fbpx
Wikipedia

Ostariophysi

Ostariophysi is the second-largest superorder of fish. Members of this superorder are called ostariophysians. This diverse group contains 10,758 species, about 28% of known fish species in the world and 68% of freshwater species, and are present on all continents except Antarctica. They have a number of common characteristics such as an alarm substance and a Weberian apparatus.[1] Members of this group include fish important to people for food, sport, the aquarium industry, and research.

Ostariophysi
Temporal range: Early Cretaceous–Recent[1]
Milkfish, Chanos chanos
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Cohort: Otocephala
Superorder: Ostariophysi
Lord, 1922
Orders with number of species

Gonorynchiformes 37
Cypriniformes 4,501
Characiformes 2,168
Gymnotiformes 239
Siluriformes 3,813

Taxonomy edit

The superorder is divided into two series, Anotophysi and Otophysi. However, in older literature, Ostariophysi was restricted only to the fish that are currently classified under Otophysi.[1] Otophysi was coined in 1970 by Rosen and Greenwood to separate the traditional Ostariophysians from the added Gonorynchiformes.[2]

The superorder is classified below:

The monophyly of Ostariophysi has come into question with molecular evidence. Gonorynchiformes is more closely related to Clupeiformes than Otophysi. It is possible that the Gonorynchiformes and Clupeiformes form a monophyletic group.[3] There is evidence for a sister group relationship between Ostariophysi and Clupeomorpha (the taxon Ostarioclupeomorpha, also known as Otocephala, was coined to describe this possibly monophyletic group).[1][3]

Evolution edit

Ostariophysian fossils, both anotophysan and otophysian, are known from the early Cretaceous. Ostariophysian fossils are known from every continent except Australia.[1]

Ostariophysians are currently distributed worldwide on all continents except Antarctica. The common ancestor of this group entered fresh water about 251 million years ago coincident with the global decrease in oxygen levels in marine waters.[4] The Otophysi originated in freshwaters during the Jurassic (c. 200-145 Ma) before the breakup of the super continent Pangea. The division of the Otophysi into the four extant clades closely follows the breakup of Pangea. The separation of Laurasia in the north from Gondwana in the south isolated the lineages which gave rise to the modern Cyprinoformes and Characiphysi. The Characiphysi then was itself divided into the diurnal (day-active) Characiformes and the nocturnal (night-active) Siluriphysi, including Siluriformes and Gymnotiformes. Modern Characiformes are present in both South America and Africa, and have relatively recently extended their range to North America. The Siluriphysi are characterized by many derived traits, including notably, electroreception. The Siluriphysi originated before the breakup of Gondwana into South America and Africa in the Aptian (c. 110 Ma) but the presence of several basal Siluriphysan taxa in modern South America (Gymnotiformes, Diplomystidae, Loricaridea) suggest that the Siluriphysi may have originated on the western portion of Gondwana. Alternatively, these basal taxa have subsequently become extinct in Africa. The modern distribution of Siluriformes is cosmopolitan due to subsequent dispersal.[3][5]

Diversity edit

Ostariophysi is the second largest superorder of teleosts.[3] It includes five major lineages and is a very diverse group. As of 2006 (Nelson)[needs update], the five orders contain 1,075 genera in 64 families and about 7,931 species, which is about 28% of all known fish species. The four largest families in this group (Cyprinidae, Characidae, Loricariidae, and Balitoridae) include 4,656 species, over half (59%) of ostariophysian species. The carp and minnow family Cyprinidae itself is the largest freshwater fish family and the largest family of vertebrates after the true gobies of Gobiidae. Ostariophysians account for about 68% of all freshwater species; in fact, there are only about 123 marine species (Chanidae, Gonorynchidae, most Ariidae, about half of Plotosidae). They are present on all continents and major land masses except Antarctica, Greenland, and New Zealand.[1]

This group includes a wide variety of different fishes in a plethora of niches. It contains one of the largest freshwater fish ever caught, the Mekong giant catfish, which can weigh up to about 300 kilograms (660 lb).[6] It also contains a number of species considered to be some of the smallest vertebrates extant; Danionella translucida at 12 millimetres (0.47 in) in length, and Paedocypris progenetica at 10.3 millimetres (0.41 in).[1] Some of these fish are able to breathe atmospheric oxygen when in hypoxic waters (Clariidae), which may allow them to live outside of the water column entirely (Phreatobius cisternarum and Tarumania walkerae).[7][8] The families Malapteruridae and Gymnotidae have the ability to produce strong electric charges; they are considered among the prototypical electric fishes.

