fbpx
Wikipedia

Dark-eyed junco

The dark-eyed junco (Junco hyemalis) is a species of junco, a group of small, grayish New World sparrows. The species is common across much of temperate North America and in summer it ranges far into the Arctic. It is a variable species, much like the related fox sparrow (Passerella iliaca), and its systematics are still not completely resolved.

Dark-eyed junco
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Order: Passeriformes
Family: Passerellidae
Genus: Junco
Species:
J. hyemalis
Binomial name
Junco hyemalis
Approximate range in North America
  Breeding range
  Year-round range
  Wintering range
Synonyms
  • Fringilla hyemalis Linnaeus, 1758
  • Emeriza hyemalis Linnaeus, 1766
  • Junco aikeni Ridgway, 1873
  • Junco caniceps (Woodhouse, 1853)
  • Junco dorsalis Henry, 1858
  • Junco insularis Ridgway, 1876
  • Junco oreganus Townsend, 1837)

(but see text)

Taxonomy edit

The dark-eyed junco was formally described by the Swedish naturalist Carl Linnaeus in his landmark 1758 10th edition of Systema Naturae as Fringilla hyemalis. The description consisted merely of the laconic remark "F[ringilla] nigra, ventre albo. ("A black 'finch' with white belly") and a statement that it came from America.[2] Linnaeus based his description on the "Snow-Bird" that Mark Catesby had described and illustrated in his 1731 The Natural History of Carolina, Florida and the Bahama Islands.[3]

The Bill of this Bird is white: The Breast and Belly white. All the rest of the Body black; but in some places dusky, inclining to Lead-color. In Virginia and Carolina they appear only in Winter: and in Snow they appear most. In Summer none are seen. Whether they retire and breed in the North (which is most probable) or where they go, when they leave these Countries in Spring, is to me unknown. [italics in original][3]

The type locality was restricted to South Carolina by the American Ornithologists' Union in 1931.[4][5] The dark-eyed junco is now placed in the genus Junco that was introduced in 1831 by the German naturalist Johann Georg Wagler.[6][7] The genus name Junco is the Spanish word for rush, from the Latin word juncus.[8] Its modern scientific name means "winter junco", from the Latin word hyemalis "of the winter".[9]

Subspecies edit

 
A dark-eyed junco sits on a tree branch in the middle of the winter.

Either 14 or 15 subspecies are recognised.[7] These subspecies are grouped in two or three large or polytypic groups and three or four small or monotypic ones, all depending on the authority. These groups were formerly considered separate species, but they interbreed extensively in areas of contact. Birders trying to identify subspecies are advised to consult detailed identification references.[10][11]

Slate-colored group edit

 
Slate-colored dark-eyed junco (J. h. hyemalis)
  • slate-colored dark-eyed junco (J. h. hyemalis)
  • Carolina dark-eyed junco (J. h. carolinensis)
  • Cassiar dark-eyed junco (J. h. cismontanus; possibly a slate-colored dark-eyed junco (J. h. hyemalis) x Oregon dark-eyed junco (J. h. oreganus) hybrid)

These two or three subspecies have dark slate-gray heads, breasts and upperparts. Females are brownish-gray, sometimes with reddish-brown flanks.[10] They breed in the North American boreal forests from Alaska to Newfoundland and south to the Appalachian Mountains, wintering throughout most of the United States. They are relatively common across their range.

White-winged group edit

 
White-winged dark-eyed junco (J. h. aikeni)
  • white-winged dark-eyed junco (J. h. aikeni)

This subspecies has a medium-gray head, breast, and upperparts with white wing bars. Females are washed brownish. It has more white in the tail than the other 14 subspecies. It is a common endemic breeder in the Black Hills of South Dakota, Wyoming, Nebraska, and Montana, and winters south to northeastern New Mexico.[12][10]

Oregon or brown-backed group edit

 
Oregon/brown-backed group dark-eyed junco (may be any one of eight subspecies)
  • Montana dark-eyed junco (J. h. montanus)
  • Nevada dark-eyed junco (J. h. mutabilis)
  • Oregon dark-eyed junco (J. h. oreganus)
  • Point Pinos dark-eyed junco (J. h. pinosus)
  • Laguna Hanson dark-eyed junco (J. h. pontilis)
  • Shufeldt's dark-eyed junco (J. h. shufeldti)
  • Thurber's dark-eyed junco (J. h. thurberi)
  • Townsend's dark-eyed junco (J. h. townsendi)

These eight subspecies have blackish-gray heads and breasts with brown backs and wings and reddish flanks, tending toward duller and paler plumage in the inland and southern parts of its range.[11] Oregon dark-eyed juncos are also less commonly known as brown-backed dark-eyed juncos. This is the most common subspecies group in the West, breeding in the Pacific Coast Ranges from southeastern Alaska to extreme northern Baja California and wintering to the Great Plains and northern Sonora. An unresolved debate exists as to whether this large and distinct subspecies group is actually a separate species with eight (or nine, see below) subspecies of its own.[citation needed]

Pink-sided group edit

 
Pink-sided dark-eyed junco (J. h. mearnsi)
  • pink-sided dark-eyed junco (J. h. mearnsi)

Sometimes considered a ninth subspecies in the Oregon/brown-backed group, this subspecies has a lighter gray head and breast than the eight Oregon/brown-backed dark-eyed juncos, with contrasting dark lores. The back and wings are brown. It has a pinkish-cinnamon color that is richer and covers more of the flanks and breast than in the eight Oregon/brown-backed dark-eyed juncos. It breeds in the northern Rocky Mountains from southern Alberta to eastern Idaho and western Wyoming and winters in central Idaho and nearby Montana and from southwestern South Dakota, southern Wyoming, and northern Utah to northern Sonora and Chihuahua.[11]

Gray-headed group edit

 
Gray-headed dark-eyed junco (J. h. caniceps)
  • gray-headed dark-eyed junco (J. h. caniceps)

This subspecies is essentially rather light gray on top with a rusty back. It breeds in the southern Rocky Mountains from Colorado to central Arizona and New Mexico, and winters into northern Mexico.[12][10]

Red-backed group edit

 
Red-backed dark-eyed junco (J. h. dorsalis)
  • red-backed dark-eyed junco (J. h. dorsalis)

Sometimes included with the gray-headed dark-eyed junco proper as part of the gray-headed group, this subspecies differs from it in having a more silvery bill[11] with a dark-colored upper mandible and a light-colored lower mandible,[12][10] a variable amount of rust on the wings, and pale underparts. This makes it similar to the yellow-eyed junco (Junco phaeonotus), except for the dark eyes. It is found in the southern mountains of Arizona and New Mexico.[10] It does not overlap with the yellow-eyed junco in its breeding range.

