fbpx
Wikipedia

Persistent organic pollutant

Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes.[1] They are toxic chemicals that adversely affect human health and the environment around the world. Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.

The effect of POPs on human and environmental health was discussed, with intention to eliminate or severely restrict their production, by the international community at the Stockholm Convention on Persistent Organic Pollutants in 2001.

Most POPs are pesticides or insecticides, and some are also solvents, pharmaceuticals, and industrial chemicals.[1] Although some POPs arise naturally (e.g. from volcanoes), most are man-made.[2] The "dirty dozen" POPs identified by the Stockholm Convention include aldrin, chlordane, dieldrin, endrin, heptachlor, HCB, mirex, toxaphene, PCBs, DDT, dioxins, and polychlorinated dibenzofurans. However, there have since been many new POPs added, for example PFASs.

Consequences of persistence edit

POPs typically are halogenated organic compounds (see lists below) and as such exhibit high lipid solubility. For this reason, they bioaccumulate in fatty tissues. Halogenated compounds also exhibit great stability reflecting the nonreactivity of C-Cl bonds toward hydrolysis and photolytic degradation. The stability and lipophilicity of organic compounds often correlates with their halogen content, thus polyhalogenated organic compounds are of particular concern. They exert their negative effects on the environment through two processes: long range transport, which allows them to travel far from their source, and bioaccumulation, which reconcentrates these chemical compounds to potentially dangerous levels.[3] Compounds that make up POPs are also classed as PBTs (persistent, bioaccumulative and toxic) or TOMPs (toxic organic micro pollutants).[4]

Long-range transport edit

POPs enter the gas phase under certain environmental temperatures and volatilize from soils, vegetation, and bodies of water into the atmosphere, resisting breakdown reactions in the air, to travel long distances before being re-deposited.[5] This results in accumulation of POPs in areas far from where they were used or emitted, specifically environments where POPs have never been introduced such as Antarctica, and the Arctic circle.[6] POPs can be present as vapors in the atmosphere or bound to the surface of solid particles (aerosols). A determining factor for the long-range transport is the fraction of a POP that is adsorbed on aerosols. In adsorbed form it is – as opposed to the gas phase – protected from photo-oxidation, i.e. direct photolysis as well as oxidation by OH radicals or ozone.[7][8]

POPs have low solubility in water but are easily captured by solid particles, and are soluble in organic fluids (oils, fats, and liquid fuels). POPs are not easily degraded in the environment due to their stability and low decomposition rates. Due to this capacity for long-range transport, POP environmental contamination is extensive, even in areas where POPs have never been used, and will remain in these environments years after restrictions implemented due to their resistance to degradation.[9][10]

Bioaccumulation edit

Bioaccumulation of POPs is typically associated with the compounds high lipid solubility and ability to accumulate in the fatty tissues of living organisms for long periods of time.[9][11] Persistent chemicals tend to have higher concentrations and are eliminated more slowly. Dietary accumulation or bioaccumulation is another hallmark characteristic of POPs, as POPs move up the food chain, they increase in concentration as they are processed and metabolized in certain tissues of organisms. The natural capacity for animals gastrointestinal tract to concentrate ingested chemicals, along with poorly metabolized and hydrophobic nature of POPs, makes such compounds highly susceptible to bioaccumulation.[12] Thus POPs not only persist in the environment, but also as they are taken in by animals they bioaccumulate, increasing their concentration and toxicity in the environment.[5][13] This increase in concentration is called biomagnification, which is where organisms higher up in the food chain have a greater accumulation of POPs.[14] Bioaccumulation and long-range transport are the reason why POPs can accumulate in organisms like whales, even in remote areas like Antarctica.[15]

Stockholm Convention on Persistent Organic Pollutants edit

 
State parties to the Stockholm Convention on Persistent Organic Pollutants

The Stockholm Convention was adopted and put into practice by the United Nations Environment Programme (UNEP) on May 22, 2001. The UNEP decided that POP regulation needed to be addressed globally for the future. The purpose statement of the agreement is "to protect human health and the environment from persistent organic pollutants." As of 2014, there are 179 countries in compliance with the Stockholm convention. The convention and its participants have recognized the potential human and environmental toxicity of POPs. They recognize that POPs have the potential for long range transport and bioaccumulation and biomagnification. The convention seeks to study and then judge whether or not a number of chemicals that have been developed with advances in technology and science can be categorized as POPs or not. The initial meeting in 2001 made a preliminary list, termed the "dirty dozen", of chemicals that are classified as POPs. As of 2022, the United States has signed the Stockholm Convention but has not ratified it. There are a handful of other countries that have not ratified the convention but most countries in the world have ratified the convention.[16]

Compounds on the Stockholm Convention list edit

In May 1995, the UNEP Governing Council investigated POPs.[17] Initially the Convention recognized only twelve POPs for their adverse effects on human health and the environment, placing a global ban on these particularly harmful and toxic compounds and requiring its parties to take measures to eliminate or reduce the release of POPs in the environment.[2][16][18]

