around 1636 French mathematicians Rene Descartes and Pierre de Fermat founded analytic geometry by identifying solutions to an equation of two variables with points on a plane curve 2 To achieve geometric solutions without using coordinates Bolzano introduced in 1804 certain operations on points lines and planes which are predecessors of vectors 3 Mobius 1827 introduced the notion of barycentric coordinates Bellavitis 1833 introduced an equivalence relation on directed line segments that share the same length and direction which he called equipollence A Euclidean vector is then an equivalence class of that relation 4 Vectors were reconsidered with the presentation of complex numbers by Argand and Hamilton and the inception of quaternions by the latter 5 They are elements in R2 and R4 treating them using linear combinations goes back to Laguerre in 1867 who also defined systems of linear equations In 1857 Cayley introduced the matrix notation which allows for a harmonization and simplification of linear maps Around the same time Grassmann studied the barycentric calculus initiated by Mobius He envisaged sets of abstract objects endowed with operations 6 In his work the concepts of linear independence and dimension as well as scalar products are present Actually Grassmann s 1844 work exceeds the framework of vector spaces since his considering multiplication too led him to what are today called algebras Italian mathematician Peano was the first to give the modern definition of vector spaces and linear maps in 1888 7 although he called them linear systems 8 An important development of vector spaces is due to the construction of function spaces by Henri Lebesgue This was later formalized by Banach and Hilbert around 1920 9 At that time algebra and the new field of functional analysis began to interact notably with key concepts such as spaces of p integrable functions and Hilbert spaces 10 Also at this time the first studies concerning infinite dimensional vector spaces were done Examples EditMain article Examples of vector spaces Arrows in the plane Edit The first example of a vector space consists of arrows in a fixed plane starting at one fixed point This is used in physics to describe forces or velocities Given any two such arrows v and w the parallelogram spanned by these two arrows contains one diagonal arrow that starts at the origin too This new arrow is called the sum of the two arrows and is denoted v w In the special case of two arrows on the same line their sum is the arrow on this line whose length is the sum or the difference of the lengths depending on whether the arrows have the same direction Another operation that can be done with arrows is scaling given any positive real number a the arrow that has the same direction as v but is dilated or shrunk by multiplying its length by a is called multiplication of v by a It is denoted av When a is negative av is defined as the arrow pointing in the opposite direction instead The following shows a few examples if a 2 the resulting vector aw has the same direction as w but is stretched to the double length of w right image below Equivalently 2w is the sum w w Moreover 1 v v has the opposite direction and the same length as v blue vector pointing down in the right image Second example ordered pairs of numbers Edit A second key example of a vector space is provided by pairs of real numbers x and y The order of the components x and y is significant so such a pair is also called an ordered pair Such a pair is written as x y The sum of two such pairs and multiplication of a pair with a number is defined as follows x 1 y 1 x 2 y 2 x 1 x 2 y 1 y 2 displaystyle x 1 y 1 x 2 y 2 x 1 x 2 y 1 y 2 and a x y a x a y displaystyle a x y ax ay The first example above reduces to this example if an arrow is represented by a pair of Cartesian coordinates of its endpoint Coordinate space Edit The simplest example of a vector space over a field F is the field F itself as it is an abelian group for addition a part of the requirements to be a field equipped with its addition It becomes vector addition and multiplication It becomes scalar multiplication More generally all n tuples sequences of length n a 1 a 2 a n displaystyle a 1 a 2 dots a n of elements ai of F form a vector space that is usually denoted Fn and called a coordinate space 11 The case n 1 is the above mentioned simplest example in which the field F is also regarded as a vector space over itself The case F R and n 2 so R2 was discussed in the introduction above Complex numbers and other field extensions Edit The set of complex numbers C that is numbers that can be written in the form x iy for real numbers x and y where i is the imaginary unit form a vector space over the reals with the usual addition and multiplication x iy a ib x a i y b and c x iy c x i c y for real numbers x y a b and c The various axioms of a vector space follow from the fact that the same rules hold for complex number arithmetic In fact the example of complex numbers is essentially the same as that is it is isomorphic to the vector space of ordered pairs of real numbers mentioned above if we think of the complex number x i y as representing the ordered pair x y in the complex plane then we see that the rules for addition and scalar multiplication correspond exactly to those in the earlier example More generally field extensions provide another class of examples of vector spaces particularly in algebra and algebraic number theory a field F containing a smaller field E is an E vector space by the given multiplication and addition operations of F 12 For example the complex numbers are a vector space over R and the field extension Q i 5 displaystyle mathbf Q i sqrt 5 is a vector space over Q Function spaces Edit Main article Function space Addition of functions the sum of the sine and the exponential function is sin exp R R displaystyle sin exp mathbb R to mathbb R with sin exp x sin x exp x displaystyle sin exp x sin x exp x Functions from any fixed set W to a field F also form vector spaces by performing addition and scalar multiplication pointwise That is the sum of two functions f and g is the function f g displaystyle f g given by f g w f w g w displaystyle f g w f w g w and similarly for multiplication Such function spaces occur in many geometric situations when W is the real line or an interval or other subsets of R Many notions in topology and analysis such as continuity integrability or differentiability are well behaved with respect to linearity sums and scalar multiples