fbpx
Wikipedia

Permafrost carbon cycle

The permafrost carbon cycle or Arctic carbon cycle is a sub-cycle of the larger global carbon cycle. Permafrost is defined as subsurface material that remains below 0o C (32o F) for at least two consecutive years. Because permafrost soils remain frozen for long periods of time, they store large amounts of carbon and other nutrients within their frozen framework during that time. Permafrost represents a large carbon reservoir that is seldom considered when determining global terrestrial carbon reservoirs. Recent and ongoing scientific research however, is changing this view.[1]

The permafrost carbon cycle deals with the transfer of carbon from permafrost soils to terrestrial vegetation and microbes, to the atmosphere, back to vegetation, and finally back to permafrost soils through burial and sedimentation due to cryogenic processes. Some of this carbon is transferred to the ocean and other portions of the globe through the global carbon cycle. The cycle includes the exchange of carbon dioxide and methane between terrestrial components and the atmosphere, as well as the transfer of carbon between land and water as methane, dissolved organic carbon, dissolved inorganic carbon, particulate inorganic carbon and particulate organic carbon.[2]

Storage Edit

Soils, in general, are the largest reservoirs of carbon in terrestrial ecosystems. This is also true for soils in the Arctic that are underlain by permafrost. In 2003, Tarnocai, et al. used the Northern and Mid Latitudes Soil Database to make a determination of carbon stocks in cryosols—soils containing permafrost within two meters of the soil surface.[3] Permafrost affected soils cover nearly 9% of the earth's land area, yet store between 25 and 50% of the soil organic carbon. These estimates show that permafrost soils are an important carbon pool.[4] These soils not only contain large amounts of carbon, but also sequester carbon through cryoturbation and cryogenic processes.[3][5]

Processes Edit

Carbon is not produced by permafrost. Organic carbon derived from terrestrial vegetation must be incorporated into the soil column and subsequently be incorporated into permafrost to be effectively stored. Because permafrost responds to climate changes slowly, carbon storage removes carbon from the atmosphere for long periods of time. Radiocarbon dating techniques reveal that carbon within permafrost is often thousands of years old.[6][7] Carbon storage in permafrost is the result of two primary processes.

  • The first process that captures carbon and stores it is syngenetic permafrost growth.[8] This process is the result of a constant active layer where thickness and energy exchange between permafrost, active layer, biosphere, and atmosphere, resulting in the vertical increase of the soil surface elevation. This aggradation of soil is the result of aeolian or fluvial sedimentation and/or peat formation. Peat accumulation rates are as high as 0.5mm/yr while sedimentation may cause a rise of 0.7mm/yr. Thick silt deposits resulting from abundant loess deposition during the last glacial maximum form thick carbon-rich soils known as yedoma.[9] As this process occurs, the organic and mineral soil that is deposited is incorporated into the permafrost as the permafrost surface rises.
  • The second process responsible for storing carbon is cryoturbation, the mixing of soil due to freeze-thaw cycles. Cryoturbation moves carbon from the surface to depths within the soil profile. Frost heaving is the most common form of cryoturbation. Eventually, carbon that originates at the surface moves deep enough into the active layer to be incorporated into permafrost. When cryoturbation and the deposition of sediments act together carbon storage rates increase.[9]

Current estimates Edit

It is estimated that the total soil organic carbon (SOC) stock in northern circumpolar permafrost region equals around 1,460–1,600 Pg.[5] (1 Pg = 1 Gt = 1015g)[10][11] With the Tibetan Plateau carbon content included, the total carbon pools in the permafrost of the Northern Hemisphere is likely to be around 1832 Gt.[12] This estimation of the amount of carbon stored in permafrost soils is more than double the amount currently in the atmosphere.[1]

Soil column in the permafrost soils is generally broken into three horizons, 0–30 cm, 0–100 cm, and 1–300 cm. The uppermost horizon (0–30 cm) contains approximately 200 Pg of organic carbon. The 0–100 cm horizon contains an estimated 500 Pg of organic carbon, and the 0–300 cm horizon contains an estimated 1024 Pg of organic carbon. These estimates more than doubled the previously known carbon pools in permafrost soils.[3][4][5] Additional carbon stocks exist in yedoma (400 Pg), carbon rich loess deposits found throughout Siberia and isolated regions of North America, and deltaic deposits (240 Pg) throughout the Arctic. These deposits are generally deeper than the 3 m investigated in traditional studies.[5] Many concerns arise because of the large amount of carbon stored in permafrost soils. Until recently, the amount of carbon present in permafrost was not taken into account in climate models and global carbon budgets.[1][9]

Carbon release from the permafrost Edit

Carbon is continually cycling between soils, vegetation, and the atmosphere. As climate change increases mean annual air temperatures throughout the Arctic, it extends permafrost thaw and deepens the active layer, exposing old carbon that has been in storage for decades to millennia to biogenic processes which facilitate its entrance into the atmosphere. In general, the volume of permafrost in the upper 3 m of ground is expected to decrease by about 25% per 1 °C (1.8 °F)of global warming.[13]: 1283  According to the IPCC Sixth Assessment Report, there is high confidence that global warming over the last few decades has led to widespread increases in permafrost temperature.[13]: 1237  Observed warming was up to 3 °C (5.4 °F) in parts of Northern Alaska (early 1980s to mid-2000s) and up to 2 °C (3.6 °F) in parts of the Russian European North (1970–2020), and active layer thickness has increased in the European and Russian Arctic across the 21st century and at high elevation areas in Europe and Asia since the 1990s.[13]: 1237  In Yukon, the zone of continuous permafrost might have moved 100 kilometres (62 mi) poleward since 1899, but accurate records only go back 30 years. Based on high agreement across model projections, fundamental process understanding, and paleoclimate evidence, it is virtually certain that permafrost extent and volume will continue to shrink as global climate warms.[13]: 1283 

 
Greater summer precipitation increases the depth of permafrost layer subject to thaw, in different Arctic permafrost environments.[14]

Carbon emissions from permafrost thaw contribute to the same warming which facilitates the thaw, making it a positive climate change feedback. The warming also intensifies Arctic water cycle, and the increased amounts of warmer rain are another factor which increases permafrost thaw depths.[14] The amount of carbon that will be released from warming conditions depends on depth of thaw, carbon content within the thawed soil, physical changes to the environment[7] and microbial and vegetation activity in the soil. Microbial respiration is the primary process through which old permafrost carbon is re-activated and enters the atmosphere. The rate of microbial decomposition within organic soils, including thawed permafrost, depends on environmental controls, such as soil temperature, moisture availability, nutrient availability, and oxygen availability.[9] In particular, sufficient concentrations of iron oxides in some permafrost soils can inhibit microbial respiration and prevent carbon mobilization: however, this protection only lasts until carbon is separated from the iron oxides by Fe-reducing bacteria, which is only a matter of time under the typical conditions.[15] Depending on the soil type, Iron(III) oxide can boost oxidation of methane to carbon dioxide in the soil, but it can also amplify methane production by acetotrophs: these soil processes are not yet fully understood.[16]

Altogether, the likelihood of the entire carbon pool mobilizing and entering the atmosphere is low despite the large volumes stored in the soil. Although temperatures will increase, this does not imply complete loss of permafrost and mobilization of the entire carbon pool. Much of the ground underlain by permafrost will remain frozen even if warming temperatures increase the thaw depth or increase thermokarsting and permafrost degradation.[4] Moreover, other elements such as iron and aluminum can adsorb some of the mobilized soil carbon before it reaches the atmosphere, and they are particularly prominent in the mineral sand layers which often overlay permafrost.[17] On the other hand, once the permafrost area thaws, it will not go back to being permafrost for centuries even if the temperature increase reversed, making it one of the best-known examples of tipping points in the climate system.

A 1993 study suggested that while the tundra was a carbon sink until the end of 1970s, it had already transitioned to a net carbon source by the time the study concluded.[18] The 2019 Arctic Report Card estimated that Arctic permafrost releases between 0.3 and 0.6 Pg C per year.[11] That same year, a study settled on the 0.6 Pg C figure, as the net difference between the annual emissions of 1,66 Pg C during the winter season (October–April), and the model-estimated vegetation carbon uptake of 1 Pg C during the growing season. It estimated that under RCP 8.5, a scenario of continually accelerating greenhouse gas emissions, winter CO2 emissions from the norther permafrost domain would increase 41% by 2100. Under the "intermediate" scenario RCP 4.5, where greenhouse gas emissions peak and plateau within the next two decades, before gradually declining for the rest of the century (a rate of mitigation deeply insufficient to meet the Paris Agreement goals) permafrost carbon emissions would increase by 17%.[19] In 2022, this was challenged by a study which used a record of atmospheric observations between 1980 and 2017, and found that permafrost regions have been gaining carbon on net, as process-based models underestimated net CO2 uptake in the permafrost regions and overestimated it in the forested regions, where increased respiration in response to warming offsets more of the gains than was previously understood.[20]

Notably, estimates of carbon release alone do not fully represent the impact of permafrost thaw on climate change. This is because carbon can either be released as carbon dioxide (CO2) or methane (CH4). Aerobic respiration releases carbon dioxide, while anaerobic respiration releases methane. This is a substantial difference, as while biogenic methane lasts less than 12 years in the atmosphere, its global warming potential is around 80 times larger than that of CO2 over a 20-year period and between 28 and 40 times larger over a 100-year period.

