fbpx
Wikipedia

Tethys Ocean

The Tethys Ocean /ˈtθɪs, ˈtɛ-/ TEETH-iss, TETH- (Greek: Τηθύς Tēthús), also called the Tethys Sea or the Neo-Tethys, was a prehistoric ocean during much of the Mesozoic Era and early Cenozoic Era, located between the ancient continents of Gondwana and Laurasia, before the opening of the Indian and Atlantic oceans during the Cretaceous Period.

First phase of the Tethys Ocean's forming: the (first) Tethys Sea starts dividing Pangaea into two supercontinents, Laurasia and Gondwana.

It was preceded by the Paleo-Tethys Ocean, which lasted between the Cambrian and the Early Triassic, while the Neotethys formed during the Late Triassic and lasted until the early Eocene (about 50 million years ago) when it completely closed.[1] A portion known as the Paratethys formed during the Late Jurassic, was isolated during the Oligocene (34 million years ago) and lasted up to the Pliocene (about 5 million years ago), when it largely dried out.[2] The ocean basins of Europe and Western Asia, namely the Mediterranean Sea, Black Sea and Caspian Sea, are each remnants of the Paratethys Ocean.[1]

Etymology edit

The sea was named after Tethys, who, in ancient Greek mythology, was a water goddess, a sister and consort of Oceanus, mother of the Oceanid sea nymphs and of the world’s great rivers, lakes and fountains.

Terminology and subdivisions edit

The eastern part of the Tethys Ocean is sometimes referred to as Eastern Tethys. The western part of the Tethys Ocean is called Tethys Sea, Western Tethys Ocean, or Paratethys or Alpine Tethys Ocean. The Black, Caspian, and Aral seas are thought to be its crustal remains, though the Black Sea may, in fact, be a remnant of the older Paleo-Tethys Ocean.[3] The Western Tethys was not simply a single open ocean. It covered many small plates, Cretaceous island arcs, and microcontinents. Many small oceanic basins (Valais Ocean, Piemont-Liguria Ocean, Meliata Ocean) were separated from each other by continental terranes on the Alboran, Iberian, and Apulian plates. The high sea level in the Mesozoic flooded most of these continental domains, forming shallow seas.[citation needed]

As theories have improved, scientists have extended the "Tethys" name to refer to three similar oceans that preceded it, separating the continental terranes: in Asia, the Paleo-Tethys (Devonian–Triassic), Meso-Tethys (late Early Permian–Late Cretaceous), and Ceno-Tethys (Late-Triassic–Cenozoic) are recognized.[4] None of the Tethys oceans should be confused with the Rheic Ocean, which existed to the west of them in the Silurian Period.[5] To the north of the Tethys, the then-land mass is called Angaraland and to the south of it, it is called Gondwanaland.[6]

Modern theory edit

From the Ediacaran (600 Mya) into the Devonian (360 Mya), the Proto-Tethys Ocean existed and was situated between Baltica and Laurentia to the north and Gondwana to the south.

From the Silurian (440 Mya) through the Jurassic periods, the Paleo-Tethys Ocean existed between the Hunic terranes and Gondwana. Over a period of 400 million years, continental terranes intermittently separated from Gondwana in the Southern Hemisphere to migrate northward to form Asia in the Northern Hemisphere.[4]

Triassic Period edit

 
Plate tectonic reconstruction of the Tethys realm at 249 Mya

About 250 Mya,[7] during the Triassic, a new ocean began forming in the southern end of the Paleo-Tethys Ocean. A rift formed along the northern continental shelf of Southern Pangaea (Gondwana). Over the next 60 million years, that piece of shelf, known as Cimmeria, traveled north, pushing the floor of the Paleo-Tethys Ocean under the eastern end of northern Pangaea (early / proto- Laurasia). The Neo-Tethys Ocean formed between Cimmeria and Gondwana, directly over where the Paleo-Tethys formerly rested.[citation needed]

