fbpx
Wikipedia

Aluminium compounds

Aluminium (or aluminum) combines characteristics of pre- and post-transition metals. Since it has few available electrons for metallic bonding, like its heavier group 13 congeners, it has the characteristic physical properties of a post-transition metal, with longer-than-expected interatomic distances.[1] Furthermore, as Al3+ is a small and highly charged cation, it is strongly polarizing and aluminium compounds tend towards covalency;[2] this behaviour is similar to that of beryllium (Be2+), an example of a diagonal relationship.[3] However, unlike all other post-transition metals, the underlying core under aluminium's valence shell is that of the preceding noble gas, whereas for gallium and indium it is that of the preceding noble gas plus a filled d-subshell, and for thallium and nihonium it is that of the preceding noble gas plus filled d- and f-subshells. Hence, aluminium does not suffer the effects of incomplete shielding of valence electrons by inner electrons from the nucleus that its heavier congeners do. Aluminium's electropositive behavior, high affinity for oxygen, and highly negative standard electrode potential are all more similar to those of scandium, yttrium, lanthanum, and actinium, which have ds2 configurations of three valence electrons outside a noble gas core: aluminium is the most electropositive metal in its group.[1] Aluminium also bears minor similarities to the metalloid boron in the same group; AlX3 compounds are valence isoelectronic to BX3 compounds (they have the same valence electronic structure), and both behave as Lewis acids and readily form adducts.[4] Additionally, one of the main motifs of boron chemistry is regular icosahedral structures, and aluminium forms an important part of many icosahedral quasicrystal alloys, including the Al–Zn–Mg class.[5]

Sample of aluminium sulfate hexadecahydrate, Al2(SO4)3·16H2O.

Reactions of aluminium metal edit

Aluminium reacts with most nonmetals upon heating, forming compounds such as aluminium nitride (AlN), aluminium sulfide (Al2S3), and the aluminium halides (AlX3). It also forms a wide range of intermetallic compounds involving metals from every group on the periodic table. Aluminium has a high chemical affinity to oxygen, which renders it suitable for use as a reducing agent in the thermite reaction. A fine powder of aluminium metal reacts explosively on contact with liquid oxygen; under normal conditions, however, aluminium forms a thin oxide layer that protects the metal from further corrosion by oxygen, water, or dilute acid, a process termed passivation.[2][6] This layer is destroyed by contact with mercury due to amalgamation or with salts of some electropositive metals.[2] As such, the strongest aluminium alloys are less corrosion-resistant due to galvanic reactions with alloyed copper,[7] and aluminium's corrosion resistance is greatly reduced by aqueous salts, particularly in the presence of dissimilar metals.[1] In addition, although the reaction of aluminium with water at temperatures below 280 °C is of interest for the production of hydrogen, commercial application of this fact has challenges in circumventing the passivating oxide layer, which inhibits the reaction, and in storing the energy required to regenerate the aluminium metal.[8]

Primarily because it is corroded by dissolved chlorides, such as common sodium chloride, household plumbing is never made from aluminium.[9] However, because of its general resistance to corrosion, aluminium is one of the few metals that retains silvery reflectance in finely powdered form, making it an important component of silver-colored paints. Aluminium mirror finish has the highest reflectance of any metal in the 200–400 nm (UV) and the 3,000–10,000 nm (far IR) regions; in the 400–700 nm visible range it is slightly outperformed by tin and silver and in the 700–3000 nm (near IR) by silver, gold, and copper.[10]

In hot concentrated hydrochloric acid, aluminium reacts with water with evolution of hydrogen, and in aqueous sodium hydroxide or potassium hydroxide at room temperature to form aluminates—protective passivation under these conditions is negligible.[9] The reaction with aqueous alkali is often written:[2]

Al + NaOH + H2O → NaAlO2 + 3/2 H2

although the aluminium species in solution is probably instead the hydrated tetrahydroxoaluminate anion, [Al(OH)4] or [Al(H2O)2(OH)4].[2]

Oxidizing acids do not effectively attack high-purity aluminium because the oxide layer forms and protects the metal; aqua regia will nevertheless dissolve aluminium. This allows aluminium to be used to store reagents such as nitric acid, concentrated sulfuric acid, and some organic acids.[11]

Inorganic compounds edit

The vast majority of compounds, including all aluminium-containing minerals and all commercially significant aluminium compounds, feature aluminium in the oxidation state 3+. The coordination number of such compounds varies, but generally Al3+ is either six- or four-coordinate. Almost all compounds of aluminium(III) are colorless.[2]