  1. Aldrin, an insecticide used in soils to kill termites, grasshoppers, Western corn rootworm, and others, is also known to kill birds, fish, and humans. Humans are primarily exposed to aldrin through dairy products and animal meats.
  2. Chlordane, an insecticide used to control termites and on a range of agricultural crops, is known to be lethal in various species of birds, including mallard ducks, bobwhite quail, and pink shrimp; it is a chemical that remains in the soil with a reported half-life of one year. Chlordane has been postulated to affect the human immune system and is classified as a possible human carcinogen. Chlordane air pollution is believed the primary route of human exposure.
  3. Dieldrin, a pesticide used to control termites, textile pests, insect-borne diseases and insects living in agricultural soils. In soil and insects, aldrin can be oxidized, resulting in rapid conversion to dieldrin. Dieldrin's half-life is approximately five years. Dieldrin is highly toxic to fish and other aquatic animals, particularly frogs, whose embryos can develop spinal deformities after exposure to low levels. Dieldrin has been linked to Parkinson's disease, breast cancer, and classified as immunotoxic, neurotoxic, with endocrine disrupting capacity. Dieldrin residues have been found in air, water, soil, fish, birds, and mammals. Human exposure to dieldrin primarily derives from food.
  4. Endrin, an insecticide sprayed on the leaves of crops, and used to control rodents. Animals can metabolize endrin, so fatty tissue accumulation is not an issue, however the chemical has a long half-life in soil for up to 12 years. Endrin is highly toxic to aquatic animals and humans as a neurotoxin. Human exposure results primarily through food.
  5. Heptachlor, a pesticide primarily used to kill soil insects and termites, along with cotton insects, grasshoppers, other crop pests, and malaria-carrying mosquitoes. Heptachlor, even at very low doses has been associated with the decline of several wild bird populations – Canada geese and American kestrels. In laboratory tests have shown high-dose heptachlor as lethal, with adverse behavioral changes and reduced reproductive success at low-doses, and is classified as a possible human carcinogen. Human exposure primarily results from food.
  6. Hexachlorobenzene (HCB) was first introduced in 1945–59 to treat seeds because it can kill fungi on food crops. HCB-treated seed grain consumption is associated with photosensitive skin lesions, colic, debilitation, and a metabolic disorder called porphyria turcica, which can be lethal. Mothers who pass HCB to their infants through the placenta and breast milk had limited reproductive success including infant death. Human exposure is primarily from food.
  7. Mirex, an insecticide used against ants and termites or as a flame retardant in plastics, rubber, and electrical goods. Mirex is one of the most stable and persistent pesticides, with a half-life of up to 10 years. Mirex is toxic to several plant, fish and crustacean species, with suggested carcinogenic capacity in humans. Humans are exposed primarily through animal meat, fish, and wild game.
  8. Toxaphene, an insecticide used on cotton, cereal, grain, fruits, nuts, and vegetables, as well as for tick and mite control in livestock. Widespread toxaphene use in the US and chemical persistence, with a half-life of up to 12 years in soil, results in residual toxaphene in the environment. Toxaphene is highly toxic to fish, inducing dramatic weight loss and reduced egg viability. Human exposure primarily results from food. While human toxicity to direct toxaphene exposure is low, the compound is classified as a possible human carcinogen.
  9. Polychlorinated biphenyls (PCBs), used as heat exchange fluids, in electrical transformers, and capacitors, and as additives in paint, carbonless copy paper, and plastics. Persistence varies with degree of halogenation, an estimated half-life of 10 years. PCBs are toxic to fish at high doses, and associated with spawning failure at low doses. Human exposure occurs through food, and is associated with reproductive failure and immune suppression. Immediate effects of PCB exposure include pigmentation of nails and mucous membranes and swelling of the eyelids, along with fatigue, nausea, and vomiting. Effects are transgenerational, as the chemical can persist in a mother's body for up to 7 years, resulting in developmental delays and behavioral problems in her children. Food contamination has led to large scale PCB exposure.
  10. Dichlorodiphenyltrichloroethane (DDT) is probably the most infamous POP. It was widely used as insecticide during WWII to protect against malaria and typhus. After the war, DDT was used as an agricultural insecticide. In 1962, the American biologist Rachel Carson published Silent Spring, describing the impact of DDT spraying on the US environment and human health. DDT's persistence in the soil for up to 10–15 years after application has resulted in widespread and persistent DDT residues throughout the world including the arctic, even though it has been banned or severely restricted in most of the world. DDT is toxic to many organisms including birds where it is detrimental to reproduction due to eggshell thinning. DDT can be detected in foods from all over the world and food-borne DDT remains the greatest source of human exposure. Short-term acute effects of DDT on humans are limited, however long-term exposure has been associated with chronic health effects including increased risk of cancer and diabetes, reduced reproductive success, and neurological disease.
  11. Dioxins are unintentional by-products of high-temperature processes, such as incomplete combustion and pesticide production. Dioxins are typically emitted from the burning of hospital waste, municipal waste, and hazardous waste, along with automobile emissions, peat, coal, and wood. Dioxins have been associated with several adverse effects in humans, including immune and enzyme disorders, chloracne, and are classified as a possible human carcinogen. In laboratory studies of dioxin effects an increase in birth defects and stillbirths, and lethal exposure have been associated with the substances. Food, particularly from animals, is the principal source of human exposure to dioxins. Dioxins were present in Agent Orange, which was used by the United States in chemical warfare against Vietnam and caused devastating multi-generational effects in both Vietnamese and American civilians.
  12. Polychlorinated dibenzofurans are by-products of high-temperature processes, such as incomplete combustion after waste incineration or in automobiles, pesticide production, and polychlorinated biphenyl production. Structurally similar to dioxins, the two compounds share toxic effects. Furans persist in the environment and classified as possible human carcinogens. Human exposure to furans primarily results from food, particularly animal products.

New POPs on the Stockholm Convention list edit

Since 2001, this list has been expanded to include some polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants, and other compounds. Additions to the initial 2001 Stockholm Convention list are the following POPs:[19][16]

  • Chlordecone, a synthetic chlorinated organic compound, is primarily used as an agricultural pesticide, related to DDT and Mirex. Chlordecone is toxic to aquatic organisms, and classified as a possible human carcinogen. Many countries have banned chlordecone sale and use, or intend to phase out stockpiles and wastes.
  • α-Hexachlorocyclohexane (α-HCH) and β-Hexachlorocyclohexane (β-HCH) are insecticides as well as by-products in the production of lindane. Large stockpiles of HCH isomers exist in the environment. α-HCH and β-HCH are highly persistent in the water of colder regions. α-HCH and β-HCH has been linked Parkinson's and Alzheimer's disease.[citation needed]
  • Hexabromodiphenyl ether (hexaBDE) and heptabromodiphenyl ether (heptaBDE) are main components of commercial octabromodiphenyl ether (octaBDE). Commercial octaBDE is highly persistent in the environment, whose only degradation pathway is through debromination and the production of bromodiphenyl ethers, which can increase toxicity.
  • Lindane (γ-hexachlorocyclohexane), a pesticide used as a broad spectrum insecticide for seed, soil, leaf, tree and wood treatment, and against ectoparasites in animals and humans (head lice and scabies). Lindane rapidly bioconcentrates. It is immunotoxic, neurotoxic, carcinogenic, linked to liver and kidney damage as well as adverse reproductive and developmental effects in laboratory animals and aquatic organisms. Production of lindane unintentionally produces two other POPs α-HCH and β-HCH.[citation needed]
  • Pentachlorobenzene (PeCB), is a pesticide and unintentional byproduct. PeCB has also been used in PCB products, dyestuff carriers, as a fungicide, a flame retardant, and a chemical intermediate. PeCB is moderately toxic to humans, while highly toxic to aquatic organisms.
  • Tetrabromodiphenyl ether (tetraBDE) and pentabromodiphenyl ether (pentaBDE) are industrial chemicals and the main components of commercial pentabromodiphenyl ether (pentaBDE). PentaBDE has been detected in humans in all regions of the world.
  • Perfluorooctanesulfonic acid (PFOS) and its salts are used in the production of fluoropolymers. PFOS and related compounds are extremely persistent, bioaccumulating and biomagnifying. The negative effects of trace levels of PFOS have not been established.
  • Endosulfans are insecticides to control pests on crops such coffee, cotton, rice and sorghum and soybeans, tsetse flies, ectoparasites of cattle. They are used as a wood preservative. Global use and manufacturing of endosulfan has been banned under the Stockholm convention in 2011, although many countries had previously banned or introduced phase-outs of the chemical when the ban was announced. Toxic to humans and aquatic and terrestrial organisms, linked to congenital physical disorders, mental retardation, and death. Endosulfans' negative health effects are primarily liked to its endocrine disrupting capacity acting as an antiandrogen.
  • Hexabromocyclododecane (HBCD) is a brominated flame retardant primarily used in thermal insulation in the building industry. HBCD is persistent, toxic and ecotoxic, with bioaccumulative and long-range transport properties.

Health effects edit

POP exposure may cause developmental defects, chronic illnesses, and death. Some are carcinogens per IARC, possibly including breast cancer.[1] Many POPs are capable of endocrine disruption within the reproductive system, the central nervous system, or the immune system. People and animals are exposed to POPs mostly through their diet, occupationally, or while growing in the womb.[1] For humans not exposed to POPs through accidental or occupational means, over 90% of exposure comes from animal product foods due to bioaccumulation in fat tissues and bioaccumulate through the food chain. In general, POP serum levels increase with age and tend to be higher in females than males.[11]

Studies have investigated the correlation between low level exposure of POPs and various diseases. In order to assess disease risk due to POPs in a particular location, government agencies may produce a human health risk assessment which takes into account the pollutants' bioavailability and their dose-response relationships.[20]

Endocrine disruption edit

The majority of POPs are known to disrupt normal functioning of the endocrine system. Low level exposure to POPs during critical developmental periods of fetus, newborn and child can have a lasting effect throughout their lifespan. A 2002 study[21] summarizes data on endocrine disruption and health complications from exposure to POPs during critical developmental stages in an organism's lifespan. The study aimed to answer the question whether or not chronic, low level exposure to POPs can have a health impact on the endocrine system and development of organisms from different species. The study found that exposure of POPs during a critical developmental time frame can produce a permanent changes in the organisms path of development. Exposure of POPs during non-critical developmental time frames may not lead to detectable diseases and health complications later in their life. In wildlife, the critical development time frames are in utero, in ovo, and during reproductive periods. In humans, the critical development timeframe is during fetal development.[21]