Carbon dioxide emissions Edit

 
Recent observations suggest that CO2 absorption had been increasing at a faster rate over the areas with a lot of permafrost and limited tree cover than over the areas with extensive tree cover.[20]

Most of the permafrost soil are oxic and provide a suitable environment for aerobic microbial respiration. As such, carbon dioxide emissions account for the overwhelming majority of permafrost emissions and of the Arctic emissions in general.[21] There's some debate over whether the observed emissions from permafrost soils primarily constitute microbial respiration of ancient carbon, or simply greater respiration of modern-day carbon (i.e. leaf litter), due to warmer soils intensifying microbial metabolism. Studies published in the early 2020s indicate that while soil microbiota still primarily consumes and respires modern carbon when plants grow during the spring and summer, these microorganisms then sustain themselves on ancient carbon during the winter, releasing it into the atmosphere.[22][23]

On the other hand, former permafrost areas consistently see increased vegetation growth, or primary production, as plants can set down deeper roots in the thawed soil and grow larger and uptake more carbon. This is generally the main counteracting feedback on permafrost carbon emissions. However, in areas with streams and other waterways, more of their leaf litter enters those waterways, increasing their dissolved organic carbon content. Leaching of soil organic carbon from permafrost soils is also accelerated by warming climate and by erosion along river and stream banks freeing the carbon from the previously frozen soil.[6] Moreover, thawed areas become more vulnerable to wildfires, which alter landscape and release large quantities of stored organic carbon through combustion. As these fires burn, they remove organic matter from the surface. Removal of the protective organic mat that insulates the soil exposes the underlying soil and permafrost to increased solar radiation, which in turn increases the soil temperature, active layer thickness, and changes soil moisture. Changes in the soil moisture and saturation alter the ratio of oxic to anoxic decomposition within the soil.[24]

A hypothesis promoted by Sergey Zimov is that the reduction of herds of large herbivores has increased the ratio of energy emission and energy absorption tundra (energy balance) in a manner that increases the tendency for net thawing of permafrost.[25] He is testing this hypothesis in an experiment at Pleistocene Park, a nature reserve in northeastern Siberia.[26] On the other hand, warming allows the beavers to extend their habitat further north, where their dams impair boat travel, impact access to food, affect water quality, and endanger downstream fish populations.[27] Pools formed by the dams store heat, thus changing local hydrology and causing localized permafrost thaw.[27]

Methane emissions Edit

 
Carbon cycle accelerates in the wake of abrupt thaw (orange) relative to the previous state of the area (blue, black).[28]

Global warming in the Arctic accelerates methane release from both existing stores and methanogenesis in rotting biomass.[29] Methanogenesis requires thoroughly anaerobic environments, which slows down the mobilization of old carbon. A 2015 Nature review estimated that the cumulative emissions from thawed anaerobic permafrost sites were 75–85% lower than the cumulative emissions from aerobic sites, and that even there, methane emissions amounted to only 3% to 7% of CO2 emitted in situ. While they represented between 25% and 45% of the CO2's potential impact on climate over a 100-year timescale, the review concluded that aerobic permafrost thaw still had a greater warming impact overall.[30] In 2018, however, another study in Nature Climate Change performed seven-year incubation experiments and found that methane production became equivalent to CO2 production once a methanogenic microbial community became established at the anaerobic site. This finding had substantially raised the overall warming impact represented by anaerobic thaw sites.[31]

Since methanogenesis requires anaerobic environments, it is frequently associated with Arctic lakes, where the emergence of bubbles of methane can be observed.[32][33] Lakes produced by the thaw of particularly ice-rich permafrost are known as thermokarst lakes. Not all of the methane produced in the sediment of a lake reaches the atmosphere, as it can get oxidized in the water column or even within the sediment itself:[34] However, 2022 observations indicate that at least half of the methane produced within thermokarst lakes reaches the atmosphere.[35] Another process which frequently results in substantial methane emissions is the erosion of permafrost-stabilized hillsides and their ultimate collapse.[36] Altogether, these two processes - hillside collapse (also known as retrogressive thaw slump, or RTS) and thermokarst lake formation - are collectively described as abrupt thaw, as they can rapidly expose substantial volumes of soil to microbial respiration in a matter of days, as opposed to the gradual, cm by cm, thaw of formerly frozen soil which dominates across most permafrost environments. This rapidity was illustrated in 2019, when three permafrost sites which would have been safe from thawing under the "intermediate" Representative Concentration Pathway 4.5 for 70 more years had undergone abrupt thaw.[37] Another example occurred in the wake of a 2020 Siberian heatwave, which was found to have increased RTS numbers 17-fold across the northern Taymyr Peninsula – from 82 to 1404, while the resultant soil carbon mobilization increased 28-fold, to an average of 11 grams of carbon per square meter per year across the peninsula (with a range between 5 and 38 grams).[28]

Until recently, Permafrost carbon feedback (PCF) modeling had mainly focused on gradual permafrost thaw, due to the difficulty of modelling abrupt thaw, and because of the flawed assumptions about the rates of methane production.[38] Nevertheless, a study from 2018, by using field observations, radiocarbon dating, and remote sensing to account for thermokarst lakes, determined that abrupt thaw will more than double permafrost carbon emissions by 2100.[39] And a second study from 2020, showed that under the scenario of continually accelerating emissions (RCP 8.5), abrupt thaw carbon emissions across 2.5 million km2 are projected to provide the same feedback as gradual thaw of near-surface permafrost across the whole 18 million km2 it occupies.[38] Thus, abrupt thaw adds between 60 and 100 gigatonnes of carbon by 2300,[40] increasing carbon emissions by ~125–190% when compared to gradual thaw alone.[38][39]

 
Methane emissions from thawed permafrost appear to decrease as bog matures over time.[41]

However, there is still scientific debate about the rate and the trajectory of methane production in the thawed permafrost environments. For instance, a 2017 paper suggested that even in the thawing peatlands with frequent thermokarst lakes, less than 10% of methane emissions can be attributed to the old, thawed carbon, and the rest is anaerobic decomposition of modern carbon.[42] A follow-up study in 2018 had even suggested that increased uptake of carbon due to rapid peat formation in the thermokarst wetlands would compensate for the increased methane release.[43] Another 2018 paper suggested that permafrost emissions are limited following thermokarst thaw, but are substantially greater in the aftermath of wildfires.[44] In 2022, a paper demonstrated that peatland methane emissions from permafrost thaw are initially quite high (82 milligrams of methane per square meter per day), but decline by nearly three times as the permafrost bog matures, suggesting a reduction in methane emissions in several decades to a century following abrupt thaw.[41]

Subsea permafrost Edit

Subsea permafrost occurs beneath the seabed and exists in the continental shelves of the polar regions.[45] Thus, it can be defined as "the unglaciated continental shelf areas exposed during the Last Glacial Maximum (LGM, ~26 500 BP) that are currently inundated". Large stocks of organic matter (OM) and methane (CH4) are accumulated below and within the subsea permafrost deposits.This source of methane is different from methane clathrates, but contributes to the overall outcome and feedbacks in the Earth's climate system.[46]

The size of today's subsea permafrost has been estimated at 2 million km2 (~1/5 of the terrestrial permafrost domain size), which constitutes a 30–50% reduction since the LGM. Containing around 560 GtC in OM and 45 GtC in CH4, with a current release of 18 and 38 MtC per year respectively, which is due to the warming and thawing that the subsea permafrost domain has been experiencing since after the LGM (~14000 years ago). In fact, because the subsea permafrost systems responds at millennial timescales to climate warming, the current carbon fluxes it is emitting to the water are in response to climatic changes occurring after the LGM. Therefore, human-driven climate change effects on subsea permafrost will only be seen hundreds or thousands of years from today. According to predictions under a business-as-usual emissions scenario RCP 8.5, by 2100, 43 GtC could be released from the subsea permafrost domain, and 190 GtC by the year 2300. Whereas for the low emissions scenario RCP 2.6, 30% less emissions are estimated. This constitutes a significant anthropogenic-driven acceleration of carbon release in the upcoming centuries.[46]

Cumulative Edit

 
Carbon dioxide and methane (in CO2 equivalent) emissions from subsea permafrost alone under the different Representative Concentration Pathway scenarios over time.[46]

In 2011, preliminary computer analyses suggested that permafrost emissions could be equivalent to around 15% of anthropogenic emissions.[47]

A 2018 perspectives article discussing tipping points in the climate system activated around 2 °C (3.6 °F) of global warming suggested that at this threshold, permafrost thaw would add a further 0.09 °C (0.16 °F) to global temperatures by 2100, with a range of 0.04–0.16 °C (0.072–0.288 °F)[48] In 2021, another study estimated that in a future where zero emissions were reached following an emission of a further 1000 Pg C into the atmosphere (a scenario where temperatures ordinarily stay stable after the last emission, or start to decline slowly) permafrost carbon would add 0.06 °C (0.11 °F) (with a range of 0.02–0.14 °C (0.036–0.252 °F)) 50 years after the last anthropogenic emission, 0.09 °C (0.16 °F) (0.04–0.21 °C (0.072–0.378 °F)) 100 years later and 0.27 °C (0.49 °F) (0.12–0.49 °C (0.22–0.88 °F)) 500 years later.[49] However, neither study was able to take abrupt thaw into account.

In 2020, a study of the northern permafrost peatlands (a smaller subset of the entire permafrost area, covering 3.7 million km2 out of the estimated 18 million km2[46]) would amount to ~1% of anthropogenic radiative forcing by 2100, and that this proportion remains the same in all warming scenarios considered, from 1.5 °C (2.7 °F) to 6 °C (11 °F). It had further suggested that after 200 more years, those peatlands would have absorbed more carbon than what they had emitted into the atmosphere.[50]

The IPCC Sixth Assessment Report estimates that carbon dioxide and methane released from permafrost could amount to the equivalent of 14–175 billion tonnes of carbon dioxide per 1 °C (1.8 °F) of warming.[13]: 1237  For comparison, by 2019, annual anthropogenic emission of carbon dioxide alone stood around 40 billion tonnes.[13]: 1237 

 
Permafrost peatlands under varying extent of global warming, and the resultant emissions as a fraction of anthropogenic emissions needed to cause that extent of warming.[50]

A 2021 assessment of the economic impact of climate tipping points estimated that permafrost carbon emissions would increase the social cost of carbon by about 8.4% [51] However, the methods of that assessment have attracted controversy: when researchers like Steve Keen and Timothy Lenton had accused it of underestimating the overall impact of tipping points and of higher levels of warming in general,[52] the authors have conceded some of their points.[53]

