fbpx
Wikipedia

Perfluorohexanesulfonic acid

Perfluorohexanesulfonic acid (PFHxS) (conjugate base perfluorohexanesulfonate) is a synthetic chemical compound. It is one of many compounds collectively known as per- and polyfluoroalkyl substances (PFASs). It is an anionic fluorosurfactant and a persistent organic pollutant with bioaccumulative properties. Although the use of products containing PFHxS and other PFASs have been banned or are being phased out in many jurisdictions, it remains ubiquitous in many environments and within the general population, and is one of the most commonly detected PFASs.[4]

Perfluorohexanesulfonic acid
Names
IUPAC name
1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexane-1-sulfonic acid
Other names
  • PFHxS
  • Perfluorohexane sulfonate
  • Perfluorohexane sulfonic acid
  • Perfluorohexane-1-sulfonic acid
Identifiers
  • 355-46-4 Y
3D model (JSmol)
  • Interactive image
ChEBI
  • CHEBI:132448
ChEMBL
  • ChEMBL1906987
ChemSpider
  • 61053
ECHA InfoCard 100.005.989
EC Number
  • 206-587-1
  • 67734
UNII
  • ZU6Y1E592S
  • DTXSID7040150
  • InChI=1S/C6HF13O3S/c7-1(8,3(11,12)5(15,16)17)2(9,10)4(13,14)6(18,19)23(20,21)22/h(H,20,21,22)
    Key: QZHDEAJFRJCDMF-UHFFFAOYSA-N
  • C(C(C(C(F)(F)S(=O)(=O)O)(F)F)(F)F)(C(C(F)(F)F)(F)F)(F)F
Properties
C6HF13O3S
Molar mass 400.11 g·mol−1
Density 1.841 g·cm−3[1]
6.2 mg/L (25 °C)[1]
log P 3.7 (estimated)[1]
Vapor pressure 0.0046 mmHg (estimated)[2]
Acidity (pKa) −3.45[2]
Hazards
GHS labelling:
[1]
Danger
H302, H312, H314, H332
P260, P261, P264, P270, P271, P280, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P312, P304+P340, P305+P351+P338, P310, P312, P321, P322, P330, P363, P405, P501
Pharmacology
Legal status
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Biochemical properties edit

PFHxS has a six carbon fluorocarbon chain that is both hydrophobic and lipophobic. Its sulfonic acid functional group imparts polarity, and allows it to interact with other polar compounds. Due to the strength of its carbon-fluorine bonds, it persists in the environment and in living organisms.

In humans, PFHxS binds to blood albumin,[5] and relatively little PFHxS is found in the liver compared to longer chain PFASs such as PFOS.[6] The half-life of PFASs in human blood generally decreases with decreasing backbone (CF2) length. However, PFHxS is an unusual exception in that its half-life is greater than both longer and shorter chain equivalents such as PFOS or PFBS.[7]

Production edit

PFHxS, its salts and isomers are anthropogenic chemicals that do not occur naturally. It is used as a surfactant and protective coating in applications such as aqueous firefighting foams, textile coating, metal plating and in polishing agents.[8][9] PFHxS production is slowly being phased out since 3M stopped producing C6 fluorotelomers in 2002, but production by other companies may be ongoing.[4] Between 1958 and 2015, an estimated 120-1022 metric tonnes of PFHxS were produced.[9] PFHxS was also used as replacement for PFOS after the Stockholm Convention on persistent organic pollutants restricted the use of PFOS.[8] The exact quantity of PFHxS produced or in production is difficult to estimate, as production volumes and relevant formulation information is often not publicly available. PFHxS may also be formed as an impurity of PFOS production, or as a breakdown product of larger PFASs.[10]

Occurrence in Humans edit

Data from the 2003-2004 National Health and Nutrition Examination Survey in the United States found the average serum concentration of PFHxS in the general US population to be 1.9 μg/L, with the 10th and 90th percentiles being 0.7 and 8.3 μg/L, respectively. Some studies reported serum PFHxS concentrations in the United States to be gradually decreasing since at least 1999.[11][12] Nevertheless, evidence of exposure can be detected amongst people with historic exposure. Serum concentrations of PFHxS were elevated amongst a cohort of Australian firefighters with occupational exposure to PFHxS (mean = 33 μg/L) compared to the general Australian population (mean = 3.2 μg/L), and were significantly correlated with serum PFOS concentrations.[13] As with PFOS, serum PFHxS concentrations are lower amongst women and people who reported blood donation.[13][14]

There is limited evidence for a relationship between PFHxS exposure and various health outcomes. However, contributions from PFHxS specifically are difficult to isolate, as most studies in humans and higher order organisms investigate exposure to a complex mixture of PFASs, of which PFHxS is just one component.