Reproductive system edit

The same study in 2002[21] with evidence of a link from POPs to endocrine disruption also linked low dose exposure of POPs to reproductive health effects. The study stated that POP exposure can lead to negative health effects especially in the male reproductive system, such as decreased sperm quality and quantity, altered sex ratio and early puberty onset. For females exposed to POPs, altered reproductive tissues and pregnancy outcomes as well as endometriosis have been reported.[2]

Gestational weight gain and newborn head circumference edit

A Greek study from 2014 investigated the link between maternal weight gain during pregnancy, their PCB-exposure level and PCB level in their newborn infants, their birth weight, gestational age, and head circumference. The lower the birth weight and head circumference of the infants was, the higher POP levels during prenatal development had been, but only if mothers had either excessive or inadequate weight gain during pregnancy. No correlation between POP exposure and gestational age was found.[22] A 2013 case-control study conducted 2009 in Indian mothers and their offspring showed prenatal exposure of two types of organochlorine pesticides (HCH, DDT and DDE) impaired the growth of the fetus, reduced the birth weight, length, head circumference and chest circumference.[23][24]

Health effects of PFAS edit

 
Effects of exposure to PFASs on human health[25][26][27]

Hormone-disrupting chemicals, including PFASs, are linked with rapid declines in human fertility.[28] In a meta-analysis for associations between PFASs and human clinical biomarkers for liver injury, authors considered both PFAS effects on liver biomarkers and histological data from rodent experimental studies and concluded that evidence exists showing that PFOA, perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) are hepatotoxic to humans.[29]

Many comprehensive epidemiological studies linking adverse human health effects to PFASs, particularly PFOA, come from the C8 Science Panel.[30] The panel was formed as part of a contingency to a class action lawsuit brought by communities in the Ohio River Valley against DuPont in response to landfill and wastewater dumping of PFAS-laden material from DuPont's West Virginia Washington Works Plant.[30] The panel measured PFOA (also known as C8) serum concentrations in 69,000 individuals from around DuPont's Washington Works Plant and found a mean concentration of 83.0 ng/mL, compared to 4 ng/mL in a standard population of Americans.[31] This panel reported probable links between elevated PFOA blood concentration and hypercholesterolemia, ulcerative colitis, thyroid disease, testicular cancer, kidney cancer as well as pregnancy-induced hypertension and preeclampsia.[32][33][34][35][36]

Additive and synergistic effects edit

Evaluation of the effects of POPs on health is very challenging in the laboratory setting. For example, for organisms exposed to a mixture of POPs, the effects are assumed to be additive.[37] Mixtures of POPs can in principle produce synergistic effects. With synergistic effects, the toxicity of each compound is enhanced (or depressed) by the presence of other compounds in the mixture. When put together, the effects can far exceed the approximated additive effects of the POP compound mixture.[3]

In urban areas and indoor environments edit

Traditionally it was thought that human exposure to POPs occurred primarily through food, however indoor pollution patterns that characterize certain POPs have challenged this notion. Recent studies of indoor dust and air have implicated indoor environments as a major sources for human exposure via inhalation and ingestion.[38] Furthermore, significant indoor POP pollution must be a major route of human POP exposure, considering the modern trend in spending larger proportions of life indoors. Several studies have shown that indoor (air and dust) POP levels to exceed outdoor (air and soil) POP concentrations.[37]

In rainwater edit

In 2022, it was found that levels of at least four perfluoroalkyl acids (PFAAs) in rainwater worldwide ubiquitously and often greatly exceeded the EPA's lifetime drinking water health advisories as well as comparable Danish, Dutch, and European Union safety standards, leading to the conclusion that "the global spread of these four PFAAs in the atmosphere has led to the planetary boundary for chemical pollution being exceeded".[39] There are some moves to restrict and replace their use.[40]

In cosmetics and personal care products edit

Per- and polyfluoroalkyl substances (PFAS) are a class of about 9,000 synthetic organofluorine compounds that have multiple highly toxic fluorine atoms attached to an alkyl chain. PFAS are used in the manufacture of a wide range of products such as food packaging and clothing. They are also used by major companies of the cosmetics industry in a wide range of cosmetics, including lipstick, eye liner, mascara, foundation, concealer, lip balm, blush, nail polish and other such products. A 2021 study tested 231 makeup and personal care products and found organic fluorine, an indicator of PFAS, in more than half of the samples. High levels of fluorine were most commonly identified in waterproof mascara (82% of brands tested), foundations (63%), and liquid lipstick (62%). Since PFAS compounds are highly mobile, they are readily absorbed through human skin and through tear ducts, and such products on lips are often unwittingly ingested. Manufacturers often fail to label their products as containing PFAS, which makes it difficult for cosmetics consumers to avoid products containing PFAS.[41]

Control and removal in the environment edit

Current studies aimed at minimizing POPs in the environment are investigating their behavior in photocatalytic oxidation reactions. POPs that are found in humans and in aquatic environments the most are the main subjects of these experiments. Aromatic and aliphatic degradation products have been identified in these reactions. Photochemical degradation is negligible compared to photocatalytic degradation.[2] A method of removal of POPs from marine environments that has been explored is adsorption. It occurs when an absorbable solute comes into contact with a solid with a porous surface structure. This technique was investigated by Mohamed Nageeb Rashed of Aswan University, Egypt.[42] Current efforts are more focused on banning the use and production of POPs worldwide rather than removal of POPs.[11]

