fbpx
Wikipedia

Brachypodium distachyon

Brachypodium distachyon, commonly called purple false brome[1] or stiff brome,[2] is a grass species native to southern Europe, northern Africa and southwestern Asia east to India. It is related to the major cereal grain species wheat, barley, oats, maize, rice, rye, sorghum, and millet. It has many qualities that make it an excellent model organism for functional genomics research in temperate grasses, cereals, and dedicated biofuel crops such as switchgrass. These attributes include small genome (~270 Mbp) diploid accessions, a series of polyploid accessions, a small physical stature, self-fertility, a short lifecycle, simple growth requirements, and an efficient transformation system. The genome of Brachypodium distachyon (diploid inbred line Bd21) has been sequenced and published in Nature in 2010.[3]

Brachypodium distachyon
Scientific classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Subfamily: Pooideae
Genus: Brachypodium
Species:
B. distachyon
Binomial name
Brachypodium distachyon

Model organism

Although Brachypodium distachyon has little or no direct agricultural significance, it has several advantages as an experimental model organism for understanding the genetic, cellular and molecular biology of temperate grasses. The relatively small size of its genome makes it useful for genetic mapping and sequencing. In addition, only ~21% of the Brachypodium genome consists of repetitive elements, compared to 26% in rice and ~80% in wheat, further simplifying genetic mapping and sequencing.[3] At about 272 million base pairs and with five chromosomes, it has a small genome for a grass species. Brachypodium distachyon's small size (15–20 cm) and rapid life cycle (eight to twelve weeks) are also advantageous for research purposes.[4] For early-flowering accessions it can take as little as three weeks from germination to flower (under an appropriate inductive photoperiod). The small size of some accessions makes it convenient for cultivation in a small space. As a weed it grows easily without specialized growing conditions.

This Brachypodium is emerging as a powerful model with a growing research community. The International Brachypodium Initiative (IBI) held its first genomics meeting and workshop at the PAG XIV conference in San Diego, California, in January 2006. The goal of the IBI is to promote the development of B. distachyon as a model system and will develop and distribute genomic, genetic, and bioinformatics resources such as reference genotypes, BAC libraries, genetic markers, mapping populations, and a genome sequence database. Recently, efficient Agrobacterium-mediated transformation systems have been developed for a range of Brachypodium genotypes,[5][6][7] enabling the development of T-DNA mutant collections.[6][8][9] The characterization and distribution of T-DNA insertion lines has been initiated to facilitate the understanding of gene function in grasses.[10]

By now, Brachypodium distachyon has established itself as an important tool for comparative genomics.[11] It is now emerging as a model for crop plant disease, facilitating the model-to-crop transfer of knowledge on disease resistance.[12] Brachypodium distachyon is also becoming a useful model system for studies of evolutionary developmental biology, in particular to contrast molecular genetic mechanisms with dicotyledon model systems, notably Arabidopsis thaliana.[13] The finding of higher genetic diversity in eastern Iberian populations occurring in basic soils suggests that these populations can be better adapted than those occurring in western areas of the Iberian Peninsula where the soils are more acidic and accumulate toxic Al ions.[14]