Regulatory status edit

A number of jurisdictions have guidelines or limits for the concentration of PFHxS in water, in diets, and in the environment. There are fewer regulations on PFHxS compared to PFOS and PFOA. This reflects the relative lack of epidemiological and toxicological information on the human health effects of exposure to PFHxS.[4]

PFHxS, its salts and related compounds have been recommended to be added to Annex A of the United Nations Stockholm Convention on Persistent Organic Pollutants. The decision was initially scheduled to be made in June 2021.[15] Due to the COVID-19 pandemic, the decision at the conference of parties was deferred to June 2022, where the parties agreed to list PFHxS, its salts and related compounds in Annex a without specific exemptions.[16] Upon entry into force, nations party to the convention are legally bound to take act to cease production and use of PFHxS. Several hundred salts and precursors of PFHxS fall within the scope of the restriction.[17]

Australia edit

Food Standards Australia New Zealand found insufficient evidence to justify a tolerable daily intake (TDI) for PFHxS specifically. Therefore, the TDI level for PFOS (0.02 μg/kg) was adapted as the TDI for the sum of PFOS and PFHxS. Australia uses a drinking water guideline value of 0.07 μg/L for the sum of PFHxS and PFOS. In comparison, the drinking water guideline value for PFOA is 0.56 μg/L.[18]

Europe edit

A new EU drinking water directive issued in 2020 adopted PFAS limit values. The limit values are 0.1 μg/L for the sum of 20 PFASs including PFHxS, and 0.5 μg/L for the sum of all PFASs. This directive is binding for all EU member nations. It is a minimum directive, and member states can elect to adopt stricter regulations.[19]

Denmark edit

The Danish EPA has established a drinking water and groundwater limit value of 2 ng/L for the sum of 4 PFASs; , PFHxS, PFOS, PFOA, and perfluorononanoic acid (PFNA).[20]

Sweden edit

The Swedish National Food Agency recommends a drinking water limit of 0.09 μg/L for the sum of 11 PFASs (PFBS, PFHxS, PFOS, 6:2 FTSA, PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA and PFDA). If PFASs are found above this limit in drinking water, immediate action is recommended to reduce the PFAS concentration in the drinking water to as far below the action level as possible. If PFASs is found above 900 ng/L in drinking water, the advice is to avoid drinking the water or preparing food with the water until the concentration is reduced as low as possible below 90 ng/litre, and to contact the Swedish Food Agency.[19]

Republic of Korea edit

In 2018, a preliminary drinking water limit value of 0.48 μg/L was adopted for PFHxS. In comparison, the preliminary limit value for the sum of PFOS and PFOA is 0.07 μg/L.[4]

United States edit

As of 2019, there is no federal limit or guideline value for PFHxS. The United States Environmental Protection Agency (EPA) is developing toxicity values for PFHxS, as well as PFBA, PFHxA, PFNA and PFDA.[21][22] Meanwhile, some states have adopted their own guideline values for PFHxS. For example, Minnesota recommends a guidance value of 0.027 μg/L for PFHxS,[23] and Michigan has a screening level of 0.084 μg/L for PFHxS.[4]

In 2020, Michigan adopted drinking water standards for 5 previously unregulated PFASs including PFHxS, which has a maximum contaminant level (MCL) of 51 parts per trillion (ppt) or 0.051 μg/L.[24][25]