 
Aluminium hydrolysis as a function of pH. Coordinated water molecules are omitted. (Data from Baes and Mesmer)[12]

In aqueous solution, Al3+ exists as the hexaaqua cation [Al(H2O)6]3+, which has an approximate pKa of 10−5.[13] Such solutions are acidic as this cation can act as a proton donor, progressively hydrolysing to [Al(H2O)5(OH)]2+, [Al(H2O)4(OH)2]+, and so on. As pH increases these mononuclear species begin to aggregate together by the formation of hydroxide bridges,[2] forming many oligomeric ions, such as the Keggin ion [Al13O4(OH)24(H2O)12]7+.[13] The process ends with precipitation of aluminium hydroxide, Al(OH)3. This is useful for clarification of water, as the precipitate nucleates on suspended particles in the water, hence removing them. Increasing the pH even further leads to the hydroxide dissolving again as aluminate, [Al(H2O)2(OH)4], is formed. Aluminium hydroxide forms both salts and aluminates and dissolves in acid and alkali, as well as on fusion with acidic and basic oxides:[2]

Al2O3 + 3 SiO2 fuse  Al2(SiO3)3
Al2O3 + CaO fuse  Ca(AlO2)2

This behaviour of Al(OH)3 is termed amphoterism, and is characteristic of weakly basic cations that form insoluble hydroxides and whose hydrated species can also donate their protons. Further examples include Be2+, Zn2+, Ga3+, Sn2+, and Pb2+; indeed, gallium in the same group is slightly more acidic than aluminium. One effect of this is that aluminium salts with weak acids are hydrolysed in water to the aquated hydroxide and the corresponding nonmetal hydride: aluminium sulfide yields hydrogen sulfide, aluminium nitride yields ammonia, and aluminium carbide yields methane. Aluminium cyanide, acetate, and carbonate exist in aqueous solution but are unstable as such; only incomplete hydrolysis takes place for salts with strong acids, such as the halides, nitrate, and sulfate. For similar reasons, anhydrous aluminium salts cannot be made by heating their "hydrates": hydrated aluminium chloride is in fact not AlCl3·6H2O but [Al(H2O)6]Cl3, and the Al–O bonds are so strong that heating is not sufficient to break them and form Al–Cl bonds instead:[2]

2[Al(H2O)6]Cl3 heat  Al2O3 + 6 HCl + 9 H2O

All four trihalides are well known. Unlike the structures of the three heavier trihalides, aluminium fluoride (AlF3) features six-coordinate aluminium, which explains its involatility and insolubility as well as high heat of formation. Each aluminium atom is surrounded by six fluorine atoms in a distorted octahedral arrangement, with each fluorine atom being shared between the corners of two octahedra in a structure related to but distorted from that of ReO3. Such {AlF6} units also exist in complex fluorides such as cryolite, Na3AlF6, but should not be considered as [AlF6]3− complex anions as the Al–F bonds are not significantly different in type from the other M–F bonds.[14] Such differences in coordination between the fluorides and heavier halides are not unusual, occurring in SnIV and BiIII as well for example; even bigger differences occur between CO2 and SiO2.[14] AlF3 melts at 1,290 °C (2,354 °F) and is made by reaction of aluminium oxide with hydrogen fluoride gas at 700 °C (1,292 °F).[14]

 
Mechanism of the Friedel–Crafts acylation, using AlCl3 as a catalyst

With heavier halides, the coordination numbers are lower. The other trihalides are dimeric or polymeric with tetrahedral four-coordinate aluminium centers. Aluminium trichloride (AlCl3) has a layered polymeric structure below its melting point of 192.4 °C (378 °F), but transforms on melting to Al2Cl6 dimers with a concomitant increase in volume by 85% and a near-total loss of electrical conductivity. These still predominate in the gas phase at low temperatures (150–200 °C), but at higher temperatures increasingly dissociate into trigonal planar AlCl3 monomers similar to the structure of BCl3. Aluminium tribromide and aluminium triiodide form Al2X6 dimers in all three phases and hence do not show such significant changes of properties upon phase change.[14] These materials are prepared by treating aluminium metal with the halogen. The aluminium trihalides form many addition compounds or complexes; their Lewis acidic nature makes them useful as catalysts for the Friedel–Crafts reactions. Aluminium trichloride has major industrial uses involving this reaction, such as in the manufacture of anthraquinones and styrene; it is also often used as the precursor for many other aluminium compounds and as a reagent for converting nonmetal fluorides into the corresponding chlorides (a transhalogenation reaction).[14]