of functions possessing such a property still have that property 13 Therefore the set of such functions are vector spaces whose study belongs to functional analysis Linear equations Edit Main articles Linear equation Linear differential equation and Systems of linear equations Systems of homogeneous linear equations are closely tied to vector spaces 14 For example the solutions ofa 3 b c 0 4 a 2 b 2 c 0 displaystyle begin alignedat 9 amp amp a amp amp 3b amp amp amp c amp 0 4 amp amp a amp amp 2b amp amp 2 amp c amp 0 end alignedat are given by triples with arbitrary a displaystyle a b a 2 displaystyle b a 2 and c 5 a 2 displaystyle c 5a 2 They form a vector space sums and scalar multiples of such triples still satisfy the same ratios of the three variables thus they are solutions too Matrices can be used to condense multiple linear equations as above into one vector equation namely A x 0 displaystyle A mathbf x mathbf 0 where A 1 3 1 4 2 2 displaystyle A begin bmatrix 1 amp 3 amp 1 4 amp 2 amp 2 end bmatrix is the matrix containing the coefficients of the given equations x displaystyle mathbf x is the vector a b c displaystyle a b c A x displaystyle A mathbf x denotes the matrix product and 0 0 0 displaystyle mathbf 0 0 0 is the zero vector In a similar vein the solutions of homogeneous linear differential equations form vector spaces For example f x 2 f x f x 0 displaystyle f prime prime x 2f prime x f x 0 yields f x a e x b x e x displaystyle f x ae x bxe x where a displaystyle a and b displaystyle b are arbitrary constants and e x displaystyle e x is the natural exponential function Linear maps and matrices EditMain article Linear map The relation of two vector spaces can be expressed by linear map or linear transformation They are functions that reflect the vector space structure that is they preserve sums and scalar multiplication f v w f v f w and displaystyle f mathbf v mathbf w f mathbf v f mathbf w text and f a v a f v displaystyle f a cdot mathbf v a cdot f mathbf v for all v displaystyle mathbf v and w displaystyle mathbf w in V displaystyle V all a displaystyle a in F displaystyle F 15 An isomorphism is a linear map f V W such that there exists an inverse map g W V which is a map such that the two possible compositions f g W W and g f V V are identity maps Equivalently f is both one to one injective and onto surjective 16 If there exists an isomorphism between V and W the two spaces are said to be isomorphic they are then essentially identical as vector spaces since all identities holding in V are via f transported to similar ones in W and vice versa via g Describing an arrow vector v by its coordinates x and y yields an isomorphism of vector spaces For example the arrows in the plane and ordered pairs of numbers vector spaces in the introduction are isomorphic a planar arrow v departing at the origin of some fixed coordinate system can be expressed as an ordered pair by considering the x and y component of the arrow as shown in the image at the right Conversely given a pair x y the arrow going by x to the right or to the left if x is negative and y up down if y is negative turns back the arrow v Linear maps V W between two vector spaces form a vector space HomF V W also denoted L V W or 𝓛 V W 17 The space of linear maps from V to F is called the dual vector space denoted V 18 Via the injective natural map V V any vector space can be embedded into its bidual the map is an isomorphism if and only if the space is finite dimensional 19 Once a basis of V is chosen linear maps f V W are completely determined by specifying the images of the basis vectors because any element of V is expressed uniquely as a linear combination of them 20 If dim V dim W a 1 to 1 correspondence between fixed bases of V and W gives rise to a linear map that maps any basis element of V to the corresponding basis element of W It is an isomorphism by its very definition 21 Therefore two vector spaces over a given field are isomorphic if their dimensions agree and vice versa Another way to express this is that any vector space over a given field is completely classified up to isomorphism by its dimension a single number In particular any n dimensional F vector space V is isomorphic to Fn There is however no canonical or preferred isomorphism actually an isomorphism f Fn V is equivalent to the choice of a basis of V by mapping the standard basis of Fn to V via f The freedom of choosing a convenient basis is particularly useful in the infinite dimensional context see below clarification needed Matrices Edit Main articles Matrix and Determinant A typical matrixMatrices are a useful notion to encode linear maps 22 They are written as a rectangular array of scalars as in the image at the right Any m by n matrix A displaystyle A gives rise to a linear map from Fn to Fm by the followingx x 1 x 2 x n j 1 n a 1 j x j j 1 n a 2 j x j j 1 n a m j x j displaystyle mathbf x x 1 x 2 ldots x n mapsto left sum j 1 n a 1j x j sum j 1 n a 2j x j ldots sum j 1 n a mj x j right where displaystyle sum denotes summation or using the matrix multiplication of the matrix A displaystyle A with the coordinate vector x displaystyle mathbf x x A x displaystyle mathbf x mapsto A mathbf x Moreover after choosing bases of V and W any linear map f V W is uniquely represented by a matrix via this assignment 23 The volume of this parallelepiped is the absolute value of the determinant of the 3 by 3 matrix formed by the vectors r1 r2 and r3 The determinant det A of a square matrix A is a scalar that tells whether the associated map is an isomorphism or not to be so it is sufficient and necessary that the determinant is nonzero 24 The linear transformation of Rn corresponding to a real n by n matrix is orientation preserving if and only if its determinant is positive Eigenvalues and eigenvectors Edit Main article Eigenvalues and eigenvectors Endomorphisms linear maps f V V are particularly important since in this case vectors v can be compared with their image under f f v Any nonzero vector v satisfying lv f v where l is a scalar is called an eigenvector of f with eigenvalue l nb 4 25 Equivalently v is an element of the kernel of the difference f l Id where Id is the identity map V V If V is finite dimensional this can be rephrased using determinants f having eigenvalue l is equivalent todet f l Id 0 displaystyle det f lambda cdot operatorname Id 0 By spelling out the definition of the determinant the expression on the left hand side can be seen to be a polynomial function in l called the