Related species edit

The extremely rare Guadalupe junco (Junco insularis) was formerly considered to be a subspecies of this species (either included in the gray-headed group or placed in a seventh group of its own, the Guadalupe group), but is now treated as a separate species in its own right – perhaps a rather young one, but certainly this population has evolved more rapidly than the 14 or 15 subspecies of the dark-eyed junco on the mainland due to its small population size and the founder effect.[7]

Description edit

Adult dark-eyed juncos generally have gray heads, necks, and breasts, gray or brown backs and wings, and a white belly, but show a confusing amount of variation in plumage details. The white outer tail feathers flash distinctively in flight and while hopping on the ground. The bill is usually pale pinkish.[12]

Males tend to have darker, more conspicuous markings than females. The dark-eyed junco is 13 to 17.5 cm (5.1 to 6.9 in) long and has a wingspan of 18 to 25 cm (7.1 to 9.8 in).[12][13] Body mass can vary from 18 to 30 g (0.63 to 1.06 oz).[12] Among standard measurements, the wing chord is 6.6 to 9.3 cm (2.6 to 3.7 in), the tail is 6.1 to 7.3 cm (2.4 to 2.9 in), the bill is 0.9 to 1.3 cm (0.35 to 0.51 in) and the tarsus is 1.9 to 2.3 cm (0.75 to 0.91 in).[14] Juveniles often have pale streaks on their underparts and may even be mistaken for vesper sparrows (Pooecetes gramineus) until they acquire adult plumage at two to three months, but dark-eyed junco fledglings' heads are generally quite uniform in color already, and initially their bills still have conspicuous yellowish edges to the gape, remains of the fleshy wattles that guide the parents when they feed the nestlings.

The song is a trill similar to the chipping sparrow's (Spizella passerina), except that the red-backed dark-eyed junco's (see above) song is more complex, similar to that of the yellow-eyed junco (Junco phaeonotus). The call also resembles that of the black-throated blue warbler (Setophaga caerulescens) which is a member of the New World warbler family.[15] Calls include tick sounds and very high-pitched tinkling chips.[10] It is known among bird song practitioners as an excellent bird to study for learning "bird language."

 
Male slate-colored dark-eyed junco (J. h. hyemalis)

Distribution and habitat edit

The dark-eyed junco's breeding habitat is coniferous or mixed forest areas throughout North America. In otherwise optimal conditions it also utilizes other habitats, but at the southern margin of its range it can only persist in its favorite habitat.[16] Northern birds migrate further south, arriving in their winter quarters between mid-September and November and leaving to breed from mid-March onwards, with almost all of them gone by the end of April or so.[16][17] Many populations are permanent residents or altitudinal migrants, while in cold years they may choose to stay in their winter range and breed there.[16] For example, in the Sierra Nevada Mountains of eastern California, J. hyemalis populations will migrate to winter ranges 5,000–7,000 feet (1,500–2,100 m) lower than their summer range. Seasonally sympatric females show difference in migration and reproductive timing that is dependent on hormone and ovary regulation.[18] The migrant female J. hyemails experience delayed growth in the gonad to allow time for their seasonal migration. They then migrate down to the northeastern United States, where the resident subspecies is the Carolina dark-eyed junco (J. h. carolinensis). Female Carolina dark-eyed juncos have large ovaries and, therefore, do not experience gonadal growth delays because they are residents in the area. In winter, dark-eyed juncos are familiar in and around towns, and in many places are the most common birds at feeders.[12] The slate-colored dark-eyed junco (J. h. hyemalis) is a rare vagrant to Western Europe and may successfully winter in Great Britain, usually in domestic gardens.

Behavior and ecology edit

These birds forage on the ground. In winter, they often forage in flocks that may contain several different subspecies. They mainly eat seeds, supplemented by the occasional insect. A flock of dark-eyed juncos has been known to be called a blizzard.[citation needed]

Breeding edit

Dark-eyed juncos usually nest in a cup-shaped depression on the ground, well hidden by vegetation or other material, although nests are sometimes found in the lower branches of a shrub or tree. The nests have an outer diameter of about 10 cm (3.9 in) and are lined with fine grasses and hair. Normally two clutches of four eggs are laid during the breeding season. The slightly glossy eggs are grayish or pale bluish-white and heavily spotted (sometimes splotched) with various shades of brown, purple or gray. The spotting is concentrated at the large end of the egg. The eggs are incubated by the female for 12 to 13 days. The young leave the nest between 11 and 14 days after hatching.[19]

Diet edit

Dark-eyed juncos mostly feed on insects and seeds, along with berries.[20]

