fbpx
Wikipedia

Blood

Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells.[1] Blood in the circulatory system is also known as peripheral blood, and the blood cells it carries, peripheral blood cells.[2]

Blood
Venous (darker) and arterial (brighter) blood
Identifiers
MeSHD001769
TA98A12.0.00.009
TA23892
FMA9670
Anatomical terminology
[edit on Wikidata]

Blood is composed of blood cells suspended in blood plasma. Plasma, which constitutes 55% of blood fluid, is mostly water (92% by volume),[3] and contains proteins, glucose, mineral ions, hormones, carbon dioxide (plasma being the main medium for excretory product transportation), and blood cells themselves. Albumin is the main protein in plasma, and it functions to regulate the colloidal osmotic pressure of blood.[citation needed] The blood cells are mainly red blood cells (also called RBCs or erythrocytes), white blood cells (also called WBCs or leukocytes), and in mammals platelets (also called thrombocytes).[4] The most abundant cells in vertebrate blood are red blood cells.[5] These contain hemoglobin, an iron-containing protein, which facilitates oxygen transport by reversibly binding to this respiratory gas thereby increasing its solubility in blood.[6] In contrast, carbon dioxide is mostly transported extracellularly as bicarbonate ion transported in plasma.

Vertebrate blood is bright red when its hemoglobin is oxygenated and dark red when it is deoxygenated.[7]

Some animals, such as crustaceans and mollusks, use hemocyanin to carry oxygen, instead of hemoglobin.[8] Insects and some mollusks use a fluid called hemolymph instead of blood, the difference being that hemolymph is not contained in a closed circulatory system. In most insects, this "blood" does not contain oxygen-carrying molecules such as hemoglobin because their bodies are small enough for their tracheal system to suffice for supplying oxygen.

Jawed vertebrates have an adaptive immune system, based largely on white blood cells. White blood cells help to resist infections and parasites. Platelets are important in the clotting of blood. Arthropods, using hemolymph, have hemocytes as part of their immune system.

Blood is circulated around the body through blood vessels by the pumping action of the heart. In animals with lungs, arterial blood carries oxygen from inhaled air to the tissues of the body, and venous blood carries carbon dioxide, a waste product of metabolism produced by cells, from the tissues to the lungs to be exhaled.

Medical terms related to blood often begin with hemo-, hemato-, haemo- or haemato- from the Greek word αἷμα (haima) for "blood". In terms of anatomy and histology, blood is considered a specialized form of connective tissue,[9] given its origin in the bones and the presence of potential molecular fibers in the form of fibrinogen.[citation needed]

Functions

 
Hemoglobin, a globular protein
green = haem (or heme) groups
red & blue = protein subunits

Blood performs many important functions within the body, including:

Constituents

In mammals

Blood accounts for 7% of the human body weight,[10][11] with an average density around 1060 kg/m3, very close to pure water's density of 1000 kg/m3.[12] The average adult has a blood volume of roughly 5 litres (11 US pt) or 1.3 gallons,[11] which is composed of plasma and formed elements. The formed elements are the two types of blood cell or corpuscle – the red blood cells, (erythrocytes) and white blood cells (leukocytes), and the cell fragments called platelets[13] that are involved in clotting. By volume, the red blood cells constitute about 45% of whole blood, the plasma about 54.3%, and white cells about 0.7%.

Whole blood (plasma and cells) exhibits non-Newtonian fluid dynamics.[specify]

Cells

 
A scanning electron microscope (SEM) image of a normal red blood cell (left), a platelet (middle), and a white blood cell (right)

One microliter of blood contains:

  • 4.7 to 6.1 million (male), 4.2 to 5.4 million (female) erythrocytes:[14] Red blood cells contain the blood's hemoglobin and distribute oxygen. Mature red blood cells lack a nucleus and organelles in mammals. The red blood cells (together with endothelial vessel cells and other cells) are also marked by glycoproteins that define the different blood types. The proportion of blood occupied by red blood cells is referred to as the hematocrit, and is normally about 45%. The combined surface area of all red blood cells of the human body would be roughly 2,000 times as great as the body's exterior surface.[15]
  • 4,000–11,000 leukocytes:[16] White blood cells are part of the body's immune system; they destroy and remove old or aberrant cells and cellular debris, as well as attack infectious agents (pathogens) and foreign substances. The cancer of leukocytes is called leukemia.
  • 200,000–500,000 thrombocytes:[16] Also called platelets, they take part in blood clotting (coagulation). Fibrin from the coagulation cascade creates a mesh over the platelet plug.
Constitution of normal blood
Parameter Value Refs.
Hematocrit

45 ± 7 (38–52%) for males
42 ± 5 (37–47%) for females

pH 7.35–7.45 [17]
base excess −3 to +3
PO2 10–13 kPa (80–100 mm Hg)
PCO2 4.8–5.8 kPa (35–45 mm Hg)
HCO3 21–27 mM
Oxygen saturation

Oxygenated: 98–99%
Deoxygenated: 75%

Plasma

About 55% of blood is blood plasma, a fluid that is the blood's liquid medium, which by itself is straw-yellow in color. The blood plasma volume totals of 2.7–3.0 liters (2.8–3.2 quarts) in an average human. It is essentially an aqueous solution containing 92% water, 8% blood plasma proteins, and trace amounts of other materials. Plasma circulates dissolved nutrients, such as glucose, amino acids, and fatty acids (dissolved in the blood or bound to plasma proteins), and removes waste products, such as carbon dioxide, urea, and lactic acid.

Other important components include:

The term serum refers to plasma from which the clotting proteins have been removed. Most of the proteins remaining are albumin and immunoglobulins.

pH values

Blood pH is regulated to stay within the narrow range of 7.35 to 7.45, making it slightly basic (compensation).[18][19] Extra-cellular fluid in blood that has a pH below 7.35 is too acidic, whereas blood pH above 7.45 is too basic.[17] A pH below 6.9 or above 7.8 is usually lethal.[17] Blood pH, partial pressure of oxygen (pO2), partial pressure of carbon dioxide (pCO2), and bicarbonate (HCO3) are carefully regulated by a number of homeostatic mechanisms, which exert their influence principally through the respiratory system and the urinary system to control the acid–base balance and respiration, which is called compensation.[17] An arterial blood gas test measures these. Plasma also circulates hormones transmitting their messages to various tissues. The list of normal reference ranges for various blood electrolytes is extensive.

In non-mammalian vertebrates

 
Vertebrate red blood cell types, measurements in micrometers
 
Frog red blood cells magnified 1000 times
 
Turtle red blood cells magnified 1000 times
 
Chicken red blood cells magnified 1000 times
 
Human red blood cells magnified 1000 times

Human blood is typical of that of mammals, although the precise details concerning cell numbers, size, protein structure, and so on, vary somewhat between species. In non-mammalian vertebrates, however, there are some key differences:[20]

  • Red blood cells of non-mammalian vertebrates are flattened and ovoid in form, and retain their cell nuclei.
  • There is considerable variation in the types and proportions of white blood cells; for example, acidophils are generally more common than in humans.
  • Platelets are unique to mammals; in other vertebrates, small nucleated, spindle cells called thrombocytes are responsible for blood clotting instead.

Physiology

Circulatory system

 
Circulation of blood through the human heart

Blood is circulated around the body through blood vessels by the pumping action of the heart. In humans, blood is pumped from the strong left ventricle of the heart through arteries to peripheral tissues and returns to the right atrium of the heart through veins. It then enters the right ventricle and is pumped through the pulmonary artery to the lungs and returns to the left atrium through the pulmonary veins. Blood then enters the left ventricle to be circulated again. Arterial blood carries oxygen from inhaled air to all of the cells of the body, and venous blood carries carbon dioxide, a waste product of metabolism by cells, to the lungs to be exhaled. However, one exception includes pulmonary arteries, which contain the most deoxygenated blood in the body, while the pulmonary veins contain oxygenated blood.

Additional return flow may be generated by the movement of skeletal muscles, which can compress veins and push blood through the valves in veins toward the right atrium.

The blood circulation was famously described by William Harvey in 1628.[21]

Cell production and degradation

In vertebrates, the various cells of blood are made in the bone marrow in a process called hematopoiesis, which includes erythropoiesis, the production of red blood cells; and myelopoiesis, the production of white blood cells and platelets. During childhood, almost every human bone produces red blood cells; as adults, red blood cell production is limited to the larger bones: the bodies of the vertebrae, the breastbone (sternum), the ribcage, the pelvic bones, and the bones of the upper arms and legs. In addition, during childhood, the thymus gland, found in the mediastinum, is an important source of T lymphocytes.[22] The proteinaceous component of blood (including clotting proteins) is produced predominantly by the liver, while hormones are produced by the endocrine glands and the watery fraction is regulated by the hypothalamus and maintained by the kidney.

Healthy erythrocytes have a plasma life of about 120 days before they are degraded by the spleen, and the Kupffer cells in the liver. The liver also clears some proteins, lipids, and amino acids. The kidney actively secretes waste products into the urine.

Oxygen transport

 
Basic hemoglobin saturation curve. It is moved to the right in higher acidity (more dissolved carbon dioxide) and to the left in lower acidity (less dissolved carbon dioxide)

About 98.5%[23] of the oxygen in a sample of arterial blood in a healthy human breathing air at sea-level pressure is chemically combined with the hemoglobin. About 1.5% is physically dissolved in the other blood liquids and not connected to hemoglobin. The hemoglobin molecule is the primary transporter of oxygen in mammals and many other species (for exceptions, see below). Hemoglobin has an oxygen binding capacity between 1.36 and 1.40 ml O2 per gram hemoglobin,[24] which increases the total blood oxygen capacity seventyfold,[25] compared to if oxygen solely were carried by its solubility of 0.03 ml O2 per liter blood per mm Hg partial pressure of oxygen (about 100 mm Hg in arteries).[25]

With the exception of pulmonary and umbilical arteries and their corresponding veins, arteries carry oxygenated blood away from the heart and deliver it to the body via arterioles and capillaries, where the oxygen is consumed; afterwards, venules and veins carry deoxygenated blood back to the heart.