Notes

  1. ^ USDA, NRCS (n.d.). "Brachypodium distachyon". The PLANTS Database (plants.usda.gov). Greensboro, North Carolina: National Plant Data Team. Retrieved 10 January 2016.
  2. ^ (xls). Botanical Society of Britain and Ireland. Archived from the original (xls) on 2015-06-26. Retrieved 2014-10-17.
  3. ^ a b The International Brachypodium Initiative (2010). "Genome sequencing and analysis of the model grass Brachypodium distachyon". Nature. 463 (7282): 763–8. Bibcode:2010Natur.463..763T. doi:10.1038/nature08747. PMID 20148030.
  4. ^ Li, Chuan; Rudi, Heidi; Stockinger, Eric J.; Cheng, Hongmei; Cao, Moju; Fox, Samuel E.; Mockler, Todd C.; Westereng, Bjørge; Fjellheim, Siri; Rognli, Odd Arne; Sandve, Simen R. (2012). "Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses". BMC Plant Biol. 12 (65): 65. doi:10.1186/1471-2229-12-65. PMC 3487962. PMID 22569006.
  5. ^ Vogel, John P.; Garvin, David F.; Leong, Oymon M.; Hayden, Daniel M. (2006). "Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon". Plant Cell, Tissue and Organ Culture. 84 (2): 100179–91. doi:10.1007/s11240-005-9023-9. S2CID 23419929.
  6. ^ a b Vain, Philippe; Worland, Barbara; Thole, Vera; McKenzie, Neil; Alves, Silvia C.; Opanowicz, Magdalena; Fish, Lesley J.; Bevan, Michael W.; Snape, John W. (2008). "Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis". Plant Biotechnology Journal. 6 (5): 236–45. doi:10.1111/j.1467-7652.2007.00308.x. PMID 18004984.
  7. ^ Alves, Sílvia C; Worland, Barbara; Thole, Vera; Snape, John W; Bevan, Michael W; Vain, Philippe (2009). "A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21". Nature Protocols. 4 (5): 638–49. doi:10.1038/nprot.2009.30. PMID 19360019. S2CID 21608193.
  8. ^ Thole, Vera; Alves, Sílvia C; Worland, Barbara; Bevan, Michael W; Vain, Philippe (2009). "A protocol for efficiently retrieving and characterising Flanking Sequence Tags (FSTs) in Brachypodium distachyon T-DNA insertional mutants". Nature Protocols. 4 (5): 650–61. doi:10.1038/nprot.2009.32. PMID 19360020. S2CID 24001172.
  9. ^ Thole, Vera; Peraldi, Antoine; Worland, Barbara; Nicholson, Paul; Doonan, John H.; Vain, Philippe (2012). "T-DNA mutagenesis in Brachypodium distachyon". J Exp Bot. 63 (2): 567–76. doi:10.1093/jxb/err333. PMID 22090444.
  10. ^ Thole, Vera; Worland, Barbara; Wright, Jonathan; Bevan, Michael W.; Vain, Philippe (2010). "Distribution and characterization of more than 1000 T-DNA tags in the genome of Brachypodium distachyon community standard line Bd21". Plant Biotechnology Journal. 8 (6): 734–47. doi:10.1111/j.1467-7652.2010.00518.x. PMID 20374523.
  11. ^ Huo, Naxin; Vogel, John P.; Lazo, Gerard R.; You, Frank M.; Ma, Yaqin; McMahon, Stephanie; Dvorak, Jan; Anderson, Olin D.; Luo, Ming-Cheng; Gu, Yong Q. (2009). "Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat". Plant Mol Biol. 70 (1–2): 47–61. doi:10.1007/s11103-009-9456-3. PMID 19184460.
  12. ^ Goddard, Rachel; Peraldi, Antoine; Ridout, Chris; Nicholson, Paul (2014). "Enhanced Disease Resistance Caused by BRI1 Mutation Is Conserved Between Brachypodium distachyon and Barley (Hordeum Vulgare)". Mol Plant Microbe Interact. 27 (10): 1095–1106. doi:10.1094/MPMI-03-14-0069-R. PMID 24964059.
  13. ^ Pacheco-Villalobos, David; Sankar, Martial; Ljung, Karin; Hardtke, Christian S. (2013). "Disturbed Local Auxin Homeostasis Enhances Cellular Anisotropy and Reveals Alternative Wiring of Auxin-ethylene Crosstalk in Brachypodium distachyon Seminal Roots". PLOS Genetics. 9 (6): e1003564. doi:10.1371/journal.pgen.1003564. PMC 3688705. PMID 23840182.
  14. ^ Marques, Isabel; Shiposha, Valeriia; López-Alvarez, Diana; Manzaneda, Antonio J.; Hernandez, Pilar; Olonova, Marina; Catalán, Pilar (2017-06-15). "Environmental isolation explains Iberian genetic diversity in the highly homozygous model grass Brachypodium distachyon". BMC Evolutionary Biology. 17 (1): 139. doi:10.1186/s12862-017-0996-x. ISSN 1471-2148. PMC 5472904. PMID 28619047.