Evolution edit

Postglacial Theory and Diversification edit

Dark-eyed juncos have been widely investigated as a model for rapid speciation. This is due to exceptionally high phenotypic diversity, as seen in the large number of color patterns, over what seems to be a very short amount of time.[21] Current estimates of dark-eyed junco (J. hyemalis) evolution place diversification from yellow-eyed juncos (J. phaeonotus) at 1,800 years ago, based on mtDNA.[22] One theory for the cause of this expansion is post glacial theory. This theory claims ancestral junco populations expanded further north across North America as glaciers melted. Receding glaciers would open up many novel habitats, with new selective pressures. Under those conditions, natural selection can impact populations very strongly, since there are many open niches. Thus, even short periods of isolation can cause populations to diverge. Post glacial theory is supported by yellow-eyed and dark-eyed juncos sharing a dominant haplotype in their mitochondrial DNA, which indicates a recent burst in population. Yellow-eyed juncos are relatively reproductively isolated. Thus, a trait is more likely to be found in both species because of ancestry than gene flow, since the likelihood of interbreeding occurring often enough for the trait to be so common is much less likely than it being inherited from a single ancestral event. The range of red-backed (J. h. dorsalis) and grey-headed juncos (J. h. caniceps) in the south of North America also provides evidence, as the two seem to represent successive steps in developing dark-eyed forms. The red-backed junco is very similar to the yellow-eyed junco in appearance. It also has the most southern range of the dark-eyed junco species. Under post glacial theory, this population would be older than the others, since populations expanded northwards. The gray-headed junco, which is found further north, has the same lighter beak as the rest of the junco complex. Together, they show the number of dark-eyed junco-like traits increasing as they move north. If the post glacial theory applies, northern junco subspecies would have diversified later. This makes their wide range of coloration more notable, since it would have to arise even faster.

Oregon junco group diversification is likely a result of both genetic drift and selection.[21] Geographically isolated subspecies, like J. townsendi and J. pontilis, had low genetic-environmental association. This meant that most of the differences between them did not grant a measurable benefit to fitness. Instead, most differences were likely due to isolation and small population size.[21] Those would increase the impact of genetic drift, increasing differences between the subspecies. Isolation barriers created by unsuitable desert habitat likely led to this lack of gene flow. Other subspecies, like J. pinosis and J. thurberi, were much less geographically isolated. Their ranges often overlap, forming zones of intergradation where both subspecies exist and interbreed. Instead of geographic isolation, differences between these subspecies are probably driven by adaptation. This is supported by J. pinosis populations correlating with isothermality, or how much temperatures shift from day to night and season to season, and negatively with elevation. This indicates that they likely adapted to those specific conditions. Reproductive barriers could then come from those adaptations and differences in preferred habitat, rather than lack of interaction. There was also notable gene flow between J. thurberi, J. shufeldti, J. montanus and J. oreganus. These species formed a latitudinal gradient, where subspecies bleed into each other and decrease or increase in number in patterns correlating to latitude. Divergence was likely driven by local adaptation along the path north. Overall, it is likely that there is no single mechanism driving the historical diversification of dark-eyed juncos. Different subspecies feel different evolutionary forces with more or less frequency. However, multiple forces compound to drive divergence in all or most of the subspecies. It is likely that in the case of the dark-eyed juncos, these multiple factors have worked to accelerate change. Sexual selection and geographic isolation work to reinforce and amplify small changes established by genetic drift and natural selection. The exact mechanisms behind the speedy diversification of juncos remain a subject for more research.

Urbanization edit

Dark-eyed junco populations are also of interest to scientists for how they are responding to urbanization. Much of this is modeled through a population of dark-eyed juncos living on the University of California, San Diego's campus. The population was first studied in the 1980s, and has been a subject of interest for how much they differ from less urban neighboring populations.[23] One of the most notable differences of the UCSD population is that they do not migrate like other populations of Oregon juncos. Instead, they remain on campus year-round. This differentiates them from other junco populations that migrate to UCSD campus only in the winter. This lack of migration was likely influenced by UCSD's mild, Mediterranean climate. This climate also results in longer breeding seasons than exist at higher latitudes. This allows UCSD juncos to have as many as 4 broods per year, rather than the 1 or 2 of nearby populations. Greater brood number, in turn, may have acted as a selective pressure for parental involvement. Since birds breed more within a season, initial mating is less important, and males who are involved in care are more likely to breed again in that same season.[24] UCSD resident birds also flock in pairs more often than overwintering birds, which may have resulted from the same selective pressures.

Despite other junco populations existing nearby, the populations diverge much more than expected. The degree of difference between the UCSD juncos and other local juncos was closer to what would be expected with geographic isolation. Since the nearest populations (located in the mountains) are of the subspecies J. thurberi, it was assumed the UCSD birds came from an ancestral J. thurberi population. However, genome analysis reveals that the population was likely established from the coastal subspecies J. pinosis 20-30 generations ago, which are conditions that make the founder effect very likely to be relevant.[24] This conclusion is further supported by phenotypic similarities: the UCSD birds and J. pinosis both share similar degrees of white in their tail and nonmigratory behavior. This realization undercuts the idea that urbanization drives the lack of migration, but not that it caused many of the other changes. More evidence comes from the UCSD birds occasionally interbreeding with overwintering J. pinosis individuals, but not J. thurberi. This is in spite of J. thurberi juncos being much more common in the area. If the UCSD population was interbreeding with both, it would most likely have been observed already. Since the founding population was quite small, and the nearest J. pinosis population far away, genetic drift likely had a large influence on how the population developed. However, a strong association between habitat variables and functional genes was found. This association is a sign of natural selection and adaptive traits, not drift alone. This indicates that genetic drift is likely not the only evolutionary force at play. Selection is likely magnifying changes initially driven by drift, allowing the UCSD population to diverge from its neighbors very quickly.