Under normal conditions in adult humans at rest, hemoglobin in blood leaving the lungs is about 98–99% saturated with oxygen, achieving an oxygen delivery between 950 and 1150 ml/min[26] to the body. In a healthy adult at rest, oxygen consumption is approximately 200–250 ml/min,[26] and deoxygenated blood returning to the lungs is still roughly 75%[27][28] (70 to 78%)[26] saturated. Increased oxygen consumption during sustained exercise reduces the oxygen saturation of venous blood, which can reach less than 15% in a trained athlete; although breathing rate and blood flow increase to compensate, oxygen saturation in arterial blood can drop to 95% or less under these conditions.[29] Oxygen saturation this low is considered dangerous in an individual at rest (for instance, during surgery under anesthesia). Sustained hypoxia (oxygenation less than 90%), is dangerous to health, and severe hypoxia (saturations less than 30%) may be rapidly fatal.[30]

A fetus, receiving oxygen via the placenta, is exposed to much lower oxygen pressures (about 21% of the level found in an adult's lungs), so fetuses produce another form of hemoglobin with a much higher affinity for oxygen (hemoglobin F) to function under these conditions.[31]

Carbon dioxide transport

CO2 is carried in blood in three different ways. (The exact percentages vary depending whether it is arterial or venous blood). Most of it (about 70%) is converted to bicarbonate ions HCO3 by the enzyme carbonic anhydrase in the red blood cells by the reaction CO2 + H2O → H2CO3 → H+ + HCO3; about 7% is dissolved in the plasma; and about 23% is bound to hemoglobin as carbamino compounds.[32][33]

Hemoglobin, the main oxygen-carrying molecule in red blood cells, carries both oxygen and carbon dioxide. However, the CO2 bound to hemoglobin does not bind to the same site as oxygen. Instead, it combines with the N-terminal groups on the four globin chains. However, because of allosteric effects on the hemoglobin molecule, the binding of CO2 decreases the amount of oxygen that is bound for a given partial pressure of oxygen. The decreased binding to carbon dioxide in the blood due to increased oxygen levels is known as the Haldane effect, and is important in the transport of carbon dioxide from the tissues to the lungs. A rise in the partial pressure of CO2 or a lower pH will cause offloading of oxygen from hemoglobin, which is known as the Bohr effect.

Transport of hydrogen ions

Some oxyhemoglobin loses oxygen and becomes deoxyhemoglobin. Deoxyhemoglobin binds most of the hydrogen ions as it has a much greater affinity for more hydrogen than does oxyhemoglobin.

Lymphatic system

In mammals, blood is in equilibrium with lymph, which is continuously formed in tissues from blood by capillary ultrafiltration. Lymph is collected by a system of small lymphatic vessels and directed to the thoracic duct, which drains into the left subclavian vein, where lymph rejoins the systemic blood circulation.

Thermoregulation

Blood circulation transports heat throughout the body, and adjustments to this flow are an important part of thermoregulation. Increasing blood flow to the surface (e.g., during warm weather or strenuous exercise) causes warmer skin, resulting in faster heat loss. In contrast, when the external temperature is low, blood flow to the extremities and surface of the skin is reduced and to prevent heat loss and is circulated to the important organs of the body, preferentially.

Rate of flow

Rate of blood flow varies greatly between different organs. Liver has the most abundant blood supply with an approximate flow of 1350 ml/min. Kidney and brain are the second and the third most supplied organs, with 1100 ml/min and ~700 ml/min, respectively.[34]

Relative rates of blood flow per 100 g of tissue are different, with kidney, adrenal gland and thyroid being the first, second and third most supplied tissues, respectively.[34]

Hydraulic functions

The restriction of blood flow can also be used in specialized tissues to cause engorgement, resulting in an erection of that tissue; examples are the erectile tissue in the penis and clitoris.

Another example of a hydraulic function is the jumping spider, in which blood forced into the legs under pressure causes them to straighten for a powerful jump, without the need for bulky muscular legs.[35]

Invertebrates

In insects, the blood (more properly called hemolymph) is not involved in the transport of oxygen. (Openings called tracheae allow oxygen from the air to diffuse directly to the tissues.) Insect blood moves nutrients to the tissues and removes waste products in an open system.

Other invertebrates use respiratory proteins to increase the oxygen-carrying capacity. Hemoglobin is the most common respiratory protein found in nature. Hemocyanin (blue) contains copper and is found in crustaceans and mollusks. It is thought that tunicates (sea squirts) might use vanabins (proteins containing vanadium) for respiratory pigment (bright-green, blue, or orange).

In many invertebrates, these oxygen-carrying proteins are freely soluble in the blood; in vertebrates they are contained in specialized red blood cells, allowing for a higher concentration of respiratory pigments without increasing viscosity or damaging blood filtering organs like the kidneys.

Giant tube worms have unusual hemoglobins that allow them to live in extraordinary environments. These hemoglobins also carry sulfides normally fatal in other animals.

Color

The coloring matter of blood (hemochrome) is largely due to the protein in the blood responsible for oxygen transport. Different groups of organisms use different proteins.

Hemoglobin

 
Capillary blood from a bleeding finger

Hemoglobin is the principal determinant of the color of blood in vertebrates. Each molecule has four heme groups, and their interaction with various molecules alters the exact color. In vertebrates and other hemoglobin-using creatures, arterial blood and capillary blood are bright red, as oxygen imparts a strong red color to the heme group. Deoxygenated blood is a darker shade of red; this is present in veins, and can be seen during blood donation and when venous blood samples are taken. This is because the spectrum of light absorbed by hemoglobin differs between the oxygenated and deoxygenated states.[36]

Blood in carbon monoxide poisoning is bright red, because carbon monoxide causes the formation of carboxyhemoglobin. In cyanide poisoning, the body cannot use oxygen, so the venous blood remains oxygenated, increasing the redness. There are some conditions affecting the heme groups present in hemoglobin that can make the skin appear blue – a symptom called cyanosis. If the heme is oxidized, methemoglobin, which is more brownish and cannot transport oxygen, is formed. In the rare condition sulfhemoglobinemia, arterial hemoglobin is partially oxygenated, and appears dark red with a bluish hue.

Veins close to the surface of the skin appear blue for a variety of reasons. However, the factors that contribute to this alteration of color perception are related to the light-scattering properties of the skin and the processing of visual input by the visual cortex, rather than the actual color of the venous blood.[37]

Skinks in the genus Prasinohaema have green blood due to a buildup of the waste product biliverdin.[38]

Hemocyanin

The blood of most mollusks – including cephalopods and gastropods – as well as some arthropods, such as horseshoe crabs, is blue, as it contains the copper-containing protein hemocyanin at concentrations of about 50 grams per liter.[39] Hemocyanin is colorless when deoxygenated and dark blue when oxygenated. The blood in the circulation of these creatures, which generally live in cold environments with low oxygen tensions, is grey-white to pale yellow,[39] and it turns dark blue when exposed to the oxygen in the air, as seen when they bleed.[39] This is due to change in color of hemocyanin when it is oxidized.[39] Hemocyanin carries oxygen in extracellular fluid, which is in contrast to the intracellular oxygen transport in mammals by hemoglobin in RBCs.[39]

Chlorocruorin

The blood of most annelid worms and some marine polychaetes use chlorocruorin to transport oxygen. It is green in color in dilute solutions.[40]

Hemerythrin

Hemerythrin is used for oxygen transport in the marine invertebrates sipunculids, priapulids, brachiopods, and the annelid worm, magelona. Hemerythrin is violet-pink when oxygenated.[40]

Hemovanadin

The blood of some species of ascidians and tunicates, also known as sea squirts, contains proteins called vanadins. These proteins are based on vanadium, and give the creatures a concentration of vanadium in their bodies 100 times higher than the surrounding seawater. Unlike hemocyanin and hemoglobin, hemovanadin is not an oxygen carrier. When exposed to oxygen, however, vanadins turn a mustard yellow.

Disorders

General medical

  • Disorders of volume
    • Injury can cause blood loss through bleeding.[41] A healthy adult can lose almost 20% of blood volume (1 L) before the first symptom, restlessness, begins, and 40% of volume (2 L) before shock sets in. Thrombocytes are important for blood coagulation and the formation of blood clots, which can stop bleeding. Trauma to the internal organs or bones can cause internal bleeding, which can sometimes be severe.
    • Dehydration can reduce the blood volume by reducing the water content of the blood. This would rarely result in shock (apart from the very severe cases) but may result in orthostatic hypotension and fainting.
  • Disorders of circulation
    • Shock is the ineffective perfusion of tissues, and can be caused by a variety of conditions including blood loss, infection, poor cardiac output.
    • Atherosclerosis reduces the flow of blood through arteries, because atheroma lines arteries and narrows them. Atheroma tends to increase with age, and its progression can be compounded by many causes including smoking, high blood pressure, excess circulating lipids (hyperlipidemia), and diabetes mellitus.
    • Coagulation can form a thrombosis, which can obstruct vessels.
    • Problems with blood composition, the pumping action of the heart, or narrowing of blood vessels can have many consequences including hypoxia (lack of oxygen) of the tissues supplied. The term ischemia refers to tissue that is inadequately perfused with blood, and infarction refers to tissue death (necrosis), which can occur when the blood supply has been blocked (or is very inadequate).

Hematological

  • Anemia
  • Disorders of cell proliferation
  • Disorders of coagulation
    • Hemophilia is a genetic illness that causes dysfunction in one of the blood's clotting mechanisms. This can allow otherwise inconsequential wounds to be life-threatening, but more commonly results in hemarthrosis, or bleeding into joint spaces, which can be crippling.
    • Ineffective or insufficient platelets can also result in coagulopathy (bleeding disorders).
    • Hypercoagulable state (thrombophilia) results from defects in regulation of platelet or clotting factor function, and can cause thrombosis.
  • Infectious disorders of blood
    • Blood is an important vector of infection. HIV, the virus that causes AIDS, is transmitted through contact with blood, semen or other body secretions of an infected person. Hepatitis B and C are transmitted primarily through blood contact. Owing to blood-borne infections, bloodstained objects are treated as a biohazard.
    • Bacterial infection of the blood is bacteremia or sepsis. Viral Infection is viremia. Malaria and trypanosomiasis are blood-borne parasitic infections.