See also edit

References edit

  1. ^ a b c d Ritter L; Solomon KR; Forget J; Stemeroff M; O'Leary C. (PDF). United Nations Environment Programme. Archived from the original (PDF) on 2007-09-26. Retrieved 2007-09-16.
  2. ^ a b c d El-Shahawi, M.S.; Hamza, A.; Bashammakh, A.S.; Al-Saggaf, W.T. (15 March 2010). "An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants". Talanta. 80 (5): 1587–1597. doi:10.1016/j.talanta.2009.09.055. PMID 20152382.
  3. ^ a b Walker, C.H., "Organic Pollutants: An Ecotoxicological Perspective" (2001).
  4. ^ "Persistent, Bioaccumulative and Toxic Chemicals (PBTs)". Safer Chemicals Healthy Families. 2013-08-20. Retrieved 2022-02-01.
  5. ^ a b Kelly, Barry C.; Ikonomou, Michael G.; Blair, Joel D.; Morin, Anne E.; Gobas, Frank A. P. C. (13 July 2007). "Food Web–Specific Biomagnification of Persistent Organic Pollutants". Science. 317 (5835): 236–239. Bibcode:2007Sci...317..236K. doi:10.1126/science.1138275. PMID 17626882. S2CID 52835862.
  6. ^ Beyer A.; Mackay D.; Matthies M.; Wania F.; Webster E. (2000). "Assessing Long-Range Transport Potential of Persistent Organic Pollutants". Environmental Science & Technology. 34 (4): 699–703. Bibcode:2000EnST...34..699B. doi:10.1021/es990207w.
  7. ^ Koester, Carolyn J.; Hites, Ronald A. (March 1992). "Photodegradation of polychlorinated dioxins and dibenzofurans adsorbed to fly ash". Environmental Science & Technology. 26 (3): 502–507. Bibcode:1992EnST...26..502K. doi:10.1021/es00027a008. ISSN 0013-936X.
  8. ^ Raff, Jonathan D.; Hites, Ronald A. (October 2007). "Deposition versus Photochemical Removal of PBDEs from Lake Superior Air". Environmental Science & Technology. 41 (19): 6725–6731. Bibcode:2007EnST...41.6725R. doi:10.1021/es070789e. ISSN 0013-936X. PMID 17969687.
  9. ^ a b Wania F., Mackay D. (1996). "Tracking the Distribution of Persistent Organic Pollutants". Environmental Science & Technology. 30 (9): 390A–396A. doi:10.1021/es962399q. PMID 21649427.
  10. ^ Astoviza, Malena J. (15 April 2014). Evaluación de la distribución de contaminantes orgánicos persistentes (COPs) en aire en la zona de la cuenca del Plata mediante muestreadores pasivos artificiales (Tesis) (in Spanish). Universidad Nacional de La Plata. p. 160. doi:10.35537/10915/34729. Retrieved 16 April 2014.
  11. ^ a b c Vallack, Harry W.; Bakker, Dick J.; Brandt, Ingvar; Broström-Lundén, Eva; Brouwer, Abraham; Bull, Keith R.; Gough, Clair; Guardans, Ramon; Holoubek, Ivan; Jansson, Bo; Koch, Rainer; Kuylenstierna, Johan; Lecloux, André; Mackay, Donald; McCutcheon, Patrick; Mocarelli, Paolo; Taalman, Rob D.F. (November 1998). "Controlling persistent organic pollutants–what next?". Environmental Toxicology and Pharmacology. 6 (3): 143–175. doi:10.1016/S1382-6689(98)00036-2. PMID 21781891.
  12. ^ Yu, George W.; Laseter, John; Mylander, Charles (2011). "Persistent Organic Pollutants in Serum and Several Different Fat Compartments in Humans". Journal of Environmental and Public Health. 2011: 417980. doi:10.1155/2011/417980. PMC 3103883. PMID 21647350.
  13. ^ Lohmann, Rainer; Breivik, Knut; Dachs, Jordi; Muir, Derek (November 2007). "Global fate of POPs: Current and future research directions". Environmental Pollution. 150 (1): 150–165. doi:10.1016/j.envpol.2007.06.051. PMID 17698265.
  14. ^ US EPA, OITA (2014-04-02). "Persistent Organic Pollutants: A Global Issue, A Global Response". www.epa.gov. Retrieved 2022-02-01.
  15. ^ Remili, Anaïs; Gallego, Pierre; Pinzone, Marianna; Castro, Cristina; Jauniaux, Thierry; Garigliany, Mutien-Marie; Malarvannan, Govindan; Covaci, Adrian; Das, Krishna (2020-12-01). "Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches". Environmental Pollution. 267: 115575. doi:10.1016/j.envpol.2020.115575. hdl:10067/1744230151162165141. ISSN 0269-7491. PMID 33254700. S2CID 225008427.
  16. ^ a b c "STOCKHOLM CONVENTION ON PERSISTENT ORGANIC POLLUTANTS" (PDF). pp. 1–43. Retrieved 27 March 2014.
  17. ^ . United Nations Industrial Development Organization. Archived from the original on 4 March 2016. Retrieved 27 March 2014.
  18. ^ "Home".
  19. ^ Depositary notification (PDF), Secretary-General of the United Nations, 26 August 2009, retrieved 2009-12-17.
  20. ^ Szabo DT, Loccisano AE (March 30, 2012). "POPs and Human Health Risk Assessment". In A. Schecter (ed.). Dioxins and Health. Vol. 3rd. John Wiley & Sons. pp. 579–618. doi:10.1002/9781118184141.ch19. ISBN 9781118184141. {{cite book}}: |journal= ignored (help)
  21. ^ a b c Damstra T (2002). "Potential Effects of Certain Persistent Organic Pollutants and Endocrine Disrupting Chemicals on Health of Children". Clinical Toxicology. 40 (4): 457–465. doi:10.1081/clt-120006748. PMID 12216998. S2CID 23550634.
  22. ^ Vafeiadi, M; Vrijheid M; Fthenou E; Chalkiadaki G; Rantakokko P; Kiviranta H; Kyrtopoulos SA; Chatzi L; Kogevinas M (2014). "Persistent organic pollutants exposure during pregnancy, maternal gestational weight gain, and birth outcomes in the mother-child cohort in Crete, Greece (RHEA study)". Environ. Int. 64: 116–123. doi:10.1016/j.envint.2013.12.015. PMID 24389008.
  23. ^ Dewan, Jain V; Gupta P; Banerjee BD. (February 2013). "Organochlorine pesticide residues in maternal blood, cord blood, placenta, and breastmilk and their relation to birth size". Chemosphere. 90 (5): 1704–1710. Bibcode:2013Chmsp..90.1704D. doi:10.1016/j.chemosphere.2012.09.083. PMID 23141556.
  24. ^ Damstra T (2002). "Potential Effects of Certain Persistent Organic Pollutants and Endocrine Disrupting Chemicals on Health of Children". Clinical Toxicology. 40 (4): 457–465. doi:10.1081/clt-120006748. PMID 12216998. S2CID 23550634.
  25. ^ . European Environment Agency. 2019. Archived from the original on February 6, 2020.
  26. ^ . IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 110. 2016. Archived from the original on March 24, 2020.
  27. ^ Fenton SE, Reiner JL, Nakayama SF, Delinsky AD, Stanko JP, Hines EP, et al. (June 2009). "Analysis of PFOA in dosed CD-1 mice. Part 2. Disposition of PFOA in tissues and fluids from pregnant and lactating mice and their pups". Reproductive Toxicology. 27 (3–4): 365–372. doi:10.1016/j.reprotox.2009.02.012. PMC 3446208. PMID 19429407.
  28. ^ Swan SH, Colino S (February 2021). Count down: how our modern world is threatening sperm counts, altering male and female reproductive development, and imperiling the future of the human race. New York, USA: Scribner. ISBN 978-1-9821-1366-7.
  29. ^ Costello E, Rock S, Stratakis N, Eckel SP, Walker DI, Valvi D, et al. (April 2022). "Exposure to per- and Polyfluoroalkyl Substances and Markers of Liver Injury: A Systematic Review and Meta-Analysis". Environmental Health Perspectives. 130 (4): 46001. doi:10.1289/EHP10092. PMC 9044977. PMID 35475652.
  30. ^ a b "C8 Science Panel". www.c8sciencepanel.org. from the original on June 18, 2019. Retrieved June 8, 2019.
  31. ^ Steenland K, Jin C, MacNeil J, Lally C, Ducatman A, Vieira V, Fletcher T (July 2009). "Predictors of PFOA levels in a community surrounding a chemical plant". Environmental Health Perspectives. 117 (7): 1083–1088. doi:10.1289/ehp.0800294. PMC 2717134. PMID 19654917.
  32. ^ "Probable Link Evaluation for heart disease (including high blood pressure, high cholesterol, coronary artery disease)" (PDF). C8 Science Panel. 29 October 2012.
  33. ^ "Probable Link Evaluation of Autoimmune Disease" (PDF). C8 Science Panel. 30 July 2012.
  34. ^ "Probable Link Evaluation of Thyroid disease" (PDF). C8 Science Panel. 30 July 2012.
  35. ^ "Probable Link Evaluation of Cancer" (PDF). C8 Science Panel. 15 April 2012.
  36. ^ "Probable Link Evaluation of Pregnancy Induced Hypertension and Preeclampsia" (PDF). C8 Science Panel. 5 December 2011.
  37. ^ a b ed. Harrad, S., "Persistent Organic Pollutants" (2010).
  38. ^ Walker, C.H., "Organic Pollutants: An Ecotoxicological Perspective" (2001)
  39. ^ Cousins IT, Johansson JH, Salter ME, Sha B, Scheringer M (August 2022). "Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS)". Environmental Science & Technology. American Chemical Society. 56 (16): 11172–11179. Bibcode:2022EnST...5611172C. doi:10.1021/acs.est.2c02765. PMC 9387091. PMID 35916421.
  40. ^ "Pollution: 'Forever chemicals' in rainwater exceed safe levels". BBC News. 2 August 2022. Retrieved 14 September 2022.
  41. ^ The Guardian (UK), 15 June 2021, "Toxic ‘Forever Chemicals’ Widespread in Top Makeup Brands, Study Finds--Researchers Find Signs of PFAS in over Half of 231 Samples of Products Including Lipstick, Mascara and Foundation"
  42. ^ Rashed, M.N. Organic pollutants - Monitoring, risk and treatment. Intech. London (2013). Chapter 7 - Adsorption techniques for the removal of persistent organic pollutants from water and wastewater.