More proof of adaptive genes in the UCSD population can be found on the gene level. Two of the most differentiated genes between the ancestral J. pinosis population and the UCSD birds were linked to beneficial traits for urban environments.[23] Specifically, ABCB6 allowed birds better tolerance of heavy metals. As heavy metal poisoning is a documented issue for urban birds, this gene likely increases fitness in urban environments. KCNQ4 is linked to high-frequency echolocation in bats, and seems to correlate with making higher pitched calls. This is helpful in an urban environment because low-frequency urban noise often drowns out bird calls. With higher pitched vocalizations, their calls would be less likely to get lost in that noise. Given the theorized survival advantages, the prevalence of these traits is likely to be driven by natural selection. Research remains to be done on which genes in the UCSD population serve an adaptive function, and which are likely just consequences of drift. Especially with the discovery that they are more closely related to J. pinosis, much pre existing research may be less impactful. However, they are still a very promising model system for how birds adapt to urban ecosystems.

References edit

  1. ^ BirdLife International (2021). "Junco hyemalis". IUCN Red List of Threatened Species. 2020: e.T22721097A138466281. doi:10.2305/IUCN.UK.2021-3.RLTS.T22721097A138466281.en. Retrieved 23 March 2022.
  2. ^ Linnaeus, Carl (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis (in Latin). Vol. 1 (10th ed.). Holmiae (Stockholm): Laurentii Salvii. p. 183.
  3. ^ a b Catesby, Mark (1729–1732). The Natural History of Carolina, Florida and the Bahama Islands (in English and French). Vol. 1. London: W. Innys and R. Manby. p. 36, Plate 36.
  4. ^ Committee on Classification and Nomenclature (1931). Check-list of North American Birds (4th ed.). Lancaster, Pennsylvania: American Ornithologist's Union. p. 345.
  5. ^ Paynter, Raymond A. Jr, ed. (1970). Check-List of Birds of the World. Vol. 13. Cambridge, Massachusetts: Museum of Comparative Zoology. p. 63.
  6. ^ Wagler, Johann Georg (1831). "Einige Mittheilungen über Thiere Mexicos". Isis von Oken (in German and Latin). 1831. Col 510–535 [526].
  7. ^ a b c Gill, Frank; Donsker, David; Rasmussen, Pamela, eds. (January 2022). "New World Sparrows, Bush Tanagers". IOC World Bird List Version 12.1. International Ornithologists' Union. Retrieved 4 February 2022.
  8. ^ "Junco". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  9. ^ Jobling, James A. (2010). The Helm Dictionary of Scientific Bird Names. London, United Kingdom: Christopher Helm. pp. 197, 212. ISBN 978-1-4081-2501-4.
  10. ^ a b c d e f g Sibley, David Allen (2000): The Sibley Guide to Birds. Alfred A. Knopf, New York, pp. 500–502, ISBN 0-679-45122-6
  11. ^ a b c d Dunn, Jon L. (2002). "The identification of Pink-sided Juncos, with cautionary notes about plumage variation and hybridization". Birding. 34 (5): 432–443.
  12. ^ a b c d e f g Cornell Lab of Ornithology (2002): Bird Guide – Dark-eyed junco. Retrieved 20 January 2007.
  13. ^ Rising, J.D. (2010) A Guide to the Identification and Natural History of the Sparrows of the United States and Canada. Christopher Helm Publishers, London, ISBN 1408134608.
  14. ^ Sparrows and Buntings: A Guide to the Sparrows and Buntings of North America and the World by Clive Byers & Urban Olsson. Houghton Mifflin (1995). ISBN 978-0395738733.
  15. ^ "Black-throated Blue Warbler (Dendroica caerulescens)". Birds in Forested Landscapes. Cornell Lab of Ornithology.
  16. ^ a b c Ohio Ornithological Society (2004): Annotated Ohio state checklist July 18, 2004, at the Wayback Machine
  17. ^ Henninger, W.F. (1906). "A preliminary list of the birds of Seneca County, Ohio" (PDF). Wilson Bulletin. 18 (2): 47–60.
  18. ^ Kimmitt, Abigail A.; Hardman, Jack W.; Stricker, Craig A.; Ketterson, Ellen D. (September 2019). Sockman, Keith (ed.). "Migratory strategy explains differences in timing of female reproductive development in seasonally sympatric songbirds". Functional Ecology. 33 (9): 1651–1662. Bibcode:2019FuEco..33.1651K. doi:10.1111/1365-2435.13386. ISSN 0269-8463.
  19. ^ "Dark-eyed junco life history". All About Birds. the Cornell Lab of Ornithology. 2019. Retrieved 21 October 2021.
  20. ^ "Dark-eyed Junco | Audubon Field Guide". www.audubon.org. Retrieved 2024-04-20.
  21. ^ a b c Friis, Guillermo; Fandos, Guillermo; Zellmer, Amanda J.; McCormack, John E.; Faircloth, Brant C.; Milá, Borja (December 2018). "Genome-wide signals of drift and local adaptation during rapid lineage divergence in a songbird". Molecular Ecology. 27 (24): 5137–5153. doi:10.1111/mec.14946. ISSN 1365-294X. PMID 30451354.
  22. ^ Milá, Borja; McCormack, John E; Castañeda, Gabriela; Wayne, Robert K; Smith, Thomas B (2007-11-07). "Recent postglacial range expansion drives the rapid diversification of a songbird lineage in the genus Junco". Proceedings of the Royal Society B: Biological Sciences. 274 (1626): 2653–2660. doi:10.1098/rspb.2007.0852. ISSN 0962-8452. PMC 2279216. PMID 17725978.
  23. ^ a b Rasner, C. A.; Yeh, P.; Eggert, L. S.; Hunt, K. E.; Woodruff, D. S.; Price, T. D. (6 February 2004). "Genetic and morphological evolution following a founder event in the dark-eyed junco, Junco hyemalis thurberi". Molecular Ecology. 13 (3): 671–681.
  24. ^ a b Friis, Guillermo; Atwell, Jonathan W.; Fudickar, Adam M.; Greives, Timothy J.; Yeh, Pamela J.; Price, Trevor D.; Ketterson, Ellen D.; Milá, Borja (May 2022). "Rapid evolutionary divergence of a songbird population following recent colonization of an urban area". Molecular Ecology. 31 (9): 2625–2643. doi:10.1111/mec.16422. ISSN 0962-1083.