Carbon monoxide poisoning

Substances other than oxygen can bind to hemoglobin; in some cases, this can cause irreversible damage to the body. Carbon monoxide, for example, is extremely dangerous when carried to the blood via the lungs by inhalation, because carbon monoxide irreversibly binds to hemoglobin to form carboxyhemoglobin, so that less hemoglobin is free to bind oxygen, and fewer oxygen molecules can be transported throughout the blood. This can cause suffocation insidiously. A fire burning in an enclosed room with poor ventilation presents a very dangerous hazard, since it can create a build-up of carbon monoxide in the air. Some carbon monoxide binds to hemoglobin when smoking tobacco.[43]

Treatments

Transfusion

 
Venous blood collected during blood donation

Blood for transfusion is obtained from human donors by blood donation and stored in a blood bank. There are many different blood types in humans, the ABO blood group system, and the Rhesus blood group system being the most important. Transfusion of blood of an incompatible blood group may cause severe, often fatal, complications, so crossmatching is done to ensure that a compatible blood product is transfused.

Other blood products administered intravenously are platelets, blood plasma, cryoprecipitate, and specific coagulation factor concentrates.

Intravenous administration

Many forms of medication (from antibiotics to chemotherapy) are administered intravenously, as they are not readily or adequately absorbed by the digestive tract.

After severe acute blood loss, liquid preparations, generically known as plasma expanders, can be given intravenously, either solutions of salts (NaCl, KCl, CaCl2 etc.) at physiological concentrations, or colloidal solutions, such as dextrans, human serum albumin, or fresh frozen plasma. In these emergency situations, a plasma expander is a more effective life-saving procedure than a blood transfusion, because the metabolism of transfused red blood cells does not restart immediately after a transfusion.

Letting

In modern evidence-based medicine, bloodletting is used in management of a few rare diseases, including hemochromatosis and polycythemia. However, bloodletting and leeching were common unvalidated interventions used until the 19th century, as many diseases were incorrectly thought to be due to an excess of blood, according to Hippocratic medicine.

Etymology

 
Jan Janský is credited with the first classification of blood into four types (A, B, AB, and O)

English blood (Old English blod) derives from Germanic and has cognates with a similar range of meanings in all other Germanic languages (e.g. German Blut, Swedish blod, Gothic blōþ). There is no accepted Indo-European etymology.[44]

History

Classical Greek medicine

Robin Fåhræus (a Swedish physician who devised the erythrocyte sedimentation rate) suggested that the Ancient Greek system of humorism, wherein the body was thought to contain four distinct bodily fluids (associated with different temperaments), were based upon the observation of blood clotting in a transparent container. When blood is drawn in a glass container and left undisturbed for about an hour, four different layers can be seen. A dark clot forms at the bottom (the "black bile"). Above the clot is a layer of red blood cells (the "blood"). Above this is a whitish layer of white blood cells (the "phlegm"). The top layer is clear yellow serum (the "yellow bile").[45][failed verification]

Types

The ABO blood group system was discovered in the year 1900 by Karl Landsteiner. Jan Janský is credited with the first classification of blood into the four types (A, B, AB, and O) in 1907, which remains in use today. In 1907 the first blood transfusion was performed that used the ABO system to predict compatibility.[46] The first non-direct transfusion was performed on 27 March 1914. The Rhesus factor was discovered in 1937.

Culture and religion

Due to its importance to life, blood is associated with a large number of beliefs. One of the most basic is the use of blood as a symbol for family relationships through birth/parentage; to be "related by blood" is to be related by ancestry or descendence, rather than marriage. This bears closely to bloodlines, and sayings such as "blood is thicker than water" and "bad blood", as well as "Blood brother".

Blood is given particular emphasis in the Islamic, Jewish, and Christian religions, because Leviticus 17:11 says "the life of a creature is in the blood." This phrase is part of the Levitical law forbidding the drinking of blood or eating meat with the blood still intact instead of being poured off.

Mythic references to blood can sometimes be connected to the life-giving nature of blood, seen in such events as childbirth, as contrasted with the blood of injury or death.

Indigenous Australians

In many indigenous Australian Aboriginal peoples' traditions, ochre (particularly red) and blood, both high in iron content and considered Maban, are applied to the bodies of dancers for ritual. As Lawlor states:

In many Aboriginal rituals and ceremonies, red ochre is rubbed all over the naked bodies of the dancers. In secret, sacred male ceremonies, blood extracted from the veins of the participant's arms is exchanged and rubbed on their bodies. Red ochre is used in similar ways in less-secret ceremonies. Blood is also used to fasten the feathers of birds onto people's bodies. Bird feathers contain a protein that is highly magnetically sensitive.[47]

Lawlor comments that blood employed in this fashion is held by these peoples to attune the dancers to the invisible energetic realm of the Dreamtime. Lawlor then connects these invisible energetic realms and magnetic fields, because iron is magnetic.

European paganism

Among the Germanic tribes, blood was used during their sacrifices; the Blóts. The blood was considered to have the power of its originator, and, after the butchering, the blood was sprinkled on the walls, on the statues of the gods, and on the participants themselves. This act of sprinkling blood was called blóedsian in Old English, and the terminology was borrowed by the Roman Catholic Church becoming to bless and blessing. The Hittite word for blood, ishar was a cognate to words for "oath" and "bond", see Ishara. The Ancient Greeks believed that the blood of the gods, ichor, was a substance that was poisonous to mortals.

As a relic of Germanic Law, the cruentation, an ordeal where the corpse of the victim was supposed to start bleeding in the presence of the murderer, was used until the early 17th century.[citation needed]

Christianity

In Genesis 9:4, God prohibited Noah and his sons from eating blood (see Noahide Law). This command continued to be observed by the Eastern Orthodox Church.

It is also found in the Bible that when the Angel of Death came around to the Hebrew house that the first-born child would not die if the angel saw lamb's blood wiped across the doorway.

At the Council of Jerusalem, the apostles prohibited certain Christians from consuming blood – this is documented in Acts 15:20 and 29. This chapter specifies a reason (especially in verses 19–21): It was to avoid offending Jews who had become Christians, because the Mosaic Law Code prohibited the practice.

Christ's blood is the means for the atonement of sins. Also, "... the blood of Jesus Christ his [God] Son cleanseth us from all sin." (1 John 1:7), "... Unto him [God] that loved us, and washed us from our sins in his own blood." (Revelation 1:5), and "And they overcame him (Satan) by the blood of the Lamb [Jesus the Christ], and by the word of their testimony ..." (Revelation 12:11).

Some Christian churches, including Roman Catholicism, Eastern Orthodoxy, Oriental Orthodoxy, and the Assyrian Church of the East teach that, when consecrated, the Eucharistic wine actually becomes the blood of Jesus for worshippers to drink. Thus in the consecrated wine, Jesus becomes spiritually and physically present. This teaching is rooted in the Last Supper, as written in the four gospels of the Bible, in which Jesus stated to his disciples that the bread that they ate was his body, and the wine was his blood. "This cup is the new testament in my blood, which is shed for you." (Luke 22:20).

Most forms of Protestantism, especially those of a Methodist or Presbyterian lineage, teach that the wine is no more than a symbol of the blood of Christ, who is spiritually but not physically present. Lutheran theology teaches that the body and blood is present together "in, with, and under" the bread and wine of the Eucharistic feast.

Judaism

In Judaism, animal blood may not be consumed even in the smallest quantity (Leviticus 3:17 and elsewhere); this is reflected in Jewish dietary laws (Kashrut). Blood is purged from meat by rinsing and soaking in water (to loosen clots), salting and then rinsing with water again several times.[48] Eggs must also be checked and any blood spots removed before consumption.[49] Although blood from fish is biblically kosher, it is rabbinically forbidden to consume fish blood to avoid the appearance of breaking the Biblical prohibition.[50]

Another ritual involving blood involves the covering of the blood of fowl and game after slaughtering (Leviticus 17:13); the reason given by the Torah is: "Because the life of the animal is [in] its blood" (ibid 17:14). In relation to human beings, Kabbalah expounds on this verse that the animal soul of a person is in the blood, and that physical desires stem from it.

Likewise, the mystical reason for salting temple sacrifices and slaughtered meat is to remove the blood of animal-like passions from the person. By removing the animal's blood, the animal energies and life-force contained in the blood are removed, making the meat fit for human consumption.[51]

Islam

Consumption of food containing blood is forbidden by Islamic dietary laws. This is derived from the statement in the Qur'an, sura Al-Ma'ida (5:3): "Forbidden to you (for food) are: dead meat, blood, the flesh of swine, and that on which has been invoked the name of other than Allah."

Blood is considered unclean, hence there are specific methods to obtain physical and ritual status of cleanliness once bleeding has occurred. Specific rules and prohibitions apply to menstruation, postnatal bleeding and irregular vaginal bleeding. When an animal has been slaughtered, the animal's neck is cut in a way to ensure that the spine is not severed, hence the brain may send commands to the heart to pump blood to it for oxygen. In this way, blood is removed from the body, and the meat is generally now safe to cook and eat. In modern times, blood transfusions are generally not considered against the rules.

Jehovah's Witnesses

Based on their interpretation of scriptures such as Acts 15:28, 29 ("Keep abstaining...from blood."), many Jehovah's Witnesses neither consume blood nor accept transfusions of whole blood or its major components: red blood cells, white blood cells, platelets (thrombocytes), and plasma. Members may personally decide whether they will accept medical procedures that involve their own blood or substances that are further fractionated from the four major components.[52]

Vampirism

Vampires are mythical creatures that drink blood directly for sustenance, usually with a preference for human blood. Cultures all over the world have myths of this kind; for example the 'Nosferatu' legend, a human who achieves damnation and immortality by drinking the blood of others, originates from Eastern European folklore. Ticks, leeches, female mosquitoes, vampire bats, and an assortment of other natural creatures do consume the blood of other animals, but only bats are associated with vampires. This has no relation to vampire bats, which are New World creatures discovered well after the origins of the European myths.

