fbpx
Wikipedia

Spider mite

Spider mites are members of the Tetranychidae family, which includes about 1,200 species.[1] They are part of the subclass Acari (mites). Spider mites generally live on the undersides of leaves of plants, where they may spin protective silk webs, and they can cause damage by puncturing the plant cells to feed.[2] Spider mites are known to feed on several hundred species of plants.

Spider mites
Temporal range: Palaeogene–present
Tetranychus urticae
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Chelicerata
Class: Arachnida
Order: Trombidiformes
Superfamily: Tetranychoidea
Family: Tetranychidae
Donnadieu, 1875
Subfamilies & tribes

Bryobinae Berlese

  • Bryobini Reck
  • Hystrichonychini Pritchard & Baker
  • Petrobiini Reck

Tetranychinae Berlese

  • Tenuipalpoidini Pritchard & Baker
  • Tetranychini Reck

Description

Spider mites are less than 1 mm (0.04 in) in size and vary in color. They lay small, spherical, initially transparent eggs and many species spin silk webbing to help protect the colony from predators; they get the "spider" part of their common name from this webbing.[2]

Life cycle

 
Spider mites on a lemon plant

Hot, dry conditions are often associated with population build-up of spider mites. Under optimal conditions (approximately 27 °C), the two-spotted spider mite can hatch in as little as 3 days, and become sexually mature in as little as 5 days. One female can lay up to 20 eggs per day and can live for 2 to 4 weeks, laying hundreds of eggs. This accelerated reproductive rate allows spider mite populations to adapt quickly to resist pesticides, so chemical control methods can become somewhat ineffectual when the same pesticide is used over a prolonged period.[3]

Spider mites, like hymenopterans and some scale insects, are haplodiploid and therefore arrhenotochous: females are diploid and males are haploid.[4] When mated, females avoid the fecundation of some eggs to produce males. Fertilized eggs produce diploid females. Unmated, unfertilized females still lay eggs that originate exclusively haploid males.

To spread to new locations, they make use of ballooning for aerial dispersal.[5]

Video of multiple spider mites walking on a leaf

Genera

The best known member of the group is Tetranychus urticae, which has a cosmopolitan distribution,[6] and attacks a wide range of plants, including peppers, tomatoes, potatoes, beans, corn, cannabis, and strawberries.[3] Other species which can be important pests of commercial plants include Panonychus ulmi (fruit tree red spider mite) and Panonychus citri (citrus red mite).

The family is divided into these subfamilies, tribes and genera:[7]

Bryobinae Berlese
  • Bryobini Reck
  • Neoschizonobiella Tseng
  • Sinobryobia Ma et al.
  • Marainobia Meyer
  • Bryobia Koch
  • Toronobia Meyer
  • Pseudobryobia McGregor
  • Strunkobia Livshitz & Mitrofanov
  • Mezranobia Athias-Henriot
  • Eremobryobia Strunkova & Mitrofanov
  • Bryobiella Tuttle & Baker
  • Hemibryobia Tuttle & Baker
  • Hystrichonychini Pritchard & Baker
  • Bryocopsis Meyer
  • Tetranychopsis Canestrini
  • Notonychus Davis
  • Dolichonobia Meyer
  • Monoceronychus McGregor
  • Mesobryobia Wainstein
  • Hystrichonychus McGregor
  • Parapetrobia Meyer & Rykev
  • Peltanobia Meyer
  • Tauriobia Livshitz & Mitrofanov
  • Aplonobia Womersley
  • Paraplonobia Wainstein
  • Beerella Wainstein
  • Magdalena Baker & Tuttle
  • Porcupinychus Anwarullah
  • Afronobia Meyer
  • Petrobiini Reck
  • Neotrichobia Tuttle & Baker
  • Schizonobiella Beer & Lang
  • Schizonobia Womersley
  • Dasyobia Strunkova
  • Lindquistiella Mitrofanov
  • Edella Meyer
  • Petrobia Murray
Tetranychinae Berlese
  • Eurytetranychini Reck
  • Atetranychus Tuttle et al.
  • Synonychus Miller
  • Eurytetranychus Oudemans
  • Eurytetranychoides Reck
  • Eutetranychus Banks
  • Meyernychus Mitrofanov
  • Aponychus Rimando
  • Paraponychus Gonzalez & Flechtmann
  • Sinotetranychus Ma & Yuan
  • Anatetranychus Womersley
  • Duplanychus Meyer
  • Tenuipalpoidini Pritchard & Baker
  • Eonychus Gutierrez
  • Crotonella Tuttle et al.
  • Tenuipalpoides Reck & Bagdasarian
  • Tenuipalponychus Channabasavanna & Lakkundi
  • Tetranychini Reck
  • Brevinychus Meyer
  • Sonotetranychus Tuttle et al.
  • Mixonychus Meyer & Ryke
  • Evertella Meyer
  • Panonychus Yokoyama
  • Allonychus Pritchard & Baker
  • Schizotetranychus Trägårdh
  • Yunonychus Ma & Gao
  • Yezonychus Ehara
  • Neotetranychus Trägårdh
  • Acanthonychus Wang
  • Mononychellus Wainstein
  • Platytetranychus Oudemans
  • Eotetranychus Oudemans
  • Palmanychus Baker & Tuttle
  • Atrichoproctus Flechtmann
  • Xinella Ma & Wang
  • Oligonychus Berlese
  • Hellenychus Gutierrez
  • Tetranychus Dufour
  • Amphitetranychus Oudemans