characteristic polynomial of f 26 If the field F is large enough to contain a zero of this polynomial which automatically happens for F algebraically closed such as F C any linear map has at least one eigenvector The vector space V may or may not possess an eigenbasis a basis consisting of eigenvectors This phenomenon is governed by the Jordan canonical form of the map 27 nb 5 The set of all eigenvectors corresponding to a particular eigenvalue of f forms a vector space known as the eigenspace corresponding to the eigenvalue and f in question To achieve the spectral theorem the corresponding statement in the infinite dimensional case the machinery of functional analysis is needed see below clarification needed Basic constructions EditIn addition to the above concrete examples there are a number of standard linear algebraic constructions that yield vector spaces related to given ones In addition to the definitions given below they are also characterized by universal properties which determine an object X displaystyle X by specifying the linear maps from X displaystyle X to any other vector space Subspaces and quotient spaces Edit Main articles Linear subspace and Quotient vector space A line passing through the origin blue thick in R3 is a linear subspace It is the intersection of two planes green and yellow A nonempty subset W displaystyle W of a vector space V displaystyle V that is closed under addition and scalar multiplication and therefore contains the 0 displaystyle mathbf 0 vector of V displaystyle V is called a linear subspace of V displaystyle V or simply a subspace of V displaystyle V when the ambient space is unambiguously a vector space 28 nb 6 Subspaces of V displaystyle V are vector spaces over the same field in their own right The intersection of all subspaces containing a given set S displaystyle S of vectors is called its span and it is the smallest subspace of V displaystyle V containing the set S displaystyle S Expressed in terms of elements the span is the subspace consisting of all the linear combinations of elements of S displaystyle S 29 A linear subspace of dimension 1 is a vector line A linear subspace of dimension 2 is a vector plane A linear subspace that contains all elements but one of a basis of the ambient space is a vector hyperplane In a vector space of finite dimension n displaystyle n a vector hyperplane is thus a subspace of dimension n 1 displaystyle n 1 The counterpart to subspaces are quotient vector spaces 30 Given any subspace W V displaystyle W subseteq V the quotient space V W displaystyle V W V displaystyle V modulo W displaystyle W is defined as follows as a set it consists of v W v w w W displaystyle mathbf v W mathbf v mathbf w mathbf w in W where v displaystyle mathbf v is an arbitrary vector in V displaystyle V The sum of two such elements v 1 W displaystyle mathbf v 1 W and v 2 W displaystyle mathbf v 2 W is v 1 v 2 W displaystyle left mathbf v 1 mathbf v 2 right W and scalar multiplication is given by a v W a v W displaystyle a cdot mathbf v W a cdot mathbf v W The key point in this definition is that v 1 W v 2 W displaystyle mathbf v 1 W mathbf v 2 W if and only if the difference of v 1 displaystyle mathbf v 1 and v 2 displaystyle mathbf v 2 lies in W displaystyle W nb 7 This way the quotient space forgets information that is contained in the subspace W displaystyle W The kernel ker f displaystyle ker f of a linear map f V W displaystyle f V to W consists of vectors v displaystyle mathbf v that are mapped to 0 displaystyle mathbf 0 in W displaystyle W 31 The kernel and the image im f f v v V displaystyle operatorname im f f mathbf v mathbf v in V are subspaces of V displaystyle V and W displaystyle W respectively 32 The existence of kernels and images is part of the statement that the category of vector spaces over a fixed field F displaystyle F is an abelian category that is a corpus of mathematical objects and structure preserving maps between them a category that behaves much like the category of abelian groups 33 Because of this many statements such as the first isomorphism theorem also called rank nullity theorem in matrix related terms V ker f im f displaystyle V ker f equiv operatorname im f and the second and third isomorphism theorem can be formulated and proven in a way very similar to the corresponding statements for groups An important example is the kernel of a linear map x A x displaystyle mathbf x mapsto A mathbf x for some fixed matrix A displaystyle A as above clarification needed The kernel of this map is the subspace of vectors x displaystyle mathbf x such that A x 0 displaystyle A mathbf x mathbf 0 which is precisely the set of solutions to the system of homogeneous linear equations belonging to A displaystyle A This concept also extends to linear differential equationsa 0 f a 1 d f d x a 2 d 2 f d x 2 a n d n f d x n 0 displaystyle a 0 f a 1 frac df dx a 2 frac d 2 f dx 2 cdots a n frac d n f dx n 0 where the coefficients a i displaystyle a i are functions in x displaystyle x too In the corresponding map f D f i 0 n a i d i f d x i displaystyle f mapsto D f sum i 0 n a i frac d i f dx i the derivatives of the function f displaystyle f appear linearly as opposed to f x 2 displaystyle f prime prime x 2 for example Since differentiation is a linear procedure that is f g f g displaystyle f g prime f prime g prime and c f c f displaystyle c cdot f prime c cdot f prime for a constant c displaystyle c this assignment is linear called a linear differential operator In particular the solutions to the differential equation D f 0 displaystyle D f 0 form a vector space over R or C Direct product and direct sum Edit Main articles Direct product and Direct sum of modules The direct product of vector spaces and the direct sum of vector spaces are two ways of combining an indexed family of vector spaces into a new vector space The direct product i I V i displaystyle textstyle prod i in I V i of a family of vector spaces V i displaystyle V i consists of the set of all tuples v i i I displaystyle left mathbf v i right i in I which specify for each index i displaystyle i in some index set I displaystyle I an element v i displaystyle mathbf v i of V i displaystyle V i 34 Addition and scalar multiplication is performed componentwise A variant of this construction is the direct sum i I V i textstyle bigoplus i in I V i also called coproduct and denoted i I V i textstyle coprod i in I V i where only tuples with finitely many nonzero vectors are allowed If the index set I displaystyle I is finite