Other uses

Forensic and archaeological

Blood residue can help forensic investigators identify weapons, reconstruct a criminal action, and link suspects to the crime. Through bloodstain pattern analysis, forensic information can also be gained from the spatial distribution of bloodstains.

Blood residue analysis is also a technique used in archeology.

Artistic

Blood is one of the body fluids that has been used in art.[53] In particular, the performances of Viennese Actionist Hermann Nitsch, Istvan Kantor, Franko B, Lennie Lee, Ron Athey, Yang Zhichao, Lucas Abela and Kira O'Reilly, along with the photography of Andres Serrano, have incorporated blood as a prominent visual element. Marc Quinn has made sculptures using frozen blood, including a cast of his own head made using his own blood.

Genealogical

The term blood is used in genealogical circles to refer to one's ancestry, origins, and ethnic background as in the word bloodline. Other terms where blood is used in a family history sense are blue-blood, royal blood, mixed-blood and blood relative.

See also

References

  1. ^ "Definition of BLOOD". Merriam-Webster. from the original on 23 March 2017. Retrieved 4 March 2017.
  2. ^ "def/peripheral-blood". www.cancer.gov. 2 February 2011. Retrieved 13 September 2022.
  3. ^ The Franklin Institute Inc. . Archived from the original on 5 March 2009. Retrieved 19 March 2009.
  4. ^ "Definition of red blood cell". National Cancer Institute. 2 February 2011. Retrieved 28 April 2022.
  5. ^ Aryal, Sagar (3 January 2017). "Blood cells and its types with functions". Microbiology Info.com. Retrieved 28 April 2022.
  6. ^ "Low Hemoglobin: Causes & Symptoms". Cleveland Clinic. Retrieved 28 April 2022.
  7. ^ Séguin, Chantal (8 January 2022). "Did You Know That Not All Blood is Red? • The Blood Project". The Blood Project. Retrieved 2 July 2022.
  8. ^ Kato, Sanae; Matsui, Takashi; Gatsogiannis, Christos; Tanaka, Yoshikazu (April 2018). "Molluscan hemocyanin: structure, evolution, and physiology". Biophysical Reviews. 10 (2): 191–202. doi:10.1007/s12551-017-0349-4. ISSN 1867-2450. PMC 5899709. PMID 29235083.
  9. ^ Krause, William J. (2005). Krause's Essential Human Histology for Medical Students (3rd ed.). Universal-Publishers. p. 67. ISBN 978-1-58112-468-2.
  10. ^ Alberts B (2012). "Table 22-1 Blood Cells". Molecular Biology of the Cell. NCBI Bookshelf. from the original on 27 March 2018. Retrieved 1 November 2012.
  11. ^ a b Elert G (2012). . The Physics Factbook. Archived from the original on 3 November 2012. Retrieved 1 November 2012.
  12. ^ Shmukler, Michael (2004). . The Physics Factbook. Archived from the original on 19 September 2006. Retrieved 4 October 2006.
  13. ^ "Composition of the Blood | SEER Training". training.seer.cancer.gov. from the original on 16 October 2020. Retrieved 30 December 2020.
  14. ^ "Medical Encyclopedia: RBC count". Medline Plus. from the original on 21 October 2007. Retrieved 18 November 2007.
  15. ^ Tallitsch RB, Frederic M, Michael J T (2006). Human anatomy (5th ed.). San Francisco: Pearson/Benjamin Cummings. p. 529. ISBN 978-0-8053-7211-3.
  16. ^ a b Ganong WF (2003). Review of medical physiology (21 ed.). New York: Lange Medical Books/McGraw-Hill. p. 518. ISBN 978-0-07-121765-1.
  17. ^ a b c d Medical-surgical nursing : concepts for interprofessional collaborative care. Donna D. Ignatavicius, M. Linda Workman, Cherie R. Rebar, Nicole M. Heimgartner (9th ed.). St. Louis, Missouri: Elsevier. 2018. p. 190. ISBN 978-0-323-46158-0. OCLC 1018308697.{{cite book}}: CS1 maint: others (link)
  18. ^ Waugh A, Grant A (2007). "2". Anatomy and Physiology in Health and Illness (Tenth ed.). Churchill Livingstone Elsevier. p. 22. ISBN 978-0-443-10102-1.
  19. ^ Acid–Base Regulation and Disorders at Merck Manual of Diagnosis and Therapy Professional Edition
  20. ^ Romer AS, Parsons TS (1977). The Vertebrate Body. Philadelphia: Holt-Saunders International. pp. 404–406. ISBN 978-0-03-910284-5.
  21. ^ Harvey W (1628). "Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus" (in Latin). from the original on 27 November 2010.
  22. ^ Williams PW, Gray HD (1989). Gray's anatomy (37th ed.). New York: C. Livingstone. ISBN 978-0-443-02588-4.
  23. ^ Frederic, Martini (2009). Fundamentals of anatomy & physiology. Nath, Judi Lindsley (8th ed.). San Francisco: Pearson/Benjamin Cummings. p. 657. ISBN 978-0321539106. OCLC 173683666.
  24. ^ Dominguez de Villota ED, Ruiz Carmona MT, Rubio JJ, de Andrés S (December 1981). "Equality of the in vivo and in vitro oxygen-binding capacity of haemoglobin in patients with severe respiratory disease". British Journal of Anaesthesia. 53 (12): 1325–8. doi:10.1093/bja/53.12.1325. PMID 7317251. S2CID 10029560.
  25. ^ a b Costanzo LS (2007). Physiology. Hagerstown, Maryland: Lippincott Williams & Wilkins. ISBN 978-0-7817-7311-9.
  26. ^ a b c Edwards Lifesciences LLC – Normal Hemodynamic Parameters – Adult 10 November 2010 at the Wayback Machine 2009
  27. ^ . 23 March 2010. Archived from the original on 23 March 2010. Retrieved 4 March 2017.
  28. ^ MSN groups
  29. ^ Mortensen SP, Dawson EA, Yoshiga CC, Dalsgaard MK, Damsgaard R, Secher NH, González-Alonso J, et al. (July 2005). "Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans". The Journal of Physiology. 566 (Pt 1): 273–85. doi:10.1113/jphysiol.2005.086025. PMC 1464731. PMID 15860533.
  30. ^ . 25 September 2010. Archived from the original on 25 September 2010. Retrieved 4 March 2017.
  31. ^ . 2 May 1999. Archived from the original on 2 May 1999. Retrieved 4 March 2017.
  32. ^ Martini F, et al. (2007). Anatomy and Physiology. Rex Bookstore, Inc. p. 643. ISBN 9789712348075. from the original on 1 May 2016.
  33. ^ Vander's Human Physiology reported similar numbers: 60% carried as bicarbonate, 30% bound to hemoglobin as carbaminohemoglobin, and 10% physically dissolved. Widmaier EP, Raff H, Strang KT (2003). Vander's Human Physiology (9th ed.). McGraw-Hill Education. p. 493 (ch. Respiratory physiology § Transport of carbon dioxide in blood). ISBN 978-0-07-288074-8.
  34. ^ a b Guyton and Hall Textbook of Medical Physiology. Saunders. 2015. p. 204. ISBN 978-1455770052.
  35. ^ "Spiders: circulatory system". Encyclopædia Britannica online. from the original on 12 November 2007. Retrieved 25 November 2007.
  36. ^ Prahl. "Optical Absorption of Hemoglobin". from the original on 5 January 2002. Retrieved 30 December 2012.
  37. ^ Kienle A, Lilge L, Vitkin IA, Patterson MS, Wilson BC, Hibst R, Steiner R (March 1996). (PDF). Applied Optics. 35 (7): 1151. Bibcode:1996ApOpt..35.1151K. doi:10.1364/AO.35.001151. PMID 21085227. Archived from the original (PDF) on 10 February 2012.
  38. ^ Austin CC, Perkins SL (August 2006). "Parasites in a biodiversity hotspot: a survey of hematozoa and a molecular phylogenetic analysis of Plasmodium in New Guinea skinks". The Journal of Parasitology. 92 (4): 770–7. doi:10.1645/GE-693R.1. PMID 16995395. S2CID 1937837.
  39. ^ a b c d e Shuster, Carl N (2004). "Chapter 11: A blue blood: the circulatory system". In Shuster, Carl N Jr; Barlow, Robert B; Brockmann, H. Jane (eds.). The American Horseshoe Crab. Harvard University Press. pp. 276–277. ISBN 978-0-674-01159-5.
  40. ^ a b Carnegie Library of Pittsburgh, The Handy Science Answer Book, p. 465, Visible Ink Press, 2011 ISBN 1578593212.
  41. ^ . The Franklin Institute. Archived from the original on 5 March 2009. Retrieved 19 March 2009.
  42. ^ . Archived from the original on 18 May 2017. Retrieved 22 May 2017.
  43. ^ Blumenthal I (June 2001). "Carbon monoxide poisoning". Journal of the Royal Society of Medicine. 94 (6): 270–2. doi:10.1177/014107680109400604. PMC 1281520. PMID 11387414.
  44. ^ "blood". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  45. ^ Hart GD (December 2001). (PDF). British Journal of Haematology. 115 (4): 719–28. doi:10.1046/j.1365-2141.2001.03130.x. PMID 11843802. S2CID 10602937. Archived from the original (PDF) on 8 July 2011.
  46. ^ "History of Blood Transfusion | American Red Cross". redcrossblood.org. from the original on 4 February 2016. Retrieved 21 March 2021.
  47. ^ Lawlor R (1991). Voices of the first day: awakening in the Aboriginal dreamtime. Rochester, VT: Inner Traditions International. pp. 102–103. ISBN 978-0-89281-355-1.
  48. ^ Koshering Meat. 16 December 2013 at the Wayback Machine Chabad.org.
  49. ^ Removing the Blood. 16 December 2013 at the Wayback Machine Chabad.org.
  50. ^ Citron, R. Aryeh. All About Kosher Fish. 16 December 2013 at the Wayback Machine Chabad.org.
  51. ^ Schneerson, R. Menachem M. Igrot Kodesh, vol. vii, p. 270.
  52. ^ The Watchtower 15 June 2004, p. 22, "Be Guided by the Living God"
  53. ^ "Nostalgia" Artwork in blood 8 January 2009 at the Wayback Machine