See also edit

References edit

  1. ^ a b c d "Perfluorohexanesulfonic acid". Pubchem. National Library of MEdicine. Retrieved 22 May 2021.
  2. ^ a b Wang, Zhanyun; MacLeod, Matthew; Cousins, Ian T.; Scheringer, Martin; Hungerbühler, Konrad (2011). "Using COSMOtherm to predict physicochemical properties of poly- and perfluorinated alkyl substances (PFASs)". Environmental Chemistry. 8 (4): 389. doi:10.1071/EN10143. ISSN 1448-2517.
  3. ^ An Act To Stop Perfluoroalkyl and Polyfluoroalkyl Substances Pollution. 130th Maine Legislature, April 15, 2021
  4. ^ a b c d e Stockholm Convention on Persistent Organic Pollutants (1 October 2019). Risk management evaluation on perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related compounds (addendum) (Report). United Nations Environment Programme. Retrieved 23 May 2021.
  5. ^ Forsthuber M, Kaiser AM, Granitzer S, Hassl I, Hengstschläger M, Stangl H; et al. (2020). "Albumin is the major carrier protein for PFOS, PFOA, PFHxS, PFNA and PFDA in human plasma". Environ Int. 137: 105324. doi:10.1016/j.envint.2019.105324. PMID 32109724.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Kärrman A, Domingo JL, Llebaria X, Nadal M, Bigas E, van Bavel B; et al. (2010). "Biomonitoring perfluorinated compounds in Catalonia, Spain: concentrations and trends in human liver and milk samples". Environ Sci Pollut Res Int. 17 (3): 750–8. doi:10.1007/s11356-009-0178-5. PMID 19458971. S2CID 12628985.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Li Y, Fletcher T, Mucs D, Scott K, Lindh CH, Tallving P; et al. (2018). "Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water". Occup Environ Med. 75 (1): 46–51. doi:10.1136/oemed-2017-104651. PMC 5749314. PMID 29133598.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ a b Wang, Zhanyun; Cousins, Ian T.; Scheringer, Martin; Hungerbühler, Konrad (2013). "Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors". Environment International. 60: 242–248. doi:10.1016/j.envint.2013.08.021. ISSN 0160-4120. PMID 24660230.
  9. ^ a b Boucher, Justin M.; Cousins, Ian T.; Scheringer, Martin; Hungerbühler, Konrad; Wang, Zhanyun (2018). "Toward a Comprehensive Global Emission Inventory of C4–C10 Perfluoroalkanesulfonic Acids (PFSAs) and Related Precursors: Focus on the Life Cycle of C6- and C10-Based Products". Environmental Science & Technology Letters. 6 (1): 1–7. doi:10.1021/acs.estlett.8b00531. hdl:20.500.11850/308867. ISSN 2328-8930. S2CID 135460867.
  10. ^ Jiang W, Zhang Y, Yang L, Chu X, Zhu L (2015). "Perfluoroalkyl acids (PFAAs) with isomer analysis in the commercial PFOS and PFOA products in China". Chemosphere. 127: 180–7. Bibcode:2015Chmsp.127..180J. doi:10.1016/j.chemosphere.2015.01.049. PMID 25703780.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Olsen GW, Mair DC, Lange CC, Harrington LM, Church TR, Goldberg CL; et al. (2017). "Per- and polyfluoroalkyl substances (PFAS) in American Red Cross adult blood donors, 2000-2015". Environ Res. 157: 87–95. Bibcode:2017ER....157...87O. doi:10.1016/j.envres.2017.05.013. PMID 28528142.