Physical characteristics edit

Most species possess a swim bladder (except in Gonorynchus). The swim bladder is usually divided into two chambers. A smaller anterior chamber is partially or completely covered by a silvery peritoneal tunic. A larger posterior chamber may be reduced or absent in some groups. Minute, unicellular, horny projections known as "unculi" are commonly present on various body parts and are only known from ostariophysians.[1]

Many ostariophysians have the characteristic of an alarm substance that is part of a fright reaction. This is a pheromone produced in epidermal club cells, and is similar or identical in all ostariophysians. When the fish is injured, this pheromone is released; other fish of the same species or similar species can smell this pheromone, causing a fright reaction. However, some fish possess the alarm substance without the fright reaction or lack both the alarm substance and the fright reaction to the alarm substance.[1]

Weberian apparatus edit

In otophysians, one of the main characteristics is the Weberian apparatus. Apart from this structure, there is no other trait that could explain the success of otophysians.[5] It is made up of a set of bones known as Weberian ossicles, a chain of small bones that connect the auditory system to the gas bladder of fishes.[1] The ossicles connect the gas bladder wall with Y-shaped lymph sinus that abuts the lymph-filled transverse canal joining the sacculi of the right and left ears. This allows the transmission of vibrations to the inner ear.

In anotophysians, the three first vertebrae are specialized and associated with one or more cephalic ribs (a primitive Weberian apparatus). In the otophysians, a distinct modification of the anterior four or five first vertebrae is found, as well as the Weberian ossicles.[1]

The fully functioning Weberian apparatus consists of the swim bladder, the Weberian ossicles, a portion of the anterior vertebral column, and some muscles and ligaments. It is named after the German anatomist and physiologist Ernst Heinrich Weber who first described the Weberian ossicles.[1]

References edit

  1. ^ a b c d e f g h i j k l Nelson, Joseph, S. (2006). Fishes of the World. John Wiley & Sons, Inc. ISBN 0-471-25031-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. ^ "Ostariophysi". Tree of Life Web Project. Retrieved 2007-03-26.
  3. ^ a b c d Saitoh, Kenji; Miya, Masaki; Inoue, Jun G.; Ishiguro, Naoya B.; Nishida, Mutsumi (2003). "Mitochondrial Genomics of Ostariophysan Fishes: Perspectives on Phylogeny and Biogeography". Journal of Molecular Evolution. 56 (4): 464–472. Bibcode:2003JMolE..56..464S. doi:10.1007/s00239-002-2417-y. PMID 12664166. S2CID 2647527.
  4. ^ Nakatani M, Miya M, Mabuchi K, Saitoh K, Nishida M (2011) Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation. BMC Evol Biol 11(1):177
  5. ^ a b Briggs, John C. (2005). "The biogeography of otophysian fishes (Ostariophysi: Otophysi): a new appraisal". Journal of Biogeography. 32 (2): 287–294. doi:10.1111/j.1365-2699.2004.01170.x. S2CID 84010604.
  6. ^ . National Geographic News. 29 June 2005. Archived from the original on June 30, 2005. Retrieved 2006-07-14.
  7. ^ Froese, R. and D. Pauly. Editors. . FishBase. Archived from the original on 2007-09-28. Retrieved 2006-11-26. {{cite web}}: |author= has generic name (help)
  8. ^ de Pinna, Mário; Zuanon, Jansen; Rapp Py-Daniel, Lucia; Petry, Paulo (2018). "A new family of neotropical freshwater fishes from deep fossorial Amazonian habitat, with a reappraisal of morphological characiform phylogeny (Teleostei: Ostariophysi)". Zoological Journal of the Linnean Society. 182 (1): 76–106. doi:10.1093/zoolinnean/zlx028. ISSN 0024-4082.