External links

  • Blood Groups and Red Cell Antigens. Free online book at NCBI Bookshelf ID: NBK2261
  • Blood on In Our Time at the BBC

blood, other, uses, disambiguation, body, fluid, circulatory, system, humans, other, vertebrates, that, delivers, necessary, substances, such, nutrients, oxygen, cells, transports, metabolic, waste, products, away, from, those, same, cells, circulatory, system. For other uses see Blood disambiguation Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells and transports metabolic waste products away from those same cells 1 Blood in the circulatory system is also known as peripheral blood and the blood cells it carries peripheral blood cells 2 BloodVenous darker and arterial brighter bloodIdentifiersMeSHD001769TA98A12 0 00 009TA23892FMA9670Anatomical terminology edit on Wikidata Blood is composed of blood cells suspended in blood plasma Plasma which constitutes 55 of blood fluid is mostly water 92 by volume 3 and contains proteins glucose mineral ions hormones carbon dioxide plasma being the main medium for excretory product transportation and blood cells themselves Albumin is the main protein in plasma and it functions to regulate the colloidal osmotic pressure of blood citation needed The blood cells are mainly red blood cells also called RBCs or erythrocytes white blood cells also called WBCs or leukocytes and in mammals platelets also called thrombocytes 4 The most abundant cells in vertebrate blood are red blood cells 5 These contain hemoglobin an iron containing protein which facilitates oxygen transport by reversibly binding to this respiratory gas thereby increasing its solubility in blood 6 In contrast carbon dioxide is mostly transported extracellularly as bicarbonate ion transported in plasma Vertebrate blood is bright red when its hemoglobin is oxygenated and dark red when it is deoxygenated 7 Some animals such as crustaceans and mollusks use hemocyanin to carry oxygen instead of hemoglobin 8 Insects and some mollusks use a fluid called hemolymph instead of blood the difference being that hemolymph is not contained in a closed circulatory system In most insects this blood does not contain oxygen carrying molecules such as hemoglobin because their bodies are small enough for their tracheal system to suffice for supplying oxygen Jawed vertebrates have an adaptive immune system based largely on white blood cells White blood cells help to resist infections and parasites Platelets are important in the clotting of blood Arthropods using hemolymph have hemocytes as part of their immune system Blood is circulated around the body through blood vessels by the pumping action of the heart In animals with lungs arterial blood carries oxygen from inhaled air to the tissues of the body and venous blood carries carbon dioxide a waste product of metabolism produced by cells from the tissues to the lungs to be exhaled Medical terms related to blood often begin with hemo hemato haemo or haemato from the Greek word aἷma haima for blood In terms of anatomy and histology blood is considered a specialized form of connective tissue 9 given its origin in the bones and the presence of potential molecular fibers in the form of fibrinogen citation needed Contents 1 Functions 2 Constituents 2 1 In mammals 2 1 1 Cells 2 1 2 Plasma 2 1 3 pH values 2 2 In non mammalian vertebrates 3 Physiology 3 1 Circulatory system 3 2 Cell production and degradation 3 3 Oxygen transport 3 4 Carbon dioxide transport 3 5 Transport of hydrogen ions 3 6 Lymphatic system 3 7 Thermoregulation 3 8 Rate of flow 3 9 Hydraulic functions 3 10 Invertebrates 4 Color 4 1 Hemoglobin 4 2 Hemocyanin 4 3 Chlorocruorin 4 4 Hemerythrin 4 5 Hemovanadin 5 Disorders 5 1 General medical 5 2 Hematological 5 3 Carbon monoxide poisoning 6 Treatments 6 1 Transfusion 6 2 Intravenous administration 6 3 Letting 7 Etymology 8 History 8 1 Classical Greek medicine 8 2 Types 9 Culture and religion 9 1 Indigenous Australians 9 2 European paganism 9 3 Christianity 9 4 Judaism 9 5 Islam 9 6 Jehovah s Witnesses 9 7 Vampirism 10 Other uses 10 1 Forensic and archaeological 10 2 Artistic 10 3 Genealogical 11 See also 12 References 13 External linksFunctionsThis section needs expansion You can help by adding to it January 2023 Hemoglobin a globular proteingreen haem or heme groupsred amp blue protein subunits Blood performs many important functions within the body including Supply of oxygen to tissues bound to hemoglobin which is carried in red cells Supply of nutrients such as glucose amino acids and fatty acids dissolved in the blood or bound to plasma proteins e g blood lipids Removal of waste such as carbon dioxide urea and lactic acid Immunological functions including circulation of white blood cells and detection of foreign material by antibodies Coagulation the response to a broken blood vessel the conversion of blood from a liquid to a semisolid gel to stop bleeding Messenger functions including the transport of hormones and the signaling of tissue damage Regulation of core body temperature Hydraulic functionsConstituentsIn mammals See also Reference ranges for common blood tests Blood accounts for 7 of the human body weight 10 11 with an average density around 1060 kg m3 very close to pure water s density of 1000 kg m3 12 The average adult has a blood volume of roughly 5 litres 11 US pt or 1 3 gallons 11 which is composed of plasma and formed elements The formed elements are the two types of blood cell or corpuscle the red blood cells erythrocytes and white blood cells leukocytes and the cell fragments called platelets 13 that are involved in clotting By volume the red blood cells constitute about 45 of whole blood the plasma about 54 3 and white cells about 0 7 Whole blood plasma and cells exhibits non Newtonian fluid dynamics specify Human blood fractioned by centrifugation Plasma upper yellow layer buffy coat middle thin white layer and erythrocyte layer bottom red layer can be seen Blood circulation Red oxygenated blue deoxygenated Illustration depicting formed elements of blood Two tubes of EDTA anticoagulated blood Left tube after standing the RBCs have settled at the bottom of the tube Right tube Freshly drawn bloodCells Further information Complete blood count A scanning electron microscope SEM image of a normal red blood cell left a platelet middle and a white blood cell right One microliter of blood contains 4 7 to 6 1 million male 4 2 to 5 4 million female erythrocytes 14 Red blood cells contain the blood s hemoglobin and distribute oxygen Mature red blood cells lack a nucleus and organelles in mammals The red blood cells together with endothelial vessel cells and other cells are also marked by glycoproteins that define the different blood types The proportion of blood occupied by red blood cells is referred to as the hematocrit and is normally about 45 The combined surface area of all red blood cells of the human body would be roughly 2 000 times as great as the body s exterior surface 15 4 000 11 000 leukocytes 16 White blood cells are part of the body s immune system they destroy and remove old or aberrant cells and cellular debris as well as attack infectious agents pathogens and foreign substances The cancer of leukocytes is called leukemia 200 000 500 000 thrombocytes 16 Also called platelets they take part in blood clotting coagulation Fibrin from the coagulation cascade creates a mesh over the platelet plug Constitution of normal blood Parameter Value Refs Hematocrit 45 7 38 52 for males 42 5 37 47 for femalespH 7 35 7 45 17 base excess 3 to 3PO2 10 13 kPa 80 100 mm Hg PCO2 4 8 5 8 kPa 35 45 mm Hg HCO3 21 27 mMOxygen saturation Oxygenated 98 99 Deoxygenated 75 Plasma Main article Blood plasma About 55 of blood is blood plasma a fluid that is the blood s liquid medium which by itself is straw yellow in color The blood plasma volume totals of 2 7 3 0 liters 2 8 3 2 quarts in an average human It is essentially an aqueous solution containing 92 water 8 blood plasma proteins and trace amounts of other materials Plasma circulates dissolved nutrients such as glucose amino acids and fatty acids dissolved in the blood or bound to plasma proteins and removes waste products such as carbon dioxide urea and lactic acid Other important components include Serum albumin Blood clotting factors to facilitate coagulation Immunoglobulins antibodies lipoprotein particles Various other proteins Various electrolytes mainly sodium and chloride The term serum refers to plasma from which the clotting proteins have been removed Most of the proteins remaining are albumin and immunoglobulins pH values See also Acid base homeostasis Blood pH is regulated to stay within the narrow range of 7 35 to 7 45 making it slightly basic compensation 18 19 Extra cellular fluid in blood that has a pH below 7 35 is too acidic whereas blood pH above 7 45 is too basic 17 A pH below 6 9 or above 7 8 is usually lethal 17 Blood pH partial pressure of oxygen pO2 partial pressure of carbon dioxide pCO2 and bicarbonate HCO3 are carefully regulated by a number of homeostatic mechanisms which exert their influence principally through the respiratory system and the urinary system to control the acid base balance and respiration which is called compensation 17 An arterial blood gas test measures these Plasma also circulates hormones transmitting their messages to various tissues The list of normal reference ranges for various blood electrolytes is extensive In non mammalian vertebrates Vertebrate red blood cell types measurements in micrometers Frog red blood cells magnified 1000 times Turtle red blood cells magnified 1000 times Chicken red blood cells magnified 1000 times Human red blood cells magnified 1000 times Human blood is typical of that of mammals although the precise details concerning cell numbers size protein structure and so on vary somewhat between species In non mammalian vertebrates however there are some key differences 20 Red blood cells of non mammalian vertebrates are flattened and ovoid in form and retain their cell nuclei There is considerable variation in the types and proportions of white blood cells for example acidophils are generally more common than in humans Platelets are unique to mammals in other vertebrates small nucleated spindle cells called thrombocytes are responsible for blood clotting instead PhysiologyCirculatory system Circulation of blood through the human heart Main article Circulatory system Blood is circulated around the body through blood vessels by the pumping action of the heart In humans blood is pumped from the strong left ventricle of the heart through arteries to peripheral tissues and returns to the right atrium of the heart through veins It then enters the right ventricle and is pumped through the pulmonary artery to the lungs and returns to the left atrium through the pulmonary veins Blood then enters the left ventricle to be circulated again Arterial blood carries oxygen from inhaled air to all of the cells of the body and venous blood carries carbon dioxide a waste product of metabolism by cells to the lungs to be exhaled However one exception includes pulmonary arteries which contain the most deoxygenated blood in the body while the pulmonary veins contain oxygenated blood Additional return flow may be generated by the movement of skeletal muscles which can compress veins and push blood through the valves in veins toward the right atrium The blood circulation was famously described