AlCl3 + 3 LiZ → 3 LiCl + AlZ3 (Z = R, NR2, N=CR2)
AlCl3 + 4 LiZ → 3 LiCl + LiAlZ4 (Z = R, NR2, N=CR2, H)
BF3 + AlCl3 → AlF3 + BCl3

Aluminium forms one stable oxide with the chemical formula Al2O3, commonly called alumina.[15] It can be found in nature in the mineral corundum, α-alumina;[16] there is also a γ-alumina phase.[13] As corundum is very hard (Mohs hardness 9), has a high melting point of 2,045 °C (3,713 °F), has very low volatility, is chemically inert, and a good electrical insulator, it is often used in abrasives (such as toothpaste), as a refractory material, and in ceramics, as well as being the starting material for the electrolytic production of aluminium metal. Sapphire and ruby are impure corundum contaminated with trace amounts of other metals.[13] The two main oxide-hydroxides, AlO(OH), are boehmite and diaspore. There are three main trihydroxides: bayerite, gibbsite, and nordstrandite, which differ in their crystalline structure (polymorphs). Many other intermediate and related structures are also known.[13] Most are produced from ores by a variety of wet processes using acid and base. Heating the hydroxides leads to formation of corundum. These materials are of central importance to the production of aluminium and are themselves extremely useful. Some mixed oxide phases are also very useful, such as spinel (MgAl2O4), Na-β-alumina (NaAl11O17), and tricalcium aluminate (Ca3Al2O6, an important mineral phase in Portland cement).[13]

The only stable chalcogenides under normal conditions are aluminium sulfide (Al2S3), selenide (Al2Se3), and telluride (Al2Te3). All three are prepared by direct reaction of their elements at about 1,000 °C (1,832 °F) and quickly hydrolyse completely in water to yield aluminium hydroxide and the respective hydrogen chalcogenide. As aluminium is a small atom relative to these chalcogens, these have four-coordinate tetrahedral aluminium with various polymorphs having structures related to wurtzite, with two-thirds of the possible metal sites occupied either in an orderly (α) or random (β) fashion; the sulfide also has a γ form related to γ-alumina, and an unusual high-temperature hexagonal form where half the aluminium atoms have tetrahedral four-coordination and the other half have trigonal bipyramidal five-coordination.[17] Four pnictides, aluminium nitride (AlN), aluminium phosphide (AlP), aluminium arsenide (AlAs), and aluminium antimonide (AlSb), are known. They are all III-V semiconductors isoelectronic to silicon and germanium, all of which but AlN have the zinc blende structure. All four can be made by high-temperature (and possibly high-pressure) direct reaction of their component elements.[17]

Rarer oxidation states edit

Although the great majority of aluminium compounds feature Al3+ centers, compounds with lower oxidation states are known and are sometimes of significance as precursors to the Al3+ species.

Aluminium(I) edit

AlF, AlCl, AlBr, and AlI exist in the gaseous phase when the respective trihalide is heated with aluminium, and at cryogenic temperatures. Their instability in the condensed phase is due to their ready disproportionation to aluminium and the respective trihalide: the reverse reaction is favored at high temperature (although even then they are still short-lived), explaining why AlF3 is more volatile when heated in the presence of aluminium metal, as is aluminium metal when heated in the presence of AlCl3.[14]

A stable derivative of aluminium monoiodide is the cyclic adduct formed with triethylamine, Al4I4(NEt3)4. Also of theoretical interest but only of fleeting existence are Al2O and Al2S. Al2O is made by heating the normal oxide, Al2O3, with silicon at 1,800 °C (3,272 °F) in a vacuum. Such materials quickly disproportionate to the starting materials.[18]

Aluminium(II) edit

Very simple Al(II) compounds are invoked or observed in the reactions of Al metal with oxidants. For example, aluminium monoxide, AlO, has been detected in the gas phase after explosion[19] and in stellar absorption spectra.[20] More thoroughly investigated are compounds of the formula R4Al2 which contain an Al–Al bond and where R is a large organic ligand.[21]

Organoaluminium compounds and related hydrides edit

 
Structure of trimethylaluminium, a compound that features five-coordinate carbon.