the two constructions agree but in general they are different Tensor product Edit Main article Tensor product of vector spaces The tensor product V F W displaystyle V otimes F W or simply V W displaystyle V otimes W of two vector spaces V displaystyle V and W displaystyle W is one of the central notions of multilinear algebra which deals with extending notions such as linear maps to several variables A map g V W X displaystyle g V times W to X from the Cartesian product V W displaystyle V times W is called bilinear if g displaystyle g is linear in both variables v displaystyle mathbf v and w displaystyle mathbf w That is to say for fixed w displaystyle mathbf w the map v g v w displaystyle mathbf v mapsto g mathbf v mathbf w is linear in the sense above and likewise for fixed v displaystyle mathbf v Commutative diagram depicting the universal property of the tensor productThe tensor product is a particular vector space that is a universal recipient of bilinear maps g displaystyle g as follows It is defined as the vector space consisting of finite formal sums of symbols called tensorsv 1 w 1 v 2 w 2 v n w n displaystyle mathbf v 1 otimes mathbf w 1 mathbf v 2 otimes mathbf w 2 cdots mathbf v n otimes mathbf w n subject to the rules 35 a v w a v w v a w where a is a scalar v 1 v 2 w v 1 w v 2 w v w 1 w 2 v w 1 v w 2 displaystyle begin alignedat 6 a cdot mathbf v otimes mathbf w amp a cdot mathbf v otimes mathbf w mathbf v otimes a cdot mathbf w amp amp text where a text is a scalar mathbf v 1 mathbf v 2 otimes mathbf w amp mathbf v 1 otimes mathbf w mathbf v 2 otimes mathbf w amp amp mathbf v otimes mathbf w 1 mathbf w 2 amp mathbf v otimes mathbf w 1 mathbf v otimes mathbf w 2 amp amp end alignedat These rules ensure that the map f displaystyle f from the V W displaystyle V times W to V W displaystyle V otimes W that maps a tuple v w displaystyle mathbf v mathbf w to v w displaystyle mathbf v otimes mathbf w is bilinear The universality states that given any vector space X displaystyle X and any bilinear map g V W X displaystyle g V times W to X there exists a unique map u displaystyle u shown in the diagram with a dotted arrow whose composition with f displaystyle f equals g displaystyle g u v w g v w displaystyle u mathbf v otimes mathbf w g mathbf v mathbf w 36 This is called the universal property of the tensor product an instance of the method much used in advanced abstract algebra to indirectly define objects by specifying maps from or to this object Vector spaces with additional structure EditFrom the point of view of linear algebra vector spaces are completely understood insofar as any vector space over a given field is characterized up to isomorphism by its dimension However vector spaces per se do not offer a framework to deal with the question crucial to analysis whether a sequence of functions converges to another function Likewise linear algebra is not adapted to deal with infinite series since the addition operation allows only finitely many terms to be added Therefore the needs of functional analysis require considering additional structures A vector space may be given a partial order displaystyle leq under which some vectors can be compared 37 For example n displaystyle n dimensional real space R n displaystyle mathbf R n can be ordered by comparing its vectors componentwise Ordered vector spaces for example Riesz spaces are fundamental to Lebesgue integration which relies on the ability to express a function as a difference of two positive functionsf f f displaystyle f f f where f displaystyle f denotes the positive part of f displaystyle f and f displaystyle f the negative part 38 Normed vector spaces and inner product spaces Edit Main articles Normed vector space and Inner product space Measuring vectors is done by specifying a norm a datum which measures lengths of vectors or by an inner product which measures angles between vectors Norms and inner products are denoted v displaystyle mathbf v and v w displaystyle langle mathbf v mathbf w rangle respectively The datum of an inner product entails that lengths of vectors can be defined too by defining the associated norm v v v textstyle mathbf v sqrt langle mathbf v mathbf v rangle Vector spaces endowed with such data are known as normed vector spaces and inner product spaces respectively 39 Coordinate space F n displaystyle F n can be equipped with the standard dot product x y x y x 1 y 1 x n y n displaystyle langle mathbf x mathbf y rangle mathbf x cdot mathbf y x 1 y 1 cdots x n y n In R 2 displaystyle mathbf R 2 this reflects the common notion of the angle between two vectors x displaystyle mathbf x and y displaystyle mathbf y by the law of cosines x y cos x y x y displaystyle mathbf x cdot mathbf y cos left angle mathbf x mathbf y right cdot mathbf x cdot mathbf y Because of this two vectors satisfying x y 0 displaystyle langle mathbf x mathbf y rangle 0 are called orthogonal An important variant of the standard dot product is used in Minkowski space R 4 displaystyle mathbf R 4 endowed with the Lorentz product 40 x y x 1 y 1 x 2 y 2 x 3 y 3 x 4 y 4 displaystyle langle mathbf x mathbf y rangle x 1 y 1 x 2 y 2 x 3 y 3 x 4 y 4 In contrast to the standard dot product it is not positive definite x x displaystyle langle mathbf x mathbf x rangle also takes negative values for example for x 0 0 0 1 displaystyle mathbf x 0 0 0 1 Singling out the fourth coordinate corresponding to time as opposed to three space dimensions makes it useful for the mathematical treatment of special relativity Topological vector spaces Edit Main article Topological vector space Convergence questions are treated by considering vector spaces V displaystyle V carrying a compatible topology a structure that allows one to talk about elements being close to each other 41 42 Compatible here means that addition and scalar multiplication have to be continuous maps Roughly if x displaystyle mathbf x and y displaystyle mathbf y in V displaystyle V and a displaystyle a in F displaystyle F vary by a bounded amount then so do x y displaystyle mathbf x mathbf y and a x displaystyle a mathbf x nb 8 To make sense of specifying the amount a scalar changes the field F displaystyle F also has to carry a topology in this context a common choice are the reals or the complex numbers In such topological vector spaces one can consider series of vectors The infinite sum i 1 f i lim n f 1 f n displaystyle sum i 1 infty f i lim n to infty f 1 cdots f n denotes the limit of the corresponding finite partial sums of the sequence