In 2021, a group of prominent permafrost researchers like Merritt Turetsky had presented their collective estimate of permafrost emissions, including the abrupt thaw processes, as part of an effort to advocate for a 50% reduction in anthropogenic emissions by 2030 as a necessary milestone to help reach net zero by 2050. Their figures for combined permafrost emissions by 2100 amounted to 150–200 billion tonnes of carbon dioxide equivalent under 1.5 °C (2.7 °F) of warming, 220–300 billion tonnes under 2 °C (3.6 °F) and 400–500 billion tonnes if the warming was allowed to exceed 4 °C (7.2 °F). They compared those figures to the extrapolated present-day emissions of Canada, the European Union and the United States or China, respectively. The 400–500 billion tonnes figure would also be equivalent to the today's remaining budget for staying within a 1.5 °C (2.7 °F) target.[54] One of the scientists involved in that effort, Susan M. Natali of Woods Hole Research Centre, had also led the publication of a complementary estimate in a PNAS paper that year, which suggested that when the amplification of permafrost emissions by abrupt thaw and wildfires is combined with the foreseeable range of near-future anthropogenic emissions, avoiding the exceedance (or "overshoot") of 1.5 °C (2.7 °F) warming is already implausible, and the efforts to attain it may have to rely on negative emissions to force the temperature back down.[55]

An updated 2022 assessment of climate tipping points concluded that abrupt permafrost thaw would add 50% to gradual thaw rates, and would add 14 billion tons of carbon dioxide equivalent emissions by 2100 and 35 by 2300 per every degree of warming. This would have a warming impact of 0.04 °C (0.072 °F) per every full degree of warming by 2100, and 0.11 °C (0.20 °F) per every full degree of warming by 2300. It also suggested that at between 3 °C (5.4 °F) and 6 °C (11 °F) degrees of warming (with the most likely figure around 4 °C (7.2 °F) degrees) a large-scale collapse of permafrost areas could become irreversible, adding between 175 and 350 billion tons of CO2 equivalent emissions, or 0.2–0.4 °C (0.36–0.72 °F) degrees, over about 50 years (with a range between 10 and 300 years).[56][57]