A variety of compounds of empirical formula AlR3 and AlR1.5Cl1.5 exist.[22] The aluminium trialkyls and triaryls are reactive, volatile, and colorless liquids or low-melting solids. They catch fire spontaneously in air and react with water, thus necessitating precautions when handling them. They often form dimers, unlike their boron analogues, but this tendency diminishes for branched-chain alkyls (e.g. Pri, Bui, Me3CCH2); for example, triisobutylaluminium exists as an equilibrium mixture of the monomer and dimer.[23][24] These dimers, such as trimethylaluminium (Al2Me6), usually feature tetrahedral Al centers formed by dimerization with some alkyl group bridging between both aluminium atoms. They are hard acids and react readily with ligands, forming adducts. In industry, they are mostly used in alkene insertion reactions, as discovered by Karl Ziegler, most importantly in "growth reactions" that form long-chain unbranched primary alkenes and alcohols, and in the low-pressure polymerization of ethene and propene. There are also some heterocyclic and cluster organoaluminium compounds involving Al–N bonds.[23]

The industrially most important aluminium hydride is lithium aluminium hydride (LiAlH4), which is used in as a reducing agent in organic chemistry. It can be produced from lithium hydride and aluminium trichloride:[25]

4 LiH + AlCl3 → LiAlH4 + 3 LiCl

The simplest hydride, aluminium hydride or alane, is not as important. It is a polymer with the formula (AlH3)n, in contrast to the corresponding boron hydride that is a dimer with the formula (BH3)2.[25]

References edit

  1. ^ a b c Greenwood and Earnshaw, pp. 222–4
  2. ^ a b c d e f g h i Greenwood and Earnshaw, pp. 224–7
  3. ^ Greenwood and Earnshaw, pp. 112–3
  4. ^ King, p. 241
  5. ^ King, pp. 235–6
  6. ^ Vargel, Christian (2004) [French edition published 1999]. Corrosion of Aluminium. Elsevier. ISBN 978-0-08-044495-6. from the original on 21 May 2016.
  7. ^ Polmear, I.J. (1995). Light Alloys: Metallurgy of the Light Metals (3 ed.). Butterworth-Heinemann. ISBN 978-0-340-63207-9.
  8. ^ (PDF). U.S. Department of Energy. 1 January 2008. Archived from the original (PDF) on 14 September 2012.
  9. ^ a b Beal, Roy E. (1999). Engine Coolant Testing : Fourth Volume. ASTM International. p. 90. ISBN 978-0-8031-2610-7. from the original on 24 April 2016.
  10. ^ Macleod, H.A. (2001). Thin-film optical filters. CRC Press. p. 158159. ISBN 978-0-7503-0688-1.
  11. ^ Frank, W.B. (2009). "Aluminum". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a01_459.pub2. ISBN 978-3-527-30673-2.
  12. ^ *Baes, C.F.; Mesmer, R.E. (1986) [1976]. The Hydrolysis of Cations. Malabar, FL: Robert E. Krieger. ISBN 978-0-89874-892-5.
  13. ^ a b c d e f Greenwood and Earnshaw, pp. 242–52
  14. ^ a b c d e f Greenwood and Earnshaw, pp. 233–7
  15. ^ Eastaugh, Nicholas; Walsh, Valentine; Chaplin, Tracey; Siddall, Ruth (2008). Pigment Compendium. Routledge. ISBN 978-1-136-37393-0.
  16. ^ Roscoe, Henry Enfield; Schorlemmer, Carl (1913). A treatise on chemistry. Macmillan. p. 718. Aluminium forms one stable oxide, known by its mineral name corundum.
  17. ^ a b Greenwood and Earnshaw, pp. 252–7
  18. ^ Dohmeier, C.; Loos, D.; Schnöckel, H. (1996). "Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures, and Reactions". Angewandte Chemie International Edition. 35 (2): 129–149. doi:10.1002/anie.199601291.
  19. ^ Tyte, D.C. (1964). "Red (B2Π–A2σ) Band System of Aluminium Monoxide". Nature. 202 (4930): 383–384. Bibcode:1964Natur.202..383T. doi:10.1038/202383a0. S2CID 4163250.
  20. ^ Merrill, P.W.; Deutsch, A.J.; Keenan, P.C. (1962). "Absorption Spectra of M-Type Mira Variables". The Astrophysical Journal. 136: 21. Bibcode:1962ApJ...136...21M. doi:10.1086/147348.
  21. ^ Uhl, W. (2004). "Organoelement Compounds Possessing Al–Al, Ga–Ga, In–In, and Tl–Tl Single Bonds". Organoelement Compounds Possessing Al–Al, Ga–Ga, In–In, and Tl–Tl Single Bonds. Advances in Organometallic Chemistry. Vol. 51. pp. 53–108. doi:10.1016/S0065-3055(03)51002-4. ISBN 978-0-12-031151-4.
  22. ^ Elschenbroich, C. (2006). Organometallics. Wiley-VCH. ISBN 978-3-527-29390-2.
  23. ^ a b Greenwood and Earnshaw, pp. 257–67
  24. ^ Martin B. Smith, Journal of Organometallic Chemistry, The Monomer-Dimer Equilibria of Liquid Ammonium Alkyls II Triisobutylaluminum Journal of Organometallic Chemistry, Volume 22, Issue 2, April 1970, Pages 273-281. doi:10.1016/S0022-328X(00)86043-X
  25. ^ a b Greenwood and Earnshaw, pp. 227–32