References

  • Olsen, P.; Lenk, I.; Jensen, C.S.; Petersen, K.; Andersen, C.H.; Didion, T.; Nielsen, K.K. (2006). "Analysis of two heterologous flowering genes in Brachypodium distachyon demonstrates its potential as a grass model plant". Plant Science. 170 (5): 1020–5. doi:10.1016/j.plantsci.2006.01.012.
  • Hasterok, R.; Marasek, A; Donnison, IS; Armstead, I; Thomas, A; King, IP; Wolny, E; Idziak, D; et al. (2006). "Alignment of the Genomes of Brachypodium distachyon and Temperate Cereals and Grasses Using Bacterial Artificial Chromosome Landing with Fluorescence in Situ Hybridization". Genetics. 173 (1): 349–62. doi:10.1534/genetics.105.049726. PMC 1461447. PMID 16489232.
  • Christiansen, Pernille; Andersen, Claus Henrik; Didion, Thomas; Folling, Marianne; Nielsen, Klaus Kristian (2004). "A rapid and efficient transformation protocol for the grass Brachypodium distachyon". Plant Cell Reports. 23 (10–11): 751–8. doi:10.1007/s00299-004-0889-5. PMID 15503032. S2CID 21296533.
  • Engvild, Kjeld C. (March 2005). "Mutagenesis of the Model Grass Brachypodium distachyon with Sodium Azide". Risø National Laboratory.
  • Hasterok, Robert; Draper, John; Jenkins, Glyn (2004). "Laying the Cytotaxonomic Foundations of a New Model Grass, Brachypodium distachyon (L.) Beauv". Chromosome Research. 12 (4): 397–403. doi:10.1023/B:CHRO.0000034130.35983.99. PMID 15241018. S2CID 8142728.
  • Routledge, Andrew P. M.; Shelley, Greg; Smith, Joel V.; Talbot, Nicholas J.; Draper, John; Mur, Luis A. J. (2004). "Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice (Oryza sativa)". Molecular Plant Pathology. 5 (4): 253–65. doi:10.1111/j.1364-3703.2004.00224.x. PMID 20565594.
  • Mur, Luis A. J.; Xu, Renlin; Casson, Stuart A.; Stoddart, Wendy M.; Routledge, Andrew P. M.; Draper, John (2004). "Characterization of a proteinase inhibitor from Brachypodium distachyon suggests the conservation of defence signalling pathways between dicotyledonous plants and grasses". Molecular Plant Pathology. 5 (4): 267–80. doi:10.1111/j.1364-3703.2004.00225.x. PMID 20565595.
  • Draper, J.; Mur, L. A.J.; Jenkins, G.; Ghosh-Biswas, G. C.; Bablak, P.; Hasterok, R.; Routledge, A. P.M. (2001). "Brachypodium distachyon. A New Model System for Functional Genomics in Grasses". Plant Physiology. 127 (4): 1539–55. doi:10.1104/pp.010196. PMC 133562. PMID 11743099.
  • Catalán, Pilar; Olmstead, Richard G. (2000). "Phylogenetic reconstruction of the genus Brachypodium P. Beauv. (Poaceae) from combined sequences of chloroplastndhF gene and nuclear ITS". Plant Systematics and Evolution. 220 (1–2): 1–19. doi:10.1007/BF00985367. S2CID 28594760.
  • Catalán, Pilar; Shi, Ying; Armstrong, Laurel; Draper, John; Stace, Clive A. (1995). "Molecular phylogeny of the grass genus Brachypodium P. Beauv. Based on RFLP and RAPD analysis". Botanical Journal of the Linnean Society. 117 (4): 263–80. doi:10.1111/j.1095-8339.1995.tb02590.x.
  • Bablak, P.; Draper, J.; Davey, M. R.; Lynch, P. T. (1995). "Plant regeneration and micropropagation of Brachypodium distachyon". Plant Cell, Tissue and Organ Culture. 42 (1): 97–107. doi:10.1007/BF00037687. S2CID 45985719.
  • Hsiao, C; Chatterton, NJ; Asay, KH; Jensen, KB (1994). "Phylogenetic relationships of 10 grass species: An assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots". Genome. 37 (1): 112–20. doi:10.1139/g94-014. PMID 8181731.
  • Shi, Ying; Draper, John; Stace, Clive (1994). "Ribosomal DNA variation and its phylogenetic implication in the genus Brachypodium (Poaceae)". Plant Systematics and Evolution. 188 (3–4): 125–38. doi:10.1007/BF00937726. S2CID 11867320.

