fbpx
Wikipedia

Cartesian coordinate system

A Cartesian coordinate system (UK: /kɑːˈtzjən/, US: /kɑːrˈtiʒən/) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length. Each reference coordinate line is called a coordinate axis or just axis (plural axes) of the system, and the point where they meet is its origin, at ordered pair (0, 0). The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes, expressed as signed distances from the origin.

Illustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates: (2, 3) in green, (−3, 1) in red, (−1.5, −2.5) in blue, and the origin (0, 0) in purple.

One can use the same principle to specify the position of any point in three-dimensional space by three Cartesian coordinates, its signed distances to three mutually perpendicular planes (or, equivalently, by its perpendicular projection onto three mutually perpendicular lines). In general, n Cartesian coordinates (an element of real n-space) specify the point in an n-dimensional Euclidean space for any dimension n. These coordinates are equal, up to sign, to distances from the point to n mutually perpendicular hyperplanes.

Cartesian coordinate system with a circle of radius 2 centered at the origin marked in red. The equation of a circle is (xa)2 + (yb)2 = r2 where a and b are the coordinates of the center (a, b) and r is the radius.

Cartesian coordinates are named for René Descartes whose invention of them in the 17th century revolutionized mathematics by providing the first systematic link between Euclidean geometry and algebra. Using the Cartesian coordinate system, geometric shapes (such as curves) can be described by Cartesian equations: algebraic equations involving the coordinates of the points lying on the shape. For example, a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x and y satisfy the equation x2 + y2 = 4.

Cartesian coordinates are the foundation of analytic geometry, and provide enlightening geometric interpretations for many other branches of mathematics, such as linear algebra, complex analysis, differential geometry, multivariate calculus, group theory and more. A familiar example is the concept of the graph of a function. Cartesian coordinates are also essential tools for most applied disciplines that deal with geometry, including astronomy, physics, engineering and many more. They are the most common coordinate system used in computer graphics, computer-aided geometric design and other geometry-related data processing.

History

The adjective Cartesian refers to the French mathematician and philosopher René Descartes, who published this idea in 1637 while he was resident in the Netherlands. It was independently discovered by Pierre de Fermat, who also worked in three dimensions, although Fermat did not publish the discovery.[1] The French cleric Nicole Oresme used constructions similar to Cartesian coordinates well before the time of Descartes and Fermat.[2]

Both Descartes and Fermat used a single axis in their treatments and have a variable length measured in reference to this axis. The concept of using a pair of axes was introduced later, after Descartes' La Géométrie was translated into Latin in 1649 by Frans van Schooten and his students. These commentators introduced several concepts while trying to clarify the ideas contained in Descartes's work.[3]

The development of the Cartesian coordinate system would play a fundamental role in the development of the calculus by Isaac Newton and Gottfried Wilhelm Leibniz.[4] The two-coordinate description of the plane was later generalized into the concept of vector spaces.[5]

Many other coordinate systems have been developed since Descartes, such as the polar coordinates for the plane, and the spherical and cylindrical coordinates for three-dimensional space.

Description

One dimension

Choosing a Cartesian coordinate system for a one-dimensional space—that is, for a straight line—involves choosing a point O of the line (the origin), a unit of length, and an orientation for the line. An orientation chooses which of the two half-lines determined by O is the positive and which is negative; we then say that the line "is oriented" (or "points") from the negative half towards the positive half. Then each point P of the line can be specified by its distance from O, taken with a + or − sign depending on which half-line contains P.

A line with a chosen Cartesian system is called a number line. Every real number has a unique location on the line. Conversely, every point on the line can be interpreted as a number in an ordered continuum such as the real numbers.

Two dimensions

A Cartesian coordinate system in two dimensions (also called a rectangular coordinate system or an orthogonal coordinate system[6]) is defined by an ordered pair of perpendicular lines (axes), a single unit of length for both axes, and an orientation for each axis. The point where the axes meet is taken as the origin for both, thus turning each axis into a number line. For any point P, a line is drawn through P perpendicular to each axis, and the position where it meets the axis is interpreted as a number. The two numbers, in that chosen order, are the Cartesian coordinates of P. The reverse construction allows one to determine the point P given its coordinates.

The first and second coordinates are called the abscissa and the ordinate of P, respectively; and the point where the axes meet is called the origin of the coordinate system. The coordinates are usually written as two numbers in parentheses, in that order, separated by a comma, as in (3, −10.5). Thus the origin has coordinates (0, 0), and the points on the positive half-axes, one unit away from the origin, have coordinates (1, 0) and (0, 1).

In mathematics, physics, and engineering, the first axis is usually defined or depicted as horizontal and oriented to the right, and the second axis is vertical and oriented upwards. (However, in some computer graphics contexts, the ordinate axis may be oriented downwards.) The origin is often labeled O, and the two coordinates are often denoted by the letters X and Y, or x and y. The axes may then be referred to as the X-axis and Y-axis. The choices of letters come from the original convention, which is to use the latter part of the alphabet to indicate unknown values. The first part of the alphabet was used to designate known values.

A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. In a Cartesian plane one can define canonical representatives of certain geometric figures, such as the unit circle (with radius equal to the length unit, and center at the origin), the unit square (whose diagonal has endpoints at (0, 0) and (1, 1)), the unit hyperbola, and so on.

The two axes divide the plane into four right angles, called quadrants. The quadrants may be named or numbered in various ways, but the quadrant where all coordinates are positive is usually called the first quadrant.

If the coordinates of a point are (x, y), then its distances from the X-axis and from the Y-axis are |y| and |x|, respectively; where | · | denotes the absolute value of a number.

Three dimensions

 
A three dimensional Cartesian coordinate system, with origin O and axis lines X, Y and Z, oriented as shown by the arrows. The tick marks on the axes are one length unit apart. The black dot shows the point with coordinates x = 2, y = 3, and z = 4, or (2, 3, 4).

A Cartesian coordinate system for a three-dimensional space consists of an ordered triplet of lines (the axes) that go through a common point (the origin), and are pair-wise perpendicular; an orientation for each axis; and a single unit of length for all three axes. As in the two-dimensional case, each axis becomes a number line. For any point P of space, one considers a hyperplane through P perpendicular to each coordinate axis, and interprets the point where that hyperplane cuts the axis as a number. The Cartesian coordinates of P are those three numbers, in the chosen order. The reverse construction determines the point P given its three coordinates.

Alternatively, each coordinate of a point P can be taken as the distance from P to the hyperplane defined by the other two axes, with the sign determined by the orientation of the corresponding axis.

Each pair of axes defines a coordinate hyperplane. These hyperplanes divide space into eight octants. The octants are:

 

The coordinates are usually written as three numbers (or algebraic formulas) surrounded by parentheses and separated by commas, as in (3, −2.5, 1) or (t, u + v, π/2). Thus, the origin has coordinates (0, 0, 0), and the unit points on the three axes are (1, 0, 0), (0, 1, 0), and (0, 0, 1).