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Calafat AM, Wong LY, Kuklenyik Z, Reidy JA, Needham LL (2007). "Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 1999-2000". Environ Health Perspect. 115 (11): 1596–602. doi:10.1289/ehp.10598. PMC 2072821. PMID 18007991.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ a b Rotander A, Toms LM, Aylward L, Kay M, Mueller JF (2015). "Elevated levels of PFOS and PFHxS in firefighters exposed to aqueous film forming foam (AFFF)". Environ Int. 82: 28–34. doi:10.1016/j.envint.2015.05.005. PMID 26001497.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. ^ Yeung LW, So MK, Jiang G, Taniyasu S, Yamashita N, Song M; et al. (2006). "Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China". Environ Sci Technol. 40 (3): 715–20. Bibcode:2006EnST...40..715Y. doi:10.1021/es052067y. PMID 16509308.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ "Big Year for chemicals & waste continues as UN experts take steps to recommend eliminating UV-328 (a toxic plastic additive)" (Press release). Geneva, Switzerland: Secretariat of the Basel, Rotterdam and Stockholm Conventions. 16 January 2021. Retrieved 2021-05-23.
  16. ^ "Report of main proceedings for 9 June 2022". IISD Earth Negotiations Bulletin. Retrieved 2022-06-12.
  17. ^ "PFAS and Fluorinated Compounds in PubChem Tree". PubChem Classification Browser. NCBI. Retrieved 2022-10-21. → Regulatory PFAS collections → PFHxS and related substances → [Annex A] PFHxS plus its salts and PFHxS-related compounds as defined in Annex A of the Stockholm Convention
  18. ^ National Health and Medical Research Council (March 2021). Australian Drinking Water Guidelines (2011) – Updated March 2021 (Report). National Health and Medical Research Council.
  19. ^ a b Swedish Food Agency (5 February 2021). "PFAS in drinking water and self-caught fish - risk management". Swedish Food Agency. Retrieved 23 May 2021.
  20. ^ "Skærpede krav til PFAS-stoffer i drikkevand". mst.dk (in Danish). Retrieved 2023-01-30.
  21. ^ United States Environmental Protection Agency (February 2019). EPA's Per- and Polyfluoroalkyl Substances (PFAS) Action Plan (PDF) (Report). United States Environmental Protection Agency. Retrieved 23 May 2021.
  22. ^ "Perfluorohexanesulfonic Acid (PFHxS)". Integrated Risk Information System. United States Environmental Protection Agency. Retrieved 22 May 2021.
  23. ^ Minnesota Department of Health (April 2019). PFHxS and groundwater (PDF) (Report). Minnesota Department of Health. Retrieved 23 May 2021.
  24. ^ Matheny, Keith (3 August 2020). "Michigan's drinking water standards for these chemicals now among toughest in nation". Detroit Free Press. from the original on 31 January 2022. Retrieved 31 March 2022.
  25. ^ "New state drinking water standards pave way for expansion of Michigan's PFAS clean-up efforts". Michigan.gov. 3 August 2020. from the original on 3 January 2022. Retrieved 5 April 2022.