External links edit

  • Dark-eyed junco ID, including sound and video, at Cornell Lab of Ornithology
  • Dark-eyed junco—Junco hyemalis 2011-04-17 at the Wayback Machine—USGS Patuxent Bird Identification InfoCenter
  • Juncos: What do we know?—An expert discussion of atypical individuals, the fine points of subspecific identification, and the proper understanding of the cismontanus population, from the mailing list (January 2004), supplemented with photographs and paintings.
  • Explore Species: Dark-eyed Junco at eBird (Cornell Lab of Ornithology)
  • Dark-eyed junco photo gallery at VIREO (Drexel University)

dark, eyed, junco, dark, eyed, junco, junco, hyemalis, species, junco, group, small, grayish, world, sparrows, species, common, across, much, temperate, north, america, summer, ranges, into, arctic, variable, species, much, like, related, sparrow, passerella, . The dark eyed junco Junco hyemalis is a species of junco a group of small grayish New World sparrows The species is common across much of temperate North America and in summer it ranges far into the Arctic It is a variable species much like the related fox sparrow Passerella iliaca and its systematics are still not completely resolved Dark eyed junco source source Conservation status Least Concern IUCN 3 1 1 Scientific classification Domain Eukaryota Kingdom Animalia Phylum Chordata Class Aves Order Passeriformes Family Passerellidae Genus Junco Species J hyemalis Binomial name Junco hyemalis Linnaeus 1758 Approximate range in North America Breeding range Year round range Wintering range Synonyms Fringilla hyemalis Linnaeus 1758 Emeriza hyemalis Linnaeus 1766 Junco aikeni Ridgway 1873 Junco caniceps Woodhouse 1853 Junco dorsalis Henry 1858 Junco insularis Ridgway 1876 Junco oreganus Townsend 1837 but see text Contents 1 Taxonomy 1 1 Subspecies 1 1 1 Slate colored group 1 1 2 White winged group 1 1 3 Oregon or brown backed group 1 1 4 Pink sided group 1 1 5 Gray headed group 1 1 6 Red backed group 2 Related species 3 Description 4 Distribution and habitat 5 Behavior and ecology 5 1 Breeding 5 2 Diet 6 Evolution 6 1 Postglacial Theory and Diversification 6 2 Urbanization 7 References 8 External linksTaxonomy editThe dark eyed junco was formally described by the Swedish naturalist Carl Linnaeus in his landmark 1758 10th edition of Systema Naturae as Fringilla hyemalis The description consisted merely of the laconic remark F ringilla nigra ventre albo A black finch with white belly and a statement that it came from America 2 Linnaeus based his description on the Snow Bird that Mark Catesby had described and illustrated in his 1731 The Natural History of Carolina Florida and the Bahama Islands 3 The Bill of this Bird is white The Breast and Belly white All the rest of the Body black but in some places dusky inclining to Lead color In Virginia and Carolina they appear only in Winter and in Snow they appear most In Summer none are seen Whether they retire and breed in the North which is most probable or where they go when they leave these Countries in Spring is to me unknown italics in original 3 The type locality was restricted to South Carolina by the American Ornithologists Union in 1931 4 5 The dark eyed junco is now placed in the genus Junco that was introduced in 1831 by the German naturalist Johann Georg Wagler 6 7 The genus name Junco is the Spanish word for rush from the Latin word juncus 8 Its modern scientific name means winter junco from the Latin word hyemalis of the winter 9 Subspecies edit nbsp A dark eyed junco sits on a tree branch in the middle of the winter Either 14 or 15 subspecies are recognised 7 These subspecies are grouped in two or three large or polytypic groups and three or four small or monotypic ones all depending on the authority These groups were formerly considered separate species but they interbreed extensively in areas of contact Birders trying to identify subspecies are advised to consult detailed identification references 10 11 Slate colored group edit nbsp Slate colored dark eyed junco J h hyemalis slate colored dark eyed junco J h hyemalis Carolina dark eyed junco J h carolinensis Cassiar dark eyed junco J h cismontanus possibly a slate colored dark eyed junco J h hyemalis x Oregon dark eyed junco J h oreganus hybrid These two or three subspecies have dark slate gray heads breasts and upperparts Females are brownish gray sometimes with reddish brown flanks 10 They breed in the North American boreal forests from Alaska to Newfoundland and south to the Appalachian Mountains wintering throughout most of the United States They are relatively common across their range White winged group edit nbsp White winged dark eyed junco J h aikeni white winged dark eyed junco J h aikeni This subspecies has a medium gray head breast and upperparts with white wing bars Females are washed brownish It has more white in the tail than the other 14 subspecies It is a common endemic breeder in the Black Hills of South Dakota Wyoming Nebraska and Montana and winters south to northeastern New Mexico 12 10 Oregon or brown backed group edit nbsp Oregon brown backed group dark eyed junco may be any one of eight subspecies Montana dark eyed junco J h montanus Nevada dark eyed junco J h mutabilis Oregon dark eyed junco J h oreganus Point Pinos dark eyed junco J h pinosus Laguna Hanson dark eyed junco J h pontilis Shufeldt s dark eyed junco J h shufeldti Thurber s dark eyed junco J h thurberi Townsend s dark eyed junco J h townsendi These eight subspecies have blackish gray heads and breasts with brown backs and wings and reddish flanks tending toward duller and paler plumage in the inland and southern parts of its range 11 Oregon dark eyed juncos are also less commonly known as brown backed dark eyed juncos This is the most common subspecies group in the West breeding in the Pacific Coast Ranges from southeastern Alaska to extreme northern Baja California and wintering to the Great Plains and northern Sonora An unresolved debate exists as to whether this large and distinct subspecies group is actually a separate species with eight or nine see below subspecies of its own citation needed Pink sided group edit nbsp Pink sided dark eyed junco J h mearnsi pink sided dark eyed junco J h mearnsi Sometimes considered a ninth subspecies in the Oregon brown backed group this subspecies has a lighter gray head and breast than the eight Oregon brown backed dark eyed juncos with contrasting dark lores The back and wings are brown It has a pinkish cinnamon color that is richer and covers more of the flanks and breast than in the eight Oregon brown backed dark eyed juncos It