by William Harvey in 1628 21 Cell production and degradation In vertebrates the various cells of blood are made in the bone marrow in a process called hematopoiesis which includes erythropoiesis the production of red blood cells and myelopoiesis the production of white blood cells and platelets During childhood almost every human bone produces red blood cells as adults red blood cell production is limited to the larger bones the bodies of the vertebrae the breastbone sternum the ribcage the pelvic bones and the bones of the upper arms and legs In addition during childhood the thymus gland found in the mediastinum is an important source of T lymphocytes 22 The proteinaceous component of blood including clotting proteins is produced predominantly by the liver while hormones are produced by the endocrine glands and the watery fraction is regulated by the hypothalamus and maintained by the kidney Healthy erythrocytes have a plasma life of about 120 days before they are degraded by the spleen and the Kupffer cells in the liver The liver also clears some proteins lipids and amino acids The kidney actively secretes waste products into the urine Oxygen transport Further information Oxygen saturation medicine Basic hemoglobin saturation curve It is moved to the right in higher acidity more dissolved carbon dioxide and to the left in lower acidity less dissolved carbon dioxide About 98 5 23 of the oxygen in a sample of arterial blood in a healthy human breathing air at sea level pressure is chemically combined with the hemoglobin About 1 5 is physically dissolved in the other blood liquids and not connected to hemoglobin The hemoglobin molecule is the primary transporter of oxygen in mammals and many other species for exceptions see below Hemoglobin has an oxygen binding capacity between 1 36 and 1 40 ml O2 per gram hemoglobin 24 which increases the total blood oxygen capacity seventyfold 25 compared to if oxygen solely were carried by its solubility of 0 03 ml O2 per liter blood per mm Hg partial pressure of oxygen about 100 mm Hg in arteries 25 With the exception of pulmonary and umbilical arteries and their corresponding veins arteries carry oxygenated blood away from the heart and deliver it to the body via arterioles and capillaries where the oxygen is consumed afterwards venules and veins carry deoxygenated blood back to the heart Under normal conditions in adult humans at rest hemoglobin in blood leaving the lungs is about 98 99 saturated with oxygen achieving an oxygen delivery between 950 and 1150 ml min 26 to the body In a healthy adult at rest oxygen consumption is approximately 200 250 ml min 26 and deoxygenated blood returning to the lungs is still roughly 75 27 28 70 to 78 26 saturated Increased oxygen consumption during sustained exercise reduces the oxygen saturation of venous blood which can reach less than 15 in a trained athlete although breathing rate and blood flow increase to compensate oxygen saturation in arterial blood can drop to 95 or less under these conditions 29 Oxygen saturation this low is considered dangerous in an individual at rest for instance during surgery under anesthesia Sustained hypoxia oxygenation less than 90 is dangerous to health and severe hypoxia saturations less than 30 may be rapidly fatal 30 A fetus receiving oxygen via the placenta is exposed to much lower oxygen pressures about 21 of the level found in an adult s lungs so fetuses produce another form of hemoglobin with a much higher affinity for oxygen hemoglobin F to function under these conditions 31 Carbon dioxide transport CO2 is carried in blood in three different ways The exact percentages vary depending whether it is arterial or venous blood Most of it about 70 is converted to bicarbonate ions HCO 3 by the enzyme carbonic anhydrase in the red blood cells by the reaction CO2 H2O H2CO3 H HCO 3 about 7 is dissolved in the plasma and about 23 is bound to hemoglobin as carbamino compounds 32 33 Hemoglobin the main oxygen carrying molecule in red blood cells carries both oxygen and carbon dioxide However the CO2 bound to hemoglobin does not bind to the same site as oxygen Instead it combines with the N terminal groups on the four globin chains However because of allosteric effects on the hemoglobin molecule the binding of CO2 decreases the amount of oxygen that is bound for a given partial pressure of oxygen The decreased binding to carbon dioxide in the blood due to increased oxygen levels is known as the Haldane effect and is important in the transport of carbon dioxide from the tissues to the lungs A rise in the partial pressure of CO2 or a lower pH will cause offloading of oxygen from hemoglobin which is known as the Bohr effect Transport of hydrogen ions Some oxyhemoglobin loses oxygen and becomes deoxyhemoglobin Deoxyhemoglobin binds most of the hydrogen ions as it has a much greater affinity for more hydrogen than does oxyhemoglobin Lymphatic system Main article Lymphatic system In mammals blood is in equilibrium with lymph which is continuously formed in tissues from blood by capillary ultrafiltration Lymph is collected by a system of small lymphatic vessels and directed to the thoracic duct which drains into the left subclavian vein where lymph rejoins the systemic blood circulation Thermoregulation Blood circulation transports heat throughout the body and adjustments to this flow are an important part of thermoregulation Increasing blood flow to the surface e g during warm weather or strenuous exercise causes warmer skin resulting in faster heat loss In contrast when the external temperature is low blood flow to the extremities and surface of the skin is reduced and to prevent heat loss and is circulated to the important organs of the body preferentially Rate of flow Rate of blood flow varies greatly between different organs Liver has the most abundant blood supply with an approximate flow of 1350 ml min Kidney and brain are the second and the third most supplied organs with 1100 ml min and 700 ml min respectively 34 Relative rates of blood flow per 100 g of tissue are different with kidney adrenal gland and thyroid being the first second and third most supplied tissues respectively 34 Hydraulic functions The restriction of blood flow can also be used in specialized tissues to cause engorgement resulting in an erection of that tissue examples are the erectile tissue in the penis and clitoris Another example of a hydraulic function is the jumping spider in which blood forced into the legs under pressure causes them to straighten for a powerful jump without the need for bulky muscular legs 35 Invertebrates In insects the blood more properly called hemolymph is not involved in the transport of oxygen Openings called tracheae allow oxygen from the air to diffuse directly to the tissues Insect blood moves nutrients to the tissues and removes waste products in an open system Other invertebrates use respiratory proteins to increase the oxygen carrying capacity Hemoglobin is the most common respiratory protein found in nature Hemocyanin blue contains copper and is found in crustaceans and mollusks It is thought that tunicates sea squirts might use vanabins proteins containing vanadium for respiratory pigment bright green blue or orange In many invertebrates these oxygen carrying proteins are freely soluble in the blood in vertebrates they are contained in specialized red blood cells allowing for a higher concentration of respiratory pigments without increasing viscosity or damaging blood filtering organs like the kidneys Giant tube worms have unusual hemoglobins that allow them to live in extraordinary environments These hemoglobins also carry sulfides normally fatal in other animals ColorThe coloring matter of blood hemochrome is largely due to the protein in the blood responsible for oxygen transport Different groups of organisms use different proteins Hemoglobin Main article Hemoglobin Capillary blood from a bleeding finger Hemoglobin is the principal determinant of the color of blood in vertebrates Each molecule has four heme groups and their interaction with various molecules alters the exact color In vertebrates and other hemoglobin using creatures arterial blood and capillary blood are bright red as oxygen imparts a strong red color to the heme group Deoxygenated blood is a darker shade of red this is present in veins and can be seen during blood donation and when venous blood samples are taken This is because the spectrum of light absorbed by hemoglobin differs between the oxygenated and deoxygenated states 36 Blood in carbon monoxide poisoning is bright red because carbon monoxide causes the formation of carboxyhemoglobin In cyanide poisoning the body cannot use oxygen so the venous blood remains oxygenated increasing the redness There are some conditions affecting the heme groups present in hemoglobin that can make the skin appear blue a symptom called cyanosis If the heme is oxidized methemoglobin which is more brownish and cannot transport oxygen is formed In the rare condition sulfhemoglobinemia arterial hemoglobin is partially oxygenated and appears dark red with a bluish hue Veins close to the surface of the skin appear blue for a variety of reasons However the factors that contribute to this alteration of color perception are related to the light scattering properties of the skin and the processing of visual input by the visual cortex rather than the actual color of the venous blood 37 Skinks in the genus Prasinohaema have green blood due to a buildup of the waste product biliverdin 38 Hemocyanin Main article Hemocyanin The blood of most mollusks including cephalopods and gastropods as well as some arthropods such as horseshoe crabs is blue as it contains the copper containing protein hemocyanin at concentrations of about 50 grams per liter 39 Hemocyanin is colorless when deoxygenated and dark blue when oxygenated The blood in the circulation of these creatures which generally live in cold environments with low oxygen tensions is grey white to pale yellow 39 and it turns dark blue when exposed to the oxygen in the air as seen when they bleed 39 This is due to change in color of hemocyanin when it is oxidized 39 Hemocyanin carries oxygen in extracellular fluid which is in contrast to the intracellular oxygen transport in mammals by hemoglobin in RBCs 39 Chlorocruorin Main article Chlorocruorin The blood of most annelid worms and some marine polychaetes use chlorocruorin to transport oxygen It is green in color in dilute solutions 40 Hemerythrin Main article Hemerythrin Hemerythrin is used for oxygen transport in the marine invertebrates sipunculids priapulids brachiopods and the annelid worm magelona Hemerythrin is violet pink when oxygenated 40 Hemovanadin Main article Hemovanadin The blood of some species of ascidians and tunicates also known as sea squirts contains proteins called vanadins These proteins are based on vanadium and give the creatures a concentration of vanadium in their bodies 100 times higher than the surrounding seawater Unlike hemocyanin and hemoglobin hemovanadin is not an oxygen carrier When exposed to oxygen however vanadins turn a mustard yellow DisordersGeneral medical Disorders of volume Injury can cause blood loss through bleeding 41 A healthy adult can lose almost 20 of blood volume 1 L before the first symptom restlessness begins and 40 of volume 2 L before shock sets in Thrombocytes are important for blood coagulation and the