Jurassic Period edit

During the Jurassic period about 150 Mya, Cimmeria finally collided with Laurasia and stalled, so the ocean floor behind it buckled under, forming the Tethys Trench. Water levels rose, and the western Tethys shallowly covered significant portions of Europe, forming the first Tethys Sea. Around the same time, Laurasia and Gondwana began drifting apart, opening an extension of the Tethys Sea between them which today is the part of the Atlantic Ocean between the Mediterranean and the Caribbean. As North and South America were still attached to the rest of Laurasia and Gondwana, respectively, the Tethys Ocean in its widest extension was part of a continuous oceanic belt running around the Earth between about latitude 30°N and the Equator. Thus, ocean currents at the time around the Early Cretaceous ran very differently from the way they do today.[citation needed]

Late Cretaceous edit

 
Plate tectonic reconstruction of the Tethys realm at 100 Mya

Between the Jurassic and the Late Cretaceous, which started about 100 Mya, Gondwana began breaking up, pushing Africa and India north across the Tethys and opening up the Indian Ocean.

Cenozoic edit

Throughout the Cenozoic (66 million to the dawn of the Neogene, 23 Mya), a combination of the northern migration of Africa and global sea levels falling eventually led to the connections between the Atlantic and Indian Oceans across the Tethys being closed off in what is now the Middle East during the Miocene. This decoupling occurred in two steps, first around 20 Mya and another around 14 Mya.[8] During the Oligocene (33.9 to 23 Mya), large parts of central and eastern Europe were covered by a northern branch of the Tethys Ocean, called the Paratethys. The Paratethys was separated from the Tethys with the formation of the Alps, Carpathians, Dinarides, Taurus, and Elburz mountains during the Alpine orogeny. During the late Miocene, the Paratethys gradually disappeared, and became an isolated inland sea.[9]

Historical theory edit

In Chapter 13 of his 1845 book,[10] Roderick Murchison described a distinctive formation extending from the Black Sea to the Aral Sea in which the creatures differed from those of the purely marine period that preceded them. The Miocene deposits of Crimea and Taman, (south of the Sea of Azov) are identical with formations surrounding the present Caspian Sea, in which the univalves of freshwater origin, are associated with forms of Cardiacae and Mytili that are common to partially saline or brackish waters. This distinctive fauna has been found throughout all the enormously developed Tertiary formations of the southern and south-eastern steppes.

"... there can be no doubt that all the masses of water now separated from each other, from the Aral to the Black Sea inclusive, were formerly united in this vast pre-historical Mediterranean; which (even if we restrict its limits to the boundaries we already know, and do not extend them eastward, amid low regions untrodden by geologists) must have exceeded in size the present Mediterranean!... Judging from the recital of travellers and from specimens of the rock, we have no doubt that it extended to Khivah and the Aral Sea; beyond which the low level of the adjacent eastern deserts would lead us to infer, that it spread over wide tracts in Asia now inhabited by the Turkomans and Kyrgyz people, and was bounded only by the mountains of the Hindu Kush and Chinese Tartary... and leads at once to the conviction, that during long periods, a vast region of Europe and Asia was covered by a Mediterranean Sea of brackish water, of which the present Caspian is the diminished type... we have adopted the term Aralo-Caspian, first applied to this region of the globe by Humboldt, for this formation."

On the accompanying map, Murchison shows the Aralo-Caspian Formation extending from close to the Danube delta across Crimea, up the east side of the Volga river to Samara, then south of the Urals to beyond the Aral Sea. Brackish and upper freshwater components (OSM) of the Miocene are now known to extend through the North Alpine foreland basin and onto the Swabian Jura with thickness of up to 250m; these were deposited in the Paratethys when the Alpine front was still 100km farther south.[11][12]

 
Geologist Eduard Suess in 1869

In 1885, the Austrian palaeontologist Melchior Neumayr deduced the existence of the Tethys Ocean from Mesozoic marine sediments and their distribution, calling his concept Zentrales Mittelmeer and described it as a Jurassic seaway, which extended from the Caribbean to the Himalayas.[13]

In 1893, the Austrian geologist Eduard Suess proposed the hypothesis that an ancient and extinct inland sea had once existed between Laurasia and the continents which formed Gondwana II. He named it the Tethys Sea after the Greek sea goddess Tethys. He provided evidence for his theory using fossil records from the Alps and Africa.[14] He proposed the concept of Tethys in his four-volume work Das Antlitz der Erde (The Face of the Earth).[15]

In the following decades during the 20th century, "mobilist" geologists such as Uhlig (1911), Diener (1925), and Daque (1926) regarded Tethys as a large trough between two supercontinents which lasted from the late Palaeozoic until continental fragments derived from Gondwana obliterated it.