External links

brachypodium, distachyon, commonly, called, purple, false, brome, stiff, brome, grass, species, native, southern, europe, northern, africa, southwestern, asia, east, india, related, major, cereal, grain, species, wheat, barley, oats, maize, rice, sorghum, mill. Brachypodium distachyon commonly called purple false brome 1 or stiff brome 2 is a grass species native to southern Europe northern Africa and southwestern Asia east to India It is related to the major cereal grain species wheat barley oats maize rice rye sorghum and millet It has many qualities that make it an excellent model organism for functional genomics research in temperate grasses cereals and dedicated biofuel crops such as switchgrass These attributes include small genome 270 Mbp diploid accessions a series of polyploid accessions a small physical stature self fertility a short lifecycle simple growth requirements and an efficient transformation system The genome of Brachypodium distachyon diploid inbred line Bd21 has been sequenced and published in Nature in 2010 3 Brachypodium distachyonScientific classificationKingdom PlantaeClade TracheophytesClade AngiospermsClade MonocotsClade CommelinidsOrder PoalesFamily PoaceaeSubfamily PooideaeGenus BrachypodiumSpecies B distachyonBinomial nameBrachypodium distachyon L P Beauv Contents 1 Model organism 2 Notes 3 References 4 External linksModel organism EditAlthough Brachypodium distachyon has little or no direct agricultural significance it has several advantages as an experimental model organism for understanding the genetic cellular and molecular biology of temperate grasses The relatively small size of its genome makes it useful for genetic mapping and sequencing In addition only 21 of the Brachypodium genome consists of repetitive elements compared to 26 in rice and 80 in wheat further simplifying genetic mapping and sequencing 3 At about 272 million base pairs and with five chromosomes it has a small genome for a grass species Brachypodium distachyon s small size 15 20 cm and rapid life cycle eight to twelve weeks are also advantageous for research purposes 4 For early flowering accessions it can take as little as three weeks from germination to flower under an appropriate inductive photoperiod The small size of some accessions makes it convenient for cultivation in a small space As a weed it grows easily without specialized growing conditions This Brachypodium is emerging as a powerful model with a growing research community The International Brachypodium Initiative IBI held its first genomics meeting and workshop at the PAG XIV conference in San Diego California in January 2006 The goal of the IBI is to promote the development of B distachyon as a model system and will develop and distribute genomic genetic and bioinformatics resources such as reference genotypes BAC libraries genetic markers mapping populations and a genome sequence database Recently efficient Agrobacterium mediated transformation systems have been developed for a range of Brachypodium genotypes 5 6 7 enabling the development of T DNA mutant collections 6 8 9 The characterization and distribution of T DNA insertion lines has been initiated to facilitate the understanding of gene function in grasses 10 By now Brachypodium distachyon has established itself as an important tool for comparative genomics 11 It is now emerging as a model for crop plant disease facilitating the model to crop transfer of knowledge on disease resistance 12 Brachypodium distachyon is also becoming a useful model system for studies of evolutionary developmental biology in particular to contrast molecular genetic mechanisms with dicotyledon model systems notably Arabidopsis thaliana 13 The finding of higher genetic diversity in eastern Iberian populations occurring in basic soils suggests that these populations can be better adapted than those occurring in western areas