f 1 f 2 displaystyle f 1 f 2 ldots of elements of V displaystyle V For example the f i displaystyle f i could be real or complex functions belonging to some function space V displaystyle V in which case the series is a function series The mode of convergence of the series depends on the topology imposed on the function space In such cases pointwise convergence and uniform convergence are two prominent examples Unit spheres in R 2 displaystyle mathbf R 2 consist of plane vectors of norm 1 Depicted are the unit spheres in different p displaystyle p norms for p 1 2 displaystyle p 1 2 and displaystyle infty The bigger diamond depicts points of 1 norm equal to 2 A way to ensure the existence of limits of certain infinite series is to restrict attention to spaces where any Cauchy sequence has a limit such a vector space is called complete Roughly a vector space is complete provided that it contains all necessary limits For example the vector space of polynomials on the unit interval 0 1 displaystyle 0 1 equipped with the topology of uniform convergence is not complete because any continuous function on 0 1 displaystyle 0 1 can be uniformly approximated by a sequence of polynomials by the Weierstrass approximation theorem 43 In contrast the space of all continuous functions on 0 1 displaystyle 0 1 with the same topology is complete 44 A norm gives rise to a topology by defining that a sequence of vectors v n displaystyle mathbf v n converges to v displaystyle mathbf v if and only iflim n v n v 0 displaystyle lim n to infty mathbf v n mathbf v 0 Banach and Hilbert spaces are complete topological vector spaces whose topologies are given respectively by a norm and an inner product Their study a key piece of functional analysis focuses on infinite dimensional vector spaces since all norms on finite dimensional topological vector spaces give rise to the same notion of convergence 45 The image at the right shows the equivalence of the 1 displaystyle 1 norm and displaystyle infty norm on R 2 displaystyle mathbf R 2 as the unit balls enclose each other a sequence converges to zero in one norm if and only if it so does in the other norm In the infinite dimensional case however there will generally be inequivalent topologies which makes the study of topological vector spaces richer than that of vector spaces without additional data From a conceptual point of view all notions related to topological vector spaces should match the topology For example instead of considering all linear maps also called functionals V W displaystyle V to W maps between topological vector spaces are required to be continuous 46 In particular the topological dual space V displaystyle V consists of continuous functionals V R displaystyle V to mathbf R or to C displaystyle mathbf C The fundamental Hahn Banach theorem is concerned with separating subspaces of appropriate topological vector spaces by continuous functionals 47 Banach spaces Edit Main article Banach space Banach spaces introduced by Stefan Banach are complete normed vector spaces 48 A first example is the vector space ℓ p displaystyle ell p consisting of infinite vectors with real entries x x 1 x 2 x n displaystyle mathbf x left x 1 x 2 ldots x n ldots right whose p displaystyle p norm 1 p displaystyle 1 leq p leq infty given by x sup i x i for p and displaystyle mathbf x infty sup i x i qquad text for p infty text and x p i x i p 1 p for p lt displaystyle mathbf x p left sum i x i p right frac 1 p qquad text for p lt infty The topologies on the infinite dimensional space ℓ p displaystyle ell p are inequivalent for different p displaystyle p For example the sequence of vectors x n 2 n 2 n 2 n 0 0 displaystyle mathbf x n left 2 n 2 n ldots 2 n 0 0 ldots right in which the first 2 n displaystyle 2 n components are 2 n displaystyle 2 n and the following ones are 0 displaystyle 0 converges to the zero vector for p displaystyle p infty but does not for p 1 displaystyle p 1 x n sup 2 n 0 2 n 0 displaystyle mathbf x n infty sup 2 n 0 2 n to 0 but x n 1 i 1 2 n 2 n 2 n 2 n 1 displaystyle mathbf x n 1 sum i 1 2 n 2 n 2 n cdot 2 n 1 More generally than sequences of real numbers functions f W R displaystyle f Omega to mathbb R are endowed with a norm that replaces the above sum by the Lebesgue integral f p W f x p d m x 1 p displaystyle f p left int Omega f x p d mu x right frac 1 p The space of integrable functions on a given domain W displaystyle Omega for example an interval satisfying f p lt displaystyle f p lt infty and equipped with this norm are called Lebesgue spaces denoted L p W displaystyle L p Omega nb 9 These spaces are complete 49 If one uses the Riemann integral instead the space is not complete which may be seen as a justification for Lebesgue s integration theory nb 10 Concretely this means that for any sequence of Lebesgue integrable functions f 1 f 2 f n displaystyle f 1 f 2 ldots f n ldots with f n p lt displaystyle f n p lt infty satisfying the conditionlim k n W f k x f n x p d m x 0 displaystyle lim k n to infty int Omega left f k x f n x right p d mu x 0 there exists a function f x displaystyle f x belonging to the vector space L p W displaystyle L p Omega such that lim k W f x f k x p d m x 0 displaystyle lim k to infty int Omega left f x f k x right p d mu x 0 Imposing boundedness conditions not only on the function but also on its derivatives leads to Sobolev spaces 50 Hilbert spaces Edit Main article Hilbert space The succeeding snapshots show summation of 1 to 5 terms in approximating a periodic function blue by finite sum of sine functions red Complete inner product spaces are known as Hilbert spaces in honor of David Hilbert 51 The Hilbert space L 2 W displaystyle L 2 Omega with inner product given by f g W f x g x d x displaystyle langle f g rangle int Omega f x overline g x dx where g x displaystyle overline g x denotes the complex conjugate of g x displaystyle g x 52 nb 11 is a key case By definition in a Hilbert space any Cauchy sequence converges to a limit Conversely finding a sequence of functions f n displaystyle f n with desirable properties that approximates a given limit function is equally crucial Early analysis in the guise of the Taylor approximation established an approximation of differentiable functions f displaystyle f by polynomials 53 By the Stone Weierstrass theorem every continuous function on a b displaystyle a b can be approximated as closely as desired by a polynomial 54 A similar approximation technique by trigonometric functions is commonly called Fourier expansion and