After World War II, Tethys was described as a triangular ocean with a wide eastern end.[citation needed]

From 1920s to the 1960s, "fixist" geologists, however, regarded Tethys as a composite trough, which evolved through a series of orogenic cycles. They used the terms 'Paleotethys', 'Mesotethys', and 'Neotethys' for the Caledonian, Variscan, and Alpine orogenies, respectively. In the 1970s and '80s, these terms and 'Proto-Tethys', were used in different senses by various authors, but the concept of a single ocean wedging into Pangea from the east, roughly where Suess first proposed it, remained.[16]

In the 1960s, the theory of plate tectonics became established, and Suess's "sea" could clearly be seen to have been an ocean. Plate tectonics provided an explanation for the mechanism by which the former ocean disappeared: oceanic crust can subduct under continental crust.[citation needed]

Tethys was considered an oceanic plate by Smith (1971); Dewey, Pitman, Ryan and Bonnin (1973); Laubscher and Bernoulli (1973); and Bijou-Duval, Dercourt and Pichon (1977).[citation needed]

See also edit

References edit

Notes edit

  1. ^ a b "Tethys Sea | Definition, Location, & Facts | Britannica". www.britannica.com. Retrieved 2022-02-24.
  2. ^ Stampfli, Gérard. (PDF). University of Lausanne. Archived from the original (PDF) on 2012-01-13.
  3. ^ Van der Voo 1993
  4. ^ a b Metcalfe 2013, Introduction, p. 2
  5. ^ Stampfli & Borel 2002, Figs. 3–9
  6. ^ Hsü, Kenneth. Challenger at Sea: A Ship That Revolutionized Earth Science. p. 199.
  7. ^ . Palaeos Mesozoic: Triassic. Archived from the original on 16 May 2008.
  8. ^ Bialik et al. 2019
  9. ^ Steininger, F.F.; Wessely, G. (2000). "From the Tethyan Ocean to the Paratethys Sea: Oligocene to Neogene stratigraphy, paleogeography and paleobiogeography of the circum-Mediterranean region and the Oligocene to Neogene Basin evolution in Austria". Mitteilungen der Österreichischen Geologischen Gesellschaft. 92: 95–116.
  10. ^ "On the Geology of Russia in Europe and the Ural Mountains". Vol. 1. London: John Murray. 1845. pp. 297–323.
  11. ^ Steininger, F.F.; Wessely, G. (2000). "From the Tethyan Ocean to the Paratethys Sea: Oligocene to Neogene stratigraphy, paleogeography and paleobiogeography of the circum-Mediterranean region and the Oligocene to Neogene Basin evolution in Austria". Mitteilungen der Österreichischen Geologischen Gesellschaft. 92: 95–116.
  12. ^ Kuhlemann, J.; Kempf, O. (2002). "Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics". Sedimentary Geology. 152 (1–2): 45–78. Bibcode:2002SedG..152...45K. doi:10.1016/S0037-0738(01)00285-8.
  13. ^ Kollmann 1992
  14. ^ Suess 1893, p. 183: "This ocean we designate by the name "Tethys" after the sister and consort of Oceanus. The latest successor of the Tethyan Sea is the present Mediterranean."
  15. ^ Suess 1901, Gondwana-Land und Tethys, p. 25: "Dasselbe wurde von Neumayr das 'centrale Mittelmeer' genannt und wird hier mit dem Namen Tethys bezeichnet werden. Das heutige europäische Mittelmeer ist ein Rest der Tethys." (It was named by Neumayr the "central Middle Sea" and here it will be designated by the name "Tethys". The current European Mediterranean Sea is a remnant of the Tethys.)
  16. ^ Metcalfe 1999, How many Tethys Oceans?, pp. 1–3