External links edit

  • World Health Organization Persistent Organic Pollutants: Impact on Child Health
  • Pops.int, Stockholm Convention on Persistent Organic Pollutants
  • Resources on Persistent Organic Pollutants (POPs)
  • , POP monitoring in the Alpine region (Europe)

persistent, organic, pollutant, pops, redirects, here, other, uses, pops, disambiguation, pops, organic, compounds, that, resistant, degradation, through, chemical, biological, photolytic, processes, they, toxic, chemicals, that, adversely, affect, human, heal. POPs redirects here For other uses see Pops disambiguation Persistent organic pollutants POPs are organic compounds that are resistant to degradation through chemical biological and photolytic processes 1 They are toxic chemicals that adversely affect human health and the environment around the world Because they can be transported by wind and water most POPs generated in one country can and do affect people and wildlife far from where they are used and released The effect of POPs on human and environmental health was discussed with intention to eliminate or severely restrict their production by the international community at the Stockholm Convention on Persistent Organic Pollutants in 2001 Most POPs are pesticides or insecticides and some are also solvents pharmaceuticals and industrial chemicals 1 Although some POPs arise naturally e g from volcanoes most are man made 2 The dirty dozen POPs identified by the Stockholm Convention include aldrin chlordane dieldrin endrin heptachlor HCB mirex toxaphene PCBs DDT dioxins and polychlorinated dibenzofurans However there have since been many new POPs added for example PFASs Contents 1 Consequences of persistence 1 1 Long range transport 1 2 Bioaccumulation 2 Stockholm Convention on Persistent Organic Pollutants 2 1 Compounds on the Stockholm Convention list 2 2 New POPs on the Stockholm Convention list 3 Health effects 3 1 Endocrine disruption 3 2 Reproductive system 3 2 1 Gestational weight gain and newborn head circumference 3 3 Health effects of PFAS 3 4 Additive and synergistic effects 4 In urban areas and indoor environments 5 In rainwater 6 In cosmetics and personal care products 7 Control and removal in the environment 8 See also 9 References 10 External linksConsequences of persistence editPOPs typically are halogenated organic compounds see lists below and as such exhibit high lipid solubility For this reason they bioaccumulate in fatty tissues Halogenated compounds also exhibit great stability reflecting the nonreactivity of C Cl bonds toward hydrolysis and photolytic degradation The stability and lipophilicity of organic compounds often correlates with their halogen content thus polyhalogenated organic compounds are of particular concern They exert their negative effects on the environment through two processes long range transport which allows them to travel far from their source and bioaccumulation which reconcentrates these chemical compounds to potentially dangerous levels 3 Compounds that make up POPs are also classed as PBTs persistent bioaccumulative and toxic or TOMPs toxic organic micro pollutants 4 Long range transport edit See also Global distillation POPs enter the gas phase under certain environmental temperatures and volatilize from soils vegetation and bodies of water into the atmosphere resisting breakdown reactions in the air to travel long distances before being re deposited 5 This results in accumulation of POPs in areas far from where they were used or emitted specifically environments where POPs have never been introduced such as Antarctica and the Arctic circle 6 POPs can be present as vapors in the atmosphere or bound to the surface of solid particles aerosols A determining factor for the long range transport is the fraction of a POP that is adsorbed on aerosols In adsorbed form it is as opposed to the gas phase protected from photo oxidation i e direct photolysis as well as oxidation by OH radicals or ozone 7 8 POPs have low solubility in water but are easily captured by solid particles and are soluble in organic fluids oils fats and liquid fuels POPs are not easily degraded in the environment due to their stability and low decomposition rates Due to this capacity for long range transport POP environmental contamination is extensive even in areas where POPs have never been used and will remain in these environments years after restrictions implemented due to their resistance to degradation 9 10 Bioaccumulation edit Bioaccumulation of POPs is typically associated with the compounds high lipid solubility and ability to accumulate in the fatty tissues of living organisms for long periods of time 9 11 Persistent chemicals tend to have higher concentrations and are eliminated more slowly Dietary accumulation or bioaccumulation is another hallmark characteristic of POPs as POPs move up the food chain they increase in concentration as they are processed and metabolized in certain tissues of organisms The natural capacity for animals gastrointestinal tract to concentrate ingested chemicals along with poorly metabolized and hydrophobic nature of POPs makes such compounds highly susceptible to bioaccumulation 12 Thus POPs not only persist in the environment but also as they are taken in by animals they bioaccumulate increasing their concentration and toxicity in the environment 5 13 This increase in concentration is called biomagnification which is where organisms higher up in the food chain have a greater accumulation of POPs 14 Bioaccumulation and long range transport are the reason why POPs can accumulate in organisms like whales even in remote areas like Antarctica 15 Stockholm Convention on Persistent Organic Pollutants edit nbsp State parties to the Stockholm Convention on Persistent Organic PollutantsMain article Stockholm Convention on Persistent Organic Pollutants The Stockholm Convention was adopted and put into practice by the United Nations Environment Programme UNEP on May 22 2001 The UNEP decided that POP regulation needed to be addressed globally for the future The purpose statement of the agreement is to protect human health and the environment from persistent organic pollutants As of 2014 there are 179 countries in compliance with the Stockholm convention The convention and its participants have recognized the potential human and environmental toxicity of POPs They recognize that POPs have the potential for long range transport and bioaccumulation and biomagnification The convention seeks to study and then judge whether or not a number of chemicals that have been developed with advances in technology and science can be categorized as POPs or not The initial meeting in 2001 made a preliminary list termed the dirty dozen of chemicals that are classified as POPs As of 2022 the United States has signed the Stockholm Convention but has not ratified it There are a handful of other countries that have not ratified the convention but most countries in the world have ratified the convention 16 Compounds on the Stockholm Convention list edit In May 1995 the UNEP Governing Council investigated POPs 17 Initially the Convention recognized only twelve POPs for their adverse effects on human health and the environment placing a global ban on these particularly harmful and toxic compounds and requiring its parties to take measures to eliminate or reduce the release of POPs in the environment 2 16 18 Aldrin an insecticide used in soils to kill termites grasshoppers Western corn rootworm and others is also known to kill birds fish and humans Humans are primarily exposed to aldrin through dairy products and animal meats Chlordane an insecticide used to control termites and on a range of agricultural crops is known to be lethal in various species of birds including mallard ducks bobwhite quail and pink shrimp it is a chemical that remains in the soil with a reported half life of one year Chlordane has been postulated to affect the human immune system and is classified as a possible human carcinogen Chlordane air pollution is believed the primary route of human exposure Dieldrin a pesticide used to control termites textile pests insect borne diseases and insects living in agricultural soils In soil and insects aldrin can be oxidized resulting in rapid conversion to dieldrin Dieldrin s half life is approximately five years Dieldrin is highly toxic to fish and other aquatic animals particularly frogs whose embryos can develop spinal deformities after exposure to low levels Dieldrin has been linked to Parkinson s disease breast cancer and classified as immunotoxic neurotoxic with endocrine disrupting capacity Dieldrin residues have been found in air water soil fish birds and mammals Human exposure to dieldrin primarily derives from food Endrin an