See also Edit

References Edit

  1. ^ a b c Zimov SA, Schuur EA, Chapin FS (June 2006). "Climate change. Permafrost and the global carbon budget". Science. 312 (5780): 1612–3. doi:10.1126/science.1128908. PMID 16778046. S2CID 129667039.
  2. ^ McGuire, A.D., Anderson, L.G., Christensen, T.R., Dallimore, S., Guo, L., Hayes, D.J., Heimann, M., Lorenson, T.D., Macdonald, R.W., and Roulet, N. (2009). "Sensitivity of the carbon cycle in the Arctic to climate change". Ecological Monographs. 79 (4): 523–555. doi:10.1890/08-2025.1. hdl:11858/00-001M-0000-000E-D87B-C. S2CID 1779296.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ a b c Tarnocai, C., Kimble, J., Broll, G. (2003). "Determining carbon stocks in Cryosols using the Northern and Mid Latitudes Soil Database" (PDF). In Phillips, Marcia; Springman, Sarah M; Arenson, Lukas U (eds.). Permafrost : Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, 21–25 July 2003. London: Momenta. pp. 1129–34. ISBN 978-90-5809-584-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. ^ a b c Bockheim, J.G. & Hinkel, K.M. (2007). . Soil Science Society of America Journal. 71 (6): 1889–92. Bibcode:2007SSASJ..71.1889B. doi:10.2136/sssaj2007.0070N. Archived from the original on 17 July 2009. Retrieved 5 June 2010.
  5. ^ a b c d Tarnocai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G., and Zimov, S. (2009). "Soil organic carbon pools in the northern circumpolar permafrost region". Global Biogeochemical Cycles. 23 (2): GB2023. Bibcode:2009GBioC..23.2023T. doi:10.1029/2008GB003327.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ a b Guo, L., Chien-Lu Ping, and Macdonald, R.W. (July 2007). "Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. ". Geophysical Research Letters. 34 (13): L13603. Bibcode:2007GeoRL..3413603G. doi:10.1029/2007GL030689. S2CID 129757480.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ a b Nowinski NS, Taneva L, Trumbore SE, Welker JM (January 2010). "Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment". Oecologia. 163 (3): 785–92. Bibcode:2010Oecol.163..785N. doi:10.1007/s00442-009-1556-x. PMC 2886135. PMID 20084398.
  8. ^ Anderson, D. A.; Bray, M. T.; French, H. M.; Shur, Y. (1 October 2004). "Syngenetic permafrost growth: cryostratigraphic observations from the CRREL tunnel near Fairbanks, Alaska". Permafrost and Periglacial Processes. 15 (4): 339–347. doi:10.1002/ppp.486. ISSN 1099-1530. S2CID 128478370.
  9. ^ a b c d Schuur, E.A.G., Bockheim, J., Canadell, J.G., Euskirchen, E., Field, C.B., Goryachkin, S.V., Hagemann, S., Kuhry, P., Lafleur, P.M., Lee, H., Mazhitova, G., Nelson, F.E., Rinke, A., Romanovsky, V.E., Skiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J.G., and Zimov, S.A. (2008). "Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle". BioScience. 58 (8): 701–714. doi:10.1641/B580807.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J. W.; Schuur, E. A. G.; Ping, C.-L.; Schirrmeister, L.; Grosse, G.; Michaelson, G. J.; Koven, C. D.; O'Donnell, J. A. (1 December 2014). "Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps". Biogeosciences. 11 (23): 6573–6593. Bibcode:2014BGeo...11.6573H. doi:10.5194/bg-11-6573-2014. ISSN 1726-4189. S2CID 14158339.
  11. ^ a b "Permafrost and the Global Carbon Cycle". Arctic Program. Retrieved 18 May 2021.
  12. ^ Mu, C.; Zhang, T.; Wu, Q.; Peng, X.; Cao, B.; Zhang, X.; Cao, B.; Cheng, G. (6 March 2015). "Editorial: Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau" (PDF). The Cryosphere. 9 (2): 479–486. Bibcode:2015TCry....9..479M. doi:10.5194/tc-9-479-2015. Retrieved 5 December 2022.
  13. ^ a b c d e f Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G.  Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021: Chapter 9: Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L.  Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362, doi:10.1017/9781009157896.011.
  14. ^ a b Douglas, Thomas A.; Turetsky, Merritt R.; Koven, Charles D. (24 July 2020). "Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems". npj Climate and Atmospheric Science. 3 (1): 5626. doi:10.1038/s41612-020-0130-4.
  15. ^ Lim, Artem G.; Loiko, Sergey V.; Pokrovsky, Oleg S. (10 January 2023). "Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors". Science of the Total Environment. 3: 158710. Bibcode:2023ScTEn.855o8710L. doi:10.1016/j.scitotenv.2022.158710. PMID 36099954. S2CID 252221350.
  16. ^ Patzner, Monique S.; Mueller, Carsten W.; Malusova, Miroslava; Baur, Moritz; Nikeleit, Verena; Scholten, Thomas; Hoeschen, Carmen; Byrne, James M.; Borch, Thomas; Kappler, Andreas; Bryce, Casey (10 December 2020). "Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw". Nature Communications. 11 (1): 6329. Bibcode:2020NatCo..11.6329P. doi:10.1038/s41467-020-20102-6. PMC 7729879. PMID 33303752.
  17. ^ Li, Qi; Hu, Weifang; Li, Linfeng; Li, Yichun (1 March 2022). "Sizable pool of labile organic carbon in peat and mineral soils of permafrost peatlands, western Siberia". Geoderma. 3 (1): 5626. doi:10.1038/s41467-022-33293-x. PMC 9512808. PMID 36163194.
  18. ^ Oechel, Walter C.; Hastings, Steven J.; Vourlrtis, George; Jenkins, Mitchell; et al. (1993). "Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source". Nature. 361 (6412): 520–523. Bibcode:1993Natur.361..520O. doi:10.1038/361520a0. S2CID 4339256.
  19. ^ Natali, Susan M.; Watts, Jennifer D.; Rogers, Brendan M.; Potter, Stefano; Ludwig, Sarah M.; Selbmann, Anne-Katrin; Sullivan, Patrick F.; Abbott, Benjamin W.; Arndt, Kyle A.; Birch, Leah; Björkman, Mats P. (21 October 2019). "Large loss of CO2 in winter observed across the northern permafrost region". Nature Climate Change. 9 (11): 852–857. Bibcode:2019NatCC...9..852N. doi:10.1038/s41558-019-0592-8. hdl:10037/17795. ISSN 1758-678X. PMC 8781060. PMID 35069807. S2CID 204812327.
  20. ^ a b Liu, Zhihua; Kimball, John S.; Ballantyne, Ashley P.; Parazoo, Nicholas C.; Wang, Wen J.; Bastos, Ana; Madani, Nima; Natali, Susan M.; Watts, Jennifer D.; Rogers, Brendan M.; Ciais, Philippe; Yu, Kailiang; Virkkala, Anna-Maria; Chevallier, Frederic; Peters, Wouter; Patra, Prabir K.; Chandra, Naveen (21 October 2019). "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions". Nature Communications. 13 (1): 5626. doi:10.1038/s41467-022-33293-x. PMC 9512808. PMID 36163194.
  21. ^ Miner, Kimberley R.; Turetsky, Merritt R.; Malina, Edward; Bartsch, Annett; Tamminen, Johanna; McGuire, A. David; Fix, Andreas; Sweeney, Colm; Elder, Clayton D.; Miller, Charles E. (11 January 2022). "Permafrost carbon emissions in a changing Arctic". Nature Reviews Earth & Environment. 13 (1): 55–67. Bibcode:2022NRvEE...3...55M. doi:10.1038/s43017-021-00230-3. S2CID 245917526.
  22. ^ Estop-Aragonés, Cristian; Olefeldt, David; et al. (2 September 2020). "Assessing the Potential for Mobilization of Old Soil Carbon After Permafrost Thaw: A Synthesis of 14C Measurements From the Northern Permafrost Region". Global Biogeochemical Cycles. 34 (9). Bibcode:2020GBioC..3406672E. doi:10.1029/2020GB006672. S2CID 225258236.
  23. ^ Pedron, Shawn A.; Welker, J. M.; Euskirchen, E. S.; Klein, E. S.; Walker, J. C.; Xu, X.; Czimczik, C. I. (14 March 2022). "Closing the Winter Gap—Year-Round Measurements of Soil CO2 Emission Sources in Arctic Tundra". Geophysical Research Letters. 49 (6). Bibcode:2022GeoRL..4997347P. doi:10.1029/2021GL097347. S2CID 247491567.
  24. ^ Meyers-Smith, I.H., McGuire, A.D., Harden, J.W., Chapin, F.S. (2007). "Influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest" (PDF). Journal of Geophysical Research. 112 (G4): G04017. Bibcode:2007JGRG..11204017M. doi:10.1029/2007JG000423.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. ^ S.A. Zimov, N.S. Zimov, A.N. Tikhonov, F.S. Chapin III (2012). (PDF). In: Quaternary Science Reviews, vol. 57, 4 December 2012, p. 42 fig.17. Archived from the original (PDF) on 4 March 2016. Retrieved 17 October 2014.{{cite web}}: CS1 maint: multiple names: authors list (link)
  26. ^ Sergey A. Zimov (6 May 2005): "Pleistocene Park: Return of the Mammoth's Ecosystem." 2017-02-20 at the Wayback Machine In: Science, pages 796–798. Article also to be found in www.pleistocenepark.ru/en/ – Materials. 2016-11-03 at the Wayback Machine Retrieved 5 May 2013.
  27. ^ a b Milman, Oliver (4 January 2022). "Dam it: beavers head north to the Arctic as tundra continues to heat up". The Guardian. from the original on 4 January 2022.