Sources edit

  • Bialik, Or M.; Frank, Martin; Betzler, Christian; Zammit, Ray; Waldmann, Nicolas D. (2019). "Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean". Scientific Reports. 9 (8842): 8842. Bibcode:2019NatSR...9.8842B. doi:10.1038/s41598-019-45308-7. PMC 6586870. PMID 31222018.
  • Kollmann, H. A. (1992). "Tethys—the Evolution of an Idea". In Kollmann, H. A.; Zapfe, H. (eds.). New Aspects on Tethyan Cretaceous Fossil Assemblages. Springer-Verlag reprint ed. 1992. pp. 9–14. ISBN 978-0387865553. OCLC 27717529. Retrieved 6 October 2015.
  • Metcalfe, I. (1999). "The ancient Tethys oceans of Asia: How many? How old? How deep? How wide?". UNEAC Asia Papers. 1: 1–9. Retrieved 6 October 2015.
  • Metcalfe, I. (2013). "Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys". Journal of Asian Earth Sciences. 66: 1–33. Bibcode:2013JAESc..66....1M. doi:10.1016/j.jseaes.2012.12.020. Retrieved 6 October 2015.
  • Stampfli, G. M.; Borel, G. D. (2002). "A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons". Earth and Planetary Science Letters. 196 (1): 17–33. Bibcode:2002E&PSL.196...17S. doi:10.1016/S0012-821X(01)00588-X.
  • Suess, E. (1893). "Are ocean depths permanent?". Natural Science: A Monthly Review of Scientific Progress. Vol. 2. London. pp. 180–187. Retrieved 6 October 2015.{{cite book}}: CS1 maint: location missing publisher (link)
  • Suess, E. (1901). Der Antlitz der Erde (in German). Vol. 3. Wien F. Tempsky. Retrieved 6 October 2015.
  • Van der Voo, Rob (1993). Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. Cambridge University Press. ISBN 978-0-521-61209-8.