Countermeasures

Neem oil

Neem oil may provide control, when combined with a suitable surfactant and diluted with water. As with chemical control, repeated applications are required.[citation needed]

Predatory mites

Predatory mites of the Phytoseiidae family, including Phytoseiulus persimilis, eat adult mites, their eggs, and all developmental stages between.[3] Predatory mites can consume as many as 5 adult spider mites per day, or 20 eggs per day.[3]

Harpin Alpha Beta

In some cases, the application of Harpin Alpha Beta protein may help in the treatment and prevention of infestation by stimulating the plant's natural defenses, restoring sap sugar levels and encouraging replacement of damaged tissues.[8] This affects the spider mites' ability to down-regulate the immune response of a plant.[9]

Acaricides

Acaricides are applied to crops to control spider mites. They can be either systemic or non-systemic in nature and can be persistent by providing residual activity for over a month. Drawbacks include high potential for development of resistance in mite populations, as has been observed in previous generations of miticides, and toxicity of some miticides towards fish. Thus proper selection, precautions and application are required to minimize risks.[10][11][12]

Environmental conditions

Temporarily modifying environmental conditions has proven an effective method for insect pest control including spider mites. Generally dramatically decreased oxygen and increased carbon dioxide concentrations at elevated temperatures can lead to mortality at all developmental stages. However mild CO2 enrichment has been shown to in fact increase mite reproduction.[13] One study determined a concentration of 0.4% O2 and 20% CO2 gave a LT99 (time to 99% mortality) of 113h at 20 °C and 15.5h at 40 °C.[14] Another study reported 100% mortality of various stages of the two spotted spidermite using 60% CO2 and 20% O2 at 30 °C for 16h.[15][clarification needed] Advantages would include decreased ability for resistance development compared to miticides and potential ease of application while drawbacks might include sensitivity of the plant to the conditions, feasibility of application, and human safety.