  28. ^ a b Bernhard, Philipp; Zwieback, Simon; Hajnsek, Irena (2 May 2022). "Accelerated mobilization of organic carbon from retrogressive thaw slumps on the northern Taymyr Peninsula". The Cryosphere. 16 (7): 2819–2835. Bibcode:2022TCry...16.2819B. doi:10.5194/tc-16-2819-2022.
  29. ^ Walter, K. M.; Chanton, J. P.; Chapin, F. S.; Schuur, E. A. G.; Zimov, S. A. (2008). "Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages". Journal of Geophysical Research. 113: G00A08. Bibcode:2008JGRG..11300A08W. doi:10.1029/2007JG000569.
  30. ^ Schuur, E. A. G.; McGuire, A. D.; Schädel, C.; Grosse, G.; Harden, J. W.; et al. (9 April 2015). "Climate change and the permafrost carbon feedback". Nature. 520 (7546): 171–179. Bibcode:2015Natur.520..171S. doi:10.1038/nature14338. PMID 25855454. S2CID 4460926.
  31. ^ Pfeiffer, Eva-Maria; Grigoriev, Mikhail N.; Liebner, Susanne; Beer, Christian; Knoblauch, Christian (April 2018). "Methane production as key to the greenhouse gas budget of thawing permafrost". Nature Climate Change. 8 (4): 309–312. Bibcode:2018NatCC...8..309K. doi:10.1038/s41558-018-0095-z. ISSN 1758-6798. S2CID 90764924.
  32. ^ Walter, KM; Zimov, SA; Chanton, JP; Verbyla, D; et al. (7 September 2006). "Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming". Nature. 443 (7107): 71–75. Bibcode:2006Natur.443...71W. doi:10.1038/nature05040. PMID 16957728. S2CID 4415304.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ Gillis, Justin (16 December 2011). "As Permafrost Thaws, Scientists Study the Risks". The New York Times. Retrieved 17 December 2011.
  34. ^ Vigderovich, Hanni; Eckert, Werner; Elul, Michal; Rubin-Blum, Maxim; Elvert, Marcus; Sivan, Orit; Czimczik, C. I. (2 May 2022). "Long-term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments". Biogeosciences. 19 (8). Bibcode:2022GeoRL..4997347P. doi:10.1029/2021GL097347. S2CID 247491567.
  35. ^ Pellerin, André; Lotem, Noam; Anthony, Katey Walter; Russak, Efrat Eliani; Hasson, Nicholas; Røy, Hans; Chanton, Jeffrey P.; Sivan, Orit (4 March 2022). "Methane production controls in a young thermokarst lake formed by abrupt permafrost thaw". Global Change Biology. 28 (10): 3206–3221. doi:10.1111/gcb.16151. PMC 9310722. PMID 35243729.
  36. ^ Turetsky, Merritt R. (30 April 2019). "Permafrost collapse is accelerating carbon release". Nature. 569 (7754): 32–34. Bibcode:2019Natur.569...32T. doi:10.1038/d41586-019-01313-4. PMID 31040419.
  37. ^ "Scientists shocked by Arctic permafrost thawing 70 years sooner than predicted". The Guardian. 18 June 2019. ISSN 0261-3077. Retrieved 2 July 2019.
  38. ^ a b c Turetsky, Merritt R.; Abbott, Benjamin W.; Jones, Miriam C.; Anthony, Katey Walter; Olefeldt, David; Schuur, Edward A. G.; Grosse, Guido; Kuhry, Peter; Hugelius, Gustaf; Koven, Charles; Lawrence, David M. (February 2020). "Carbon release through abrupt permafrost thaw". Nature Geoscience. 13 (2): 138–143. Bibcode:2020NatGe..13..138T. doi:10.1038/s41561-019-0526-0. ISSN 1752-0894. S2CID 213348269.
  39. ^ a b Walter Anthony, Katey; Schneider von Deimling, Thomas; Nitze, Ingmar; Frolking, Steve; Emond, Abraham; Daanen, Ronald; Anthony, Peter; Lindgren, Prajna; Jones, Benjamin; Grosse, Guido (15 August 2018). "21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes". Nature Communications. 9 (1): 3262. Bibcode:2018NatCo...9.3262W. doi:10.1038/s41467-018-05738-9. ISSN 2041-1723. PMC 6093858. PMID 30111815.
  40. ^ Turetsky MR, Abbott BW, Jones MC, Anthony KW, Olefeldt D, Schuur EA, Koven C, McGuire AD, Grosse G, Kuhry P, Hugelius G (May 2019). "Permafrost collapse is accelerating carbon release". Nature. 569 (7754): 32–34. Bibcode:2019Natur.569...32T. doi:10.1038/d41586-019-01313-4. PMID 31040419.
  41. ^ a b >Heffernan, Liam; Cavaco, Maria A.; Bhatia, Maya P.; Estop-Aragonés, Cristian; Knorr, Klaus-Holger; Olefeldt, David (24 June 2022). "High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages". Biogeosciences. 19 (8): 3051–3071. Bibcode:2022BGeo...19.3051H. doi:10.5194/bg-19-3051-2022.
  42. ^ Cooper, M.; Estop-Aragonés, C.; Fisher, J.; et al. (26 June 2017). "Limited contribution of permafrost carbon to methane release from thawing peatlands". Nature Climate Change. 7 (7): 507–511. Bibcode:2017NatCC...7..507C. doi:10.1038/nclimate3328.
  43. ^ Estop-Aragonés, Cristian; Cooper, Mark D.A.; Fisher, James P.; et al. (March 2018). "Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands". Soil Biology and Biochemistry. 118: 115–129. doi:10.1016/j.soilbio.2017.12.010.
  44. ^ Estop-Aragonés, Cristian; et al. (13 August 2018). "Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst". Environmental Research Letters. 13 (8): 085002. Bibcode:2018ERL....13h5002E. doi:10.1088/1748-9326/aad5f0. S2CID 158857491.
  45. ^ IPCC AR4 (2007). . Archived from the original on 13 April 2014. Retrieved 12 April 2014.
  46. ^ a b c d Sayedi, Sayedeh Sara; Abbott, Benjamin W; Thornton, Brett F; Frederick, Jennifer M; Vonk, Jorien E; Overduin, Paul; Schädel, Christina; Schuur, Edward A G; Bourbonnais, Annie; Demidov, Nikita; Gavrilov, Anatoly (1 December 2020). "Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment". Environmental Research Letters. 15 (12): B027-08. Bibcode:2020AGUFMB027...08S. doi:10.1088/1748-9326/abcc29. ISSN 1748-9326. S2CID 234515282.
  47. ^ Gillis, Justin (16 December 2011). "As Permafrost Thaws, Scientists Study the Risks". The New York Times. from the original on 19 May 2017. Retrieved 11 February 2017.
  48. ^ Schellnhuber, Hans Joachim; Winkelmann, Ricarda; Scheffer, Marten; Lade, Steven J.; Fetzer, Ingo; Donges, Jonathan F.; Crucifix, Michel; Cornell, Sarah E.; Barnosky, Anthony D. (2018). "Trajectories of the Earth System in the Anthropocene". Proceedings of the National Academy of Sciences. 115 (33): 8252–8259. Bibcode:2018PNAS..115.8252S. doi:10.1073/pnas.1810141115. ISSN 0027-8424. PMC 6099852. PMID 30082409.
  49. ^ MacDougall, Andrew H. (10 September 2021). "Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change". Biogeosciences. 18 (17): 4937–4952. Bibcode:2021BGeo...18.4937M. doi:10.5194/bg-18-4937-2021.
  50. ^ a b Hugelius, Gustaf; Loisel, Julie; Chadburn, Sarah; et al. (10 August 2020). "Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw". Proceedings of the National Academy of Sciences. 117 (34): 20438–20446. Bibcode:2020PNAS..11720438H. doi:10.1073/pnas.1916387117. PMC 7456150. PMID 32778585.
  51. ^ Dietz, Simon; Rising, James; Stoerk, Thomas; Wagner, Gernot (24 August 2021). "Economic impacts of tipping points in the climate system". Proceedings of the National Academy of Sciences. 118 (34): e2103081118. Bibcode:2021PNAS..11803081D. doi:10.1073/pnas.2103081118. PMC 8403967. PMID 34400500.
  52. ^ Keen, Steve; Lenton, Timothy M.; Garrett, Timothy J.; Rae, James W. B.; Hanley, Brian P.; Grasselli, Matheus (19 May 2022). "Estimates of economic and environmental damages from tipping points cannot be reconciled with the scientific literature". Proceedings of the National Academy of Sciences. 119 (21): e2117308119. Bibcode:2022PNAS..11917308K. doi:10.1073/pnas.2117308119. PMC 9173761. PMID 35588449. S2CID 248917625.
  53. ^ Dietz, Simon; Rising, James; Stoerk, Thomas; Wagner, Gernot (19 May 2022). "Reply to Keen et al.: Dietz et al. modeling of climate tipping points is informative even if estimates are a probable lower bound". Proceedings of the National Academy of Sciences. 119 (21): e2201191119. Bibcode:2022PNAS..11901191D. doi:10.1073/pnas.2201191119. PMC 9173815. PMID 35588452.
  54. ^ "Carbon Emissions from Permafrost". 50x30. 2021. Retrieved 8 October 2022.
  55. ^ Natali, Susan M.; Holdren, John P.; Rogers, Brendan M.; Treharne, Rachael; Duffy, Philip B.; Pomerance, Rafe; MacDonald, Erin (10 December 2020). "Permafrost carbon feedbacks threaten global climate goals". Biological Sciences. 118 (21). doi:10.1073/pnas.2100163118. PMC 8166174. PMID 34001617.
  56. ^ Armstrong McKay, David; Abrams, Jesse; Winkelmann, Ricarda; Sakschewski, Boris; Loriani, Sina; Fetzer, Ingo; Cornell, Sarah; Rockström, Johan; Staal, Arie; Lenton, Timothy (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points". Science. 377 (6611): eabn7950. doi:10.1126/science.abn7950. hdl:10871/131584. ISSN 0036-8075. PMID 36074831. S2CID 252161375.
  57. ^ Armstrong McKay, David (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points – paper explainer". climatetippingpoints.info. Retrieved 2 October 2022.