breeds in the northern Rocky Mountains from southern Alberta to eastern Idaho and western Wyoming and winters in central Idaho and nearby Montana and from southwestern South Dakota southern Wyoming and northern Utah to northern Sonora and Chihuahua 11 Gray headed group edit nbsp Gray headed dark eyed junco J h caniceps gray headed dark eyed junco J h caniceps This subspecies is essentially rather light gray on top with a rusty back It breeds in the southern Rocky Mountains from Colorado to central Arizona and New Mexico and winters into northern Mexico 12 10 Red backed group edit nbsp Red backed dark eyed junco J h dorsalis red backed dark eyed junco J h dorsalis Sometimes included with the gray headed dark eyed junco proper as part of the gray headed group this subspecies differs from it in having a more silvery bill 11 with a dark colored upper mandible and a light colored lower mandible 12 10 a variable amount of rust on the wings and pale underparts This makes it similar to the yellow eyed junco Junco phaeonotus except for the dark eyes It is found in the southern mountains of Arizona and New Mexico 10 It does not overlap with the yellow eyed junco in its breeding range Related species editThe extremely rare Guadalupe junco Junco insularis was formerly considered to be a subspecies of this species either included in the gray headed group or placed in a seventh group of its own the Guadalupe group but is now treated as a separate species in its own right perhaps a rather young one but certainly this population has evolved more rapidly than the 14 or 15 subspecies of the dark eyed junco on the mainland due to its small population size and the founder effect 7 Description editAdult dark eyed juncos generally have gray heads necks and breasts gray or brown backs and wings and a white belly but show a confusing amount of variation in plumage details The white outer tail feathers flash distinctively in flight and while hopping on the ground The bill is usually pale pinkish 12 Males tend to have darker more conspicuous markings than females The dark eyed junco is 13 to 17 5 cm 5 1 to 6 9 in long and has a wingspan of 18 to 25 cm 7 1 to 9 8 in 12 13 Body mass can vary from 18 to 30 g 0 63 to 1 06 oz 12 Among standard measurements the wing chord is 6 6 to 9 3 cm 2 6 to 3 7 in the tail is 6 1 to 7 3 cm 2 4 to 2 9 in the bill is 0 9 to 1 3 cm 0 35 to 0 51 in and the tarsus is 1 9 to 2 3 cm 0 75 to 0 91 in 14 Juveniles often have pale streaks on their underparts and may even be mistaken for vesper sparrows Pooecetes gramineus until they acquire adult plumage at two to three months but dark eyed junco fledglings heads are generally quite uniform in color already and initially their bills still have conspicuous yellowish edges to the gape remains of the fleshy wattles that guide the parents when they feed the nestlings The song is a trill similar to the chipping sparrow s Spizella passerina except that the red backed dark eyed junco s see above song is more complex similar to that of the yellow eyed junco Junco phaeonotus The call also resembles that of the black throated blue warbler Setophaga caerulescens which is a member of the New World warbler family 15 Calls include tick sounds and very high pitched tinkling chips 10 It is known among bird song practitioners as an excellent bird to study for learning bird language nbsp Male slate colored dark eyed junco J h hyemalis Distribution and habitat editThe dark eyed junco s breeding habitat is coniferous or mixed forest areas throughout North America In otherwise optimal conditions it also utilizes other habitats but at the southern margin of its range it can only persist in its favorite habitat 16 Northern birds migrate further south arriving in their winter quarters between mid September and November and leaving to breed from mid March onwards with almost all of them gone by the end of April or so 16 17 Many populations are permanent residents or altitudinal migrants while in cold years they may choose to stay in their winter range and breed there 16 For example in the Sierra Nevada Mountains of eastern California J hyemalis populations will migrate to winter ranges 5 000 7 000 feet 1 500 2 100 m lower than their summer range Seasonally sympatric females show difference in migration and reproductive timing that is dependent on hormone and ovary regulation 18 The migrant female J hyemails experience delayed growth in the gonad to allow time for their seasonal migration They then migrate down to the northeastern United States where the resident subspecies is the Carolina dark eyed junco J h carolinensis Female Carolina dark eyed juncos have large ovaries and therefore do not experience gonadal growth delays because they are residents in the area In winter dark eyed juncos are familiar in and around towns and in many places are the most common birds at feeders 12 The slate colored dark eyed junco J h hyemalis is a rare vagrant to Western Europe and may successfully winter in Great Britain usually in domestic gardens Behavior and ecology editThese birds forage on the ground In winter they often forage in flocks that may contain several different subspecies They mainly eat seeds supplemented by the occasional insect A flock of dark eyed juncos has been known to be called a blizzard citation needed Breeding edit Dark eyed juncos usually nest in a cup shaped depression on the ground well hidden by vegetation or other material although nests are sometimes found in the lower branches of a shrub or tree The nests have an outer diameter of about 10 cm 3 9 in and are lined with fine grasses and hair Normally two clutches of four eggs are laid during the breeding season The slightly glossy eggs are grayish or pale bluish white and heavily spotted sometimes splotched with various shades of brown purple or gray The spotting is concentrated at the large end of the egg The eggs are incubated by the female for 12 to 13 days The young leave the nest between 11 and 14 days after hatching 19 nbsp A dark eyed junco nest with eggs nbsp A fledgling pink sided dark eyed junco J h mearnsi at about one month after hatching Yellowstone National Park Diet edit Dark eyed juncos mostly feed on insects and seeds along with berries 20 Evolution editPostglacial Theory and Diversification edit Dark eyed juncos have been widely investigated as a model for rapid speciation This is due to exceptionally high phenotypic diversity as seen in the large number of color patterns over what seems to be a very short amount of time 21 Current estimates of dark eyed junco J hyemalis evolution place diversification from yellow eyed juncos