There are no standard names for the coordinates in the three axes (however, the terms abscissa, ordinate and applicate are sometimes used). The coordinates are often denoted by the letters X, Y, and Z, or x, y, and z. The axes may then be referred to as the X-axis, Y-axis, and Z-axis, respectively. Then the coordinate hyperplanes can be referred to as the XY-plane, YZ-plane, and XZ-plane.

In mathematics, physics, and engineering contexts, the first two axes are often defined or depicted as horizontal, with the third axis pointing up. In that case the third coordinate may be called height or altitude. The orientation is usually chosen so that the 90 degree angle from the first axis to the second axis looks counter-clockwise when seen from the point (0, 0, 1); a convention that is commonly called the right hand rule.

 
The coordinate surfaces of the Cartesian coordinates (x, y, z). The z-axis is vertical and the x-axis is highlighted in green. Thus, the red hyperplane shows the points with x = 1, the blue hyperplane shows the points with z = 1, and the yellow hyperplane shows the points with y = −1. The three surfaces intersect at the point P (shown as a black sphere) with the Cartesian coordinates (1, −1, 1).

Higher dimensions

Since Cartesian coordinates are unique and non-ambiguous, the points of a Cartesian plane can be identified with pairs of real numbers; that is, with the Cartesian product  , where   is the set of all real numbers. In the same way, the points in any Euclidean space of dimension n be identified with the tuples (lists) of n real numbers; that is, with the Cartesian product  .

Generalizations

The concept of Cartesian coordinates generalizes to allow axes that are not perpendicular to each other, and/or different units along each axis. In that case, each coordinate is obtained by projecting the point onto one axis along a direction that is parallel to the other axis (or, in general, to the hyperplane defined by all the other axes). In such an oblique coordinate system the computations of distances and angles must be modified from that in standard Cartesian systems, and many standard formulas (such as the Pythagorean formula for the distance) do not hold (see affine plane).

Notations and conventions

The Cartesian coordinates of a point are usually written in parentheses and separated by commas, as in (10, 5) or (3, 5, 7). The origin is often labelled with the capital letter O. In analytic geometry, unknown or generic coordinates are often denoted by the letters (x, y) in the plane, and (x, y, z) in three-dimensional space. This custom comes from a convention of algebra, which uses letters near the end of the alphabet for unknown values (such as the coordinates of points in many geometric problems), and letters near the beginning for given quantities.

These conventional names are often used in other domains, such as physics and engineering, although other letters may be used. For example, in a graph showing how a pressure varies with time, the graph coordinates may be denoted p and t. Each axis is usually named after the coordinate which is measured along it; so one says the x-axis, the y-axis, the t-axis, etc.

Another common convention for coordinate naming is to use subscripts, as (x1, x2, ..., xn) for the n coordinates in an n-dimensional space, especially when n is greater than 3 or unspecified. Some authors prefer the numbering (x0, x1, ..., xn−1). These notations are especially advantageous in computer programming: by storing the coordinates of a point as an array, instead of a record, the subscript can serve to index the coordinates.

In mathematical illustrations of two-dimensional Cartesian systems, the first coordinate (traditionally called the abscissa) is measured along a horizontal axis, oriented from left to right. The second coordinate (the ordinate) is then measured along a vertical axis, usually oriented from bottom to top. Young children learning the Cartesian system, commonly learn the order to read the values before cementing the x-, y-, and z-axis concepts, by starting with 2D mnemonics (for example, 'Walk along the hall then up the stairs' akin to straight across the x-axis then up vertically along the y-axis).[7]

Computer graphics and image processing, however, often use a coordinate system with the y-axis oriented downwards on the computer display. This convention developed in the 1960s (or earlier) from the way that images were originally stored in display buffers.

For three-dimensional systems, a convention is to portray the xy-plane horizontally, with the z-axis added to represent height (positive up). Furthermore, there is a convention to orient the x-axis toward the viewer, biased either to the right or left. If a diagram (3D projection or 2D perspective drawing) shows the x- and y-axis horizontally and vertically, respectively, then the z-axis should be shown pointing "out of the page" towards the viewer or camera. In such a 2D diagram of a 3D coordinate system, the z-axis would appear as a line or ray pointing down and to the left or down and to the right, depending on the presumed viewer or camera perspective. In any diagram or display, the orientation of the three axes, as a whole, is arbitrary. However, the orientation of the axes relative to each other should always comply with the right-hand rule, unless specifically stated otherwise. All laws of physics and math assume this right-handedness, which ensures consistency.

For 3D diagrams, the names "abscissa" and "ordinate" are rarely used for x and y, respectively. When they are, the z-coordinate is sometimes called the applicate. The words abscissa, ordinate and applicate are sometimes used to refer to coordinate axes rather than the coordinate values.[6]

Quadrants and octants

 
The four quadrants of a Cartesian coordinate system

The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants,[6] each bounded by two half-axes. These are often numbered from 1st to 4th and denoted by Roman numerals: I (where the coordinates both have positive signs), II (where the abscissa is negative − and the ordinate is positive +), III (where both the abscissa and the ordinate are −), and IV (abscissa +, ordinate −). When the axes are drawn according to the mathematical custom, the numbering goes counter-clockwise starting from the upper right ("north-east") quadrant.

Similarly, a three-dimensional Cartesian system defines a division of space into eight regions or octants,[6] according to the signs of the coordinates of the points. The convention used for naming a specific octant is to list its signs; for example, (+ + +) or (− + −). The generalization of the quadrant and octant to an arbitrary number of dimensions is the orthant, and a similar naming system applies.

Cartesian formulae for the plane

Distance between two points

The Euclidean distance between two points of the plane with Cartesian coordinates   and   is

 

This is the Cartesian version of Pythagoras's theorem. In three-dimensional space, the distance between points   and   is

 

which can be obtained by two consecutive applications of Pythagoras' theorem.[8]

Euclidean transformations

The Euclidean transformations or Euclidean motions are the (bijective) mappings of points of the Euclidean plane to themselves which preserve distances between points. There are four types of these mappings (also called isometries): translations, rotations, reflections and glide reflections.[9]

Translation

Translating a set of points of the plane, preserving the distances and directions between them, is equivalent to adding a fixed pair of numbers (a, b) to the Cartesian coordinates of every point in the set. That is, if the original coordinates of a point are (x, y), after the translation they will be

 

Rotation

To rotate a figure counterclockwise around the origin by some angle   is equivalent to replacing every point with coordinates (x,y) by the point with coordinates (x',y'), where

 

Thus:

 

Reflection

If (x, y) are the Cartesian coordinates of a point, then (−x, y) are the coordinates of its reflection across the second coordinate axis (the y-axis), as if that line were a mirror. Likewise, (x, −y) are the coordinates of its reflection across the first coordinate axis (the x-axis). In more generality, reflection across a line through the origin making an angle   with the x-axis, is equivalent to replacing every point with coordinates (x, y) by the point with coordinates (x′,y′), where

 

Thus:

 

Glide reflection

A glide reflection is the composition of a reflection across a line followed by a translation in the direction of that line. It can be seen that the order of these operations does not matter (the translation can come first, followed by the reflection).