ostariophysi, second, largest, superorder, fish, members, this, superorder, called, ostariophysians, this, diverse, group, contains, species, about, known, fish, species, world, freshwater, species, present, continents, except, antarctica, they, have, number, . Ostariophysi is the second largest superorder of fish Members of this superorder are called ostariophysians This diverse group contains 10 758 species about 28 of known fish species in the world and 68 of freshwater species and are present on all continents except Antarctica They have a number of common characteristics such as an alarm substance and a Weberian apparatus 1 Members of this group include fish important to people for food sport the aquarium industry and research OstariophysiTemporal range Early Cretaceous Recent 1 PreꞒ Ꞓ O S D C P T J K Pg N Milkfish Chanos chanos Scientific classification Domain Eukaryota Kingdom Animalia Phylum Chordata Class Actinopterygii Cohort Otocephala Superorder OstariophysiLord 1922 Orders with number of species Gonorynchiformes 37 Cypriniformes 4 501 Characiformes 2 168 Gymnotiformes 239 Siluriformes 3 813 Contents 1 Taxonomy 2 Evolution 3 Diversity 4 Physical characteristics 4 1 Weberian apparatus 5 ReferencesTaxonomy editThe superorder is divided into two series Anotophysi and Otophysi However in older literature Ostariophysi was restricted only to the fish that are currently classified under Otophysi 1 Otophysi was coined in 1970 by Rosen and Greenwood to separate the traditional Ostariophysians from the added Gonorynchiformes 2 The superorder is classified below Series Anotophysi Gonorynchiformes about 37 species Series Otophysi Euostariophysi Cypriniformes minnows and allies about 4 501 species contains Cyprinidae largest family of freshwater fishes Characiformes characins and allies about 2 168 species Siluriformes catfishes about 3 813 species Gymnotiformes electric eels American knifefishes about 239 species sometimes grouped under Siluriformes The monophyly of Ostariophysi has come into question with molecular evidence Gonorynchiformes is more closely related to Clupeiformes than Otophysi It is possible that the Gonorynchiformes and Clupeiformes form a monophyletic group 3 There is evidence for a sister group relationship between Ostariophysi and Clupeomorpha the taxon Ostarioclupeomorpha also known as Otocephala was coined to describe this possibly monophyletic group 1 3 Evolution editOstariophysian fossils both anotophysan and otophysian are known from the early Cretaceous Ostariophysian fossils are known from every continent except Australia 1 Ostariophysians are currently distributed worldwide on all continents except Antarctica The common ancestor of this group entered fresh water about 251 million years ago coincident with the global decrease in oxygen levels in marine waters 4 The Otophysi originated in freshwaters during the Jurassic c 200 145 Ma before the breakup of the super continent Pangea The division of the Otophysi into the four extant clades closely follows the breakup of Pangea The separation of Laurasia in the north from Gondwana in the south isolated the lineages which gave rise to the modern Cyprinoformes and Characiphysi The Characiphysi then was itself divided into the diurnal day active Characiformes and the nocturnal night active Siluriphysi including Siluriformes and Gymnotiformes Modern Characiformes are present in both South America and Africa and have relatively recently extended their range to North America The Siluriphysi are characterized by many derived traits including notably electroreception The Siluriphysi originated before the breakup of Gondwana into South America and Africa in the Aptian c 110 Ma but the presence of several basal Siluriphysan taxa in modern South America Gymnotiformes Diplomystidae Loricaridea suggest that the Siluriphysi may have originated on the western portion of Gondwana Alternatively these basal taxa have subsequently become extinct in Africa The modern distribution of Siluriformes is cosmopolitan due to subsequent dispersal 3 5 Diversity editOstariophysi is the second largest superorder of teleosts 3 It includes five major lineages and is a very diverse group As of 2006 Nelson needs update the five orders contain 1 075 genera in 64 families and about 7 931 species which is about 28 of all known fish species The four largest families in this group Cyprinidae Characidae Loricariidae and Balitoridae include 4 656 species over half 59 of ostariophysian species The carp and minnow family Cyprinidae itself is the largest freshwater fish family and the largest family of vertebrates after the true gobies of Gobiidae Ostariophysians account for about 68 of all freshwater species in fact there are only about 123 marine species Chanidae Gonorynchidae