is much applied in engineering see below clarification needed More generally and more conceptually the theorem yields a simple description of what basic functions or in abstract Hilbert spaces what basic vectors suffice to generate a Hilbert space H displaystyle H in the sense that the closure of their span that is finite linear combinations and limits of those is the whole space Such a set of functions is called a basis of H displaystyle H its cardinality is known as the Hilbert space dimension nb 12 Not only does the theorem exhibit suitable basis functions as sufficient for approximation purposes but also together with the Gram Schmidt process it enables one to construct a basis of orthogonal vectors 55 Such orthogonal bases are the Hilbert space generalization of the coordinate axes in finite dimensional Euclidean space The solutions to various differential equations can be interpreted in terms of Hilbert spaces For example a great many fields in physics and engineering lead to such equations and frequently solutions with particular physical properties are used as basis functions often orthogonal 56 As an example from physics the time dependent Schrodinger equation in quantum mechanics describes the change of physical properties in time by means of a partial differential equation whose solutions are called wavefunctions 57 Definite values for physical properties such as energy or momentum correspond to eigenvalues of a certain linear differential operator and the associated wavefunctions are called eigenstates The spectral theorem decomposes a linear compact operator acting on functions in terms of these eigenfunctions and their eigenvalues 58 Algebras over fields Edit Main articles Algebra over a field and Lie algebra A hyperbola given by the equation x y 1 displaystyle x cdot y 1 The coordinate ring of functions on this hyperbola is given by R x y x y 1 displaystyle mathbf R x y x cdot y 1 an infinite dimensional vector space over R displaystyle mathbf R General vector spaces do not possess a multiplication between vectors A vector space equipped with an additional bilinear operator defining the multiplication of two vectors is an algebra over a field 59 Many algebras stem from functions on some geometrical object since functions with values in a given field can be multiplied pointwise these entities form algebras The Stone Weierstrass theorem for example relies on Banach algebras which are both Banach spaces and algebras Commutative algebra makes great use of rings of polynomials in one or several variables introduced above clarification needed Their multiplication is both commutative and associative These rings and their quotients form the basis of algebraic geometry because they are rings of functions of algebraic geometric objects 60 Another crucial example are Lie algebras which are neither commutative nor associative but the failure to be so is limited by the constraints x y displaystyle x y denotes the product of x displaystyle x and y displaystyle y x y y x displaystyle x y y x anticommutativity and x y z y z x z x y 0 displaystyle x y z y z x z x y 0 Jacobi identity 61 Examples include the vector space of n displaystyle n by n displaystyle n matrices with x y x y y x displaystyle x y xy yx the commutator of two matrices and R 3 displaystyle mathbf R 3 endowed with the cross product The tensor algebra T V displaystyle operatorname T V is a formal way of adding products to any vector space V displaystyle V to obtain an algebra 62 As a vector space it is spanned by symbols called simple tensorsv 1 v 2 v n displaystyle mathbf v 1 otimes mathbf v 2 otimes cdots otimes mathbf v n where the degree n displaystyle n varies The multiplication is given by concatenating such symbols imposing the distributive law under addition and requiring that scalar multiplication commute with the tensor product much the same way as with the tensor product of two vector spaces introduced above clarification needed In general there are no relations between v 1 v 2 displaystyle mathbf v 1 otimes mathbf v 2 and v 2 v 1 displaystyle mathbf v 2 otimes mathbf v 1 Forcing two such elements to be equal leads to the symmetric algebra whereas forcing v 1 v 2 v 2 v 1 displaystyle mathbf v 1 otimes mathbf v 2 mathbf v 2 otimes mathbf v 1 yields the exterior algebra 63 When a field F displaystyle F is explicitly stated a common term used is F displaystyle F algebra Related structures EditVector bundles Edit Main articles Vector bundle and Tangent bundle A Mobius strip Locally it looks like U R A vector bundle is a family of vector spaces parametrized continuously by a topological space X 64 More precisely a vector bundle over X is a topological space E equipped with a continuous mapp E X displaystyle pi E to X such that for every x in X the fiber p 1 x is a vector space The case dim V 1 is called a line bundle For any vector space V the projection X V X makes the product X V into a trivial vector bundle Vector bundles over X are required to be locally a product of X and some fixed vector space V for every x in X there is a neighborhood U of x such that the restriction of p to p 1 U is isomorphic nb 13 to the trivial bundle U V U Despite their locally trivial character vector bundles may depending on the shape of the underlying space X be twisted in the large that is the bundle need not be globally isomorphic to the trivial bundle X V For example the Mobius strip can be seen as a line bundle over the circle S1 by identifying open intervals with the real line It is however different from the cylinder S1 R because the latter is orientable whereas the former is not 65 Properties of certain vector bundles provide information about the underlying topological space For example the tangent bundle consists of the collection of tangent spaces parametrized by the points of a differentiable manifold The tangent bundle of the circle S1 is globally isomorphic to S1 R since there is a global nonzero vector field on S1 nb 14 In contrast by the hairy ball theorem there is no tangent vector field on the 2 sphere S2 which is everywhere nonzero 66 K theory studies the isomorphism classes of all vector bundles over some topological space 67 In addition to deepening topological and geometrical insight it has purely algebraic consequences such as the classification of finite dimensional real division algebras R C the quaternions H and the octonions O The cotangent bundle of a differentiable manifold consists at every point of the manifold of the dual of the tangent space the cotangent