External links edit

  •   Media related to Tethys Ocean at Wikimedia Commons

tethys, ocean, teeth, teth, greek, Τηθύς, tēthús, also, called, tethys, tethys, prehistoric, ocean, during, much, mesozoic, early, cenozoic, located, between, ancient, continents, gondwana, laurasia, before, opening, indian, atlantic, oceans, during, cretaceou. The Tethys Ocean ˈ t iː 8 ɪ s ˈ t ɛ TEETH iss TETH Greek Th8ys Tethus also called the Tethys Sea or the Neo Tethys was a prehistoric ocean during much of the Mesozoic Era and early Cenozoic Era located between the ancient continents of Gondwana and Laurasia before the opening of the Indian and Atlantic oceans during the Cretaceous Period First phase of the Tethys Ocean s forming the first Tethys Sea starts dividing Pangaea into two supercontinents Laurasia and Gondwana It was preceded by the Paleo Tethys Ocean which lasted between the Cambrian and the Early Triassic while the Neotethys formed during the Late Triassic and lasted until the early Eocene about 50 million years ago when it completely closed 1 A portion known as the Paratethys formed during the Late Jurassic was isolated during the Oligocene 34 million years ago and lasted up to the Pliocene about 5 million years ago when it largely dried out 2 The ocean basins of Europe and Western Asia namely the Mediterranean Sea Black Sea and Caspian Sea are each remnants of the Paratethys Ocean 1 Contents 1 Etymology 2 Terminology and subdivisions 3 Modern theory 3 1 Triassic Period 3 2 Jurassic Period 3 3 Late Cretaceous 3 4 Cenozoic 4 Historical theory 5 See also 6 References 6 1 Notes 6 2 Sources 7 External linksEtymology editThe sea was named after Tethys who in ancient Greek mythology was a water goddess a sister and consort of Oceanus mother of the Oceanid sea nymphs and of the world s great rivers lakes and fountains Terminology and subdivisions editThe eastern part of the Tethys Ocean is sometimes referred to as Eastern Tethys The western part of the Tethys Ocean is called Tethys Sea Western Tethys Ocean or Paratethys or Alpine Tethys Ocean The Black Caspian and Aral seas are thought to be its crustal remains though the Black Sea may in fact be a remnant of the older Paleo Tethys Ocean 3 The Western Tethys was not simply a single open ocean It covered many small plates Cretaceous island arcs and microcontinents Many small oceanic basins Valais Ocean Piemont Liguria Ocean Meliata Ocean were separated from each other by continental terranes on the Alboran Iberian and Apulian plates The high sea level in the Mesozoic flooded most of these continental domains forming shallow seas citation needed As theories have improved scientists have extended the Tethys name to refer to three similar oceans that preceded it separating the continental terranes in Asia the Paleo Tethys Devonian Triassic Meso Tethys late Early Permian Late Cretaceous and Ceno Tethys Late Triassic Cenozoic are recognized 4 None of the Tethys oceans should be confused with the Rheic Ocean which existed to the west of them in the Silurian Period 5 To the north of the Tethys the then land mass is called Angaraland and to the south of it it is called Gondwanaland 6 Modern theory editFrom the Ediacaran 600 Mya into the Devonian 360 Mya the Proto Tethys Ocean existed and was situated between Baltica and Laurentia to the north and Gondwana to the south From the Silurian 440 Mya through the Jurassic periods the Paleo Tethys Ocean existed between the Hunic terranes and Gondwana Over a period of 400 million years continental terranes intermittently separated from Gondwana in the Southern Hemisphere to migrate northward to form Asia in the Northern Hemisphere 4 Triassic Period edit nbsp Plate tectonic reconstruction of the Tethys realm at 249 MyaAbout 250 Mya 7 during the Triassic a new ocean began forming in the southern end of the Paleo Tethys Ocean A rift formed along the northern continental shelf of Southern Pangaea Gondwana Over the next 60 million years that piece of shelf known as Cimmeria traveled north pushing the floor of the Paleo Tethys Ocean under the eastern end of northern Pangaea early proto Laurasia The Neo Tethys Ocean formed between Cimmeria and Gondwana directly over where the Paleo Tethys formerly rested citation needed Jurassic Period edit During the Jurassic period about 150 Mya Cimmeria finally collided with Laurasia and stalled so the ocean floor behind it buckled under forming the Tethys Trench Water levels rose and the western Tethys shallowly covered significant portions of Europe forming the first Tethys Sea Around the same time Laurasia and Gondwana began drifting apart opening an extension of the Tethys Sea between them which today is the part of the Atlantic Ocean between the Mediterranean and the Caribbean As North and South America were still attached to the rest of Laurasia and Gondwana respectively the Tethys Ocean in its widest extension was part of a