insecticide sprayed on the leaves of crops and used to control rodents Animals can metabolize endrin so fatty tissue accumulation is not an issue however the chemical has a long half life in soil for up to 12 years Endrin is highly toxic to aquatic animals and humans as a neurotoxin Human exposure results primarily through food Heptachlor a pesticide primarily used to kill soil insects and termites along with cotton insects grasshoppers other crop pests and malaria carrying mosquitoes Heptachlor even at very low doses has been associated with the decline of several wild bird populations Canada geese and American kestrels In laboratory tests have shown high dose heptachlor as lethal with adverse behavioral changes and reduced reproductive success at low doses and is classified as a possible human carcinogen Human exposure primarily results from food Hexachlorobenzene HCB was first introduced in 1945 59 to treat seeds because it can kill fungi on food crops HCB treated seed grain consumption is associated with photosensitive skin lesions colic debilitation and a metabolic disorder called porphyria turcica which can be lethal Mothers who pass HCB to their infants through the placenta and breast milk had limited reproductive success including infant death Human exposure is primarily from food Mirex an insecticide used against ants and termites or as a flame retardant in plastics rubber and electrical goods Mirex is one of the most stable and persistent pesticides with a half life of up to 10 years Mirex is toxic to several plant fish and crustacean species with suggested carcinogenic capacity in humans Humans are exposed primarily through animal meat fish and wild game Toxaphene an insecticide used on cotton cereal grain fruits nuts and vegetables as well as for tick and mite control in livestock Widespread toxaphene use in the US and chemical persistence with a half life of up to 12 years in soil results in residual toxaphene in the environment Toxaphene is highly toxic to fish inducing dramatic weight loss and reduced egg viability Human exposure primarily results from food While human toxicity to direct toxaphene exposure is low the compound is classified as a possible human carcinogen Polychlorinated biphenyls PCBs used as heat exchange fluids in electrical transformers and capacitors and as additives in paint carbonless copy paper and plastics Persistence varies with degree of halogenation an estimated half life of 10 years PCBs are toxic to fish at high doses and associated with spawning failure at low doses Human exposure occurs through food and is associated with reproductive failure and immune suppression Immediate effects of PCB exposure include pigmentation of nails and mucous membranes and swelling of the eyelids along with fatigue nausea and vomiting Effects are transgenerational as the chemical can persist in a mother s body for up to 7 years resulting in developmental delays and behavioral problems in her children Food contamination has led to large scale PCB exposure Dichlorodiphenyltrichloroethane DDT is probably the most infamous POP It was widely used as insecticide during WWII to protect against malaria and typhus After the war DDT was used as an agricultural insecticide In 1962 the American biologist Rachel Carson published Silent Spring describing the impact of DDT spraying on the US environment and human health DDT s persistence in the soil for up to 10 15 years after application has resulted in widespread and persistent DDT residues throughout the world including the arctic even though it has been banned or severely restricted in most of the world DDT is toxic to many organisms including birds where it is detrimental to reproduction due to eggshell thinning DDT can be detected in foods from all over the world and food borne DDT remains the greatest source of human exposure Short term acute effects of DDT on humans are limited however long term exposure has been associated with chronic health effects including increased risk of cancer and diabetes reduced reproductive success and neurological disease Dioxins are unintentional by products of high temperature processes such as incomplete combustion and pesticide production Dioxins are typically emitted from the burning of hospital waste municipal waste and hazardous waste along with automobile emissions peat coal and wood Dioxins have been associated with several adverse effects in humans including immune and enzyme disorders chloracne and are classified as a possible human carcinogen In laboratory studies of dioxin effects an increase in birth defects and stillbirths and lethal exposure have been associated with the substances Food particularly from animals is the principal source of human exposure to dioxins Dioxins were present in Agent Orange which was used by the United States in chemical warfare against Vietnam and caused devastating multi generational effects in both Vietnamese and American civilians Polychlorinated dibenzofurans are by products of high temperature processes such as incomplete combustion after waste incineration or in automobiles pesticide production and polychlorinated biphenyl production Structurally similar to dioxins the two compounds share toxic effects Furans persist in the environment and classified as possible human carcinogens Human exposure to furans primarily results from food particularly animal products New POPs on the Stockholm Convention list edit Since 2001 this list has been expanded to include some polycyclic aromatic hydrocarbons PAHs brominated flame retardants and other compounds Additions to the initial 2001 Stockholm Convention list are the following POPs 19 16 Chlordecone a synthetic chlorinated organic compound is primarily used as an agricultural pesticide related to DDT and Mirex Chlordecone is toxic to aquatic organisms and classified as a possible human carcinogen Many countries have banned chlordecone sale and use or intend to phase out stockpiles and wastes a Hexachlorocyclohexane a HCH and b Hexachlorocyclohexane b HCH are insecticides as well as by products in the production of lindane Large stockpiles of HCH isomers exist in the environment a HCH and b HCH are highly persistent in the water of colder regions a HCH and b HCH has been linked Parkinson s and Alzheimer s disease citation needed Hexabromodiphenyl ether hexaBDE and heptabromodiphenyl ether heptaBDE are main components of commercial octabromodiphenyl ether octaBDE Commercial octaBDE is highly persistent in the environment whose only degradation pathway is through debromination and the production of bromodiphenyl ethers which can increase toxicity Lindane g hexachlorocyclohexane a pesticide used as a broad spectrum insecticide for seed soil leaf tree and wood treatment and against ectoparasites in animals and humans head lice and scabies Lindane rapidly bioconcentrates It is immunotoxic neurotoxic carcinogenic linked to liver and kidney damage as well as adverse reproductive and developmental effects in laboratory animals and aquatic organisms Production of lindane unintentionally produces two other POPs a HCH and b HCH citation needed Pentachlorobenzene PeCB is a pesticide and unintentional byproduct PeCB has also been used in PCB products dyestuff carriers as a fungicide a flame retardant and a chemical intermediate PeCB is moderately toxic to humans while highly toxic to aquatic organisms Tetrabromodiphenyl ether tetraBDE and pentabromodiphenyl ether pentaBDE are industrial chemicals and the main components of commercial pentabromodiphenyl ether pentaBDE PentaBDE has been detected in humans in all regions of the world Perfluorooctanesulfonic acid PFOS and its salts are used in the production of fluoropolymers PFOS and related compounds are extremely persistent bioaccumulating and biomagnifying The negative effects of trace levels of PFOS have not been established Endosulfans are insecticides to control pests on crops such coffee cotton rice and sorghum and soybeans tsetse flies ectoparasites of cattle They are used as a wood preservative Global use and manufacturing of endosulfan has been banned under the Stockholm convention in 2011 although many countries had previously banned or introduced phase outs of the chemical when the ban was announced Toxic to humans and aquatic and terrestrial organisms linked to congenital physical disorders mental retardation and death Endosulfans negative health effects are primarily liked to its endocrine disrupting capacity acting as an antiandrogen Hexabromocyclododecane HBCD is a brominated flame retardant primarily used in thermal insulation in the building industry HBCD is persistent toxic and ecotoxic with bioaccumulative and long range transport properties Health effects editSee also Health effects of pesticides POP