External links Edit

  • International Permafrost Association
  • Center for Permafrost

permafrost, carbon, cycle, permafrost, carbon, cycle, arctic, carbon, cycle, cycle, larger, global, carbon, cycle, permafrost, defined, subsurface, material, that, remains, below, least, consecutive, years, because, permafrost, soils, remain, frozen, long, per. The permafrost carbon cycle or Arctic carbon cycle is a sub cycle of the larger global carbon cycle Permafrost is defined as subsurface material that remains below 0o C 32o F for at least two consecutive years Because permafrost soils remain frozen for long periods of time they store large amounts of carbon and other nutrients within their frozen framework during that time Permafrost represents a large carbon reservoir that is seldom considered when determining global terrestrial carbon reservoirs Recent and ongoing scientific research however is changing this view 1 The permafrost carbon cycle deals with the transfer of carbon from permafrost soils to terrestrial vegetation and microbes to the atmosphere back to vegetation and finally back to permafrost soils through burial and sedimentation due to cryogenic processes Some of this carbon is transferred to the ocean and other portions of the globe through the global carbon cycle The cycle includes the exchange of carbon dioxide and methane between terrestrial components and the atmosphere as well as the transfer of carbon between land and water as methane dissolved organic carbon dissolved inorganic carbon particulate inorganic carbon and particulate organic carbon 2 Contents 1 Storage 1 1 Processes 1 2 Current estimates 2 Carbon release from the permafrost 2 1 Carbon dioxide emissions 2 2 Methane emissions 2 3 Subsea permafrost 2 4 Cumulative 3 See also 4 References 5 External linksStorage EditSoils in general are the largest reservoirs of carbon in terrestrial ecosystems This is also true for soils in the Arctic that are underlain by permafrost In 2003 Tarnocai et al used the Northern and Mid Latitudes Soil Database to make a determination of carbon stocks in cryosols soils containing permafrost within two meters of the soil surface 3 Permafrost affected soils cover nearly 9 of the earth s land area yet store between 25 and 50 of the soil organic carbon These estimates show that permafrost soils are an important carbon pool 4 These soils not only contain large amounts of carbon but also sequester carbon through cryoturbation and cryogenic processes 3 5 Processes Edit Carbon is not produced by permafrost Organic carbon derived from terrestrial vegetation must be incorporated into the soil column and subsequently be incorporated into permafrost to be effectively stored Because permafrost responds to climate changes slowly carbon storage removes carbon from the atmosphere for long periods of time Radiocarbon dating techniques reveal that carbon within permafrost is often thousands of years old 6 7 Carbon storage in permafrost is the result of two primary processes The first process that captures carbon and stores it is syngenetic permafrost growth 8 This process is the result of a constant active layer where thickness and energy exchange between permafrost active layer biosphere and atmosphere resulting in the vertical increase of the soil surface elevation This aggradation of soil is the result of aeolian or fluvial sedimentation and or peat formation Peat accumulation rates are as high as 0 5mm yr while sedimentation may cause a rise of 0 7mm yr Thick silt deposits resulting from abundant loess deposition during the last glacial maximum form thick carbon rich soils known as yedoma 9 As this process occurs the organic and mineral soil that is deposited is incorporated into the permafrost as the permafrost surface rises The second process responsible for storing carbon is cryoturbation the mixing of soil due to freeze thaw cycles Cryoturbation moves carbon from the surface to depths within the soil profile Frost heaving is the most common form of cryoturbation Eventually carbon that originates at the surface moves deep enough into the active layer to be incorporated into permafrost When cryoturbation and the deposition of sediments act together carbon storage rates increase 9 Current estimates Edit It is estimated that the total soil organic carbon SOC stock in northern circumpolar permafrost region equals around 1 460 1 600 Pg 5 1 Pg 1 Gt 1015g 10 11 With the Tibetan Plateau carbon content included the total carbon pools in the permafrost of the Northern Hemisphere is likely to be around 1832 Gt 12 This estimation of the amount of carbon stored in permafrost soils is more than double the amount currently in the atmosphere 1 Soil column in the permafrost soils is generally broken into three horizons 0 30 cm 0 100 cm and 1 300 cm The uppermost horizon 0 30 cm contains approximately 200 Pg of organic carbon The 0 100 cm horizon contains an estimated 500 Pg of organic carbon and the 0 300 cm horizon contains an estimated 1024 Pg of organic carbon These estimates more than doubled the previously known carbon pools in permafrost soils 3 4 5 Additional carbon stocks exist in yedoma 400 Pg carbon rich loess deposits found throughout Siberia and isolated regions of North America and deltaic deposits 240 Pg throughout the Arctic These deposits are generally deeper than the 3 m investigated in traditional studies 5 Many concerns arise because of the large amount of carbon stored in permafrost soils Until recently the amount of carbon present in permafrost was not taken into account in climate models and global carbon budgets 1 9 Carbon release from the permafrost EditCarbon is continually cycling between soils vegetation and the atmosphere As climate change increases mean annual air temperatures throughout the Arctic it extends permafrost thaw and deepens the active layer exposing old carbon that has been in storage for decades to millennia to biogenic processes which facilitate its entrance into the atmosphere In general the volume of permafrost in the upper 3 m of ground is expected to decrease by about 25 per 1 C 1 8 F of global warming 13 1283 According to the IPCC Sixth Assessment Report there is high confidence that global warming over the last few decades has led to widespread increases in permafrost temperature 13 1237 Observed warming was up to 3 C 5 4 F in parts of Northern Alaska early 1980s to mid 2000s and up to 2 C 3 6 F in parts of the Russian European North 1970 2020 and active layer thickness has increased in the European and Russian Arctic across the 21st century and at high elevation areas in Europe and Asia since the 1990s 13 1237 In Yukon the zone of continuous permafrost might have moved 100 kilometres 62 mi poleward since 1899 but accurate records only go back 30 years Based on high agreement across model projections fundamental process understanding and paleoclimate evidence it is virtually certain that permafrost extent and volume will continue to shrink as global climate warms 13 1283 Greater summer precipitation increases the depth of permafrost layer subject to thaw in different Arctic permafrost environments 14 Carbon emissions from permafrost thaw contribute to the same warming which facilitates the thaw making it a positive climate change feedback The warming also intensifies Arctic water cycle and the increased amounts of warmer rain are another factor which increases permafrost thaw depths 14 The amount of carbon that will be released from warming conditions depends on depth of thaw carbon content within the thawed soil physical changes to the environment 7 and microbial and vegetation activity in the soil Microbial respiration is the primary process through which old permafrost carbon is re activated and enters the atmosphere The rate of microbial decomposition within organic soils including thawed permafrost depends on environmental controls such as soil temperature moisture availability nutrient availability and oxygen availability 9 In particular sufficient concentrations of iron oxides in some permafrost soils can inhibit microbial respiration and prevent carbon mobilization however this protection only lasts until carbon is separated from the iron oxides by Fe reducing bacteria which is only a matter of time under the typical conditions 15 Depending on the soil type Iron III oxide can boost oxidation of methane to carbon dioxide in the soil but it can also amplify methane production by acetotrophs these soil processes are not yet fully understood 16 Altogether the likelihood of the entire carbon pool mobilizing and entering the atmosphere is low despite the large volumes stored in the soil Although temperatures will increase this does not imply complete loss of permafrost and mobilization of the entire carbon pool Much of the ground underlain by permafrost will remain frozen even if warming temperatures increase the thaw depth or increase thermokarsting and permafrost degradation 4 Moreover other elements such as iron and aluminum can adsorb some of the mobilized soil carbon before it reaches the atmosphere and they are particularly prominent in the mineral sand layers which often overlay permafrost 17 On the other hand once the permafrost area thaws it will not go back to being permafrost for centuries even if the temperature increase reversed making it one of the best known examples of tipping points in the climate system A 1993 study suggested that while the tundra was a carbon sink until the end of 1970s it had already transitioned to a net carbon source by the time the study concluded 18 The 2019 Arctic Report Card estimated that Arctic permafrost releases between 0 3 and 0 6 Pg C per year 11 That same year a study settled on the 0 6 Pg C figure as the net difference between the annual emissions of 1 66 Pg C during the winter season October April and the model estimated vegetation carbon uptake of 1 Pg C during the growing season It estimated that under RCP 8 5 a scenario of continually accelerating greenhouse gas emissions winter CO2 emissions from the norther permafrost domain would increase 41 by 2100 Under the intermediate scenario RCP 4 5 where greenhouse gas emissions peak and plateau within the next two decades before gradually declining for the rest of the century a rate of mitigation deeply insufficient to meet the Paris Agreement goals permafrost carbon emissions would increase by 17 19 In 2022 this was challenged by a study which used a record of atmospheric observations between 1980 and 2017 and found that permafrost regions have been gaining carbon on net as process based models underestimated net CO2 uptake in the permafrost regions and overestimated it in the forested regions where increased respiration in response to warming offsets more of the gains than was previously understood 20 Notably estimates of carbon release alone do not fully represent the impact of permafrost thaw on climate change This is because carbon can either be released as carbon dioxide CO2 or methane CH4 Aerobic respiration releases carbon dioxide while anaerobic respiration releases methane This is a substantial difference as while biogenic methane lasts less than 12 years in the atmosphere its global warming potential is around 80 times larger than that of CO2 over a 20 year period and between 28 and 40 times larger over a 100 year period Carbon dioxide emissions Edit Recent observations suggest that CO2 absorption had been increasing at a faster rate over the areas with a lot of permafrost and limited tree cover than over the areas with extensive tree cover 20 Most of the permafrost soil are oxic and provide a suitable environment for aerobic microbial respiration As such carbon dioxide emissions account for the overwhelming majority of permafrost emissions and of the Arctic emissions in general 21 There s some debate over whether the observed emissions from permafrost soils primarily constitute microbial respiration of ancient carbon or simply greater respiration of modern day carbon i e leaf litter due to warmer soils intensifying microbial metabolism Studies published in the early 2020s indicate that while soil microbiota still primarily consumes and respires modern carbon when plants grow during the spring and summer these microorganisms then sustain themselves on ancient carbon during the winter releasing it into the atmosphere 22 23 On the other hand former permafrost areas consistently see increased vegetation growth or primary production as plants can set down deeper roots in the thawed soil and grow larger and uptake more carbon This is generally the main counteracting feedback on permafrost carbon emissions However in areas with streams and other waterways more of their leaf litter enters those waterways increasing their dissolved organic carbon content Leaching of soil organic carbon from permafrost soils is also accelerated by warming climate and by erosion along river and stream banks freeing the carbon from the previously frozen soil 6 Moreover thawed areas become more vulnerable to wildfires which alter landscape and release large quantities of stored organic carbon through combustion As these fires burn they remove organic matter from the surface Removal of the protective organic mat that insulates the soil exposes the underlying soil and permafrost to increased solar radiation which in turn increases the soil temperature active layer thickness and changes soil moisture Changes in the soil moisture and saturation alter the ratio of oxic to anoxic decomposition within the soil 24 A hypothesis promoted by Sergey Zimov is that the reduction of herds of large herbivores has increased the ratio of energy emission and energy absorption tundra energy balance in a manner that increases the tendency for net thawing of permafrost 25 He is testing this hypothesis in an experiment at Pleistocene Park a nature reserve in northeastern Siberia 26 On the other hand warming allows the beavers to extend