General matrix form of the transformations

All affine transformations of the plane can be described in a uniform way by using matrices. For this purpose the coordinates   of a point are commonly represented as the column matrix   The result   of applying an affine transformation to a point   is given by the formula

 
where
 
is a 2×2 matrix and   is a column matrix.[10] That is,
 

Among the affine transformations, the Euclidean transformations are characterized by the fact that the matrix   is orthogonal; that is, its columns are orthogonal vectors of Euclidean norm one, or, explicitly,

 
and
 

This is equivalent to saying that A times its transpose is the identity matrix. If these conditions do not hold, the formula describes a more general affine transformation.

The transformation is a translation if and only if A is the identity matrix. The transformation is a rotation around some point if and only if A is a rotation matrix, meaning that it is orthogonal and

 

A reflection or glide reflection is obtained when,

 

Assuming that translations are not used (that is,  ) transformations can be composed by simply multiplying the associated transformation matrices. In the general case, it is useful to use the augmented matrix of the transformation; that is, to rewrite the transformation formula

 
where
 
With this trick, the composition of affine transformations is obtained by multiplying the augmented matrices.

Affine transformation

 
Effect of applying various 2D affine transformation matrices on a unit square (reflections are special cases of scaling)

Affine transformations of the Euclidean plane are transformations that map lines to lines, but may change distances and angles. As said in the preceding section, they can be represented with augmented matrices:

 

The Euclidean transformations are the affine transformations such that the 2×2 matrix of the   is orthogonal.

The augmented matrix that represents the composition of two affine transformations is obtained by multiplying their augmented matrices.

Some affine transformations that are not Euclidean transformations have received specific names.

Scaling

An example of an affine transformation which is not Euclidean is given by scaling. To make a figure larger or smaller is equivalent to multiplying the Cartesian coordinates of every point by the same positive number m. If (x, y) are the coordinates of a point on the original figure, the corresponding point on the scaled figure has coordinates

 

If m is greater than 1, the figure becomes larger; if m is between 0 and 1, it becomes smaller.

Shearing

A shearing transformation will push the top of a square sideways to form a parallelogram. Horizontal shearing is defined by:

 

Shearing can also be applied vertically:

 

Orientation and handedness

In two dimensions

Fixing or choosing the x-axis determines the y-axis up to direction. Namely, the y-axis is necessarily the perpendicular to the x-axis through the point marked 0 on the x-axis. But there is a choice of which of the two half lines on the perpendicular to designate as positive and which as negative. Each of these two choices determines a different orientation (also called handedness) of the Cartesian plane.

The usual way of orienting the plane, with the positive x-axis pointing right and the positive y-axis pointing up (and the x-axis being the "first" and the y-axis the "second" axis), is considered the positive or standard orientation, also called the right-handed orientation.

A commonly used mnemonic for defining the positive orientation is the right-hand rule. Placing a somewhat closed right hand on the plane with the thumb pointing up, the fingers point from the x-axis to the y-axis, in a positively oriented coordinate system.

The other way of orienting the plane is following the left hand rule, placing the left hand on the plane with the thumb pointing up.

When pointing the thumb away from the origin along an axis towards positive, the curvature of the fingers indicates a positive rotation along that axis.

Regardless of the rule used to orient the plane, rotating the coordinate system will preserve the orientation. Switching any one axis will reverse the orientation, but switching both will leave the orientation unchanged.

In three dimensions

 
Fig. 7 – The left-handed orientation is shown on the left, and the right-handed on the right.
 
Fig. 8 – The right-handed Cartesian coordinate system indicating the coordinate planes.

Once the x- and y-axes are specified, they determine the line along which the z-axis should lie, but there are two possible orientation for this line. The two possible coordinate systems which result are called 'right-handed' and 'left-handed'. The standard orientation, where the xy-plane is horizontal and the z-axis points up (and the x- and the y-axis form a positively oriented two-dimensional coordinate system in the xy-plane if observed from above the xy-plane) is called right-handed or positive.

 
3D Cartesian coordinate handedness

The name derives from the right-hand rule. If the index finger of the right hand is pointed forward, the middle finger bent inward at a right angle to it, and the thumb placed at a right angle to both, the three fingers indicate the relative orientation of the x-, y-, and z-axes in a right-handed system. The thumb indicates the x-axis, the index finger the y-axis and the middle finger the z-axis. Conversely, if the same is done with the left hand, a left-handed system results.

Figure 7 depicts a left and a right-handed coordinate system. Because a three-dimensional object is represented on the two-dimensional screen, distortion and ambiguity result. The axis pointing downward (and to the right) is also meant to point towards the observer, whereas the "middle"-axis is meant to point away from the observer. The red circle is parallel to the horizontal xy-plane and indicates rotation from the x-axis to the y-axis (in both cases). Hence the red arrow passes in front of the z-axis.

Figure 8 is another attempt at depicting a right-handed coordinate system. Again, there is an ambiguity caused by projecting the three-dimensional coordinate system into the plane. Many observers see Figure 8 as "flipping in and out" between a convex cube and a concave "corner". This corresponds to the two possible orientations of the space. Seeing the figure as convex gives a left-handed coordinate system. Thus the "correct" way to view Figure 8 is to imagine the x-axis as pointing towards the observer and thus seeing a concave corner.

Representing a vector in the standard basis

A point in space in a Cartesian coordinate system may also be represented by a position vector, which can be thought of as an arrow pointing from the origin of the coordinate system to the point.[11] If the coordinates represent spatial positions (displacements), it is common to represent the vector from the origin to the point of interest as  . In two dimensions, the vector from the origin to the point with Cartesian coordinates (x, y) can be written as:

 

where   and   are unit vectors in the direction of the x-axis and y-axis respectively, generally referred to as the standard basis (in some application areas these may also be referred to as versors). Similarly, in three dimensions, the vector from the origin to the point with Cartesian coordinates   can be written as:[12]

 

where     and  

There is no natural interpretation of multiplying vectors to obtain another vector that works in all dimensions, however there is a way to use complex numbers to provide such a multiplication. In a two-dimensional cartesian plane, identify the point with coordinates (x, y) with the complex number z = x + iy. Here, i is the imaginary unit and is identified with the point with coordinates (0, 1), so it is not the unit vector in the direction of the x-axis. Since the complex numbers can be multiplied giving another complex number, this identification provides a means to "multiply" vectors. In a three-dimensional cartesian space a similar identification can be made with a subset of the quaternions.

Applications

Cartesian coordinates are an abstraction that have a multitude of possible applications in the real world. However, three constructive steps are involved in superimposing coordinates on a problem application.

  1. Units of distance must be decided defining the spatial size represented by the numbers used as coordinates.
  2. An origin must be assigned to a specific spatial location or landmark, and
  3. the orientation of the axes must be defined using available directional cues for all but one axis.