External links edit

  • Minnesota guidance on PFHxS

perfluorohexanesulfonic, acid, pfhxs, conjugate, base, perfluorohexanesulfonate, synthetic, chemical, compound, many, compounds, collectively, known, polyfluoroalkyl, substances, pfass, anionic, fluorosurfactant, persistent, organic, pollutant, with, bioaccumu. Perfluorohexanesulfonic acid PFHxS conjugate base perfluorohexanesulfonate is a synthetic chemical compound It is one of many compounds collectively known as per and polyfluoroalkyl substances PFASs It is an anionic fluorosurfactant and a persistent organic pollutant with bioaccumulative properties Although the use of products containing PFHxS and other PFASs have been banned or are being phased out in many jurisdictions it remains ubiquitous in many environments and within the general population and is one of the most commonly detected PFASs 4 Perfluorohexanesulfonic acid Names IUPAC name 1 1 2 2 3 3 4 4 5 5 6 6 6 tridecafluorohexane 1 sulfonic acid Other names PFHxSPerfluorohexane sulfonatePerfluorohexane sulfonic acidPerfluorohexane 1 sulfonic acid Identifiers CAS Number 355 46 4 Y 3D model JSmol Interactive image ChEBI CHEBI 132448 ChEMBL ChEMBL1906987 ChemSpider 61053 ECHA InfoCard 100 005 989 EC Number 206 587 1 PubChem CID 67734 UNII ZU6Y1E592S CompTox Dashboard EPA DTXSID7040150 InChI InChI 1S C6HF13O3S c7 1 8 3 11 12 5 15 16 17 2 9 10 4 13 14 6 18 19 23 20 21 22 h H 20 21 22 Key QZHDEAJFRJCDMF UHFFFAOYSA N SMILES C C C C F F S O O O F F F F C C F F F F F F F Properties Chemical formula C 6H F 13O 3S Molar mass 400 11 g mol 1 Density 1 841 g cm 3 1 Solubility in water 6 2 mg L 25 C 1 log P 3 7 estimated 1 Vapor pressure 0 0046 mmHg estimated 2 Acidity pKa 3 45 2 Hazards GHS labelling Pictograms 1 Signal word Danger Hazard statements H302 H312 H314 H332 Precautionary statements P260 P261 P264 P270 P271 P280 P301 P312 P301 P330 P331 P302 P352 P303 P361 P353 P304 P312 P304 P340 P305 P351 P338 P310 P312 P321 P322 P330 P363 P405 P501 Pharmacology Legal status US Illegal in California and Maine 3 Restricted internationally under Stockholm Convention Except where otherwise noted data are given for materials in their standard state at 25 C 77 F 100 kPa Infobox references Contents 1 Biochemical properties 2 Production 3 Occurrence in Humans 4 Regulatory status 4 1 Australia 4 2 Europe 4 2 1 Denmark 4 2 2 Sweden 4 3 Republic of Korea 4 4 United States 5 See also 6 References 7 External linksBiochemical properties editPFHxS has a six carbon fluorocarbon chain that is both hydrophobic and lipophobic Its sulfonic acid functional group imparts polarity and allows it to interact with other polar compounds Due to the strength of its carbon fluorine bonds it persists in the environment and in living organisms In humans PFHxS binds to blood albumin 5 and relatively little PFHxS is found in the liver compared to longer chain PFASs such as PFOS 6 The half life of PFASs in human blood generally decreases with decreasing backbone CF2 length However PFHxS is an unusual exception in that its half life is greater than both longer and shorter chain equivalents such as PFOS or PFBS 7 Production editPFHxS its salts and isomers are anthropogenic chemicals that do not occur naturally It is used as a surfactant and protective coating in applications such as aqueous firefighting foams textile coating metal plating and in polishing agents 8 9 PFHxS production is slowly being phased out since 3M stopped producing C6 fluorotelomers in 2002 but production by other companies may be ongoing 4 Between 1958 and 2015 an estimated 120 1022 metric tonnes of PFHxS were produced 9 PFHxS was also used as replacement for PFOS after the Stockholm Convention on persistent organic pollutants restricted the use of PFOS 8 The exact quantity of PFHxS produced or in production is difficult to estimate as production volumes and relevant formulation information is often not publicly available PFHxS may also be formed as an impurity of PFOS production or as a breakdown product of larger PFASs 10 Occurrence in Humans editData from the 2003 2004 National Health and Nutrition Examination Survey in the United States found the average serum concentration of PFHxS in the general US population to be 1 9 mg L with the 10th and 90th percentiles being 0 7 and 8 3 mg L respectively Some studies reported serum PFHxS concentrations in the United States to be gradually decreasing since at least 1999 11 12 Nevertheless evidence of exposure can be detected amongst people with historic exposure Serum concentrations of PFHxS were elevated amongst a cohort of Australian firefighters with occupational exposure to PFHxS mean 33 mg L compared to the general Australian population mean 3 2 mg L and were significantly correlated with serum PFOS concentrations 13 As with PFOS serum PFHxS concentrations are lower amongst women and people who