continuous oceanic belt running around the Earth between about latitude 30 N and the Equator Thus ocean currents at the time around the Early Cretaceous ran very differently from the way they do today citation needed Late Cretaceous edit nbsp Plate tectonic reconstruction of the Tethys realm at 100 MyaBetween the Jurassic and the Late Cretaceous which started about 100 Mya Gondwana began breaking up pushing Africa and India north across the Tethys and opening up the Indian Ocean Cenozoic edit Throughout the Cenozoic 66 million to the dawn of the Neogene 23 Mya a combination of the northern migration of Africa and global sea levels falling eventually led to the connections between the Atlantic and Indian Oceans across the Tethys being closed off in what is now the Middle East during the Miocene This decoupling occurred in two steps first around 20 Mya and another around 14 Mya 8 During the Oligocene 33 9 to 23 Mya large parts of central and eastern Europe were covered by a northern branch of the Tethys Ocean called the Paratethys The Paratethys was separated from the Tethys with the formation of the Alps Carpathians Dinarides Taurus and Elburz mountains during the Alpine orogeny During the late Miocene the Paratethys gradually disappeared and became an isolated inland sea 9 Historical theory editIn Chapter 13 of his 1845 book 10 Roderick Murchison described a distinctive formation extending from the Black Sea to the Aral Sea in which the creatures differed from those of the purely marine period that preceded them The Miocene deposits of Crimea and Taman south of the Sea of Azov are identical with formations surrounding the present Caspian Sea in which the univalves of freshwater origin are associated with forms of Cardiacae and Mytili that are common to partially saline or brackish waters This distinctive fauna has been found throughout all the enormously developed Tertiary formations of the southern and south eastern steppes there can be no doubt that all the masses of water now separated from each other from the Aral to the Black Sea inclusive were formerly united in this vast pre historical Mediterranean which even if we restrict its limits to the boundaries we already know and do not extend them eastward amid low regions untrodden by geologists must have exceeded in size the present Mediterranean Judging from the recital of travellers and from specimens of the rock we have no doubt that it extended to Khivah and the Aral Sea beyond which the low level of the adjacent eastern deserts would lead us to infer that it spread over wide tracts in Asia now inhabited by the Turkomans and Kyrgyz people and was bounded only by the mountains of the Hindu Kush and Chinese Tartary and leads at once to the conviction that during long periods a vast region of Europe and Asia was covered by a Mediterranean Sea of brackish water of which the present Caspian is the diminished type we have adopted the term Aralo Caspian first applied to this region of the globe by Humboldt for this formation On the accompanying map Murchison shows the Aralo Caspian Formation extending from close to the Danube delta across Crimea up the east side of the Volga river to Samara then south of the Urals to beyond the Aral Sea Brackish and upper freshwater components OSM of the Miocene are now known to extend through the North Alpine foreland basin and onto the Swabian Jura with thickness of up to 250m these were deposited in the Paratethys when the Alpine front was still 100km farther south 11 12 nbsp Geologist Eduard Suess in 1869In 1885 the Austrian palaeontologist Melchior Neumayr deduced the existence of the Tethys Ocean from Mesozoic marine sediments and their distribution calling his concept Zentrales Mittelmeer and described it as a Jurassic seaway which extended from the Caribbean to the Himalayas 13 In 1893 the Austrian geologist Eduard Suess proposed the hypothesis that an ancient and extinct inland sea had once existed between Laurasia and the continents which formed Gondwana II He named it the Tethys Sea after the Greek sea goddess Tethys He provided evidence for his theory using fossil records from the Alps and Africa 14 He proposed the concept of Tethys in his four volume work Das Antlitz der Erde The Face of the Earth 15 In the following decades during the 20th century mobilist geologists such as Uhlig 1911 Diener 1925 and Daque 1926 regarded Tethys as a large trough between two supercontinents which lasted from the late Palaeozoic until continental fragments derived from Gondwana obliterated it After World War II Tethys was described as a triangular ocean with a wide eastern end citation needed From 1920s to the 1960s fixist geologists however regarded Tethys as a composite trough which evolved through a series of orogenic cycles They used the terms Paleotethys Mesotethys and Neotethys for the Caledonian Variscan and Alpine orogenies respectively In the 1970s and 