Consider as an example superimposing 3D Cartesian coordinates over all points on the Earth (that is, geospatial 3D). Kilometers are a good choice of units, since the original definition of the kilometer was geospatial, with 10,000 km equaling the surface distance from the equator to the North Pole. Based on symmetry, the gravitational center of the Earth suggests a natural placement of the origin (which can be sensed via satellite orbits). The axis of Earth's rotation provides a natural orientation for the X, Y, and Z axes, strongly associated with "up vs. down", so positive Z can adopt the direction from the geocenter to the North Pole. A location on the equator is needed to define the X-axis, and the prime meridian stands out as a reference orientation, so the X-axis takes the orientation from the geocenter out to 0 degrees longitude, 0 degrees latitude. Note that with three dimensions, and two perpendicular axes orientations pinned down for X and Z, the Y-axis is determined by the first two choices. In order to obey the right-hand rule, the Y-axis must point out from the geocenter to 90 degrees longitude, 0 degrees latitude. From a longitude of −73.985656 degrees, a latitude 40.748433 degrees, and Earth radius of 40,000/2π km, and transforming from spherical to Cartesian coordinates, one can estimate the geocentric coordinates of the Empire State Building, (x, y, z) = (1,330.53 km, 4,635.75 km, 4,155.46 km). GPS navigation relies on such geocentric coordinates.

In engineering projects, agreement on the definition of coordinates is a crucial foundation. One cannot assume that coordinates come predefined for a novel application, so knowledge of how to erect a coordinate system where there previously was no such coordinate system is essential to applying René Descartes' thinking.

While spatial applications employ identical units along all axes, in business and scientific applications, each axis may have different units of measurement associated with it (such as kilograms, seconds, pounds, etc.). Although four- and higher-dimensional spaces are difficult to visualize, the algebra of Cartesian coordinates can be extended relatively easily to four or more variables, so that certain calculations involving many variables can be done. (This sort of algebraic extension is what is used to define the geometry of higher-dimensional spaces.) Conversely, it is often helpful to use the geometry of Cartesian coordinates in two or three dimensions to visualize algebraic relationships between two or three of many non-spatial variables.

The graph of a function or relation is the set of all points satisfying that function or relation. For a function of one variable, f, the set of all points (x, y), where y = f(x) is the graph of the function f. For a function g of two variables, the set of all points (x, y, z), where z = g(x, y) is the graph of the function g. A sketch of the graph of such a function or relation would consist of all the salient parts of the function or relation which would include its relative extrema, its concavity and points of inflection, any points of discontinuity and its end behavior. All of these terms are more fully defined in calculus. Such graphs are useful in calculus to understand the nature and behavior of a function or relation.

See also

References

  1. ^ Bix, Robert A.; D'Souza, Harry J. "Analytic geometry". Encyclopædia Britannica. Retrieved 6 August 2017.
  2. ^ Kent, Alexander J.; Vujakovic, Peter (4 October 2017). The Routledge Handbook of Mapping and Cartography. Routledge. ISBN 9781317568216.
  3. ^ Burton 2011, p. 374.
  4. ^ A Tour of the Calculus, David Berlinski.
  5. ^ Axler, Sheldon (2015). Linear Algebra Done Right – Springer. Undergraduate Texts in Mathematics. p. 1. doi:10.1007/978-3-319-11080-6. ISBN 978-3-319-11079-0.
  6. ^ a b c d "Cartesian orthogonal coordinate system". Encyclopedia of Mathematics. Retrieved 6 August 2017.
  7. ^ "Charts and Graphs: Choosing the Right Format". mindtools.com. Retrieved 29 August 2017.
  8. ^ Hughes-Hallett, Deborah; McCallum, William G.; Gleason, Andrew M. (2013). Calculus : Single and Multivariable (6 ed.). John wiley. ISBN 978-0470-88861-2.
  9. ^ Smart 1998, Chap. 2
  10. ^ Brannan, Esplen & Gray 1998, pg. 49
  11. ^ Brannan, Esplen & Gray 1998, Appendix 2, pp. 377–382
  12. ^ David J. Griffiths (1999). Introduction to Electrodynamics. Prentice Hall. ISBN 978-0-13-805326-0.

Sources

  • Brannan, David A.; Esplen, Matthew F.; Gray, Jeremy J. (1998), Geometry, Cambridge: Cambridge University Press, ISBN 978-0-521-59787-6
  • Burton, David M. (2011), The History of Mathematics/An Introduction (7th ed.), New York: McGraw-Hill, ISBN 978-0-07-338315-6
  • Smart, James R. (1998), Modern Geometries (5th ed.), Pacific Grove: Brooks/Cole, ISBN 978-0-534-35188-5

Further reading

  • Descartes, René (2001). Discourse on Method, Optics, Geometry, and Meteorology. Translated by Paul J. Oscamp (Revised ed.). Indianapolis, IN: Hackett Publishing. ISBN 978-0-87220-567-3. OCLC 488633510.
  • Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers (1st ed.). New York: McGraw-Hill. pp. 55–79. LCCN 59-14456. OCLC 19959906.
  • Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. LCCN 55-10911.
  • Moon P, Spencer DE (1988). "Rectangular Coordinates (x, y, z)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd, 3rd print ed.). New York: Springer-Verlag. pp. 9–11 (Table 1.01). ISBN 978-0-387-18430-2.
  • Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. ISBN 978-0-07-043316-8. LCCN 52-11515.
  • Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. LCCN 67-25285.

External links

  • Cartesian Coordinate System
  • MathWorld description of Cartesian coordinates
  • Coordinate Converter – converts between polar, Cartesian and spherical coordinates
  • Coordinates of a point Interactive tool to explore coordinates of a point
  • open source JavaScript class for 2D/3D Cartesian coordinate system manipulation