reported blood donation 13 14 There is limited evidence for a relationship between PFHxS exposure and various health outcomes However contributions from PFHxS specifically are difficult to isolate as most studies in humans and higher order organisms investigate exposure to a complex mixture of PFASs of which PFHxS is just one component Regulatory status editA number of jurisdictions have guidelines or limits for the concentration of PFHxS in water in diets and in the environment There are fewer regulations on PFHxS compared to PFOS and PFOA This reflects the relative lack of epidemiological and toxicological information on the human health effects of exposure to PFHxS 4 PFHxS its salts and related compounds have been recommended to be added to Annex A of the United Nations Stockholm Convention on Persistent Organic Pollutants The decision was initially scheduled to be made in June 2021 15 Due to the COVID 19 pandemic the decision at the conference of parties was deferred to June 2022 where the parties agreed to list PFHxS its salts and related compounds in Annex a without specific exemptions 16 Upon entry into force nations party to the convention are legally bound to take act to cease production and use of PFHxS Several hundred salts and precursors of PFHxS fall within the scope of the restriction 17 Australia edit Food Standards Australia New Zealand found insufficient evidence to justify a tolerable daily intake TDI for PFHxS specifically Therefore the TDI level for PFOS 0 02 mg kg was adapted as the TDI for the sum of PFOS and PFHxS Australia uses a drinking water guideline value of 0 07 mg L for the sum of PFHxS and PFOS In comparison the drinking water guideline value for PFOA is 0 56 mg L 18 Europe edit A new EU drinking water directive issued in 2020 adopted PFAS limit values The limit values are 0 1 mg L for the sum of 20 PFASs including PFHxS and 0 5 mg L for the sum of all PFASs This directive is binding for all EU member nations It is a minimum directive and member states can elect to adopt stricter regulations 19 Denmark edit The Danish EPA has established a drinking water and groundwater limit value of 2 ng L for the sum of 4 PFASs PFHxS PFOS PFOA and perfluorononanoic acid PFNA 20 Sweden edit The Swedish National Food Agency recommends a drinking water limit of 0 09 mg L for the sum of 11 PFASs PFBS PFHxS PFOS 6 2 FTSA PFBA PFPeA PFHxA PFHpA PFOA PFNA and PFDA If PFASs are found above this limit in drinking water immediate action is recommended to reduce the PFAS concentration in the drinking water to as far below the action level as possible If PFASs is found above 900 ng L in drinking water the advice is to avoid drinking the water or preparing food with the water until the concentration is reduced as low as possible below 90 ng litre and to contact the Swedish Food Agency 19 Republic of Korea edit In 2018 a preliminary drinking water limit value of 0 48 mg L was adopted for PFHxS In comparison the preliminary limit value for the sum of PFOS and PFOA is 0 07 mg L 4 United States edit As of 2019 there is no federal limit or guideline value for PFHxS The United States Environmental Protection Agency EPA is developing toxicity values for PFHxS as well as PFBA PFHxA PFNA and PFDA 21 22 Meanwhile some states have adopted their own guideline values for PFHxS For example Minnesota recommends a guidance value of 0 027 mg L for PFHxS 23 and Michigan has a screening level of 0 084 mg L for PFHxS 4 In 2020 Michigan adopted drinking water standards for 5 previously unregulated PFASs including PFHxS which has a maximum contaminant level MCL of 51 parts per trillion ppt or 0 051 mg L 24 25 See also editPerfluorooctanesulfonic acid Per and polyfluoroalkyl substances Timeline of events related to per and polyfluoroalkyl substancesReferences edit a b c d Perfluorohexanesulfonic acid Pubchem National Library of MEdicine Retrieved 22 May 2021 a b Wang Zhanyun MacLeod Matthew Cousins Ian T Scheringer Martin Hungerbuhler Konrad 2011 Using COSMOtherm to predict physicochemical properties of poly and perfluorinated alkyl substances PFASs Environmental Chemistry 8 4 389 doi 10 1071 EN10143 ISSN 1448 2517 An Act To Stop Perfluoroalkyl and Polyfluoroalkyl Substances Pollution 130th Maine Legislature April 15 2021 a b c d e Stockholm Convention on Persistent Organic Pollutants 1 October 2019 Risk management evaluation on perfluorohexane sulfonic acid PFHxS its salts and PFHxS related compounds addendum Report United Nations Environment Programme Retrieved 23 May 2021 Forsthuber M Kaiser AM Granitzer S Hassl I Hengstschlager M Stangl H et al 2020 Albumin is the major carrier protein for PFOS PFOA PFHxS PFNA and PFDA in human plasma Environ Int 137 105324 doi 10 1016 j envint 2019 105324 PMID 32109724 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Karrman A Domingo JL Llebaria X Nadal M Bigas