80s these terms and Proto Tethys were used in different senses by various authors but the concept of a single ocean wedging into Pangea from the east roughly where Suess first proposed it remained 16 In the 1960s the theory of plate tectonics became established and Suess s sea could clearly be seen to have been an ocean Plate tectonics provided an explanation for the mechanism by which the former ocean disappeared oceanic crust can subduct under continental crust citation needed Tethys was considered an oceanic plate by Smith 1971 Dewey Pitman Ryan and Bonnin 1973 Laubscher and Bernoulli 1973 and Bijou Duval Dercourt and Pichon 1977 citation needed See also edit nbsp Oceans portalHațeg Island Prehistoric island List of ancient oceans List of Earth s former oceans Paleo Tethys Ocean Ocean on the margin of Gondwana between the Middle Cambrian and Late Triassic Pannonian Sea Shallow ancient sea where the Pannonian Basin in Central Europe is today Paratethys Prehistoric shallow inland sea in Eurasia Piemont Liguria Ocean Former piece of oceanic crust that is seen as part of the Tethys Ocean Ruhpolding Formation Tethyan Trench Ancient oceanic trenchReferences editNotes edit a b Tethys Sea Definition Location amp Facts Britannica www britannica com Retrieved 2022 02 24 Stampfli Gerard 155 Ma Late Oxfordian an M25 PDF University of Lausanne Archived from the original PDF on 2012 01 13 Van der Voo 1993 a b Metcalfe 2013 Introduction p 2 Stampfli amp Borel 2002 Figs 3 9 Hsu Kenneth Challenger at Sea A Ship That Revolutionized Earth Science p 199 Middle Triassic Palaeos Mesozoic Triassic Archived from the original on 16 May 2008 Bialik et al 2019 Steininger F F Wessely G 2000 From the Tethyan Ocean to the Paratethys Sea Oligocene to Neogene stratigraphy paleogeography and paleobiogeography of the circum Mediterranean region and the Oligocene to Neogene Basin evolution in Austria Mitteilungen der Osterreichischen Geologischen Gesellschaft 92 95 116 On the Geology of Russia in Europe and the Ural Mountains Vol 1 London John Murray 1845 pp 297 323 Steininger F F Wessely G 2000 From the Tethyan Ocean to the Paratethys Sea Oligocene to Neogene stratigraphy paleogeography and paleobiogeography of the circum Mediterranean region and the Oligocene to Neogene Basin evolution in Austria Mitteilungen der Osterreichischen Geologischen Gesellschaft 92 95 116 Kuhlemann J Kempf O 2002 Post Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics Sedimentary Geology 152 1 2 45 78 Bibcode 2002SedG 152 45K doi 10 1016 S0037 0738 01 00285 8 Kollmann 1992 Suess 1893 p 183 This ocean we designate by the name Tethys after the sister and consort of Oceanus The latest successor of the Tethyan Sea is the present Mediterranean Suess 1901 Gondwana Land und Tethys p 25 Dasselbe wurde von Neumayr das centrale Mittelmeer genannt und wird hier mit dem Namen Tethys bezeichnet werden Das heutige europaische Mittelmeer ist ein Rest der Tethys It was named by Neumayr the central Middle Sea and here it will be designated by the name Tethys The current European Mediterranean Sea is a remnant of the Tethys Metcalfe 1999 How many Tethys Oceans pp 1 3 Sources edit Bialik Or M Frank Martin Betzler Christian Zammit Ray Waldmann Nicolas D 2019 Two step closure of the Miocene Indian Ocean Gateway to the Mediterranean Scientific Reports 9 8842 8842 Bibcode 2019NatSR 9 8842B doi 10 1038 s41598 019 45308 7 PMC 6586870 PMID 31222018 Kollmann H A 1992 Tethys the Evolution of an Idea In Kollmann H A Zapfe H eds New Aspects on Tethyan Cretaceous Fossil Assemblages Springer Verlag reprint ed 1992 pp 9 14 ISBN 978 0387865553 OCLC 27717529 Retrieved 6 October 2015 Metcalfe I 1999 The ancient Tethys oceans of Asia How many How old How deep How wide UNEAC Asia Papers 1 1 9 Retrieved 6 October 2015 Metcalfe I 2013 Gondwana dispersion and Asian accretion tectonic and palaeogeographic evolution of eastern Tethys Journal of Asian Earth Sciences 66 1 33 Bibcode 2013JAESc 66 1M doi 10 1016 j jseaes 2012 12 020 Retrieved 6 October 2015 Stampfli G M Borel G D 2002 A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons Earth and Planetary Science Letters 196 1 17 33 Bibcode 2002E amp PSL 196 17S doi 10 1016 S0012 821X 01 00588 X Suess E 1893 Are ocean depths permanent Natural Science A Monthly Review of Scientific Progress Vol 2 London pp 180 187 Retrieved 6 October 2015 a href Template Cite book html title Template Cite book cite book a CS1 maint location missing publisher link Suess E 1901 Der Antlitz der Erde in German Vol 3 Wien F Tempsky Retrieved 6 October 2015 Van der Voo Rob 1993 Paleomagnetism of the Atlantic Tethys and Iapetus Oceans Cambridge University Press ISBN 978 0 521 61209 8 External links edit nbsp Media related to Tethys Ocean at Wikimedia Commons Retrieved from https en wikipedia org w index php title Tethys Ocean amp oldid 1204892413, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.