cartesian, coordinate, system, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jst. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Cartesian coordinate system news newspapers books scholar JSTOR June 2012 Learn how and when to remove this template message A Cartesian coordinate system UK k ɑː ˈ t iː zj e n US k ɑːr ˈ t i ʒ e n in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates which are the signed distances to the point from two fixed perpendicular oriented lines measured in the same unit of length Each reference coordinate line is called a coordinate axis or just axis plural axes of the system and the point where they meet is its origin at ordered pair 0 0 The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes expressed as signed distances from the origin Illustration of a Cartesian coordinate plane Four points are marked and labeled with their coordinates 2 3 in green 3 1 in red 1 5 2 5 in blue and the origin 0 0 in purple One can use the same principle to specify the position of any point in three dimensional space by three Cartesian coordinates its signed distances to three mutually perpendicular planes or equivalently by its perpendicular projection onto three mutually perpendicular lines In general n Cartesian coordinates an element of real n space specify the point in an n dimensional Euclidean space for any dimension n These coordinates are equal up to sign to distances from the point to n mutually perpendicular hyperplanes Cartesian coordinate system with a circle of radius 2 centered at the origin marked in red The equation of a circle is x a 2 y b 2 r2 where a and b are the coordinates of the center a b and r is the radius Cartesian coordinates are named for Rene Descartes whose invention of them in the 17th century revolutionized mathematics by providing the first systematic link between Euclidean geometry and algebra Using the Cartesian coordinate system geometric shapes such as curves can be described by Cartesian equations algebraic equations involving the coordinates of the points lying on the shape For example a circle of radius 2 centered at the origin of the plane may be described as the set of all points whose coordinates x and y satisfy the equation x2 y2 4 Cartesian coordinates are the foundation of analytic geometry and provide enlightening geometric interpretations for many other branches of mathematics such as linear algebra complex analysis differential geometry multivariate calculus group theory and more A familiar example is the concept of the graph of a function Cartesian coordinates are also essential tools for most applied disciplines that deal with geometry including astronomy physics engineering and many more They are the most common coordinate system used in computer graphics computer aided geometric design and other geometry related data processing Contents 1 History 2 Description 2 1 One dimension 2 2 Two dimensions 2 3 Three dimensions 2 4 Higher dimensions 2 5 Generalizations 3 Notations and conventions 3 1 Quadrants and octants 4 Cartesian formulae for the plane 4 1 Distance between two points 4 2 Euclidean transformations 4 2 1 Translation 4 2 2 Rotation 4 2 3 Reflection 4 2 4 Glide reflection 4 2 5 General matrix form of the transformations 4 3 Affine transformation 4 3 1 Scaling 4 3 2 Shearing 5 Orientation and handedness 5 1 In two dimensions 5 2 In three dimensions 6 Representing a vector in the standard basis 7 Applications 8 See also 9 References 10 Sources 11 Further reading 12 External linksHistory EditThe adjective Cartesian refers to the French mathematician and philosopher Rene Descartes who published this idea in 1637 while he was resident in the Netherlands It was independently discovered by Pierre de Fermat who also worked in three dimensions although Fermat did not publish the discovery 1 The French cleric Nicole Oresme used constructions similar to Cartesian coordinates well before the time of Descartes and Fermat 2 Both Descartes and Fermat used a single axis in their treatments and have a variable length measured in reference to this axis The concept of using a pair of axes was introduced later after Descartes La Geometrie was translated into Latin in 1649 by Frans van Schooten and his students These commentators introduced several concepts while trying to clarify the ideas contained in Descartes s work 3 The development of the Cartesian coordinate system would play a fundamental role in the development of the calculus by Isaac Newton and Gottfried Wilhelm Leibniz 4 The two coordinate description of the plane was later generalized into the concept of vector spaces 5 Many other coordinate systems have been developed since Descartes such as the polar coordinates for the plane and the spherical and cylindrical coordinates for three dimensional space Description EditOne dimension Edit Main article Number line Choosing a Cartesian coordinate system for a one dimensional space that is for a straight line involves choosing a point O of the line the origin a unit of length and an orientation for the line An orientation chooses which of the two half lines determined by O is the positive and which is negative we then say that the line is oriented or points from the negative half towards the positive half Then each point P of the line can be specified by its distance from O taken with a or sign depending on which half line contains P A line with a chosen Cartesian system is called a number line Every real number has a unique location on the line Conversely every point on the line can be interpreted as a number in an ordered continuum such as the real numbers Two dimensions Edit Further information Two dimensional space A Cartesian coordinate system in two dimensions also called a rectangular coordinate system or an orthogonal coordinate system 6 is defined by an ordered pair of perpendicular lines axes a single unit of length for both axes and an orientation for each axis The point where the axes meet is taken as the origin for both thus turning each axis into a number line For any point P a line is drawn through P perpendicular to each axis and the position where it meets the axis is interpreted as a number The two numbers in that chosen order are the Cartesian coordinates of P The reverse construction allows one to determine the point P given its coordinates The first and second coordinates are called the abscissa and the ordinate of P respectively and the point where the axes meet is called the origin of the coordinate system The coordinates are usually written as two numbers in parentheses in that order separated by a comma as in 3 10 5 Thus the origin has coordinates 0 0 and the points on the positive half axes one unit away from the origin have coordinates 1 0 and 0 1 In mathematics physics and engineering the first axis is usually defined or depicted as horizontal and oriented to the right and the second axis is vertical and oriented upwards However in some computer graphics contexts the ordinate axis may be oriented downwards The origin is often labeled O and the two coordinates are often denoted by the letters X and Y or x and y The axes may then be referred to as the X axis and Y axis The choices of letters come from the original convention which is to use the latter part of the alphabet to indicate unknown values The first part of the alphabet was used to designate known values A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane In a Cartesian plane one can define canonical representatives of certain geometric figures such as the unit circle with radius equal to the length unit and center at the origin the unit square whose diagonal has endpoints at 0 0 and 1 1 the unit hyperbola and so on The two axes divide the plane into four right angles called quadrants The quadrants may be named or numbered in various ways but the quadrant where all coordinates are positive is usually called the first quadrant If the coordinates of a point are x y then its distances from the X axis and from the Y axis are y and x respectively where denotes the absolute value of a number Three dimensions Edit Further information Three dimensional space A three dimensional Cartesian coordinate system with origin O and axis lines X Y and Z oriented as shown by the arrows The tick marks on the axes are one length unit apart The black dot shows the point with coordinates x 2 y 3 and z 4 or 2 3 4 A Cartesian coordinate system for a three dimensional space consists of an ordered triplet of lines the axes that go through a common point the origin and are pair wise perpendicular an orientation for each axis and a single unit of length for all three axes As in the two dimensional case each axis becomes a number line For any point P of space one considers a hyperplane through P perpendicular to each coordinate axis and interprets the point where that hyperplane cuts the axis as a number The Cartesian coordinates of P