space Sections of that bundle are known as differential one forms Modules Edit Main article Module Modules are to rings what vector spaces are to fields the same axioms applied to a ring R instead of a field F yield modules 68 The theory of modules compared to that of vector spaces is complicated by the presence of ring elements that do not have multiplicative inverses For example modules need not have bases as the Z module that is abelian group Z 2Z shows those modules that do including all vector spaces are known as free modules Nevertheless a vector space can be compactly defined as a module over a ring which is a field with the elements being called vectors Some authors use the term vector space to mean modules over a division ring 69 The algebro geometric interpretation of commutative rings via their spectrum allows the development of concepts such as locally free modules the algebraic counterpart to vector bundles Affine and projective spaces Edit Main articles Affine space and Projective space An affine plane light blue in R3 It is a two dimensional subspace shifted by a vector x red Roughly affine spaces are vector spaces whose origins are not specified 70 More precisely an affine space is a set with a free transitive vector space action In particular a vector space is an affine space over itself by the mapV V W v a a v displaystyle V times V to W mathbf v mathbf a mapsto mathbf a mathbf v If W is a vector space then an affine subspace is a subset of W obtained by translating a linear subspace V by a fixed vector x W this space is denoted by x V it is a coset of V in W and consists of all vectors of the form x v for v V An important example is the space of solutions of a system of inhomogeneous linear equations A v b displaystyle A mathbf v mathbf b generalizing the homogeneous case above which can be found by setting b 0 displaystyle mathbf b mathbf 0 in this equation clarification needed 71 The space of solutions is the affine subspace x V where x is a particular solution of the equation and V is the space of solutions of the homogeneous equation the nullspace of A The set of one dimensional subspaces of a fixed finite dimensional vector space V is known as projective space it may be used to formalize the idea of parallel lines intersecting at infinity 72 Grassmannians and flag manifolds generalize this by parametrizing linear subspaces of fixed dimension k and flags of subspaces respectively Related concepts EditSpecific vectors in a vector spaceZero vector sometimes also called null vector and denoted by 0 displaystyle mathbf 0 the additive identity in a vector space In a normed vector space it is the unique vector of norm zero In a Euclidean vector space it is the unique vector of length zero 73 Basis vector an element of a given basis of a vector space Unit vector a vector in a normed vector space whose norm is 1 or a Euclidean vector of length one 73 Isotropic vector or null vector in a vector space with a quadratic form a non zero vector for which the form is zero If a null vector exists the quadratic form is said an isotropic quadratic form Vectors in specific vector spacesColumn vector a matrix with only one column The column vectors with a fixed number of rows form a vector space Row vector a matrix with only one row The row vectors with a fixed number of columns form a vector space Coordinate vector the n tuple of the coordinates of a vector on a basis of n elements For a vector space over a field F these n tuples form the vector space F n displaystyle F n where the operation are pointwise addition and scalar multiplication Displacement vector a vector that specifies the change in position of a point relative to a previous position Displacement vectors belong to the vector space of translations Position vector of a point the displacement vector from a reference point called the origin to the point A position vector represents the position of a point in a Euclidean space or an affine space Velocity vector the derivative with respect to time of the position vector It does not depend of the choice of the origin and thus belongs to the vector space of translations Pseudovector also called axial vector Covector an element of the dual of a vector space In an inner product space the inner product defines an isomorphism between the space and its dual which may make difficult to distinguish a covector from a vector The distinction becomes apparent when one changes coordinates non orthogonally Tangent vector an element of the tangent space of a curve a surface or more generally a differential manifold at a given point these tangent spaces are naturally endowed with a structure of vector space Normal vector or simply normal in a Euclidean space or more generally in an inner product space a vector that is perpendicular to a tangent space at a point Gradient the coordinates vector of the partial derivatives of a function of several real variables In a Euclidean space the gradient gives the magnitude and direction of maximum increase of a scalar field The gradient is a covector that is normal to a level curve Four vector in the theory of relativity a vector in a four dimensional real vector space called Minkowski spaceSee also EditVector mathematics and physics for a list of various kinds of vectorsCartesian coordinate system Graded vector space Metric space P vector Riesz Fischer theorem Space mathematics Ordered vector spaceNotes Edit It is also common especially in physics to denote vectors with an arrow on top v displaystyle vec v It is also common especially in higher mathematics to not use any typographical method for distinguishing vectors from other mathematical objects Scalar multiplication is not to be confused with the scalar product which is an additional operation on some specific vector spaces called inner product spaces Scalar multiplication is a multiplication of a vector by a scalar that produces a vector while the scalar product is a multiplication of two vectors that produces a scalar This axiom is not an associative property since it refers to two different operations scalar multiplication and field multiplication So it is independent from the associativity of field multiplication which is assumed by field axioms The nomenclature derives from German eigen which means own or proper See also Jordan Chevalley decomposition This is typically the case when a vector space is also considered as an affine space In this case a linear subspace contains the zero vector while an affine subspace does not necessarily contain it