See also

References

  1. ^ H. R. Bolland; Jean Gutierrez & Carlos H. W. Flechtmann (1997). "Introduction". World Catalogue of the Spider Mite Family (Acari: Tetranychidae). Brill Publishers. pp. 1–3. ISBN 978-90-04-11087-8.
  2. ^ a b Yutaka Saito (2009). "Plant mites". Plant Mites and Sociality: Diversity and Evolution. Springer. pp. 5–38. doi:10.1007/978-4-431-99456-5_2. ISBN 978-4-431-99455-8.
  3. ^ a b c d Thomas R. Fasulo & H. A. Denmark (December 2009). "Twospotted spider mite". Featured Creatures. University of Florida / Institute of Food and Agricultural Sciences. Retrieved May 20, 2011.
  4. ^ Graham Bell (1982). "Parthenogenesis and vegetative reproduction in multicellular animals". The Masterpiece of Nature: the Evolution and Genetics of Sexuality. Croom Helm applied biology series. Cambridge University Press. pp. 160–331. ISBN 978-0-85664-753-6.
  5. ^ Phenological and meteorological determinants of spider ballooning in an agricultural landscape
  6. ^ D. A. Raworth; D. R. Gillespie; M. Roy & H. M. A. Thistlewood (2002). "Tetranychus urticae Koch, twospotted spider mite (Acari: Tetranychidae)". In Peter G. Mason & John Theodore Huber (eds.). Biological Control Programmes in Canada, 1981–2000. CAB International. pp. 259–265. ISBN 978-0-85199-527-4.
  7. ^ H. R. Bolland; Jean Gutierrez & Carlos H. W. Flechtmann (1997). "Key to the genera of the world". World Catalogue of the Spider Mite Family (Acari: Tetranychidae). Brill Publishers. pp. 5–11. ISBN 978-90-04-11087-8.
  8. ^ "HALO Foliar Plant Feed - Studies". www.halo-harpin.com. Retrieved 9 May 2017.
  9. ^ "The effect of harpin protein on plant growth parameters, leaf chlorophyll, leaf colour and percentage rotten fruit of pepper plants inoculated with Botrytis cinerea (PDF Download Available)". ResearchGate. June 2006. Retrieved 9 May 2017.
  10. ^ Uesugi, R.; Goka, K.; Osakabe, M. H. (2002-12-01). "Genetic Basis of Resistances to Chlorfenapyr and Etoxazole in the Two-Spotted Spider Mite (Acari: Tetranychidae)". Journal of Economic Entomology. 95 (6): 1267–1274. doi:10.1603/0022-0493-95.6.1267. ISSN 0022-0493. PMID 12539841. S2CID 24716020.
  11. ^ "Table 4. Toxicity to fish of commonly used insecticides, miticides, and nematicides". Virginia Tech. Retrieved 2016-03-22.
  12. ^ "All Miticides Are Not Created Equal". Home, Yard & Garden Pest Newsletter. University of Illinois. Retrieved 2016-03-22.
  13. ^ Heagle, A. S.; Burns, J. C.; Fisher, D. S.; Miller, J. E. (1 August 2002). "Effects of Carbon Dioxide Enrichment on Leaf Chemistry and Reproduction by Twospotted Spider Mites (Acari: Tetranychidae) on White Clover". Environmental Entomology. 31 (4): 594–601. doi:10.1603/0046-225X-31.4.594.
  14. ^ Whiting, D. C.; Van Den Heuvel, J. (1 April 1995). "Oxygen, Carbon Dioxide, and Temperature Effects on Mortality Responses of Diapausing Tetranychus urticae (Acari: Tetranychidae)". Journal of Economic Entomology. 88 (2): 331–336. doi:10.1093/jee/88.2.331.
  15. ^ Oyamada, Koichi; Murai, Tamotsu (2013). "Effect of Fumigation of High Concentration Carbon Dioxide on Two Spotted Spider Mite, Tetranychus urticae Koch (Acari: Tetranychidae) and Strawberry Runner Plant". Japanese Journal of Applied Entomology and Zoology. 57 (4): 249–256. doi:10.1303/jjaez.2013.249.