their habitat further north where their dams impair boat travel impact access to food affect water quality and endanger downstream fish populations 27 Pools formed by the dams store heat thus changing local hydrology and causing localized permafrost thaw 27 Methane emissions Edit See also Arctic methane emissions Carbon cycle accelerates in the wake of abrupt thaw orange relative to the previous state of the area blue black 28 Global warming in the Arctic accelerates methane release from both existing stores and methanogenesis in rotting biomass 29 Methanogenesis requires thoroughly anaerobic environments which slows down the mobilization of old carbon A 2015 Nature review estimated that the cumulative emissions from thawed anaerobic permafrost sites were 75 85 lower than the cumulative emissions from aerobic sites and that even there methane emissions amounted to only 3 to 7 of CO2 emitted in situ While they represented between 25 and 45 of the CO2 s potential impact on climate over a 100 year timescale the review concluded that aerobic permafrost thaw still had a greater warming impact overall 30 In 2018 however another study in Nature Climate Change performed seven year incubation experiments and found that methane production became equivalent to CO2 production once a methanogenic microbial community became established at the anaerobic site This finding had substantially raised the overall warming impact represented by anaerobic thaw sites 31 Since methanogenesis requires anaerobic environments it is frequently associated with Arctic lakes where the emergence of bubbles of methane can be observed 32 33 Lakes produced by the thaw of particularly ice rich permafrost are known as thermokarst lakes Not all of the methane produced in the sediment of a lake reaches the atmosphere as it can get oxidized in the water column or even within the sediment itself 34 However 2022 observations indicate that at least half of the methane produced within thermokarst lakes reaches the atmosphere 35 Another process which frequently results in substantial methane emissions is the erosion of permafrost stabilized hillsides and their ultimate collapse 36 Altogether these two processes hillside collapse also known as retrogressive thaw slump or RTS and thermokarst lake formation are collectively described as abrupt thaw as they can rapidly expose substantial volumes of soil to microbial respiration in a matter of days as opposed to the gradual cm by cm thaw of formerly frozen soil which dominates across most permafrost environments This rapidity was illustrated in 2019 when three permafrost sites which would have been safe from thawing under the intermediate Representative Concentration Pathway 4 5 for 70 more years had undergone abrupt thaw 37 Another example occurred in the wake of a 2020 Siberian heatwave which was found to have increased RTS numbers 17 fold across the northern Taymyr Peninsula from 82 to 1404 while the resultant soil carbon mobilization increased 28 fold to an average of 11 grams of carbon per square meter per year across the peninsula with a range between 5 and 38 grams 28 Until recently Permafrost carbon feedback PCF modeling had mainly focused on gradual permafrost thaw due to the difficulty of modelling abrupt thaw and because of the flawed assumptions about the rates of methane production 38 Nevertheless a study from 2018 by using field observations radiocarbon dating and remote sensing to account for thermokarst lakes determined that abrupt thaw will more than double permafrost carbon emissions by 2100 39 And a second study from 2020 showed that under the scenario of continually accelerating emissions RCP 8 5 abrupt thaw carbon emissions across 2 5 million km2 are projected to provide the same feedback as gradual thaw of near surface permafrost across the whole 18 million km2 it occupies 38 Thus abrupt thaw adds between 60 and 100 gigatonnes of carbon by 2300 40 increasing carbon emissions by 125 190 when compared to gradual thaw alone 38 39 Methane emissions from thawed permafrost appear to decrease as bog matures over time 41 However there is still scientific debate about the rate and the trajectory of methane production in the thawed permafrost environments For instance a 2017 paper suggested that even in the thawing peatlands with frequent thermokarst lakes less than 10 of methane emissions can be attributed to the old thawed carbon and the rest is anaerobic decomposition of modern carbon 42 A follow up study in 2018 had even suggested that increased uptake of carbon due to rapid peat formation in the thermokarst wetlands would compensate for the increased methane release 43 Another 2018 paper suggested that permafrost emissions are limited following thermokarst thaw but are substantially greater in the aftermath of wildfires 44 In 2022 a paper demonstrated that peatland methane emissions from permafrost thaw are initially quite high 82 milligrams of methane per square meter per day but decline by nearly three times as the permafrost bog matures suggesting a reduction in methane emissions in several decades to a century following abrupt thaw 41 Subsea permafrost Edit Subsea permafrost occurs beneath the seabed and exists in the continental shelves of the polar regions 45 Thus it can be defined as the unglaciated continental shelf areas exposed during the Last Glacial Maximum LGM 26 500 BP that are currently inundated Large stocks of organic matter OM and methane CH4 are accumulated below and within the subsea permafrost deposits This source of methane is different from methane clathrates but contributes to the overall outcome and feedbacks in the Earth s climate system 46 The size of today s subsea permafrost has been estimated at 2 million km2 1 5 of the terrestrial permafrost domain size which constitutes a 30 50 reduction since the LGM Containing around 560 GtC in OM and 45 GtC in CH4 with a current release of 18 and 38 MtC per year respectively which is due to the warming and thawing that the subsea permafrost domain has been experiencing since after the LGM 14000 years ago In fact because the subsea permafrost systems responds at millennial timescales to climate warming the current carbon fluxes it is emitting to the water are in response to climatic changes occurring after the LGM Therefore human driven climate change effects on subsea permafrost will only be seen hundreds or thousands of years from today According to predictions under a business as usual emissions scenario RCP 8 5 by 2100 43 GtC could be released from the subsea permafrost domain and 190 GtC by the year 2300 Whereas for the low emissions scenario RCP 2 6 30 less emissions are estimated This constitutes a significant anthropogenic driven acceleration of carbon release in the upcoming centuries 46 Cumulative Edit Carbon dioxide and methane in CO2 equivalent emissions from subsea permafrost alone under the different Representative Concentration Pathway scenarios over time 46 In 2011 preliminary computer analyses suggested that permafrost emissions could be equivalent to around 15 of anthropogenic emissions 47 A 2018 perspectives article discussing tipping points in the climate system activated around 2 C 3 6 F of global warming suggested that at this threshold permafrost thaw would add a further 0 09 C 0 16 F to global temperatures by 2100 with a range of 0 04 0 16 C 0 072 0 288 F 48 In 2021 another study estimated that in a future where zero emissions were reached following an emission of a further 1000 Pg C into the atmosphere a scenario where temperatures ordinarily stay stable after the last emission or start to decline slowly permafrost carbon would add 0 06 C 0 11 F with a range of 0 02 0 14 C 0 036 0 252 F 50 years after the last anthropogenic emission 0 09 C 0 16 F 0 04 0 21 C 0 072 0 378 F 100 years later and 0 27 C 0 49 F 0 12 0 49 C 0 22 0 88 F 500 years later 49 However neither study was able to take abrupt thaw into account In 2020 a study of the northern permafrost peatlands a smaller subset of the entire permafrost area covering 3 7 million km2 out of the estimated 18 million km2 46 would amount to 1 of anthropogenic radiative forcing by 2100 and that this proportion remains the same in all warming scenarios considered from 1 5 C 2 7 F to 6 C 11 F It had further suggested that after 200 more years those peatlands would have absorbed more carbon than what they had emitted into the atmosphere 50 The IPCC Sixth Assessment Report estimates that carbon dioxide and methane released from permafrost could amount to the equivalent of 14 175 billion tonnes of carbon dioxide per 1 C 1 8 F of warming 13 1237 For comparison by 2019 annual anthropogenic emission of carbon dioxide alone stood around 40 billion tonnes 13 1237 Permafrost peatlands under varying extent of global warming and the resultant emissions as a fraction of anthropogenic emissions needed to cause that extent of warming 50 A 2021 assessment of the economic impact of climate tipping points estimated that permafrost carbon emissions would increase the social cost of carbon by about 8 4 51 However the methods of that assessment have attracted controversy when researchers like Steve Keen and Timothy Lenton had accused it of underestimating the overall impact of tipping points and of higher levels of warming in general 52 the authors have conceded some of their points 53 In 2021 a group of prominent permafrost researchers like Merritt Turetsky had presented their collective estimate of permafrost emissions including the abrupt thaw processes as part of an effort to advocate for a 50 reduction in anthropogenic emissions by 2030 as a necessary milestone to help reach net zero by 2050 Their figures for combined permafrost emissions by 2100 amounted to 150 200 billion tonnes of carbon dioxide equivalent under 1 5 C 2 7 F of warming 220 300 billion tonnes under 2 C 3 6 F and 400 500 billion tonnes if the warming was allowed to exceed 4 C 7 2 F They compared those figures to the extrapolated present day emissions of Canada the European Union and the United States or China respectively The 400 500 billion tonnes figure would also be equivalent to the today s remaining budget for staying within a 1 5 C 2 7 F target 54 One of the scientists involved in that effort Susan M Natali of Woods Hole Research Centre had also led the publication of a complementary estimate in a PNAS paper that year which suggested that when the amplification of permafrost emissions by abrupt thaw and wildfires is combined with the foreseeable range of near future anthropogenic emissions avoiding the exceedance or overshoot of 1 5 C 2 7 F warming is already implausible and the efforts to attain it may have to rely on negative emissions to force the temperature back down 55 An updated 2022 assessment of climate tipping points concluded that abrupt permafrost thaw would add 50 to gradual thaw rates and would add 14 billion tons of carbon dioxide equivalent emissions by 2100 and 35 by 2300 per every degree of warming This would have a warming impact of 0 04 C 0 072 F per every full degree of warming by 2100 and 0 11 C 0 20 F per every full degree of warming by 2300 It also suggested that at between 3 C 5 4 F and 6 C 11 F degrees of warming with the most likely figure around 4 C 7 2 F degrees a large scale collapse of permafrost areas could become irreversible adding between 175 and 350 billion tons of CO2 equivalent emissions or 0 2 0 4 C 0 36 0 72 F degrees over about 50 years with a range between 10 and 300 years 56 57 See also EditFire and carbon cycling in boreal forests Carbon cycleReferences Edit a b c Zimov SA Schuur EA Chapin FS June 2006 Climate change Permafrost and the global carbon budget Science 312 5780 1612 3 doi 10 1126 science 1128908 PMID 16778046 S2CID 129667039 McGuire A D Anderson L G Christensen T R Dallimore S Guo L Hayes D J Heimann M Lorenson T D Macdonald R W and Roulet N 2009 Sensitivity of the carbon cycle in the Arctic to climate change Ecological Monographs 79 4 523 555 doi 10 1890 08 2025 1 hdl 11858 00 001M 0000 000E D87B C S2CID 1779296 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b c Tarnocai C Kimble J Broll G 2003 Determining carbon stocks in Cryosols using the Northern and Mid Latitudes Soil Database PDF In Phillips Marcia Springman Sarah M Arenson Lukas U eds Permafrost Proceedings of the 8th International Conference on Permafrost Zurich Switzerland 21 25 July 2003 London Momenta pp 1129 34 ISBN 978 90 5809 584 8 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link a b c Bockheim J G amp Hinkel K M 2007 The importance of Deep organic carbon in permafrost affected soils of Arctic Alaska Soil Science Society of America Journal 71 6 1889 92 Bibcode 2007SSASJ 71 1889B doi 10 2136 sssaj2007 0070N Archived from the original on 17 July 2009 Retrieved 5 June 2010 a b c d Tarnocai C Canadell J G Schuur E A G Kuhry P Mazhitova G and Zimov S 2009 Soil organic carbon pools in the northern circumpolar permafrost region Global Biogeochemical Cycles 23 2 GB2023 Bibcode 2009GBioC 23 2023T doi 10 1029 2008GB003327 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b Guo L Chien Lu Ping and Macdonald R W July 2007 Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate Geophysical Research Letters 34 13 L13603 Bibcode 2007GeoRL 3413603G doi 10 1029 2007GL030689 S2CID 129757480 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b Nowinski NS Taneva L Trumbore SE Welker JM January 2010 Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment Oecologia 163 3 785 92 Bibcode 2010Oecol 163 785N doi 10 1007 s00442 009 1556 x PMC 2886135 PMID 20084398 Anderson D A Bray M T French H M Shur Y 1 October 2004 Syngenetic permafrost growth cryostratigraphic observations from the CRREL tunnel near Fairbanks Alaska Permafrost and Periglacial Processes 15 4 339 347 doi 10 1002 ppp 486 ISSN 1099 1530 S2CID 128478370 a b c d Schuur E A G Bockheim J Canadell J G Euskirchen E Field C B Goryachkin