Bibliography edit

aluminium, compounds, aluminium, aluminum, combines, characteristics, post, transition, metals, since, available, electrons, metallic, bonding, like, heavier, group, congeners, characteristic, physical, properties, post, transition, metal, with, longer, than, . Aluminium or aluminum combines characteristics of pre and post transition metals Since it has few available electrons for metallic bonding like its heavier group 13 congeners it has the characteristic physical properties of a post transition metal with longer than expected interatomic distances 1 Furthermore as Al3 is a small and highly charged cation it is strongly polarizing and aluminium compounds tend towards covalency 2 this behaviour is similar to that of beryllium Be2 an example of a diagonal relationship 3 However unlike all other post transition metals the underlying core under aluminium s valence shell is that of the preceding noble gas whereas for gallium and indium it is that of the preceding noble gas plus a filled d subshell and for thallium and nihonium it is that of the preceding noble gas plus filled d and f subshells Hence aluminium does not suffer the effects of incomplete shielding of valence electrons by inner electrons from the nucleus that its heavier congeners do Aluminium s electropositive behavior high affinity for oxygen and highly negative standard electrode potential are all more similar to those of scandium yttrium lanthanum and actinium which have ds2 configurations of three valence electrons outside a noble gas core aluminium is the most electropositive metal in its group 1 Aluminium also bears minor similarities to the metalloid boron in the same group AlX3 compounds are valence isoelectronic to BX3 compounds they have the same valence electronic structure and both behave as Lewis acids and readily form adducts 4 Additionally one of the main motifs of boron chemistry is regular icosahedral structures and aluminium forms an important part of many icosahedral quasicrystal alloys including the Al Zn Mg class 5 Sample of aluminium sulfate hexadecahydrate Al2 SO4 3 16H2O Contents 1 Reactions of aluminium metal 2 Inorganic compounds 2 1 Rarer oxidation states 2 1 1 Aluminium I 2 1 2 Aluminium II 3 Organoaluminium compounds and related hydrides 4 References 5 BibliographyReactions of aluminium metal editAluminium reacts with most nonmetals upon heating forming compounds such as aluminium nitride AlN aluminium sulfide Al2S3 and the aluminium halides AlX3 It also forms a wide range of intermetallic compounds involving metals from every group on the periodic table Aluminium has a high chemical affinity to oxygen which renders it suitable for use as a reducing agent in the thermite reaction A fine powder of aluminium metal reacts explosively on contact with liquid oxygen under normal conditions however aluminium forms a thin oxide layer that protects the metal from further corrosion by oxygen water or dilute acid a process termed passivation 2 6 This layer is destroyed by contact with mercury due to amalgamation or with salts of some electropositive metals 2 As such the strongest aluminium alloys are less corrosion resistant due to galvanic reactions with alloyed copper 7 and aluminium s corrosion resistance is greatly reduced by aqueous salts particularly in the presence of dissimilar metals 1 In addition although the reaction of aluminium with water at temperatures below 280 C is of interest for the production of hydrogen commercial application of this fact has challenges in circumventing the passivating oxide layer which inhibits the reaction and in storing the energy required to regenerate the aluminium metal 8 Primarily because it is corroded by dissolved chlorides such as common sodium chloride household plumbing is never made from aluminium 9 However because of its general resistance to corrosion aluminium is one of the few metals that retains silvery reflectance in finely powdered form making it an important component of silver colored paints Aluminium mirror finish has the highest reflectance of any metal in the 200 400 nm UV and the 3 000 10 000 nm far IR regions in the 400 700 nm visible range it is slightly outperformed by tin and silver and in the 700 3000 nm near IR by silver gold and copper 10 In hot concentrated hydrochloric acid aluminium reacts with water with evolution of hydrogen and in aqueous sodium hydroxide or potassium hydroxide at room temperature to form aluminates protective passivation under these conditions is negligible 9 The reaction with aqueous alkali is often written 2 Al NaOH H2O NaAlO2 3 2 