Some authors such as Roman 2005 choose to start with this equivalence relation and derive the concrete shape of V W displaystyle V W from this This requirement implies that the topology gives rise to a uniform structure Bourbaki 1989 ch II The triangle inequality for f g p f p g p displaystyle f g p leq f p g p is provided by the Minkowski inequality For technical reasons in the context of functions one has to identify functions that agree almost everywhere to get a norm and not only a seminorm Many functions in L 2 displaystyle L 2 of Lebesgue measure being unbounded cannot be integrated with the classical Riemann integral So spaces of Riemann integrable functions would not be complete in the L 2 displaystyle L 2 norm and the orthogonal decomposition would not apply to them This shows one of the advantages of Lebesgue integration Dudley 1989 5 3 p 125 For p 2 displaystyle p neq 2 L p W displaystyle L p Omega is not a Hilbert space A basis of a Hilbert space is not the same thing as a basis in the sense of linear algebra above clarification needed For distinction the latter is then called a Hamel basis That is there is a homeomorphism from p 1 U to V U which restricts to linear isomorphisms between fibers A line bundle such as the tangent bundle of S1 is trivial if and only if there is a section that vanishes nowhere see Husemoller 1994 Corollary 8 3 The sections of the tangent bundle are just vector fields Citations Edit Roman 2005 ch 1 p 27 Bourbaki 1969 ch Algebre lineaire et algebre multilineaire pp 78 91 Bolzano 1804 Dorier 1995 Hamilton 1853 Grassmann 2000 Peano 1888 ch IX Guo Hongyu 2021 06 16 What Are Tensors Exactly World Scientific ISBN 978 981 12 4103 1 Banach 1922 Dorier 1995 Moore 1995 Lang 1987 ch I 1 Lang 2002 ch V 1 Lang 1993 ch XII 3 p 335 Lang 1987 ch VI 3 Roman 2005 ch 2 p 45 Lang 1987 ch IV 4 Corollary p 106 Lang 1987 Example IV 2 6 Lang 1987 ch VI 6 Halmos 1974 p 28 Ex 9 Lang 1987 Theorem IV 2 1 p 95 Roman 2005 Th 2 5 and 2 6 p 49 Lang 1987 ch V 1 Lang 1987 ch V 3 Corollary p 106 Lang 1987 Theorem VII 9 8 p 198 Roman 2005 ch 8 p 135 156 Lang 1987 ch IX 4 Roman 2005 ch 8 p 140 Roman 2005 ch 1 p 29 Roman 2005 ch 1 p 35 Roman 2005 ch 3 p 64 Lang 1987 ch IV 3 Roman 2005 ch 2 p 48 Mac Lane 1998 Roman 2005 ch 1 pp 31 32 Lang 2002 ch XVI 1 Roman 2005 Th 14 3 See also Yoneda lemma Schaefer amp Wolff 1999 pp 204 205 Bourbaki 2004 ch 2 p 48 Roman 2005 ch 9 Naber 2003 ch 1 2 Treves 1967 Bourbaki 1987 Kreyszig 1989 4 11 5 Kreyszig 1989 1 5 5 Choquet 1966 Proposition III 7 2 Treves 1967 p 34 36 Lang 1983 Cor 4 1 2 p 69 Treves 1967 ch 11 Treves 1967 Theorem 11 2 p 102 Evans 1998 ch 5 Treves 1967 ch 12 Dennery amp Krzywicki 1996 p 190 Lang 1993 Th XIII 6 p 349 Lang 1993 Th III 1 1 Choquet 1966 Lemma III 16 11 Kreyszig 1999 Chapter 11 Griffiths 1995 Chapter 1 Lang 1993 ch XVII 3 Lang 2002 ch III 1 p 121 Eisenbud 1995 ch 1 6 Varadarajan 1974 Lang 2002 ch XVI 7 Lang 2002 ch XVI 8 Spivak 1999 ch 3 Kreyszig 1991 34 p 108 Eisenberg amp Guy 1979 Atiyah 1989 Artin 1991 ch 12 Grillet Pierre Antoine Abstract algebra Vol 242 Springer Science amp Business Media 2007 Meyer 2000 Example 5 13 5 p 436 Meyer 2000 Exercise 5 13 15 17 p 442 Coxeter 1987 a b Weisstein Eric W Vector mathworld wolfram com Retrieved 2020 08 19 References EditAlgebra Edit Artin Michael 1991 Algebra Prentice Hall ISBN 978 0 89871 510 1 Blass Andreas 1984 Existence of bases implies the axiom of choice PDF Axiomatic set theory Boulder Colorado 1983 Contemporary Mathematics vol 31 Providence R I American Mathematical Society pp 31 33 MR 0763890 Brown William A 1991 Matrices and vector spaces New York M Dekker ISBN 978 0 8247 8419 5 Lang Serge 1987 Linear algebra Berlin New York Springer Verlag ISBN 978 0 387 96412 6 Lang Serge 2002 Algebra Graduate Texts in Mathematics vol 211 Revised third ed New York Springer Verlag ISBN 978 0 387 95385 4 MR 1878556 Mac Lane Saunders 1999 Algebra 3rd ed pp 193 222 ISBN 978 0 8218 1646 2 Meyer Carl D 2000 Matrix Analysis and Applied Linear Algebra SIAM ISBN 978 0 89871 454 8 Roman Steven 2005 Advanced Linear Algebra Graduate Texts in Mathematics vol 135 2nd ed Berlin New York Springer Verlag ISBN 978 0 387 24766 3 Spindler Karlheinz 1993 Abstract Algebra with Applications Volume 1 Vector spaces and groups CRC ISBN 978 0 8247 9144 5 van der Waerden Bartel Leendert 1993 Algebra in German 9th ed Berlin New York Springer Verlag ISBN 978 3 540 56799 8Analysis Edit Bourbaki Nicolas 1987 Topological vector spaces Elements of mathematics Berlin New York Springer Verlag ISBN 978 3 540 13627 9 Bourbaki Nicolas 2004 Integration I Berlin New York Springer Verlag ISBN 978 3 540 41129 1 Braun Martin 1993 Differential equations and their applications an introduction to applied mathematics Berlin New York Springer Verlag ISBN 978 0 387 97894 9 BSE 3 2001 1994 Tangent plane Encyclopedia of Mathematics EMS Press Choquet Gustave 1966 Topology Boston MA Academic Press Dennery Philippe Krzywicki Andre 1996 Mathematics for Physicists Courier Dover Publications ISBN 978 0 486 69193 0 Dudley Richard M 1989 Real analysis and probability The Wadsworth amp Brooks Cole Mathematics Series Pacific Grove CA Wadsworth amp Brooks Cole Advanced Books amp Software ISBN 978 0 534 10050 6 Dunham William 2005 The Calculus Gallery Princeton University Press ISBN 978 0 691 09565 3 Evans Lawrence C 1998 Partial differential equations Providence R I American Mathematical Society ISBN 978 0 8218 0772 9 Folland Gerald B 1992 Fourier Analysis and Its Applications Brooks Cole ISBN 978 0 534 17094 3 Gasquet Claude Witomski Patrick 1999 Fourier Analysis and Applications Filtering Numerical Computation Wavelets Texts in Applied Mathematics New York Springer Verlag ISBN 978 0 387 98485 8 Ifeachor Emmanuel C Jervis Barrie W 2001 Digital Signal Processing A Practical Approach 2nd ed Harlow Essex England Prentice Hall published 2002 ISBN 978 0 201 59619 9 Krantz Steven G 1999 A Panorama of Harmonic Analysis Carus Mathematical Monographs Washington DC Mathematical Association of America ISBN 978 0 88385 031 2 Kreyszig Erwin 1988 Advanced Engineering Mathematics 6th ed New York John Wiley amp Sons ISBN 978 0 471 85824 9 Kreyszig Erwin 1989 Introductory functional analysis with applications Wiley Classics Library New York John Wiley amp Sons ISBN 978 0 471 50459 7 MR 0992618 Lang Serge 1983 Real analysis Addison Wesley ISBN 978 0 201 14179 5 Lang Serge 1993 Real and functional analysis Berlin New York Springer Verlag ISBN 978 0 387 94001 4 span, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.