formation of blood clots which can stop bleeding Trauma to the internal organs or bones can cause internal bleeding which can sometimes be severe Dehydration can reduce the blood volume by reducing the water content of the blood This would rarely result in shock apart from the very severe cases but may result in orthostatic hypotension and fainting Disorders of circulation Shock is the ineffective perfusion of tissues and can be caused by a variety of conditions including blood loss infection poor cardiac output Atherosclerosis reduces the flow of blood through arteries because atheroma lines arteries and narrows them Atheroma tends to increase with age and its progression can be compounded by many causes including smoking high blood pressure excess circulating lipids hyperlipidemia and diabetes mellitus Coagulation can form a thrombosis which can obstruct vessels Problems with blood composition the pumping action of the heart or narrowing of blood vessels can have many consequences including hypoxia lack of oxygen of the tissues supplied The term ischemia refers to tissue that is inadequately perfused with blood and infarction refers to tissue death necrosis which can occur when the blood supply has been blocked or is very inadequate Hematological See also Hematology Anemia Insufficient red cell mass anemia can be the result of bleeding blood disorders like thalassemia or nutritional deficiencies and may require one or more blood transfusions Anemia can also be due to a genetic disorder in which the red blood cells do not function effectively Anemia can be confirmed by a blood test if the hemoglobin value is less than 13 5 gm dl in men or less than 12 0 gm dl in women 42 Several countries have blood banks to fill the demand for transfusable blood A person receiving a blood transfusion must have a blood type compatible with that of the donor Sickle cell anemia Disorders of cell proliferation Leukemia is a group of cancers of the blood forming tissues and cells Non cancerous overproduction of red cells polycythemia vera or platelets essential thrombocytosis may be premalignant Myelodysplastic syndromes involve ineffective production of one or more cell lines Disorders of coagulation Hemophilia is a genetic illness that causes dysfunction in one of the blood s clotting mechanisms This can allow otherwise inconsequential wounds to be life threatening but more commonly results in hemarthrosis or bleeding into joint spaces which can be crippling Ineffective or insufficient platelets can also result in coagulopathy bleeding disorders Hypercoagulable state thrombophilia results from defects in regulation of platelet or clotting factor function and can cause thrombosis Infectious disorders of blood Blood is an important vector of infection HIV the virus that causes AIDS is transmitted through contact with blood semen or other body secretions of an infected person Hepatitis B and C are transmitted primarily through blood contact Owing to blood borne infections bloodstained objects are treated as a biohazard Bacterial infection of the blood is bacteremia or sepsis Viral Infection is viremia Malaria and trypanosomiasis are blood borne parasitic infections Carbon monoxide poisoning Main article Carbon monoxide poisoning Substances other than oxygen can bind to hemoglobin in some cases this can cause irreversible damage to the body Carbon monoxide for example is extremely dangerous when carried to the blood via the lungs by inhalation because carbon monoxide irreversibly binds to hemoglobin to form carboxyhemoglobin so that less hemoglobin is free to bind oxygen and fewer oxygen molecules can be transported throughout the blood This can cause suffocation insidiously A fire burning in an enclosed room with poor ventilation presents a very dangerous hazard since it can create a build up of carbon monoxide in the air Some carbon monoxide binds to hemoglobin when smoking tobacco 43 TreatmentsTransfusion Further information Blood transfusion Venous blood collected during blood donation Blood for transfusion is obtained from human donors by blood donation and stored in a blood bank There are many different blood types in humans the ABO blood group system and the Rhesus blood group system being the most important Transfusion of blood of an incompatible blood group may cause severe often fatal complications so crossmatching is done to ensure that a compatible blood product is transfused Other blood products administered intravenously are platelets blood plasma cryoprecipitate and specific coagulation factor concentrates Intravenous administration Many forms of medication from antibiotics to chemotherapy are administered intravenously as they are not readily or adequately absorbed by the digestive tract After severe acute blood loss liquid preparations generically known as plasma expanders can be given intravenously either solutions of salts NaCl KCl CaCl2 etc at physiological concentrations or colloidal solutions such as dextrans human serum albumin or fresh frozen plasma In these emergency situations a plasma expander is a more effective life saving procedure than a blood transfusion because the metabolism of transfused red blood cells does not restart immediately after a transfusion Letting Main article bloodletting In modern evidence based medicine bloodletting is used in management of a few rare diseases including hemochromatosis and polycythemia However bloodletting and leeching were common unvalidated interventions used until the 19th century as many diseases were incorrectly thought to be due to an excess of blood according to Hippocratic medicine Etymology Jan Jansky is credited with the first classification of blood into four types A B AB and O English blood Old English blod derives from Germanic and has cognates with a similar range of meanings in all other Germanic languages e g German Blut Swedish blod Gothic blōth There is no accepted Indo European etymology 44 HistoryClassical Greek medicine Robin Fahraeus a Swedish physician who devised the erythrocyte sedimentation rate suggested that the Ancient Greek system of humorism wherein the body was thought to contain four distinct bodily fluids associated with different temperaments were based upon the observation of blood clotting in a transparent container When blood is drawn in a glass container and left undisturbed for about an hour four different layers can be seen A dark clot forms at the bottom the black bile Above the clot is a layer of red blood cells the blood Above this is a whitish layer of white blood cells the phlegm The top layer is clear yellow serum the yellow bile 45 failed verification Types The ABO blood group system was discovered in the year 1900 by Karl Landsteiner Jan Jansky is credited with the first classification of blood into the four types A B AB and O in 1907 which remains in use today In 1907 the first blood transfusion was performed that used the ABO system to predict compatibility 46 The first non direct transfusion was performed on 27 March 1914 The Rhesus factor was discovered in 1937 Culture and religionSee also Blood libel This section needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed July 2011 Learn how and when to remove this template message Due to its importance to life blood is associated with a large number of beliefs One of the most basic is the use of blood as a symbol for family relationships through birth parentage to be related by blood is to be related by ancestry or descendence rather than marriage This bears closely to bloodlines and sayings such as blood is thicker than water and bad blood as well as Blood brother Blood is given particular emphasis in the Islamic Jewish and Christian religions because Leviticus 17 11 says the life of a creature is in the blood This phrase is part of the Levitical law forbidding the drinking of blood or eating meat with the blood still intact instead of being poured off Mythic references to blood can sometimes be connected to the life giving nature of blood seen in such events as childbirth as contrasted with the blood of injury or death Indigenous AustraliansIn many indigenous Australian Aboriginal peoples traditions ochre particularly red and blood both high in iron content and considered Maban are applied to the bodies of dancers for ritual As Lawlor states In many Aboriginal rituals and ceremonies red ochre is rubbed all over the naked bodies of the dancers In secret sacred male ceremonies blood extracted from the veins of the participant s arms is exchanged and rubbed on their bodies Red ochre is used in similar ways in less secret ceremonies Blood is also used to fasten the feathers of birds onto people s bodies Bird feathers contain a protein that is highly magnetically sensitive 47 Lawlor comments that blood employed in this fashion is held by these peoples to attune the dancers to the invisible energetic realm of the Dreamtime Lawlor then connects these invisible energetic realms and magnetic fields because iron is magnetic European paganism This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Blood news newspapers books scholar JSTOR October 2012 Learn how and when to remove this template message Among the Germanic tribes blood was used during their sacrifices the Blots The blood was considered to have the power of its originator and after the butchering the blood was sprinkled on the walls on the statues of the gods and on the participants themselves This act of sprinkling blood was called bloedsian in Old English and the terminology was borrowed by the Roman Catholic Church becoming to bless and blessing The Hittite word for blood ishar was a cognate to words for oath and bond see Ishara The Ancient Greeks believed that the blood of the gods ichor was a substance that was poisonous to mortals As a relic of Germanic Law the cruentation an ordeal where the corpse of the victim was supposed to start bleeding in the presence of the murderer was used until the early 17th century citation needed Christianity In Genesis 9 4 God prohibited Noah and his sons from eating blood see Noahide Law This command continued to be observed by the Eastern Orthodox Church It is also found in the Bible that when the Angel of Death came around to the Hebrew house that the first born child would not die if the angel saw lamb s blood wiped across the doorway At the Council of Jerusalem the apostles prohibited certain Christians from consuming blood this is documented in Acts 15 20 and 29 This chapter specifies a reason especially in verses 19 21 It was to avoid offending Jews who had become Christians because the Mosaic Law Code prohibited the practice Christ s blood is the means for the atonement of sins Also the blood of Jesus Christ his God Son cleanseth us from all sin 1 John 1 7 Unto him God that loved us and washed us from our sins in his own blood Revelation 1 5 and And they overcame him Satan by the blood of the Lamb Jesus the Christ and by the word of their testimony Revelation 12 11 Some Christian churches including Roman Catholicism Eastern Orthodoxy Oriental Orthodoxy and the Assyrian Church of the East teach that when consecrated the Eucharistic wine actually becomes the blood of Jesus for worshippers to drink Thus in the consecrated wine Jesus becomes spiritually and physically present This teaching is rooted in the Last Supper as written in the four gospels of the Bible in which Jesus stated to his disciples that the bread that they