H2although the aluminium species in solution is probably instead the hydrated tetrahydroxoaluminate anion Al OH 4 or Al H2O 2 OH 4 2 Oxidizing acids do not effectively attack high purity aluminium because the oxide layer forms and protects the metal aqua regia will nevertheless dissolve aluminium This allows aluminium to be used to store reagents such as nitric acid concentrated sulfuric acid and some organic acids 11 Inorganic compounds editThe vast majority of compounds including all aluminium containing minerals and all commercially significant aluminium compounds feature aluminium in the oxidation state 3 The coordination number of such compounds varies but generally Al3 is either six or four coordinate Almost all compounds of aluminium III are colorless 2 nbsp Aluminium hydrolysis as a function of pH Coordinated water molecules are omitted Data from Baes and Mesmer 12 In aqueous solution Al3 exists as the hexaaqua cation Al H2O 6 3 which has an approximate pKa of 10 5 13 Such solutions are acidic as this cation can act as a proton donor progressively hydrolysing to Al H2O 5 OH 2 Al H2O 4 OH 2 and so on As pH increases these mononuclear species begin to aggregate together by the formation of hydroxide bridges 2 forming many oligomeric ions such as the Keggin ion Al13O4 OH 24 H2O 12 7 13 The process ends with precipitation of aluminium hydroxide Al OH 3 This is useful for clarification of water as the precipitate nucleates on suspended particles in the water hence removing them Increasing the pH even further leads to the hydroxide dissolving again as aluminate Al H2O 2 OH 4 is formed Aluminium hydroxide forms both salts and aluminates and dissolves in acid and alkali as well as on fusion with acidic and basic oxides 2 Al2O3 3 SiO2 fuse Al2 SiO3 3 Al2O3 CaO fuse Ca AlO2 2This behaviour of Al OH 3 is termed amphoterism and is characteristic of weakly basic cations that form insoluble hydroxides and whose hydrated species can also donate their protons Further examples include Be2 Zn2 Ga3 Sn2 and Pb2 indeed gallium in the same group is slightly more acidic than aluminium One effect of this is that aluminium salts with weak acids are hydrolysed in water to the aquated hydroxide and the corresponding nonmetal hydride aluminium sulfide yields hydrogen sulfide aluminium nitride yields ammonia and aluminium carbide yields methane Aluminium cyanide acetate and carbonate exist in aqueous solution but are unstable as such only incomplete hydrolysis takes place for salts with strong acids such as the halides nitrate and sulfate For similar reasons anhydrous aluminium salts cannot be made by heating their hydrates hydrated aluminium chloride is in fact not AlCl3 6H2O but Al H2O 6 Cl3 and the Al O bonds are so strong that heating is not sufficient to break them and form Al Cl bonds instead 2 2 Al H2O 6 Cl3 heat Al2O3 6 HCl 9 H2OAll four trihalides are well known Unlike the structures of the three heavier trihalides aluminium fluoride AlF3 features six coordinate aluminium which explains its involatility and insolubility as well as high heat of formation Each aluminium atom is surrounded by six fluorine atoms in a distorted octahedral arrangement with each fluorine atom being shared between the corners of two octahedra in a structure related to but distorted from that of ReO3 Such AlF6 units also exist in complex fluorides such as cryolite Na3AlF6 but should not be considered as AlF6 3 complex anions as the Al F bonds are not significantly different in type from the other M F bonds 14 Such differences in coordination between the fluorides and heavier halides are not unusual occurring in SnIV and BiIII as well for example even bigger differences occur between CO2 and SiO2 14 AlF3 melts at 1 290 C 2 354 F and is made by reaction of aluminium oxide with hydrogen fluoride gas at 700 C 1 292 F 14 nbsp Mechanism of the Friedel Crafts acylation using AlCl3 as a catalystWith heavier halides the coordination numbers are lower The other trihalides are dimeric or polymeric with tetrahedral four coordinate aluminium centers Aluminium trichloride AlCl3 has a layered polymeric structure below its melting point of 192 4 C 378 F but transforms on melting to Al2Cl6 dimers with a concomitant increase in volume by 85 and a near total loss of electrical conductivity These still predominate in the gas phase at low temperatures 150 200 C but at higher temperatures increasingly dissociate into trigonal planar AlCl3 monomers similar to the structure of BCl3 Aluminium tribromide and aluminium triiodide form Al2X6 dimers in all three phases and hence do not show such