are those three numbers in the chosen order The reverse construction determines the point P given its three coordinates Alternatively each coordinate of a point P can be taken as the distance from P to the hyperplane defined by the other two axes with the sign determined by the orientation of the corresponding axis Each pair of axes defines a coordinate hyperplane These hyperplanes divide space into eight octants The octants are x y z x y z x y z x y z x y z x y z x y z x y z displaystyle begin aligned x y z amp amp x y z amp amp x y z amp amp x y z x y z amp amp x y z amp amp x y z amp amp x y z end aligned The coordinates are usually written as three numbers or algebraic formulas surrounded by parentheses and separated by commas as in 3 2 5 1 or t u v p 2 Thus the origin has coordinates 0 0 0 and the unit points on the three axes are 1 0 0 0 1 0 and 0 0 1 There are no standard names for the coordinates in the three axes however the terms abscissa ordinate and applicate are sometimes used The coordinates are often denoted by the letters X Y and Z or x y and z The axes may then be referred to as the X axis Y axis and Z axis respectively Then the coordinate hyperplanes can be referred to as the XY plane YZ plane and XZ plane In mathematics physics and engineering contexts the first two axes are often defined or depicted as horizontal with the third axis pointing up In that case the third coordinate may be called height or altitude The orientation is usually chosen so that the 90 degree angle from the first axis to the second axis looks counter clockwise when seen from the point 0 0 1 a convention that is commonly called the right hand rule The coordinate surfaces of the Cartesian coordinates x y z The z axis is vertical and the x axis is highlighted in green Thus the red hyperplane shows the points with x 1 the blue hyperplane shows the points with z 1 and the yellow hyperplane shows the points with y 1 The three surfaces intersect at the point P shown as a black sphere with the Cartesian coordinates 1 1 1 Higher dimensions Edit Since Cartesian coordinates are unique and non ambiguous the points of a Cartesian plane can be identified with pairs of real numbers that is with the Cartesian product R 2 R R displaystyle mathbb R 2 mathbb R times mathbb R where R displaystyle mathbb R is the set of all real numbers In the same way the points in any Euclidean space of dimension n be identified with the tuples lists of n real numbers that is with the Cartesian product R n displaystyle mathbb R n Generalizations Edit The concept of Cartesian coordinates generalizes to allow axes that are not perpendicular to each other and or different units along each axis In that case each coordinate is obtained by projecting the point onto one axis along a direction that is parallel to the other axis or in general to the hyperplane defined by all the other axes In such an oblique coordinate system the computations of distances and angles must be modified from that in standard Cartesian systems and many standard formulas such as the Pythagorean formula for the distance do not hold see affine plane Notations and conventions EditThe Cartesian coordinates of a point are usually written in parentheses and separated by commas as in 10 5 or 3 5 7 The origin is often labelled with the capital letter O In analytic geometry unknown or generic coordinates are often denoted by the letters x y in the plane and x y z in three dimensional space This custom comes from a convention of algebra which uses letters near the end of the alphabet for unknown values such as the coordinates of points in many geometric problems and letters near the beginning for given quantities These conventional names are often used in other domains such as physics and engineering although other letters may be used For example in a graph showing how a pressure varies with time the graph coordinates may be denoted p and t Each axis is usually named after the coordinate which is measured along it so one says the x axis the y axis the t axis etc Another common convention for coordinate naming is to use subscripts as x1 x2 xn for the n coordinates in an n dimensional space especially when n is greater than 3 or unspecified Some authors prefer the numbering x0 x1 xn 1 These notations are especially advantageous in computer programming by storing the coordinates of a point as an array instead of a record the subscript can serve to index the coordinates In mathematical illustrations of two dimensional Cartesian systems the first coordinate traditionally called the abscissa is measured along a horizontal axis oriented from left to right The second coordinate the ordinate is then measured along a vertical axis usually oriented from bottom to top Young children learning the Cartesian system commonly learn the order to read the values before cementing the x y and z axis concepts by starting with 2D mnemonics for example Walk along the hall then up the stairs akin to straight across the x axis then up vertically along the y axis 7 Computer graphics and image processing however often use a coordinate system with the y axis oriented downwards on the computer display This convention developed in the 1960s or earlier from the way that images were originally stored in display buffers For three dimensional systems a convention is to portray the xy plane horizontally with the z axis added to represent height positive up Furthermore there is a convention to orient the x axis toward the viewer biased either to the right or left If a diagram 3D projection or 2D perspective drawing shows the x and y axis horizontally and vertically respectively then the z axis should be shown pointing out of the page towards the viewer or camera In such a 2D diagram of a 3D coordinate system the z axis would appear as a line or ray pointing down and to the left or down and to the right depending on the presumed viewer or camera perspective In any diagram or display the orientation of the three axes as a whole is arbitrary However the orientation of the axes relative to each other should always comply with the right hand rule unless specifically stated otherwise All laws of physics and math assume this right handedness which ensures consistency For 3D diagrams the names abscissa and ordinate are rarely used for x and y respectively When they are the z coordinate is sometimes called the applicate The words abscissa ordinate and applicate are sometimes used to refer to coordinate axes rather than the coordinate values 6 Quadrants and octants Edit Main articles Octant solid geometry and Quadrant plane geometry The four quadrants of a Cartesian coordinate system The axes of a two dimensional Cartesian system divide the plane into four infinite regions called quadrants 6 each bounded by two half axes These are often numbered from 1st to 4th and denoted by Roman numerals I where the coordinates both have positive signs II where the abscissa is negative and the ordinate is positive III where both the abscissa and the ordinate are and IV abscissa ordinate When the axes are drawn according to the mathematical custom the numbering goes counter clockwise starting from the upper right north east quadrant Similarly a three dimensional Cartesian system defines a division of space into eight regions or octants 6 according to the signs of the coordinates of the points The convention used for naming a specific octant is to list its signs for example or The generalization of the quadrant and octant to an arbitrary number of dimensions is the orthant and a similar naming system applies Cartesian formulae for the plane EditDistance between two points Edit The Euclidean distance between two points of the plane with Cartesian coordinates x 1 y 1 displaystyle x 1 y 1 and x 2 y 2 displaystyle x 2 y 2 isd x 2 x 1 2 y 2 y 1 2 displaystyle d sqrt x 2 x 1 2 y 2 y 1 2 This is the Cartesian version of Pythagoras s theorem In three dimensional space the distance between points x 1 y 1 z 1 displaystyle x 1 y 1 z 1 and x 2 y 2 z 2 displaystyle x 2 y 2 z 2 isd x 2 x 1 2 y 2 y 1 2 z 2 z 1 2 displaystyle d sqrt x 2 x 1 2 y 2 y 1 2 z 2 z 1 2 which can be obtained by two consecutive applications of Pythagoras theorem 8 Euclidean transformations Edit The Euclidean transformations or Euclidean motions are the bijective mappings of points of the Euclidean plane to themselves which preserve distances between points There are four types of these mappings also called isometries translations rotations reflections and glide reflections 9 Translation Edit Translating a set of points of the plane preserving the distances and directions between them is equivalent to adding a fixed pair of numbers a b to the Cartesian coordinates of every point in the set That is if the original coordinates of a point are x y after the translation they will be x y x a y b displaystyle x y x a y b Rotation Edit To rotate a figure