J phaeonotus at 1 800 years ago based on mtDNA 22 One theory for the cause of this expansion is post glacial theory This theory claims ancestral junco populations expanded further north across North America as glaciers melted Receding glaciers would open up many novel habitats with new selective pressures Under those conditions natural selection can impact populations very strongly since there are many open niches Thus even short periods of isolation can cause populations to diverge Post glacial theory is supported by yellow eyed and dark eyed juncos sharing a dominant haplotype in their mitochondrial DNA which indicates a recent burst in population Yellow eyed juncos are relatively reproductively isolated Thus a trait is more likely to be found in both species because of ancestry than gene flow since the likelihood of interbreeding occurring often enough for the trait to be so common is much less likely than it being inherited from a single ancestral event The range of red backed J h dorsalis and grey headed juncos J h caniceps in the south of North America also provides evidence as the two seem to represent successive steps in developing dark eyed forms The red backed junco is very similar to the yellow eyed junco in appearance It also has the most southern range of the dark eyed junco species Under post glacial theory this population would be older than the others since populations expanded northwards The gray headed junco which is found further north has the same lighter beak as the rest of the junco complex Together they show the number of dark eyed junco like traits increasing as they move north If the post glacial theory applies northern junco subspecies would have diversified later This makes their wide range of coloration more notable since it would have to arise even faster Oregon junco group diversification is likely a result of both genetic drift and selection 21 Geographically isolated subspecies like J townsendi and J pontilis had low genetic environmental association This meant that most of the differences between them did not grant a measurable benefit to fitness Instead most differences were likely due to isolation and small population size 21 Those would increase the impact of genetic drift increasing differences between the subspecies Isolation barriers created by unsuitable desert habitat likely led to this lack of gene flow Other subspecies like J pinosis and J thurberi were much less geographically isolated Their ranges often overlap forming zones of intergradation where both subspecies exist and interbreed Instead of geographic isolation differences between these subspecies are probably driven by adaptation This is supported by J pinosis populations correlating with isothermality or how much temperatures shift from day to night and season to season and negatively with elevation This indicates that they likely adapted to those specific conditions Reproductive barriers could then come from those adaptations and differences in preferred habitat rather than lack of interaction There was also notable gene flow between J thurberi J shufeldti J montanus and J oreganus These species formed a latitudinal gradient where subspecies bleed into each other and decrease or increase in number in patterns correlating to latitude Divergence was likely driven by local adaptation along the path north Overall it is likely that there is no single mechanism driving the historical diversification of dark eyed juncos Different subspecies feel different evolutionary forces with more or less frequency However multiple forces compound to drive divergence in all or most of the subspecies It is likely that in the case of the dark eyed juncos these multiple factors have worked to accelerate change Sexual selection and geographic isolation work to reinforce and amplify small changes established by genetic drift and natural selection The exact mechanisms behind the speedy diversification of juncos remain a subject for more research Urbanization edit Dark eyed junco populations are also of interest to scientists for how they are responding to urbanization Much of this is modeled through a population of dark eyed juncos living on the University of California San Diego s campus The population was first studied in the 1980s and has been a subject of interest for how much they differ from less urban neighboring populations 23 One of the most notable differences of the UCSD population is that they do not migrate like other populations of Oregon juncos Instead they remain on campus year round This differentiates them from other junco populations that migrate to UCSD campus only in the winter This lack of migration was likely influenced by UCSD s mild Mediterranean climate This climate also results in longer breeding seasons than exist at higher latitudes This allows UCSD juncos to have as many as 4 broods per year rather than the 1 or 2 of nearby populations Greater brood number in turn may have acted as a selective pressure for parental involvement Since birds breed more within a season initial mating is less important and males who are involved in care are more likely to breed again in that same season 24 UCSD resident birds also flock in pairs more often than overwintering birds which may have resulted from the same selective pressures Despite other junco populations existing nearby the populations diverge much more than expected The degree of difference between the UCSD juncos and other local juncos was closer to what would be expected with geographic isolation Since the nearest populations located in the mountains are of the subspecies J thurberi it was assumed the UCSD birds came from an ancestral J thurberi population However genome analysis reveals that the population was likely established from the coastal subspecies J pinosis 20 30 generations ago which are conditions that make the founder effect very likely to be relevant 24 This conclusion is further supported by phenotypic similarities the UCSD birds and J pinosis both share similar degrees of white in their tail and nonmigratory behavior This realization undercuts the idea that urbanization drives the lack of migration but not that it caused many of the other changes More evidence comes from the UCSD birds occasionally interbreeding with overwintering J pinosis individuals but not J thurberi This is in spite of J thurberi juncos being much more common in the area If the UCSD population was interbreeding with both it would most likely have been observed already Since the founding population was quite small and the nearest J pinosis population far away genetic drift likely had a large