significant changes of properties upon phase change 14 These materials are prepared by treating aluminium metal with the halogen The aluminium trihalides form many addition compounds or complexes their Lewis acidic nature makes them useful as catalysts for the Friedel Crafts reactions Aluminium trichloride has major industrial uses involving this reaction such as in the manufacture of anthraquinones and styrene it is also often used as the precursor for many other aluminium compounds and as a reagent for converting nonmetal fluorides into the corresponding chlorides a transhalogenation reaction 14 AlCl3 3 LiZ 3 LiCl AlZ3 Z R NR2 N CR2 AlCl3 4 LiZ 3 LiCl LiAlZ4 Z R NR2 N CR2 H BF3 AlCl3 AlF3 BCl3Aluminium forms one stable oxide with the chemical formula Al2O3 commonly called alumina 15 It can be found in nature in the mineral corundum a alumina 16 there is also a g alumina phase 13 As corundum is very hard Mohs hardness 9 has a high melting point of 2 045 C 3 713 F has very low volatility is chemically inert and a good electrical insulator it is often used in abrasives such as toothpaste as a refractory material and in ceramics as well as being the starting material for the electrolytic production of aluminium metal Sapphire and ruby are impure corundum contaminated with trace amounts of other metals 13 The two main oxide hydroxides AlO OH are boehmite and diaspore There are three main trihydroxides bayerite gibbsite and nordstrandite which differ in their crystalline structure polymorphs Many other intermediate and related structures are also known 13 Most are produced from ores by a variety of wet processes using acid and base Heating the hydroxides leads to formation of corundum These materials are of central importance to the production of aluminium and are themselves extremely useful Some mixed oxide phases are also very useful such as spinel MgAl2O4 Na b alumina NaAl11O17 and tricalcium aluminate Ca3Al2O6 an important mineral phase in Portland cement 13 The only stable chalcogenides under normal conditions are aluminium sulfide Al2S3 selenide Al2Se3 and telluride Al2Te3 All three are prepared by direct reaction of their elements at about 1 000 C 1 832 F and quickly hydrolyse completely in water to yield aluminium hydroxide and the respective hydrogen chalcogenide As aluminium is a small atom relative to these chalcogens these have four coordinate tetrahedral aluminium with various polymorphs having structures related to wurtzite with two thirds of the possible metal sites occupied either in an orderly a or random b fashion the sulfide also has a g form related to g alumina and an unusual high temperature hexagonal form where half the aluminium atoms have tetrahedral four coordination and the other half have trigonal bipyramidal five coordination 17 Four pnictides aluminium nitride AlN aluminium phosphide AlP aluminium arsenide AlAs and aluminium antimonide AlSb are known They are all III V semiconductors isoelectronic to silicon and germanium all of which but AlN have the zinc blende structure All four can be made by high temperature and possibly high pressure direct reaction of their component elements 17 Rarer oxidation states edit Although the great majority of aluminium compounds feature Al3 centers compounds with lower oxidation states are known and are sometimes of significance as precursors to the Al3 species Aluminium I edit Main article Aluminium I compounds AlF AlCl AlBr and AlI exist in the gaseous phase when the respective trihalide is heated with aluminium and at cryogenic temperatures Their instability in the condensed phase is due to their ready disproportionation to aluminium and the respective trihalide the reverse reaction is favored at high temperature although even then they are still short lived explaining why AlF3 is more volatile when heated in the presence of aluminium metal as is aluminium metal when heated in the presence of AlCl3 14 A stable derivative of aluminium monoiodide is the cyclic adduct formed with triethylamine Al4I4 NEt3 4 Also of theoretical interest but only of fleeting existence are Al2O and Al2S Al2O is made by heating the normal oxide Al2O3 with silicon at 1 800 C 3 272 F in a vacuum Such materials quickly disproportionate to the starting materials 18 Aluminium II edit Very simple Al II compounds are invoked or observed in the reactions of Al metal with oxidants For example aluminium monoxide AlO has been detected in the gas phase after explosion 19 and in stellar absorption spectra 20 More thoroughly investigated are compounds of the formula R4Al2 which contain an Al Al bond and