exposure may cause developmental defects chronic illnesses and death Some are carcinogens per IARC possibly including breast cancer 1 Many POPs are capable of endocrine disruption within the reproductive system the central nervous system or the immune system People and animals are exposed to POPs mostly through their diet occupationally or while growing in the womb 1 For humans not exposed to POPs through accidental or occupational means over 90 of exposure comes from animal product foods due to bioaccumulation in fat tissues and bioaccumulate through the food chain In general POP serum levels increase with age and tend to be higher in females than males 11 Studies have investigated the correlation between low level exposure of POPs and various diseases In order to assess disease risk due to POPs in a particular location government agencies may produce a human health risk assessment which takes into account the pollutants bioavailability and their dose response relationships 20 Endocrine disruption edit The majority of POPs are known to disrupt normal functioning of the endocrine system Low level exposure to POPs during critical developmental periods of fetus newborn and child can have a lasting effect throughout their lifespan A 2002 study 21 summarizes data on endocrine disruption and health complications from exposure to POPs during critical developmental stages in an organism s lifespan The study aimed to answer the question whether or not chronic low level exposure to POPs can have a health impact on the endocrine system and development of organisms from different species The study found that exposure of POPs during a critical developmental time frame can produce a permanent changes in the organisms path of development Exposure of POPs during non critical developmental time frames may not lead to detectable diseases and health complications later in their life In wildlife the critical development time frames are in utero in ovo and during reproductive periods In humans the critical development timeframe is during fetal development 21 Reproductive system edit The same study in 2002 21 with evidence of a link from POPs to endocrine disruption also linked low dose exposure of POPs to reproductive health effects The study stated that POP exposure can lead to negative health effects especially in the male reproductive system such as decreased sperm quality and quantity altered sex ratio and early puberty onset For females exposed to POPs altered reproductive tissues and pregnancy outcomes as well as endometriosis have been reported 2 Gestational weight gain and newborn head circumference edit A Greek study from 2014 investigated the link between maternal weight gain during pregnancy their PCB exposure level and PCB level in their newborn infants their birth weight gestational age and head circumference The lower the birth weight and head circumference of the infants was the higher POP levels during prenatal development had been but only if mothers had either excessive or inadequate weight gain during pregnancy No correlation between POP exposure and gestational age was found 22 A 2013 case control study conducted 2009 in Indian mothers and their offspring showed prenatal exposure of two types of organochlorine pesticides HCH DDT and DDE impaired the growth of the fetus reduced the birth weight length head circumference and chest circumference 23 24 Health effects of PFAS edit This section is an excerpt from Per and polyfluoroalkyl substances Health and environmental effects edit nbsp Effects of exposure to PFASs on human health 25 26 27 Hormone disrupting chemicals including PFASs are linked with rapid declines in human fertility 28 In a meta analysis for associations between PFASs and human clinical biomarkers for liver injury authors considered both PFAS effects on liver biomarkers and histological data from rodent experimental studies and concluded that evidence exists showing that PFOA perfluorohexanesulfonic acid PFHxS and perfluorononanoic acid PFNA are hepatotoxic to humans 29 Many comprehensive epidemiological studies linking adverse human health effects to PFASs particularly PFOA come from the C8 Science Panel 30 The panel was formed as part of a contingency to a class action lawsuit brought by communities in the Ohio River Valley against DuPont in response to landfill and wastewater dumping of PFAS laden material from DuPont s West Virginia Washington Works Plant 30 The panel measured PFOA also known as C8 serum concentrations in 69 000 individuals from around DuPont s Washington Works Plant and found a mean concentration of 83 0 ng mL compared to 4 ng mL in a standard population of Americans 31 This panel reported probable links between elevated PFOA blood concentration and hypercholesterolemia ulcerative colitis thyroid disease testicular cancer kidney cancer as well as pregnancy induced hypertension and preeclampsia 32 33 34 35 36 Additive and synergistic effects edit Evaluation of the effects of POPs on health is very challenging in the laboratory setting For example for organisms exposed to a mixture of POPs the effects are assumed to be additive 37 Mixtures of POPs can in principle produce synergistic effects With synergistic effects the toxicity of each compound is enhanced or depressed by the presence of other compounds in the mixture When put together the effects can far exceed the approximated additive effects of the POP compound mixture 3 In urban areas and indoor environments editTraditionally it was thought that human exposure to POPs occurred primarily through food however indoor pollution patterns that characterize certain POPs have challenged this notion Recent studies of indoor dust and air have implicated indoor environments as a major sources for human exposure via inhalation and ingestion 38 Furthermore significant indoor POP pollution must be a major route of human POP exposure considering the modern trend in spending larger proportions of life indoors Several studies have shown that indoor air and dust POP levels to exceed outdoor air and soil POP concentrations 37 In rainwater editThis section is an excerpt from Per and polyfluoroalkyl substances Prevalence in rainwater edit In 2022 it was found that levels of at least four perfluoroalkyl acids PFAAs in rainwater worldwide ubiquitously and often greatly exceeded the EPA s lifetime drinking water health advisories as well as comparable Danish Dutch and European Union safety standards leading to the conclusion that the global spread of these four PFAAs in the atmosphere has led to the planetary boundary for chemical pollution being exceeded 39 There are some moves to restrict and replace their use 40 In cosmetics and personal care products editSee also Regulation of chemicals Issues Per and polyfluoroalkyl substances PFAS are a class of about 9 000 synthetic organofluorine compounds that have multiple highly toxic fluorine atoms attached to an alkyl chain PFAS are used in the manufacture of a wide range of products such as food packaging and clothing They are also used by major companies of the cosmetics industry in a wide range of cosmetics including lipstick eye liner mascara foundation concealer lip balm blush nail polish and other such products A 2021 study tested 231 makeup and personal care products and found organic fluorine an indicator of PFAS in more than half of the samples High levels of fluorine were most commonly identified in waterproof mascara 82 of brands tested foundations 63 and liquid lipstick 62 Since PFAS compounds are highly mobile they are readily absorbed through human skin and through tear ducts and such products on lips are often unwittingly ingested Manufacturers often fail to label their products as containing PFAS which makes it difficult for cosmetics consumers to avoid products containing PFAS 41 Control and removal in the environment editCurrent studies aimed at minimizing POPs in the environment are investigating their behavior in photocatalytic oxidation reactions POPs that are found in humans and in aquatic environments the most are the main subjects of these experiments Aromatic and aliphatic degradation products have been identified in these reactions Photochemical degradation is negligible compared to photocatalytic degradation 2 A method of removal of POPs from marine environments that has been explored is adsorption It occurs when an absorbable solute comes into contact with a solid with a porous surface structure This technique was investigated by Mohamed Nageeb Rashed of Aswan University Egypt 42 Current efforts are more focused on banning the use and production of POPs worldwide rather than removal of POPs 11 See also editAir pollution Aarhus Protocol on Persistent Organic Pollutants Center for International Environmental