counterclockwise around the origin by some angle 8 displaystyle theta is equivalent to replacing every point with coordinates x y by the point with coordinates x y wherex x cos 8 y sin 8 y x sin 8 y cos 8 displaystyle begin aligned x amp x cos theta y sin theta y amp x sin theta y cos theta end aligned Thus x y x cos 8 y sin 8 x sin 8 y cos 8 displaystyle x y x cos theta y sin theta x sin theta y cos theta Reflection Edit If x y are the Cartesian coordinates of a point then x y are the coordinates of its reflection across the second coordinate axis the y axis as if that line were a mirror Likewise x y are the coordinates of its reflection across the first coordinate axis the x axis In more generality reflection across a line through the origin making an angle 8 displaystyle theta with the x axis is equivalent to replacing every point with coordinates x y by the point with coordinates x y wherex x cos 2 8 y sin 2 8 y x sin 2 8 y cos 2 8 displaystyle begin aligned x amp x cos 2 theta y sin 2 theta y amp x sin 2 theta y cos 2 theta end aligned Thus x y x cos 2 8 y sin 2 8 x sin 2 8 y cos 2 8 displaystyle x y x cos 2 theta y sin 2 theta x sin 2 theta y cos 2 theta Glide reflection Edit A glide reflection is the composition of a reflection across a line followed by a translation in the direction of that line It can be seen that the order of these operations does not matter the translation can come first followed by the reflection General matrix form of the transformations Edit All affine transformations of the plane can be described in a uniform way by using matrices For this purpose the coordinates x y displaystyle x y of a point are commonly represented as the column matrix x y displaystyle begin pmatrix x y end pmatrix The result x y displaystyle x y of applying an affine transformation to a point x y displaystyle x y is given by the formula x y A x y b displaystyle begin pmatrix x y end pmatrix A begin pmatrix x y end pmatrix b where A A 1 1 A 1 2 A 2 1 A 2 2 displaystyle A begin pmatrix A 1 1 amp A 1 2 A 2 1 amp A 2 2 end pmatrix is a 2 2 matrix and b b 1 b 2 displaystyle b begin pmatrix b 1 b 2 end pmatrix is a column matrix 10 That is x x A 1 1 y A 1 1 b 1 y x A 2 1 y A 2 2 b 2 displaystyle begin aligned x amp xA 1 1 yA 1 1 b 1 y amp xA 2 1 yA 2 2 b 2 end aligned Among the affine transformations the Euclidean transformations are characterized by the fact that the matrix A displaystyle A is orthogonal that is its columns are orthogonal vectors of Euclidean norm one or explicitly A 1 1 A 1 2 A 2 1 A 2 2 0 displaystyle A 1 1 A 1 2 A 2 1 A 2 2 0 and A 1 1 2 A 2 1 2 A 1 2 2 A 2 2 2 1 displaystyle A 1 1 2 A 2 1 2 A 1 2 2 A 2 2 2 1 This is equivalent to saying that A times its transpose is the identity matrix If these conditions do not hold the formula describes a more general affine transformation The transformation is a translation if and only if A is the identity matrix The transformation is a rotation around some point if and only if A is a rotation matrix meaning that it is orthogonal andA 1 1 A 2 2 A 2 1 A 1 2 1 displaystyle A 1 1 A 2 2 A 2 1 A 1 2 1 A reflection or glide reflection is obtained when A 1 1 A 2 2 A 2 1 A 1 2 1 displaystyle A 1 1 A 2 2 A 2 1 A 1 2 1 Assuming that translations are not used that is b 1 b 2 0 displaystyle b 1 b 2 0 transformations can be composed by simply multiplying the associated transformation matrices In the general case it is useful to use the augmented matrix of the transformation that is to rewrite the transformation formula x y 1 A x y 1 displaystyle begin pmatrix x y 1 end pmatrix A begin pmatrix x y 1 end pmatrix where A A 1 1 A 1 2 b 1 A 2 1 A 2 2 b 2 0 0 1 displaystyle A begin pmatrix A 1 1 amp A 1 2 amp b 1 A 2 1 amp A 2 2 amp b 2 0 amp 0 amp 1 end pmatrix With this trick the composition of affine transformations is obtained by multiplying the augmented matrices Affine transformation Edit Effect of applying various 2D affine transformation matrices on a unit square reflections are special cases of scaling Affine transformations of the Euclidean plane are transformations that map lines to lines but may change distances and angles As said in the preceding section they can be represented with augmented matrices A 1 1 A 2 1 b 1 A 1 2 A 2 2 b 2 0 0 1 x y 1 x y 1 displaystyle begin pmatrix A 1 1 amp A 2 1 amp b 1 A 1 2 amp A 2 2 amp b 2 0 amp 0 amp 1 end pmatrix begin pmatrix x y 1 end pmatrix begin pmatrix x y 1 end pmatrix The Euclidean transformations are the affine transformations such that the 2 2 matrix of the A i j displaystyle A i j is orthogonal The augmented matrix that represents the composition of two affine transformations is obtained by multiplying their augmented matrices Some affine transformations that are not Euclidean transformations have received specific names Scaling Edit An example of an affine transformation which is not Euclidean is given by scaling To make a figure larger or smaller is equivalent to multiplying the Cartesian coordinates of every point by the same positive number m If x y are the coordinates of a point on the original figure the corresponding point on the scaled figure has coordinates x y m x m y displaystyle x y mx my If m is greater than 1 the figure becomes larger if m is between 0 and 1 it becomes smaller Shearing Edit A shearing transformation will push the top of a square sideways to form a parallelogram Horizontal shearing is defined by x y x y s y displaystyle x y x ys y Shearing can also be applied vertically x y x x s y displaystyle x y x xs y Orientation and handedness EditMain article Orientability See also Right hand rule and Axes conventions In two dimensions Edit The right hand rule Fixing or choosing the x axis determines the y axis up to direction Namely the y axis is necessarily the perpendicular to the x axis through the point marked 0 on the x axis But there is a choice of which of the two half lines on the perpendicular to designate as positive and which as negative Each of these two choices determines a different orientation also called handedness of the Cartesian plane The usual way of orienting the plane with the positive x axis pointing right and the positive y axis pointing up and the x axis being the first and the y axis the second axis is considered the positive or standard orientation also called the right handed orientation A commonly used mnemonic for defining the positive orientation is the right hand rule Placing a somewhat closed right hand on the plane with the thumb pointing up the fingers point from the x axis to the y axis in a positively oriented coordinate system The other way of orienting the plane is following the left hand rule placing the left hand on the plane with the thumb pointing up When pointing the thumb away from the origin along an axis towards positive the curvature of the fingers indicates a positive rotation along that axis Regardless of the rule used to orient the plane rotating the coordinate system will preserve the orientation Switching any one axis will reverse the orientation but switching both will leave the orientation unchanged In three dimensions Edit Fig 7 The left handed orientation is shown on the left and the right handed on the right Fig 8 The right handed Cartesian coordinate system indicating the coordinate planes Once the x and y axes are specified they determine the line along which the z axis should lie but there are two possible orientation for this line The two possible coordinate systems which result are called right handed and left handed The standard orientation where the xy plane is horizontal and the z axis points up and the x and the y axis form a positively oriented two dimensional coordinate system in the xy plane if observed from above the xy plane is called right handed or positive 3D Cartesian coordinate handedness The name derives from the right hand rule If the index finger of the right hand is pointed forward the middle finger bent inward at a right angle to it and the thumb placed at a right angle to both the three fingers indicate the relative orientation of the x y and z axes in a right handed system The thumb indicates the x axis the index finger the y axis and the middle finger the z axis Conversely if the same is done with the left hand a left handed system results Figure 7 depicts a left and a right handed coordinate system Because a three dimensional object is represented on the two dimensional screen distortion and ambiguity result The axis pointing downward and to the right is also meant to point towards the observer whereas the middle axis is meant to point away from the observer The red circle is parallel to the horizontal xy plane and indicates rotation from the x axis to the y axis in both cases Hence the red arrow passes in front of the z axis Figure 8 is another attempt at depicting a right handed coordinate system Again there is an ambiguity caused by projecting the three dimensional