of the Iberian Peninsula where the soils are more acidic and accumulate toxic Al ions 14 Notes Edit USDA NRCS n d Brachypodium distachyon The PLANTS Database plants usda gov Greensboro North Carolina National Plant Data Team Retrieved 10 January 2016 BSBI List 2007 xls Botanical Society of Britain and Ireland Archived from the original xls on 2015 06 26 Retrieved 2014 10 17 a b The International Brachypodium Initiative 2010 Genome sequencing and analysis of the model grass Brachypodium distachyon Nature 463 7282 763 8 Bibcode 2010Natur 463 763T doi 10 1038 nature08747 PMID 20148030 Li Chuan Rudi Heidi Stockinger Eric J Cheng Hongmei Cao Moju Fox Samuel E Mockler Todd C Westereng Bjorge Fjellheim Siri Rognli Odd Arne Sandve Simen R 2012 Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses BMC Plant Biol 12 65 65 doi 10 1186 1471 2229 12 65 PMC 3487962 PMID 22569006 Vogel John P Garvin David F Leong Oymon M Hayden Daniel M 2006 Agrobacterium mediated transformation and inbred line development in the model grass Brachypodium distachyon Plant Cell Tissue and Organ Culture 84 2 100179 91 doi 10 1007 s11240 005 9023 9 S2CID 23419929 a b Vain Philippe Worland Barbara Thole Vera McKenzie Neil Alves Silvia C Opanowicz Magdalena Fish Lesley J Bevan Michael W Snape John W 2008 Agrobacterium mediated transformation of the temperate grass Brachypodium distachyon genotype Bd21 for T DNA insertional mutagenesis Plant Biotechnology Journal 6 5 236 45 doi 10 1111 j 1467 7652 2007 00308 x PMID 18004984 Alves Silvia C Worland Barbara Thole Vera Snape John W Bevan Michael W Vain Philippe 2009 A protocol for Agrobacterium mediated transformation of Brachypodium distachyon community standard line Bd21 Nature Protocols 4 5 638 49 doi 10 1038 nprot 2009 30 PMID 19360019 S2CID 21608193 Thole Vera Alves Silvia C Worland Barbara Bevan Michael W Vain Philippe 2009 A protocol for efficiently retrieving and characterising Flanking Sequence Tags FSTs in Brachypodium distachyon T DNA insertional mutants Nature Protocols 4 5 650 61 doi 10 1038 nprot 2009 32 PMID 19360020 S2CID 24001172 Thole Vera Peraldi Antoine Worland Barbara Nicholson Paul Doonan John H Vain Philippe 2012 T DNA mutagenesis in Brachypodium distachyon J Exp Bot 63 2 567 76 doi 10 1093 jxb err333 PMID 22090444 Thole Vera Worland Barbara Wright Jonathan Bevan Michael W Vain Philippe 2010 Distribution and characterization of more than 1000 T DNA tags in the genome of Brachypodium distachyon community standard line Bd21 Plant Biotechnology Journal 8 6 734 47 doi 10 1111 j 1467 7652 2010 00518 x PMID 20374523 Huo Naxin Vogel John P Lazo Gerard R You Frank M Ma Yaqin McMahon Stephanie Dvorak Jan Anderson Olin D Luo Ming Cheng Gu Yong Q 2009 Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat Plant Mol Biol 70 1 2 47 61 doi 10 1007 s11103 009 9456 3 PMID 19184460 Goddard Rachel Peraldi Antoine Ridout Chris Nicholson Paul 2014 Enhanced Disease Resistance Caused by BRI1 Mutation Is Conserved Between Brachypodium distachyon and Barley Hordeum Vulgare Mol Plant Microbe Interact 27 10 1095 1106 doi 10 1094 MPMI 03 14 0069 R PMID 24964059 Pacheco Villalobos David Sankar Martial Ljung Karin Hardtke Christian S 2013 Disturbed Local Auxin Homeostasis Enhances Cellular Anisotropy and Reveals Alternative Wiring of Auxin ethylene Crosstalk in Brachypodium distachyon Seminal Roots PLOS Genetics 9 6 e1003564 doi 10 1371 journal pgen 1003564 PMC 3688705 PMID 23840182 Marques Isabel Shiposha Valeriia Lopez Alvarez Diana Manzaneda Antonio J Hernandez Pilar Olonova Marina Catalan Pilar 2017 06 15 Environmental isolation explains Iberian genetic diversity in the highly homozygous model grass Brachypodium distachyon BMC Evolutionary Biology 17 1 139 doi 10 1186 s12862 017 0996 x ISSN 1471 2148 PMC 5472904 PMID 28619047 References EditThis article includes a list of general references but it lacks sufficient corresponding