S V Hagemann S Kuhry P Lafleur P M Lee H Mazhitova G Nelson F E Rinke A Romanovsky V E Skiklomanov N Tarnocai C Venevsky S Vogel J G and Zimov S A 2008 Vulnerability of Permafrost Carbon to Climate Change Implications for the Global Carbon Cycle BioScience 58 8 701 714 doi 10 1641 B580807 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Hugelius G Strauss J Zubrzycki S Harden J W Schuur E A G Ping C L Schirrmeister L Grosse G Michaelson G J Koven C D O Donnell J A 1 December 2014 Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps Biogeosciences 11 23 6573 6593 Bibcode 2014BGeo 11 6573H doi 10 5194 bg 11 6573 2014 ISSN 1726 4189 S2CID 14158339 a b Permafrost and the Global Carbon Cycle Arctic Program Retrieved 18 May 2021 Mu C Zhang T Wu Q Peng X Cao B Zhang X Cao B Cheng G 6 March 2015 Editorial Organic carbon pools in permafrost regions on the Qinghai Xizang Tibetan Plateau PDF The Cryosphere 9 2 479 486 Bibcode 2015TCry 9 479M doi 10 5194 tc 9 479 2015 Retrieved 5 December 2022 a b c d e f Fox Kemper B H T Hewitt C Xiao G Adalgeirsdottir S S Drijfhout T L Edwards N R Golledge M Hemer R E Kopp G Krinner A Mix D Notz S Nowicki I S Nurhati L Ruiz J B Sallee A B A Slangen and Y Yu 2021 Chapter 9 Ocean Cryosphere and Sea Level Change In Climate Change 2021 The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Masson Delmotte V P Zhai A Pirani S L Connors C Pean S Berger N Caud Y Chen L Goldfarb M I Gomis M Huang K Leitzell E Lonnoy J B R Matthews T K Maycock T Waterfield O Yelekci R Yu and B Zhou eds Cambridge University Press Cambridge United Kingdom and New York NY USA pp 1211 1362 doi 10 1017 9781009157896 011 a b Douglas Thomas A Turetsky Merritt R Koven Charles D 24 July 2020 Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems npj Climate and Atmospheric Science 3 1 5626 doi 10 1038 s41612 020 0130 4 Lim Artem G Loiko Sergey V Pokrovsky Oleg S 10 January 2023 Interactions between organic matter and Fe oxides at soil micro interfaces Quantification associations and influencing factors Science of the Total Environment 3 158710 Bibcode 2023ScTEn 855o8710L doi 10 1016 j scitotenv 2022 158710 PMID 36099954 S2CID 252221350 Patzner Monique S Mueller Carsten W Malusova Miroslava Baur Moritz Nikeleit Verena Scholten Thomas Hoeschen Carmen Byrne James M Borch Thomas Kappler Andreas Bryce Casey 10 December 2020 Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw Nature Communications 11 1 6329 Bibcode 2020NatCo 11 6329P doi 10 1038 s41467 020 20102 6 PMC 7729879 PMID 33303752 Li Qi Hu Weifang Li Linfeng Li Yichun 1 March 2022 Sizable pool of labile organic carbon in peat and mineral soils of permafrost peatlands western Siberia Geoderma 3 1 5626 doi 10 1038 s41467 022 33293 x PMC 9512808 PMID 36163194 Oechel Walter C Hastings Steven J Vourlrtis George Jenkins Mitchell et al 1993 Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source Nature 361 6412 520 523 Bibcode 1993Natur 361 520O doi 10 1038 361520a0 S2CID 4339256 Natali Susan M Watts Jennifer D Rogers Brendan M Potter Stefano Ludwig Sarah M Selbmann Anne Katrin Sullivan Patrick F Abbott Benjamin W Arndt Kyle A Birch Leah Bjorkman Mats P 21 October 2019 Large loss of CO2 in winter observed across the northern permafrost region Nature Climate Change 9 11 852 857 Bibcode 2019NatCC 9 852N doi 10 1038 s41558 019 0592 8 hdl 10037 17795 ISSN 1758 678X PMC 8781060 PMID 35069807 S2CID 204812327 a b Liu Zhihua Kimball John S Ballantyne Ashley P Parazoo Nicholas C Wang Wen J Bastos Ana Madani Nima Natali Susan M Watts Jennifer D Rogers Brendan M Ciais Philippe Yu Kailiang Virkkala Anna Maria Chevallier Frederic Peters Wouter Patra Prabir K Chandra Naveen 21 October 2019 Respiratory loss during late growing season determines the net carbon dioxide sink in northern permafrost regions Nature Communications 13 1 5626 doi 10 1038 s41467 022 33293 x PMC 9512808 PMID 36163194 Miner Kimberley R Turetsky Merritt R Malina Edward Bartsch Annett Tamminen Johanna McGuire A David Fix Andreas Sweeney Colm Elder Clayton D Miller Charles E 11 January 2022 Permafrost carbon emissions in a changing Arctic Nature Reviews Earth amp Environment 13 1 55 67 Bibcode 2022NRvEE 3 55M doi 10 1038 s43017 021 00230 3 S2CID 245917526 Estop Aragones Cristian Olefeldt David et al 2 September 2020 Assessing the Potential for Mobilization of Old Soil Carbon After Permafrost Thaw A Synthesis of 14C Measurements From the Northern Permafrost Region Global Biogeochemical Cycles 34 9 Bibcode 2020GBioC 3406672E doi 10 1029 2020GB006672 S2CID 225258236 Pedron Shawn A Welker J M Euskirchen E S Klein E S Walker J C Xu X Czimczik C I 14 March 2022 Closing the Winter Gap Year Round Measurements of Soil CO2 Emission Sources in Arctic Tundra Geophysical Research Letters 49 6 Bibcode 2022GeoRL 4997347P doi 10 1029 2021GL097347 S2CID 247491567 Meyers Smith I H McGuire A D Harden J W Chapin F S 2007 Influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest PDF Journal of Geophysical Research 112 G4 G04017 Bibcode 2007JGRG 11204017M doi 10 1029 2007JG000423 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link S A Zimov N S Zimov A N Tikhonov F S Chapin III 2012 Mammoth steppe a high productivity phenomenon PDF In Quaternary Science Reviews vol 57 4 December 2012 p 42 fig 17 Archived from the original PDF on 4 March 2016 Retrieved 17 October 2014 a href Template Cite web html title Template Cite web cite web a CS1 maint multiple names authors list link Sergey A Zimov 6 May 2005 Pleistocene Park Return of the Mammoth s Ecosystem Archived 2017 02 20 at the Wayback Machine In Science pages 796 798 Article also to be found in www pleistocenepark ru en Materials Archived 2016 11 03 at the Wayback Machine Retrieved 5 May 2013 a b Milman Oliver 4 January 2022 Dam it beavers head north to the Arctic as tundra continues to heat up The Guardian Archived from the original on 4 January 2022 a b Bernhard Philipp Zwieback Simon Hajnsek Irena 2 May 2022 Accelerated mobilization of organic carbon from retrogressive thaw slumps on the northern Taymyr Peninsula The Cryosphere 16 7 2819 2835 Bibcode 2022TCry 16 2819B doi 10 5194 tc 16 2819 2022 Walter K M Chanton J P Chapin F S Schuur E A G Zimov S A 2008 Methane production and bubble emissions from arctic lakes Isotopic implications for source pathways and ages Journal of Geophysical Research 113 G00A08 Bibcode 2008JGRG 11300A08W doi 10 1029 2007JG000569 Schuur E A G McGuire A D Schadel C Grosse G Harden J W et al 9 April 2015 Climate change and the permafrost carbon feedback Nature 520 7546 171 179 Bibcode 2015Natur 520 171S doi 10 1038 nature14338 PMID 25855454 S2CID 4460926 Pfeiffer Eva Maria Grigoriev Mikhail N Liebner Susanne Beer Christian Knoblauch Christian April 2018 Methane production as key to the greenhouse gas budget of thawing permafrost Nature Climate Change 8 4 309 312 Bibcode 2018NatCC 8 309K doi 10 1038 s41558 018 0095 z ISSN 1758 6798 S2CID 90764924 Walter KM Zimov SA Chanton JP Verbyla D et al 7 September 2006 Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming Nature 443 7107 71 75 Bibcode 2006Natur 443 71W doi 10 1038 nature05040 PMID 16957728 S2CID 4415304 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Gillis Justin 16 December 2011 As Permafrost Thaws Scientists Study the Risks The New York Times Retrieved 17 December 2011 Vigderovich Hanni Eckert Werner Elul Michal Rubin Blum Maxim Elvert Marcus Sivan Orit Czimczik C I 2 May 2022 Long term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments Biogeosciences 19 8 Bibcode 2022GeoRL 4997347P doi 10 1029 2021GL097347 S2CID 247491567 Pellerin Andre Lotem Noam Anthony Katey Walter Russak Efrat Eliani Hasson Nicholas Roy Hans Chanton Jeffrey P Sivan Orit 4 March 2022 Methane production controls in a young thermokarst lake formed by abrupt permafrost thaw Global Change Biology 28 10 3206 3221 doi 10 1111 gcb 16151 PMC 9310722 PMID 35243729 Turetsky Merritt R 30 April 2019 Permafrost collapse is accelerating carbon release Nature 569 7754 32 34 Bibcode 2019Natur 569 32T doi 10 1038 d41586 019 01313 4 PMID 31040419 Scientists shocked by Arctic permafrost thawing 70 years sooner than predicted The Guardian 18 June 2019 ISSN 0261 3077 Retrieved 2 July 2019 a b c Turetsky Merritt R Abbott Benjamin W Jones Miriam C Anthony Katey Walter Olefeldt David Schuur Edward A G Grosse Guido Kuhry Peter Hugelius Gustaf Koven Charles Lawrence David M February 2020 Carbon release through abrupt permafrost thaw Nature Geoscience 13 2 138 143 Bibcode 2020NatGe 13 138T doi 10 1038 s41561 019 0526 0 ISSN 1752 0894 S2CID 213348269 a b Walter Anthony Katey Schneider von Deimling Thomas Nitze Ingmar Frolking Steve Emond Abraham Daanen Ronald Anthony Peter Lindgren Prajna Jones Benjamin Grosse Guido 15 August 2018 21st century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes Nature Communications 9 1 3262 Bibcode 2018NatCo 9 3262W doi 10 1038 s41467 018 05738 9 ISSN 2041 1723 PMC 6093858 PMID 30111815 Turetsky MR Abbott BW Jones MC Anthony KW Olefeldt D Schuur EA Koven C McGuire AD Grosse G Kuhry P Hugelius G May 2019 Permafrost collapse is accelerating carbon release Nature 569 7754 32 34 Bibcode 2019Natur 569 32T doi 10 1038 d41586 019 01313 4 PMID 31040419 a b gt Heffernan Liam Cavaco Maria A Bhatia Maya P Estop Aragones Cristian Knorr Klaus Holger Olefeldt David 24 June 2022 High peatland methane emissions following permafrost thaw enhanced acetoclastic methanogenesis during early successional stages Biogeosciences 19 8 3051 3071 Bibcode 2022BGeo 19 3051H doi 10 5194 bg 19 3051 2022 Cooper M Estop Aragones C Fisher J et al 26 June 2017 Limited contribution of permafrost carbon to methane release from thawing peatlands Nature Climate Change 7 7 507 511 Bibcode 2017NatCC 7 507C doi 10 1038 nclimate3328 Estop Aragones Cristian Cooper Mark D A Fisher James P et al March 2018 Limited release of previously frozen C and increased new peat formation after thaw in permafrost peatlands Soil Biology and Biochemistry 118 115 129 doi 10 1016 j soilbio 2017 12 010 Estop Aragones Cristian et al 13 August 2018 Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst Environmental Research Letters 13 8 085002 Bibcode 2018ERL 13h5002E doi 10 1088 1748 9326 aad5f0 S2CID 158857491 IPCC AR4 2007 Climate Change 2007 Working Group I The Physical Science Basis Archived from the original on 13 April 2014 Retrieved 12 April 2014 a b c d Sayedi Sayedeh Sara Abbott Benjamin W Thornton Brett F Frederick Jennifer M Vonk Jorien E Overduin Paul Schadel Christina Schuur Edward A G Bourbonnais Annie Demidov Nikita Gavrilov Anatoly 1 December 2020 Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment Environmental Research Letters 15 12 B027 08 Bibcode 2020AGUFMB027 08S doi 10 1088 1748 9326 abcc29 ISSN 1748 9326 S2CID 234515282 Gillis Justin 16 December 2011 As Permafrost Thaws Scientists Study the Risks The New York Times Archived from the original on 19 May 2017 Retrieved 11 February 2017 Schellnhuber Hans Joachim Winkelmann Ricarda Scheffer Marten Lade Steven J Fetzer Ingo Donges Jonathan F Crucifix Michel Cornell Sarah E Barnosky Anthony D 2018 Trajectories of the Earth System in the Anthropocene Proceedings of the National Academy of Sciences 115 33 8252 8259 Bibcode 2018PNAS 115 8252S doi 10 1073 pnas 1810141115 ISSN 0027 8424 PMC 6099852 PMID 30082409 MacDougall Andrew H 10 September 2021 Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change Biogeosciences 18 17 4937 4952 Bibcode 2021BGeo 18 4937M doi 10 5194 bg 18 4937 2021 a b Hugelius Gustaf Loisel Julie Chadburn Sarah et al 10 August 2020 Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw Proceedings of the National Academy of Sciences 117 34 20438 20446 Bibcode 2020PNAS 11720438H doi 10 1073 pnas 1916387117 PMC 7456150 PMID 32778585 Dietz Simon Rising James Stoerk Thomas Wagner Gernot 24 August 2021 Economic impacts of tipping points in the climate system Proceedings of the National Academy of Sciences 118 34 e2103081118 Bibcode 2021PNAS 11803081D doi 10 1073 pnas 2103081118 PMC 8403967 PMID 34400500 Keen Steve Lenton Timothy M Garrett Timothy J Rae James W B Hanley Brian P Grasselli Matheus 19 May 2022 Estimates of economic and environmental damages from tipping points cannot be reconciled with the scientific literature Proceedings of the National Academy of Sciences 119 21 e2117308119 Bibcode 2022PNAS 11917308K doi 10 1073 pnas 2117308119 PMC 9173761 PMID 35588449 S2CID 248917625 Dietz Simon Rising James Stoerk Thomas Wagner Gernot 19 May 2022 Reply to Keen et al Dietz et al modeling of climate tipping points is informative even if estimates are a probable lower bound Proceedings of the National Academy of Sciences 119 21 e2201191119 Bibcode 2022PNAS 11901191D doi 10 1073 pnas 2201191119 PMC 9173815 PMID 35588452 Carbon Emissions from Permafrost 50x30 2021 Retrieved 8 October 2022 Natali Susan M Holdren John P Rogers Brendan M Treharne Rachael Duffy Philip B Pomerance Rafe MacDonald Erin 10 December 2020 Permafrost carbon feedbacks threaten global climate goals Biological Sciences 118 21 doi 10 1073 pnas 2100163118 PMC 8166174 PMID 34001617 Armstrong McKay David Abrams Jesse Winkelmann Ricarda Sakschewski Boris Loriani Sina Fetzer Ingo Cornell Sarah Rockstrom Johan Staal Arie Lenton Timothy 9 September 2022 Exceeding 1 5 C global warming could trigger multiple climate tipping points Science 377 6611 eabn7950 doi 10 1126 science abn7950 hdl 10871 131584 ISSN 0036 8075 PMID 36074831 S2CID 252161375 Armstrong McKay David 9 September 2022 Exceeding 1 5 C global warming could trigger multiple climate tipping points paper explainer climatetippingpoints info Retrieved 2 October 2022 External links EditInternational Permafrost Association Center for Permafrost Carbon in Arctic Reservoirs Vulnerability Experiment Retrieved from https en wikipedia org w index php title Permafrost carbon cycle amp oldid 1170120873, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.