External links

spider, mite, members, tetranychidae, family, which, includes, about, species, they, part, subclass, acari, mites, generally, live, undersides, leaves, plants, where, they, spin, protective, silk, webs, they, cause, damage, puncturing, plant, cells, feed, know. Spider mites are members of the Tetranychidae family which includes about 1 200 species 1 They are part of the subclass Acari mites Spider mites generally live on the undersides of leaves of plants where they may spin protective silk webs and they can cause damage by puncturing the plant cells to feed 2 Spider mites are known to feed on several hundred species of plants Spider mitesTemporal range Palaeogene present PreꞒ Ꞓ O S D C P T J K Pg NTetranychus urticaeScientific classificationKingdom AnimaliaPhylum ArthropodaSubphylum ChelicerataClass ArachnidaOrder TrombidiformesSuperfamily TetranychoideaFamily TetranychidaeDonnadieu 1875Subfamilies amp tribesBryobinae Berlese Bryobini Reck Hystrichonychini Pritchard amp Baker Petrobiini ReckTetranychinae Berlese Tenuipalpoidini Pritchard amp Baker Tetranychini Reck Contents 1 Description 2 Life cycle 3 Genera 4 Countermeasures 4 1 Neem oil 4 2 Predatory mites 4 3 Harpin Alpha Beta 4 4 Acaricides 4 5 Environmental conditions 5 See also 6 References 7 External linksDescription EditSpider mites are less than 1 mm 0 04 in in size and vary in color They lay small spherical initially transparent eggs and many species spin silk webbing to help protect the colony from predators they get the spider part of their common name from this webbing 2 Life cycle Edit Spider mites on a lemon plant Hot dry conditions are often associated with population build up of spider mites Under optimal conditions approximately 27 C the two spotted spider mite can hatch in as little as 3 days and become sexually mature in as little as 5 days One female can lay up to 20 eggs per day and can live for 2 to 4 weeks laying hundreds of eggs This accelerated reproductive rate allows spider mite populations to adapt quickly to resist pesticides so chemical control methods can become somewhat ineffectual when the same pesticide is used over a prolonged period 3 Spider mites like hymenopterans and some scale insects are haplodiploid and therefore arrhenotochous females are diploid and males are haploid 4 When mated females avoid the fecundation of some eggs to produce males Fertilized eggs produce diploid females Unmated unfertilized females still lay eggs that originate exclusively haploid males To spread to new locations they make use of ballooning for aerial dispersal 5 source source source source source source source source source source source source Video of multiple spider mites walking on a leafGenera EditThe best known member of the group is Tetranychus urticae which has a cosmopolitan distribution 6 and attacks a wide range of plants including peppers tomatoes potatoes beans corn cannabis and strawberries 3 Other species which can be important pests of commercial plants include Panonychus ulmi fruit tree red spider mite and Panonychus citri citrus red mite The family is divided into these subfamilies tribes and genera 7 Bryobinae BerleseBryobini ReckNeoschizonobiella Tseng Sinobryobia Ma et al Marainobia Meyer Bryobia Koch Toronobia Meyer Pseudobryobia McGregor Strunkobia Livshitz amp Mitrofanov Mezranobia Athias Henriot Eremobryobia Strunkova amp Mitrofanov Bryobiella Tuttle amp Baker Hemibryobia Tuttle amp BakerHystrichonychini Pritchard amp BakerBryocopsis Meyer Tetranychopsis Canestrini Notonychus Davis Dolichonobia Meyer Monoceronychus McGregor Mesobryobia Wainstein Hystrichonychus McGregor Parapetrobia Meyer amp Rykev Peltanobia Meyer Tauriobia Livshitz amp Mitrofanov Aplonobia Womersley Paraplonobia Wainstein Beerella Wainstein Magdalena Baker amp Tuttle Porcupinychus Anwarullah Afronobia MeyerPetrobiini ReckNeotrichobia Tuttle amp Baker Schizonobiella Beer amp Lang Schizonobia Womersley Dasyobia Strunkova Lindquistiella Mitrofanov Edella Meyer Petrobia MurrayTetranychinae BerleseEurytetranychini ReckAtetranychus Tuttle et al Synonychus Miller Eurytetranychus Oudemans Eurytetranychoides Reck Eutetranychus Banks Meyernychus Mitrofanov Aponychus Rimando Paraponychus Gonzalez amp Flechtmann Sinotetranychus Ma amp Yuan Anatetranychus Womersley Duplanychus MeyerTenuipalpoidini Pritchard amp BakerEonychus Gutierrez Crotonella Tuttle et al Tenuipalpoides Reck amp Bagdasarian Tenuipalponychus Channabasavanna amp LakkundiTetranychini ReckBrevinychus Meyer Sonotetranychus Tuttle et al Mixonychus Meyer amp Ryke Evertella Meyer Panonychus Yokoyama Allonychus Pritchard amp Baker Schizotetranychus Tragardh Yunonychus Ma amp Gao Yezonychus Ehara Neotetranychus Tragardh Acanthonychus Wang Mononychellus Wainstein Platytetranychus Oudemans Eotetranychus Oudemans Palmanychus Baker amp Tuttle Atrichoproctus Flechtmann Xinella Ma amp Wang Oligonychus Berlese Hellenychus Gutierrez Tetranychus Dufour Amphitetranychus OudemansCountermeasures EditNeem oil Edit Neem oil may provide control when combined with a suitable surfactant and diluted with water As with chemical control repeated applications are required citation needed Predatory mites Edit Predatory mites of the Phytoseiidae family including Phytoseiulus persimilis eat adult mites their eggs and all developmental stages between 3 Predatory mites can consume as many as 5 adult spider mites per day or 20 