where R is a large organic ligand 21 Organoaluminium compounds and related hydrides editMain article Organoaluminium compound nbsp Structure of trimethylaluminium a compound that features five coordinate carbon A variety of compounds of empirical formula AlR3 and AlR1 5Cl1 5 exist 22 The aluminium trialkyls and triaryls are reactive volatile and colorless liquids or low melting solids They catch fire spontaneously in air and react with water thus necessitating precautions when handling them They often form dimers unlike their boron analogues but this tendency diminishes for branched chain alkyls e g Pri Bui Me3CCH2 for example triisobutylaluminium exists as an equilibrium mixture of the monomer and dimer 23 24 These dimers such as trimethylaluminium Al2Me6 usually feature tetrahedral Al centers formed by dimerization with some alkyl group bridging between both aluminium atoms They are hard acids and react readily with ligands forming adducts In industry they are mostly used in alkene insertion reactions as discovered by Karl Ziegler most importantly in growth reactions that form long chain unbranched primary alkenes and alcohols and in the low pressure polymerization of ethene and propene There are also some heterocyclic and cluster organoaluminium compounds involving Al N bonds 23 The industrially most important aluminium hydride is lithium aluminium hydride LiAlH4 which is used in as a reducing agent in organic chemistry It can be produced from lithium hydride and aluminium trichloride 25 4 LiH AlCl3 LiAlH4 3 LiClThe simplest hydride aluminium hydride or alane is not as important It is a polymer with the formula AlH3 n in contrast to the corresponding boron hydride that is a dimer with the formula BH3 2 25 References edit a b c Greenwood and Earnshaw pp 222 4 a b c d e f g h i Greenwood and Earnshaw pp 224 7 Greenwood and Earnshaw pp 112 3 King p 241 King pp 235 6 Vargel Christian 2004 French edition published 1999 Corrosion of Aluminium Elsevier ISBN 978 0 08 044495 6 Archived from the original on 21 May 2016 Polmear I J 1995 Light Alloys Metallurgy of the Light Metals 3 ed Butterworth Heinemann ISBN 978 0 340 63207 9 Reaction of Aluminum with Water to Produce Hydrogen PDF U S Department of Energy 1 January 2008 Archived from the original PDF on 14 September 2012 a b Beal Roy E 1999 Engine Coolant Testing Fourth Volume ASTM International p 90 ISBN 978 0 8031 2610 7 Archived from the original on 24 April 2016 Macleod H A 2001 Thin film optical filters CRC Press p 158159 ISBN 978 0 7503 0688 1 Frank W B 2009 Aluminum Ullmann s Encyclopedia of Industrial Chemistry Wiley VCH doi 10 1002 14356007 a01 459 pub2 ISBN 978 3 527 30673 2 Baes C F Mesmer R E 1986 1976 The Hydrolysis of Cations Malabar FL Robert E Krieger ISBN 978 0 89874 892 5 a b c d e f Greenwood and Earnshaw pp 242 52 a b c d e f Greenwood and Earnshaw pp 233 7 Eastaugh Nicholas Walsh Valentine Chaplin Tracey Siddall Ruth 2008 Pigment Compendium Routledge ISBN 978 1 136 37393 0 Roscoe Henry Enfield Schorlemmer Carl 1913 A treatise on chemistry Macmillan p 718 Aluminium forms one stable oxide known by its mineral name corundum a b Greenwood and Earnshaw pp 252 7 Dohmeier C Loos D Schnockel H 1996 Aluminum I and Gallium I Compounds Syntheses Structures and Reactions Angewandte Chemie International Edition 35 2 129 149 doi 10 1002 anie 199601291 Tyte D C 1964 Red B2P A2s Band System of Aluminium Monoxide Nature 202 4930 383 384 Bibcode 1964Natur 202 383T doi 10 1038 202383a0 S2CID 4163250 Merrill P W Deutsch A J Keenan P C 1962 Absorption Spectra of M Type Mira Variables The Astrophysical Journal 136 21 Bibcode 1962ApJ 136 21M doi 10 1086 147348 Uhl W 2004 Organoelement Compounds Possessing Al Al Ga Ga In In and Tl Tl Single Bonds Organoelement Compounds Possessing Al Al Ga Ga In In and Tl Tl Single Bonds Advances in Organometallic Chemistry Vol 51 pp 53 108 doi 10 1016 S0065 3055 03 51002 4 ISBN 978 0 12 031151 4 Elschenbroich C 2006 Organometallics Wiley VCH ISBN 978 3 527 29390 2 a b Greenwood and Earnshaw pp 257 67 Martin B Smith Journal of Organometallic Chemistry The Monomer Dimer Equilibria of Liquid Ammonium Alkyls II Triisobutylaluminum Journal of Organometallic Chemistry Volume 22 Issue 2 April 1970 Pages 273 281 doi 10 1016 S0022 328X 00 86043 X a b Greenwood and Earnshaw pp 227 32Bibliography editGreenwood Norman N Earnshaw Alan 1997 Chemistry of the Elements 2nd ed Butterworth Heinemann ISBN 978 0 08 037941 8 Retrieved from https en wikipedia org w index php title Aluminium compounds amp oldid 1181717716, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.