inline citations Please help to improve this article by introducing more precise citations April 2009 Learn how and when to remove this template message Olsen P Lenk I Jensen C S Petersen K Andersen C H Didion T Nielsen K K 2006 Analysis of two heterologous flowering genes in Brachypodium distachyon demonstrates its potential as a grass model plant Plant Science 170 5 1020 5 doi 10 1016 j plantsci 2006 01 012 Hasterok R Marasek A Donnison IS Armstead I Thomas A King IP Wolny E Idziak D et al 2006 Alignment of the Genomes of Brachypodium distachyon and Temperate Cereals and Grasses Using Bacterial Artificial Chromosome Landing with Fluorescence in Situ Hybridization Genetics 173 1 349 62 doi 10 1534 genetics 105 049726 PMC 1461447 PMID 16489232 Christiansen Pernille Andersen Claus Henrik Didion Thomas Folling Marianne Nielsen Klaus Kristian 2004 A rapid and efficient transformation protocol for the grass Brachypodium distachyon Plant Cell Reports 23 10 11 751 8 doi 10 1007 s00299 004 0889 5 PMID 15503032 S2CID 21296533 Engvild Kjeld C March 2005 Mutagenesis of the Model Grass Brachypodium distachyon with Sodium Azide Riso National Laboratory Hasterok Robert Draper John Jenkins Glyn 2004 Laying the Cytotaxonomic Foundations of a New Model Grass Brachypodium distachyon L Beauv Chromosome Research 12 4 397 403 doi 10 1023 B CHRO 0000034130 35983 99 PMID 15241018 S2CID 8142728 Routledge Andrew P M Shelley Greg Smith Joel V Talbot Nicholas J Draper John Mur Luis A J 2004 Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice Oryza sativa Molecular Plant Pathology 5 4 253 65 doi 10 1111 j 1364 3703 2004 00224 x PMID 20565594 Mur Luis A J Xu Renlin Casson Stuart A Stoddart Wendy M Routledge Andrew P M Draper John 2004 Characterization of a proteinase inhibitor from Brachypodium distachyon suggests the conservation of defence signalling pathways between dicotyledonous plants and grasses Molecular Plant Pathology 5 4 267 80 doi 10 1111 j 1364 3703 2004 00225 x PMID 20565595 Draper J Mur L A J Jenkins G Ghosh Biswas G C Bablak P Hasterok R Routledge A P M 2001 Brachypodium distachyon A New Model System for Functional Genomics in Grasses Plant Physiology 127 4 1539 55 doi 10 1104 pp 010196 PMC 133562 PMID 11743099 Catalan Pilar Olmstead Richard G 2000 Phylogenetic reconstruction of the genus Brachypodium P Beauv Poaceae from combined sequences of chloroplastndhF gene and nuclear ITS Plant Systematics and Evolution 220 1 2 1 19 doi 10 1007 BF00985367 S2CID 28594760 Catalan Pilar Shi Ying Armstrong Laurel Draper John Stace Clive A 1995 Molecular phylogeny of the grass genus Brachypodium P Beauv Based on RFLP and RAPD analysis Botanical Journal of the Linnean Society 117 4 263 80 doi 10 1111 j 1095 8339 1995 tb02590 x Bablak P Draper J Davey M R Lynch P T 1995 Plant regeneration and micropropagation of Brachypodium distachyon Plant Cell Tissue and Organ Culture 42 1 97 107 doi 10 1007 BF00037687 S2CID 45985719 Hsiao C Chatterton NJ Asay KH Jensen KB 1994 Phylogenetic relationships of 10 grass species An assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots Genome 37 1 112 20 doi 10 1139 g94 014 PMID 8181731 Shi Ying Draper John Stace Clive 1994 Ribosomal DNA variation and its phylogenetic implication in the genus Brachypodium Poaceae Plant Systematics and Evolution 188 3 4 125 38 doi 10 1007 BF00937726 S2CID 11867320 External links Edit Wikimedia Commons has media related to Brachypodium distachyon www brachypodium org The Brachypodium distachyon Information Resource www brachybase org The Brachypodium distachyon Genome Browser and Annotation Database Brachypodium distachyon Germplasm Resources Information Network GRIN Agricultural Research Service ARS United States Department of Agriculture USDA Retrieved from https en wikipedia org w index php title Brachypodium distachyon amp oldid 1076275991, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.