eggs per day 3 Harpin Alpha Beta Edit In some cases the application of Harpin Alpha Beta protein may help in the treatment and prevention of infestation by stimulating the plant s natural defenses restoring sap sugar levels and encouraging replacement of damaged tissues 8 This affects the spider mites ability to down regulate the immune response of a plant 9 Acaricides Edit Acaricides are applied to crops to control spider mites They can be either systemic or non systemic in nature and can be persistent by providing residual activity for over a month Drawbacks include high potential for development of resistance in mite populations as has been observed in previous generations of miticides and toxicity of some miticides towards fish Thus proper selection precautions and application are required to minimize risks 10 11 12 Environmental conditions Edit Temporarily modifying environmental conditions has proven an effective method for insect pest control including spider mites Generally dramatically decreased oxygen and increased carbon dioxide concentrations at elevated temperatures can lead to mortality at all developmental stages However mild CO2 enrichment has been shown to in fact increase mite reproduction 13 One study determined a concentration of 0 4 O2 and 20 CO2 gave a LT99 time to 99 mortality of 113h at 20 C and 15 5h at 40 C 14 Another study reported 100 mortality of various stages of the two spotted spidermite using 60 CO2 and 20 O2 at 30 C for 16h 15 clarification needed Advantages would include decreased ability for resistance development compared to miticides and potential ease of application while drawbacks might include sensitivity of the plant to the conditions feasibility of application and human safety See also Edit Arthropods portalPests and diseases of rosesReferences Edit H R Bolland Jean Gutierrez amp Carlos H W Flechtmann 1997 Introduction World Catalogue of the Spider Mite Family Acari Tetranychidae Brill Publishers pp 1 3 ISBN 978 90 04 11087 8 a b Yutaka Saito 2009 Plant mites Plant Mites and Sociality Diversity and Evolution Springer pp 5 38 doi 10 1007 978 4 431 99456 5 2 ISBN 978 4 431 99455 8 a b c d Thomas R Fasulo amp H A Denmark December 2009 Twospotted spider mite Featured Creatures University of Florida Institute of Food and Agricultural Sciences Retrieved May 20 2011 Graham Bell 1982 Parthenogenesis and vegetative reproduction in multicellular animals The Masterpiece of Nature the Evolution and Genetics of Sexuality Croom Helm applied biology series Cambridge University Press pp 160 331 ISBN 978 0 85664 753 6 Phenological and meteorological determinants of spider ballooning in an agricultural landscape D A Raworth D R Gillespie M Roy amp H M A Thistlewood 2002 Tetranychus urticae Koch twospotted spider mite Acari Tetranychidae In Peter G Mason amp John Theodore Huber eds Biological Control Programmes in Canada 1981 2000 CAB International pp 259 265 ISBN 978 0 85199 527 4 H R Bolland Jean Gutierrez amp Carlos H W Flechtmann 1997 Key to the genera of the world World Catalogue of the Spider Mite Family Acari Tetranychidae Brill Publishers pp 5 11 ISBN 978 90 04 11087 8 HALO Foliar Plant Feed Studies www halo harpin com Retrieved 9 May 2017 The effect of harpin protein on plant growth parameters leaf chlorophyll leaf colour and percentage rotten fruit of pepper plants inoculated with Botrytis cinerea PDF Download Available ResearchGate June 2006 Retrieved 9 May 2017 Uesugi R Goka K Osakabe M H 2002 12 01 Genetic Basis of Resistances to Chlorfenapyr and Etoxazole in the Two Spotted Spider Mite Acari Tetranychidae Journal of Economic Entomology 95 6 1267 1274 doi 10 1603 0022 0493 95 6 1267 ISSN 0022 0493 PMID 12539841 S2CID 24716020 Table 4 Toxicity to fish of commonly used insecticides miticides and nematicides Virginia Tech Retrieved 2016 03 22 All Miticides Are Not Created Equal Home Yard amp Garden Pest Newsletter University of Illinois Retrieved 2016 03 22 Heagle A S Burns J C Fisher D S Miller J E 1 August 2002 Effects of Carbon Dioxide Enrichment on Leaf Chemistry and Reproduction by Twospotted Spider Mites Acari Tetranychidae on White Clover Environmental Entomology 31 4 594 601 doi 10 1603 0046 225X 31 4 594 Whiting D C Van Den Heuvel J 1 April 1995 Oxygen Carbon Dioxide and Temperature Effects on Mortality Responses of Diapausing Tetranychus urticae Acari Tetranychidae Journal of Economic Entomology 88 2 331 336 doi 10 1093 jee 88 2 331 Oyamada Koichi Murai Tamotsu 2013 Effect of Fumigation of High Concentration Carbon Dioxide on Two Spotted Spider Mite Tetranychus urticae Koch Acari Tetranychidae and Strawberry Runner Plant Japanese Journal of Applied Entomology and Zoology 57 4 249 256 doi 10 1303 jjaez 2013 249 External links Edit Spider Mites Web a comprehensive database for the Tetranychidae Spider Mites taxonomy host plants and distribution Institut National de la Recherche Agronomique INRA Bryobia praetiosa clover mite Featured Creatures University of Florida Institute of Food and Agricultural Sciences Oligonychus ilicis southern red mite Featured Creatures University of Florida Institute of Food and Agricultural Sciences Spider mite s secrets revealed Press release Instituto Gulbenkian de Ciencia November 24 2011 Retrieved November 24 2011 Retrieved from https en wikipedia org w index php title Spider mite amp oldid 1141385103, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.