influence on how the population developed However a strong association between habitat variables and functional genes was found This association is a sign of natural selection and adaptive traits not drift alone This indicates that genetic drift is likely not the only evolutionary force at play Selection is likely magnifying changes initially driven by drift allowing the UCSD population to diverge from its neighbors very quickly More proof of adaptive genes in the UCSD population can be found on the gene level Two of the most differentiated genes between the ancestral J pinosis population and the UCSD birds were linked to beneficial traits for urban environments 23 Specifically ABCB6 allowed birds better tolerance of heavy metals As heavy metal poisoning is a documented issue for urban birds this gene likely increases fitness in urban environments KCNQ4 is linked to high frequency echolocation in bats and seems to correlate with making higher pitched calls This is helpful in an urban environment because low frequency urban noise often drowns out bird calls With higher pitched vocalizations their calls would be less likely to get lost in that noise Given the theorized survival advantages the prevalence of these traits is likely to be driven by natural selection Research remains to be done on which genes in the UCSD population serve an adaptive function and which are likely just consequences of drift Especially with the discovery that they are more closely related to J pinosis much pre existing research may be less impactful However they are still a very promising model system for how birds adapt to urban ecosystems References edit BirdLife International 2021 Junco hyemalis IUCN Red List of Threatened Species 2020 e T22721097A138466281 doi 10 2305 IUCN UK 2021 3 RLTS T22721097A138466281 en Retrieved 23 March 2022 volume doi mismatch Linnaeus Carl 1758 Systema Naturae per regna tria naturae secundum classes ordines genera species cum characteribus differentiis synonymis locis in Latin Vol 1 10th ed Holmiae Stockholm Laurentii Salvii p 183 a b Catesby Mark 1729 1732 The Natural History of Carolina Florida and the Bahama Islands in English and French Vol 1 London W Innys and R Manby p 36 Plate 36 Committee on Classification and Nomenclature 1931 Check list of North American Birds 4th ed Lancaster Pennsylvania American Ornithologist s Union p 345 Paynter Raymond A Jr ed 1970 Check List of Birds of the World Vol 13 Cambridge Massachusetts Museum of Comparative Zoology p 63 Wagler Johann Georg 1831 Einige Mittheilungen uber Thiere Mexicos Isis von Oken in German and Latin 1831 Col 510 535 526 a b c Gill Frank Donsker David Rasmussen Pamela eds January 2022 New World Sparrows Bush Tanagers IOC World Bird List Version 12 1 International Ornithologists Union Retrieved 4 February 2022 Junco Oxford English Dictionary Online ed Oxford University Press Subscription or participating institution membership required Jobling James A 2010 The Helm Dictionary of Scientific Bird Names London United Kingdom Christopher Helm pp 197 212 ISBN 978 1 4081 2501 4 a b c d e f g Sibley David Allen 2000 The Sibley Guide to Birds Alfred A Knopf New York pp 500 502 ISBN 0 679 45122 6 a b c d Dunn Jon L 2002 The identification of Pink sided Juncos with cautionary notes about plumage variation and hybridization Birding 34 5 432 443 a b c d e f g Cornell Lab of Ornithology 2002 Bird Guide Dark eyed junco Retrieved 20 January 2007 Rising J D 2010 A Guide to the Identification and Natural History of the Sparrows of the United States and Canada Christopher Helm Publishers London ISBN 1408134608 Sparrows and Buntings A Guide to the Sparrows and Buntings of North America and the World by Clive Byers amp Urban Olsson Houghton Mifflin 1995 ISBN 978 0395738733 Black throated Blue Warbler Dendroica caerulescens Birds in Forested Landscapes Cornell Lab of Ornithology a b c Ohio Ornithological Society 2004 Annotated Ohio state checklist Archived July 18 2004 at the Wayback Machine Henninger W F 1906 A preliminary list of the birds of Seneca County Ohio PDF Wilson Bulletin 18 2 47 60 Kimmitt Abigail A Hardman Jack W Stricker Craig A Ketterson Ellen D September 2019 Sockman Keith ed Migratory strategy explains differences in timing of female reproductive development in seasonally sympatric songbirds Functional Ecology 33 9 1651 1662 Bibcode 2019FuEco 33 1651K doi 10 1111 1365 2435 13386 ISSN 0269 8463 Dark eyed junco life history All About Birds the Cornell Lab of Ornithology 2019 Retrieved 21 October 2021 Dark eyed Junco Audubon Field Guide www audubon org Retrieved 2024 04 20 a b c Friis Guillermo Fandos Guillermo Zellmer Amanda J McCormack John E Faircloth Brant C Mila Borja December 2018 Genome wide signals of drift and local adaptation during rapid lineage divergence in a songbird Molecular Ecology 27 24 5137 5153 doi 10 1111 mec 14946 ISSN 1365 294X PMID 30451354 Mila Borja McCormack John E Castaneda Gabriela Wayne Robert K Smith Thomas B 2007 11 07 Recent postglacial range expansion drives the rapid diversification of a songbird lineage in the genus Junco Proceedings of the Royal Society B Biological Sciences 274 1626 2653 2660 doi 10 1098 rspb 2007 0852 ISSN 0962 8452 PMC 2279216 PMID 17725978 a b Rasner C A Yeh P Eggert L S Hunt K E Woodruff D S Price T D 6 February 2004 Genetic and morphological evolution following a founder event in the dark eyed junco Junco hyemalis thurberi Molecular Ecology 13 3 671 681 a b Friis Guillermo Atwell Jonathan W Fudickar Adam M Greives Timothy J Yeh Pamela J Price Trevor D Ketterson Ellen D Mila Borja May 2022 Rapid evolutionary divergence of a songbird population following recent colonization of an urban area Molecular Ecology 31 9 2625 2643 doi 10 1111 mec 16422 ISSN 0962 1083 External links edit nbsp Wikimedia Commons has media related to the dark eyed junco nbsp Wikispecies has information related to Junco hyemalis Dark eyed junco ID including sound and video at Cornell Lab of Ornithology Dark eyed junco Junco hyemalis Archived 2011 04 17 at the Wayback Machine USGS Patuxent Bird Identification InfoCenter Juncos What do we know An expert discussion of atypical individuals the fine points of subspecific identification and the proper understanding of the cismontanus population from the ID Frontiers mailing list January 2004 supplemented with photographs and paintings Explore Species Dark eyed Junco at eBird Cornell Lab of Ornithology Dark eyed junco photo gallery at VIREO Drexel University Retrieved from https en wikipedia org w index php title Dark eyed junco amp oldid 1222985714, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.