Law CIEL International POPs Elimination Network IPEN Silent Spring Environmental Persistent Pharmaceutical Pollutant EPPP Polychlorinated biphenyl PCB Persistent bioaccumulative and toxic substances PBT Tetraethyllead Triclocarban TriclosanReferences edit a b c d Ritter L Solomon KR Forget J Stemeroff M O Leary C Persistent organic pollutants PDF United Nations Environment Programme Archived from the original PDF on 2007 09 26 Retrieved 2007 09 16 a b c d El Shahawi M S Hamza A Bashammakh A S Al Saggaf W T 15 March 2010 An overview on the accumulation distribution transformations toxicity and analytical methods for the monitoring of persistent organic pollutants Talanta 80 5 1587 1597 doi 10 1016 j talanta 2009 09 055 PMID 20152382 a b Walker C H Organic Pollutants An Ecotoxicological Perspective 2001 Persistent Bioaccumulative and Toxic Chemicals PBTs Safer Chemicals Healthy Families 2013 08 20 Retrieved 2022 02 01 a b Kelly Barry C Ikonomou Michael G Blair Joel D Morin Anne E Gobas Frank A P C 13 July 2007 Food Web Specific Biomagnification of Persistent Organic Pollutants Science 317 5835 236 239 Bibcode 2007Sci 317 236K doi 10 1126 science 1138275 PMID 17626882 S2CID 52835862 Beyer A Mackay D Matthies M Wania F Webster E 2000 Assessing Long Range Transport Potential of Persistent Organic Pollutants Environmental Science amp Technology 34 4 699 703 Bibcode 2000EnST 34 699B doi 10 1021 es990207w Koester Carolyn J Hites Ronald A March 1992 Photodegradation of polychlorinated dioxins and dibenzofurans adsorbed to fly ash Environmental Science amp Technology 26 3 502 507 Bibcode 1992EnST 26 502K doi 10 1021 es00027a008 ISSN 0013 936X Raff Jonathan D Hites Ronald A October 2007 Deposition versus Photochemical Removal of PBDEs from Lake Superior Air Environmental Science amp Technology 41 19 6725 6731 Bibcode 2007EnST 41 6725R doi 10 1021 es070789e ISSN 0013 936X PMID 17969687 a b Wania F Mackay D 1996 Tracking the Distribution of Persistent Organic Pollutants Environmental Science amp Technology 30 9 390A 396A doi 10 1021 es962399q PMID 21649427 Astoviza Malena J 15 April 2014 Evaluacion de la distribucion de contaminantes organicos persistentes COPs en aire en la zona de la cuenca del Plata mediante muestreadores pasivos artificiales Tesis in Spanish Universidad Nacional de La Plata p 160 doi 10 35537 10915 34729 Retrieved 16 April 2014 a b c Vallack Harry W Bakker Dick J Brandt Ingvar Brostrom Lunden Eva Brouwer Abraham Bull Keith R Gough Clair Guardans Ramon Holoubek Ivan Jansson Bo Koch Rainer Kuylenstierna Johan Lecloux Andre Mackay Donald McCutcheon Patrick Mocarelli Paolo Taalman Rob D F November 1998 Controlling persistent organic pollutants what next Environmental Toxicology and Pharmacology 6 3 143 175 doi 10 1016 S1382 6689 98 00036 2 PMID 21781891 Yu George W Laseter John Mylander Charles 2011 Persistent Organic Pollutants in Serum and Several Different Fat Compartments in Humans Journal of Environmental and Public Health 2011 417980 doi 10 1155 2011 417980 PMC 3103883 PMID 21647350 Lohmann Rainer Breivik Knut Dachs Jordi Muir Derek November 2007 Global fate of POPs Current and future research directions Environmental Pollution 150 1 150 165 doi 10 1016 j envpol 2007 06 051 PMID 17698265 US EPA OITA 2014 04 02 Persistent Organic Pollutants A Global Issue A Global Response www epa gov Retrieved 2022 02 01 Remili Anais Gallego Pierre Pinzone Marianna Castro Cristina Jauniaux Thierry Garigliany Mutien Marie Malarvannan Govindan Covaci Adrian Das Krishna 2020 12 01 Humpback whales Megaptera novaeangliae breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches Environmental Pollution 267 115575 doi 10 1016 j envpol 2020 115575 hdl 10067 1744230151162165141 ISSN 0269 7491 PMID 33254700 S2CID 225008427 a b c STOCKHOLM CONVENTION ON PERSISTENT ORGANIC POLLUTANTS PDF pp 1 43 Retrieved 27 March 2014 The Dirty Dozen United Nations Industrial Development Organization Archived from the original on 4 March 2016 Retrieved 27 March 2014 Home Depositary notification PDF Secretary General of the United Nations 26 August 2009 retrieved 2009 12 17 Szabo DT Loccisano AE March 30 2012 POPs and Human Health Risk Assessment In A Schecter ed Dioxins and Health Vol 3rd John Wiley amp Sons pp 579 618 doi 10 1002 9781118184141 ch19 ISBN 9781118184141 a href Template Cite book html title Template Cite book cite book a journal ignored help a b c Damstra T 2002 Potential Effects of Certain Persistent Organic Pollutants and Endocrine Disrupting Chemicals on Health of Children Clinical Toxicology 40 4 457 465 doi 10 1081 clt 120006748 PMID 12216998 S2CID 23550634 Vafeiadi M Vrijheid M Fthenou E Chalkiadaki G Rantakokko P Kiviranta H Kyrtopoulos SA Chatzi L Kogevinas M 2014 Persistent organic pollutants exposure during pregnancy maternal gestational weight gain and birth outcomes in the mother child cohort in Crete Greece RHEA study Environ Int 64 116 123 doi 10 1016 j envint 2013 12 015 PMID 24389008 Dewan Jain V Gupta P Banerjee BD February 2013 Organochlorine pesticide residues in maternal blood cord blood placenta and breastmilk and their relation to birth size Chemosphere 90 5 1704 1710 Bibcode 2013Chmsp 90 1704D doi 10 1016 j chemosphere 2012 09 083 PMID 23141556 Damstra T 2002 Potential Effects of Certain Persistent Organic Pollutants and Endocrine Disrupting Chemicals on Health of Children Clinical Toxicology 40 4 457 465 doi 10 1081 clt 120006748 PMID 12216998 S2CID 23550634 Emerging chemical risks in Europe PFAS European Environment Agency 2019 Archived from the original on February 6 2020 Some Chemicals Used as Solvents and in Polymer Manufacture IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol 110 2016 Archived from the original on March 24 2020 Fenton SE Reiner JL Nakayama SF Delinsky AD Stanko JP Hines EP et al June 2009 Analysis of PFOA in dosed CD 1 mice Part 2 Disposition of PFOA in tissues and fluids from pregnant and lactating mice and their pups Reproductive Toxicology 27 3 4 365 372 doi 10 1016 j reprotox 2009 02 012 PMC 3446208 PMID 19429407 Swan SH Colino S February 2021 Count down how our modern world is threatening sperm counts altering male and female reproductive development and imperiling the future of the human race New York USA Scribner ISBN 978 1 9821 1366 7 Costello E Rock S Stratakis N Eckel SP Walker DI Valvi D et al April 2022 Exposure to per and Polyfluoroalkyl Substances and Markers of Liver Injury A Systematic Review and Meta Analysis Environmental Health Perspectives 130 4 46001 doi 10 1289 EHP10092 PMC 9044977 PMID 35475652 a b C8 Science Panel www c8sciencepanel org Archived from the original on June 18 2019 Retrieved June 8 2019 Steenland K Jin C MacNeil J Lally C Ducatman A Vieira V Fletcher T July 2009 Predictors of PFOA levels in a community surrounding a chemical plant Environmental Health Perspectives 117 7 1083 1088 doi 10 1289 ehp 0800294 PMC 2717134 PMID 19654917 Probable Link Evaluation for heart disease including high blood pressure high cholesterol coronary artery disease PDF C8 Science Panel 29 October 2012 Probable Link Evaluation of Autoimmune Disease PDF C8 Science Panel 30 July 2012 Probable Link Evaluation of Thyroid disease PDF C8 Science Panel 30 July 2012 Probable Link Evaluation of Cancer PDF C8 Science Panel 15 April 2012 Probable Link Evaluation of Pregnancy Induced Hypertension and Preeclampsia PDF C8 Science Panel 5 December 2011 a b ed Harrad S Persistent Organic Pollutants 2010 Walker C H Organic Pollutants An Ecotoxicological Perspective 2001 Cousins IT Johansson JH Salter ME Sha B Scheringer M August 2022 Outside the Safe Operating Space of a New Planetary Boundary for Per and Polyfluoroalkyl Substances PFAS Environmental Science amp Technology American Chemical Society 56 16 11172 11179 Bibcode 2022EnST 5611172C doi 10 1021 acs est 2c02765 PMC 9387091 PMID 35916421 Pollution Forever chemicals in rainwater exceed safe levels BBC News 2 August 2022 Retrieved 14 September 2022 The Guardian UK 15 June 2021 Toxic Forever Chemicals Widespread in Top Makeup Brands Study Finds Researchers Find Signs of PFAS in over Half of 231 Samples of Products Including Lipstick Mascara and Foundation Rashed M N Organic pollutants Monitoring risk and treatment Intech London 2013 Chapter 7 Adsorption techniques for the removal of persistent organic pollutants from water and wastewater External links editWorld Health Organization Persistent Organic Pollutants Impact on Child Health Pops int Stockholm Convention on Persistent Organic Pollutants Resources on Persistent Organic Pollutants POPs Monarpop at POP monitoring in the Alpine region Europe Retrieved from https en wikipedia org w index php title Persistent organic pollutant amp oldid 1204576334, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.