most Ariidae about half of Plotosidae They are present on all continents and major land masses except Antarctica Greenland and New Zealand 1 This group includes a wide variety of different fishes in a plethora of niches It contains one of the largest freshwater fish ever caught the Mekong giant catfish which can weigh up to about 300 kilograms 660 lb 6 It also contains a number of species considered to be some of the smallest vertebrates extant Danionella translucida at 12 millimetres 0 47 in in length and Paedocypris progenetica at 10 3 millimetres 0 41 in 1 Some of these fish are able to breathe atmospheric oxygen when in hypoxic waters Clariidae which may allow them to live outside of the water column entirely Phreatobius cisternarum and Tarumania walkerae 7 8 The families Malapteruridae and Gymnotidae have the ability to produce strong electric charges they are considered among the prototypical electric fishes Physical characteristics editMost species possess a swim bladder except in Gonorynchus The swim bladder is usually divided into two chambers A smaller anterior chamber is partially or completely covered by a silvery peritoneal tunic A larger posterior chamber may be reduced or absent in some groups Minute unicellular horny projections known as unculi are commonly present on various body parts and are only known from ostariophysians 1 Many ostariophysians have the characteristic of an alarm substance that is part of a fright reaction This is a pheromone produced in epidermal club cells and is similar or identical in all ostariophysians When the fish is injured this pheromone is released other fish of the same species or similar species can smell this pheromone causing a fright reaction However some fish possess the alarm substance without the fright reaction or lack both the alarm substance and the fright reaction to the alarm substance 1 Weberian apparatus edit In otophysians one of the main characteristics is the Weberian apparatus Apart from this structure there is no other trait that could explain the success of otophysians 5 It is made up of a set of bones known as Weberian ossicles a chain of small bones that connect the auditory system to the gas bladder of fishes 1 The ossicles connect the gas bladder wall with Y shaped lymph sinus that abuts the lymph filled transverse canal joining the sacculi of the right and left ears This allows the transmission of vibrations to the inner ear In anotophysians the three first vertebrae are specialized and associated with one or more cephalic ribs a primitive Weberian apparatus In the otophysians a distinct modification of the anterior four or five first vertebrae is found as well as the Weberian ossicles 1 The fully functioning Weberian apparatus consists of the swim bladder the Weberian ossicles a portion of the anterior vertebral column and some muscles and ligaments It is named after the German anatomist and physiologist Ernst Heinrich Weber who first described the Weberian ossicles 1 References edit a b c d e f g h i j k l Nelson Joseph S 2006 Fishes of the World John Wiley amp Sons Inc ISBN 0 471 25031 7 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link Ostariophysi Tree of Life Web Project Retrieved 2007 03 26 a b c d Saitoh Kenji Miya Masaki Inoue Jun G Ishiguro Naoya B Nishida Mutsumi 2003 Mitochondrial Genomics of Ostariophysan Fishes Perspectives on Phylogeny and Biogeography Journal of Molecular Evolution 56 4 464 472 Bibcode 2003JMolE 56 464S doi 10 1007 s00239 002 2417 y PMID 12664166 S2CID 2647527 Nakatani M Miya M Mabuchi K Saitoh K Nishida M 2011 Evolutionary history of Otophysi Teleostei a major clade of the modern freshwater fishes Pangaean origin and Mesozoic radiation BMC Evol Biol 11 1 177 a b Briggs John C 2005 The biogeography of otophysian fishes Ostariophysi Otophysi a new appraisal Journal of Biogeography 32 2 287 294 doi 10 1111 j 1365 2699 2004 01170 x S2CID 84010604 Grizzly Bear Size Catfish Caught in Thailand National Geographic News 29 June 2005 Archived from the original on June 30 2005 Retrieved 2006 07 14 Froese R and D Pauly Editors Species Summary Phreatobius cisternarum FishBase Archived from the original on 2007 09 28 Retrieved 2006 11 26 a href Template Cite web html title Template Cite web cite web a author has generic name help de Pinna Mario Zuanon Jansen Rapp Py Daniel Lucia Petry Paulo 2018 A new family of neotropical freshwater fishes from deep fossorial Amazonian habitat with a reappraisal of morphological characiform phylogeny Teleostei Ostariophysi Zoological Journal of the Linnean Society 182 1 76 106 doi 10 1093 zoolinnean zlx028 ISSN 0024 4082 Retrieved from https en wikipedia org w index php title Ostariophysi amp oldid 1215842820, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.