E van Bavel B et al 2010 Biomonitoring perfluorinated compounds in Catalonia Spain concentrations and trends in human liver and milk samples Environ Sci Pollut Res Int 17 3 750 8 doi 10 1007 s11356 009 0178 5 PMID 19458971 S2CID 12628985 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Li Y Fletcher T Mucs D Scott K Lindh CH Tallving P et al 2018 Half lives of PFOS PFHxS and PFOA after end of exposure to contaminated drinking water Occup Environ Med 75 1 46 51 doi 10 1136 oemed 2017 104651 PMC 5749314 PMID 29133598 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b Wang Zhanyun Cousins Ian T Scheringer Martin Hungerbuhler Konrad 2013 Fluorinated alternatives to long chain perfluoroalkyl carboxylic acids PFCAs perfluoroalkane sulfonic acids PFSAs and their potential precursors Environment International 60 242 248 doi 10 1016 j envint 2013 08 021 ISSN 0160 4120 PMID 24660230 a b Boucher Justin M Cousins Ian T Scheringer Martin Hungerbuhler Konrad Wang Zhanyun 2018 Toward a Comprehensive Global Emission Inventory of C4 C10 Perfluoroalkanesulfonic Acids PFSAs and Related Precursors Focus on the Life Cycle of C6 and C10 Based Products Environmental Science amp Technology Letters 6 1 1 7 doi 10 1021 acs estlett 8b00531 hdl 20 500 11850 308867 ISSN 2328 8930 S2CID 135460867 Jiang W Zhang Y Yang L Chu X Zhu L 2015 Perfluoroalkyl acids PFAAs with isomer analysis in the commercial PFOS and PFOA products in China Chemosphere 127 180 7 Bibcode 2015Chmsp 127 180J doi 10 1016 j chemosphere 2015 01 049 PMID 25703780 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Olsen GW Mair DC Lange CC Harrington LM Church TR Goldberg CL et al 2017 Per and polyfluoroalkyl substances PFAS in American Red Cross adult blood donors 2000 2015 Environ Res 157 87 95 Bibcode 2017ER 157 87O doi 10 1016 j envres 2017 05 013 PMID 28528142 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Calafat AM Wong LY Kuklenyik Z Reidy JA Needham LL 2007 Polyfluoroalkyl chemicals in the U S population data from the National Health and Nutrition Examination Survey NHANES 2003 2004 and comparisons with NHANES 1999 2000 Environ Health Perspect 115 11 1596 602 doi 10 1289 ehp 10598 PMC 2072821 PMID 18007991 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b Rotander A Toms LM Aylward L Kay M Mueller JF 2015 Elevated levels of PFOS and PFHxS in firefighters exposed to aqueous film forming foam AFFF Environ Int 82 28 34 doi 10 1016 j envint 2015 05 005 PMID 26001497 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Yeung LW So MK Jiang G Taniyasu S Yamashita N Song M et al 2006 Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China Environ Sci Technol 40 3 715 20 Bibcode 2006EnST 40 715Y doi 10 1021 es052067y PMID 16509308 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Big Year for chemicals amp waste continues as UN experts take steps to recommend eliminating UV 328 a toxic plastic additive Press release Geneva Switzerland Secretariat of the Basel Rotterdam and Stockholm Conventions 16 January 2021 Retrieved 2021 05 23 Report of main proceedings for 9 June 2022 IISD Earth Negotiations Bulletin Retrieved 2022 06 12 PFAS and Fluorinated Compounds in PubChem Tree PubChem Classification Browser NCBI Retrieved 2022 10 21 Regulatory PFAS collections PFHxS and related substances Annex A PFHxS plus its salts and PFHxS related compounds as defined in Annex A of the Stockholm Convention National Health and Medical Research Council March 2021 Australian Drinking Water Guidelines 2011 Updated March 2021 Report National Health and Medical Research Council a b Swedish Food Agency 5 February 2021 PFAS in drinking water and self caught fish risk management Swedish Food Agency Retrieved 23 May 2021 Skaerpede krav til PFAS stoffer i drikkevand mst dk in Danish Retrieved 2023 01 30 United States Environmental Protection Agency February 2019 EPA s Per and Polyfluoroalkyl Substances PFAS Action Plan PDF Report United States Environmental Protection Agency Retrieved 23 May 2021 Perfluorohexanesulfonic Acid PFHxS Integrated Risk Information System United States Environmental Protection Agency Retrieved 22 May 2021 Minnesota Department of Health April 2019 PFHxS and groundwater PDF Report Minnesota Department of Health Retrieved 23 May 2021 Matheny Keith 3 August 2020 Michigan s drinking water standards for these chemicals now among toughest in nation Detroit Free Press Archived from the original on 31 January 2022 Retrieved 31 March 2022 New state drinking water standards pave way for expansion of Michigan s PFAS clean up efforts Michigan gov 3 August 2020 Archived from the original on 3 January 2022 Retrieved 5 April 2022 External links editMinnesota guidance on PFHxS Retrieved from https en wikipedia org w index php title Perfluorohexanesulfonic acid amp oldid 1187423034, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.