coordinate system into the plane Many observers see Figure 8 as flipping in and out between a convex cube and a concave corner This corresponds to the two possible orientations of the space Seeing the figure as convex gives a left handed coordinate system Thus the correct way to view Figure 8 is to imagine the x axis as pointing towards the observer and thus seeing a concave corner Representing a vector in the standard basis EditA point in space in a Cartesian coordinate system may also be represented by a position vector which can be thought of as an arrow pointing from the origin of the coordinate system to the point 11 If the coordinates represent spatial positions displacements it is common to represent the vector from the origin to the point of interest as r displaystyle mathbf r In two dimensions the vector from the origin to the point with Cartesian coordinates x y can be written as r x i y j displaystyle mathbf r x mathbf i y mathbf j where i 1 0 displaystyle mathbf i begin pmatrix 1 0 end pmatrix and j 0 1 displaystyle mathbf j begin pmatrix 0 1 end pmatrix are unit vectors in the direction of the x axis and y axis respectively generally referred to as the standard basis in some application areas these may also be referred to as versors Similarly in three dimensions the vector from the origin to the point with Cartesian coordinates x y z displaystyle x y z can be written as 12 r x i y j z k displaystyle mathbf r x mathbf i y mathbf j z mathbf k where i 1 0 0 displaystyle mathbf i begin pmatrix 1 0 0 end pmatrix j 0 1 0 displaystyle mathbf j begin pmatrix 0 1 0 end pmatrix and k 0 0 1 displaystyle mathbf k begin pmatrix 0 0 1 end pmatrix There is no natural interpretation of multiplying vectors to obtain another vector that works in all dimensions however there is a way to use complex numbers to provide such a multiplication In a two dimensional cartesian plane identify the point with coordinates x y with the complex number z x iy Here i is the imaginary unit and is identified with the point with coordinates 0 1 so it is not the unit vector in the direction of the x axis Since the complex numbers can be multiplied giving another complex number this identification provides a means to multiply vectors In a three dimensional cartesian space a similar identification can be made with a subset of the quaternions Applications EditCartesian coordinates are an abstraction that have a multitude of possible applications in the real world However three constructive steps are involved in superimposing coordinates on a problem application Units of distance must be decided defining the spatial size represented by the numbers used as coordinates An origin must be assigned to a specific spatial location or landmark and the orientation of the axes must be defined using available directional cues for all but one axis Consider as an example superimposing 3D Cartesian coordinates over all points on the Earth that is geospatial 3D Kilometers are a good choice of units since the original definition of the kilometer was geospatial with 10 000 km equaling the surface distance from the equator to the North Pole Based on symmetry the gravitational center of the Earth suggests a natural placement of the origin which can be sensed via satellite orbits The axis of Earth s rotation provides a natural orientation for the X Y and Z axes strongly associated with up vs down so positive Z can adopt the direction from the geocenter to the North Pole A location on the equator is needed to define the X axis and the prime meridian stands out as a reference orientation so the X axis takes the orientation from the geocenter out to 0 degrees longitude 0 degrees latitude Note that with three dimensions and two perpendicular axes orientations pinned down for X and Z the Y axis is determined by the first two choices In order to obey the right hand rule the Y axis must point out from the geocenter to 90 degrees longitude 0 degrees latitude From a longitude of 73 985656 degrees a latitude 40 748433 degrees and Earth radius of 40 000 2p km and transforming from spherical to Cartesian coordinates one can estimate the geocentric coordinates of the Empire State Building x y z 1 330 53 km 4 635 75 km 4 155 46 km GPS navigation relies on such geocentric coordinates In engineering projects agreement on the definition of coordinates is a crucial foundation One cannot assume that coordinates come predefined for a novel application so knowledge of how to erect a coordinate system where there previously was no such coordinate system is essential to applying Rene Descartes thinking While spatial applications employ identical units along all axes in business and scientific applications each axis may have different units of measurement associated with it such as kilograms seconds pounds etc Although four and higher dimensional spaces are difficult to visualize the algebra of Cartesian coordinates can be extended relatively easily to four or more variables so that certain calculations involving many variables can be done This sort of algebraic extension is what is used to define the geometry of higher dimensional spaces Conversely it is often helpful to use the geometry of Cartesian coordinates in two or three dimensions to visualize algebraic relationships between two or three of many non spatial variables The graph of a function or relation is the set of all points satisfying that function or relation For a function of one variable f the set of all points x y where y f x is the graph of the function f For a function g of two variables the set of all points x y z where z g x y is the graph of the function g A sketch of the graph of such a function or relation would consist of all the salient parts of the function or relation which would include its relative extrema its concavity and points of inflection any points of discontinuity and its end behavior All of these terms are more fully defined in calculus Such graphs are useful in calculus to understand the nature and behavior of a function or relation See also EditHorizontal and vertical Jones diagram which plots four variables rather than two Orthogonal coordinates Polar coordinate system Regular grid Spherical coordinate systemReferences Edit Bix Robert A D Souza Harry J Analytic geometry Encyclopaedia Britannica Retrieved 6 August 2017 Kent Alexander J Vujakovic Peter 4 October 2017 The Routledge Handbook of Mapping and Cartography Routledge ISBN 9781317568216 Burton 2011 p 374 A Tour of the Calculus David Berlinski Axler Sheldon 2015 Linear Algebra Done Right Springer Undergraduate Texts in Mathematics p 1 doi 10 1007 978 3 319 11080 6 ISBN 978 3 319 11079 0 a b c d Cartesian orthogonal coordinate system Encyclopedia of Mathematics Retrieved 6 August 2017 Charts and Graphs Choosing the Right Format mindtools com Retrieved 29 August 2017 Hughes Hallett Deborah McCallum William G Gleason Andrew M 2013 Calculus Single and Multivariable 6 ed John wiley ISBN 978 0470 88861 2 Smart 1998 Chap 2 Brannan Esplen amp Gray 1998 pg 49 Brannan Esplen amp Gray 1998 Appendix 2 pp 377 382 David J Griffiths 1999 Introduction to Electrodynamics Prentice Hall ISBN 978 0 13 805326 0 Sources EditBrannan David A Esplen Matthew F Gray Jeremy J 1998 Geometry Cambridge Cambridge University Press ISBN 978 0 521 59787 6 Burton David M 2011 The History of Mathematics An Introduction 7th ed New York McGraw Hill ISBN 978 0 07 338315 6 Smart James R 1998 Modern Geometries 5th ed Pacific Grove Brooks Cole ISBN 978 0 534 35188 5Further reading EditDescartes Rene 2001 Discourse on Method Optics Geometry and Meteorology Translated by Paul J Oscamp Revised ed Indianapolis IN Hackett Publishing ISBN 978 0 87220 567 3 OCLC 488633510 Korn GA Korn TM 1961 Mathematical Handbook for Scientists and Engineers 1st ed New York McGraw Hill pp 55 79 LCCN 59 14456 OCLC 19959906 Margenau H Murphy GM 1956 The Mathematics of Physics and Chemistry New York D van Nostrand LCCN 55 10911 Moon P Spencer DE 1988 Rectangular Coordinates x y z Field Theory Handbook Including Coordinate Systems Differential Equations and Their Solutions corrected 2nd 3rd print ed New York Springer Verlag pp 9 11 Table 1 01 ISBN 978 0 387 18430 2 Morse PM Feshbach H 1953 Methods of Theoretical Physics Part I New York McGraw Hill ISBN 978 0 07 043316 8 LCCN 52 11515 Sauer R Szabo I 1967 Mathematische Hilfsmittel des Ingenieurs New York Springer Verlag LCCN 67 25285 External links EditCartesian Coordinate System MathWorld description of Cartesian coordinates Coordinate Converter converts between polar Cartesian and spherical coordinates Coordinates of a point Interactive tool to explore coordinates of a point open source JavaScript class for 2D 3D Cartesian coordinate system manipulation Retrieved from https en wikipedia org w index php title Cartesian coordinate system amp oldid 1130866891, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.