ate was his body and the wine was his blood This cup is the new testament in my blood which is shed for you Luke 22 20 Most forms of Protestantism especially those of a Methodist or Presbyterian lineage teach that the wine is no more than a symbol of the blood of Christ who is spiritually but not physically present Lutheran theology teaches that the body and blood is present together in with and under the bread and wine of the Eucharistic feast Judaism In Judaism animal blood may not be consumed even in the smallest quantity Leviticus 3 17 and elsewhere this is reflected in Jewish dietary laws Kashrut Blood is purged from meat by rinsing and soaking in water to loosen clots salting and then rinsing with water again several times 48 Eggs must also be checked and any blood spots removed before consumption 49 Although blood from fish is biblically kosher it is rabbinically forbidden to consume fish blood to avoid the appearance of breaking the Biblical prohibition 50 Another ritual involving blood involves the covering of the blood of fowl and game after slaughtering Leviticus 17 13 the reason given by the Torah is Because the life of the animal is in its blood ibid 17 14 In relation to human beings Kabbalah expounds on this verse that the animal soul of a person is in the blood and that physical desires stem from it Likewise the mystical reason for salting temple sacrifices and slaughtered meat is to remove the blood of animal like passions from the person By removing the animal s blood the animal energies and life force contained in the blood are removed making the meat fit for human consumption 51 Islam Consumption of food containing blood is forbidden by Islamic dietary laws This is derived from the statement in the Qur an sura Al Ma ida 5 3 Forbidden to you for food are dead meat blood the flesh of swine and that on which has been invoked the name of other than Allah Blood is considered unclean hence there are specific methods to obtain physical and ritual status of cleanliness once bleeding has occurred Specific rules and prohibitions apply to menstruation postnatal bleeding and irregular vaginal bleeding When an animal has been slaughtered the animal s neck is cut in a way to ensure that the spine is not severed hence the brain may send commands to the heart to pump blood to it for oxygen In this way blood is removed from the body and the meat is generally now safe to cook and eat In modern times blood transfusions are generally not considered against the rules Jehovah s Witnesses Main article Jehovah s Witnesses and blood transfusions Based on their interpretation of scriptures such as Acts 15 28 29 Keep abstaining from blood many Jehovah s Witnesses neither consume blood nor accept transfusions of whole blood or its major components red blood cells white blood cells platelets thrombocytes and plasma Members may personally decide whether they will accept medical procedures that involve their own blood or substances that are further fractionated from the four major components 52 Vampirism Main article Vampire Vampires are mythical creatures that drink blood directly for sustenance usually with a preference for human blood Cultures all over the world have myths of this kind for example the Nosferatu legend a human who achieves damnation and immortality by drinking the blood of others originates from Eastern European folklore Ticks leeches female mosquitoes vampire bats and an assortment of other natural creatures do consume the blood of other animals but only bats are associated with vampires This has no relation to vampire bats which are New World creatures discovered well after the origins of the European myths Other usesForensic and archaeological Blood residue can help forensic investigators identify weapons reconstruct a criminal action and link suspects to the crime Through bloodstain pattern analysis forensic information can also be gained from the spatial distribution of bloodstains Blood residue analysis is also a technique used in archeology Artistic Blood is one of the body fluids that has been used in art 53 In particular the performances of Viennese Actionist Hermann Nitsch Istvan Kantor Franko B Lennie Lee Ron Athey Yang Zhichao Lucas Abela and Kira O Reilly along with the photography of Andres Serrano have incorporated blood as a prominent visual element Marc Quinn has made sculptures using frozen blood including a cast of his own head made using his own blood Genealogical The term blood is used in genealogical circles to refer to one s ancestry origins and ethnic background as in the word bloodline Other terms where blood is used in a family history sense are blue blood royal blood mixed blood and blood relative See alsoAutotransfusion Blood as food Blood pressure Blood substitutes artificial blood Blood test Hemophobia Luminol a visual test for blood left at crime scenes Oct 1 en 3 one Smell of blood Taboo food and drink BloodReferences Definition of BLOOD Merriam Webster Archived from the original on 23 March 2017 Retrieved 4 March 2017 def peripheral blood www cancer gov 2 February 2011 Retrieved 13 September 2022 The Franklin Institute Inc Blood The Human Heart Archived from the original on 5 March 2009 Retrieved 19 March 2009 Definition of red blood cell National Cancer Institute 2 February 2011 Retrieved 28 April 2022 Aryal Sagar 3 January 2017 Blood cells and its types with functions Microbiology Info com Retrieved 28 April 2022 Low Hemoglobin Causes amp Symptoms Cleveland Clinic Retrieved 28 April 2022 Seguin Chantal 8 January 2022 Did You Know That Not All Blood is Red The Blood Project The Blood Project Retrieved 2 July 2022 Kato Sanae Matsui Takashi Gatsogiannis Christos Tanaka Yoshikazu April 2018 Molluscan hemocyanin structure evolution and physiology Biophysical Reviews 10 2 191 202 doi 10 1007 s12551 017 0349 4 ISSN 1867 2450 PMC 5899709 PMID 29235083 Krause William J 2005 Krause s Essential Human Histology for Medical Students 3rd ed Universal Publishers p 67 ISBN 978 1 58112 468 2 Alberts B 2012 Table 22 1 Blood Cells Molecular Biology of the Cell NCBI Bookshelf Archived from the original on 27 March 2018 Retrieved 1 November 2012 a b Elert G 2012 Volume of Blood in a Human The Physics Factbook Archived from the original on 3 November 2012 Retrieved 1 November 2012 Shmukler Michael 2004 Density of Blood The Physics Factbook Archived from the original on 19 September 2006 Retrieved 4 October 2006 Composition of the Blood SEER Training training seer cancer gov Archived from the original on 16 October 2020 Retrieved 30 December 2020 Medical Encyclopedia RBC count Medline Plus Archived from the original on 21 October 2007 Retrieved 18 November 2007 Tallitsch RB Frederic M Michael J T 2006 Human anatomy 5th ed San Francisco Pearson Benjamin Cummings p 529 ISBN 978 0 8053 7211 3 a b Ganong WF 2003 Review of medical physiology 21 ed New York Lange Medical Books McGraw Hill p 518 ISBN 978 0 07 121765 1 a b c d Medical surgical nursing concepts for interprofessional collaborative care Donna D Ignatavicius M Linda Workman Cherie R Rebar Nicole M Heimgartner 9th ed St Louis Missouri Elsevier 2018 p 190 ISBN 978 0 323 46158 0 OCLC 1018308697 a href Template Cite book html title Template Cite book cite book a CS1 maint others link Waugh A Grant A 2007 2 Anatomy and Physiology in Health and Illness Tenth ed Churchill Livingstone Elsevier p 22 ISBN 978 0 443 10102 1 Acid Base Regulation and Disorders at Merck Manual of Diagnosis and Therapy Professional Edition Romer AS Parsons TS 1977 The Vertebrate Body Philadelphia Holt Saunders International pp 404 406 ISBN 978 0 03 910284 5 Harvey W 1628 Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus in Latin Archived from the original on 27 November 2010 Williams PW Gray HD 1989 Gray s anatomy 37th ed New York C Livingstone ISBN 978 0 443 02588 4 Frederic Martini 2009 Fundamentals of anatomy amp physiology Nath Judi Lindsley 8th ed San Francisco Pearson Benjamin Cummings p 657 ISBN 978 0321539106 OCLC 173683666 Dominguez de Villota ED Ruiz Carmona MT Rubio JJ de Andres S December 1981 Equality of the in vivo and in vitro oxygen binding capacity of haemoglobin in patients with severe respiratory disease British Journal of Anaesthesia 53 12 1325 8 doi 10 1093 bja 53 12 1325 PMID 7317251 S2CID 10029560 a b Costanzo LS 2007 Physiology Hagerstown Maryland Lippincott Williams amp Wilkins ISBN 978 0 7817 7311 9 a b c Edwards Lifesciences LLC Normal Hemodynamic Parameters Adult Archived 10 November 2010 at the Wayback Machine 2009 Ventilatory Physiology and Endurance 23 March 2010 Archived from the original on 23 March 2010 Retrieved 4 March 2017 Transplant Support Lung Heart Lung Heart MSN groups Mortensen SP Dawson EA Yoshiga CC Dalsgaard MK Damsgaard R Secher NH Gonzalez Alonso J et al July 2005 Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans The Journal of Physiology 566 Pt 1 273 85 doi 10 1113 jphysiol 2005 086025 PMC 1464731 PMID 15860533 Blood gas and Saturation measurements 25 September 2010 Archived from the original on 25 September 2010 Retrieved 4 March 2017 Lecture Notes 20 2 May 1999 Archived from the original on 2 May 1999 Retrieved 4 March 2017 Martini F et al 2007 Anatomy and Physiology Rex Bookstore Inc p 643 ISBN 9789712348075 Archived from the original on 1 May 2016 Vander s Human Physiology reported similar numbers 60 carried as bicarbonate 30 bound to hemoglobin as carbaminohemoglobin and 10 physically dissolved Widmaier EP Raff H Strang KT 2003 Vander s Human Physiology 9th ed McGraw Hill Education p 493 ch Respiratory physiology Transport of carbon dioxide in blood ISBN 978 0 07 288074 8 a b Guyton and Hall Textbook of Medical Physiology Saunders 2015 p 204 ISBN 978 1455770052 Spiders circulatory system Encyclopaedia Britannica online Archived from the original on 12 November 2007 Retrieved 25 November 2007 Prahl Optical Absorption of Hemoglobin Archived from the original on 5 January 2002 Retrieved 30 December 2012 Kienle A Lilge L Vitkin IA Patterson MS Wilson BC Hibst R Steiner R March 1996 Why do veins appear blue A new look at an old question PDF Applied Optics 35 7 1151 Bibcode 1996ApOpt 35 1151K doi 10 1364 AO 35 001151 PMID 21085227 Archived from the original PDF on 10 February 2012 Austin CC Perkins SL August 2006 Parasites in a biodiversity hotspot a survey of hematozoa and a molecular phylogenetic analysis of Plasmodium in New Guinea skinks The Journal of Parasitology 92 4 770 7 doi 10 1645 GE 693R 1 PMID 16995395 S2CID 1937837 a b c d e Shuster Carl N 2004 Chapter 11 A blue blood the circulatory system In Shuster Carl N Jr Barlow Robert B Brockmann H Jane eds The American Horseshoe Crab Harvard University Press pp 276 277 ISBN 978 0 674 01159 5 a b Carnegie Library of Pittsburgh The Handy Science Answer Book p 465 Visible Ink Press 2011 ISBN 1578593212 Blood The Human heart The Franklin Institute Archived from the original on 5 March 2009 Retrieved 19 March 2009 The Role of Red Blood Cells in Anemia Archived from the original on 18 May 2017 Retrieved 22 May 2017 Blumenthal I June 2001 Carbon monoxide poisoning Journal of the Royal Society of Medicine 94 6 270 2 doi 10 1177 014107680109400604 PMC 1281520 PMID 11387414 blood Oxford English Dictionary Online ed Oxford University Press Subscription or participating institution membership required Hart GD December 2001 Descriptions of blood and blood disorders before the advent of laboratory studies PDF British Journal of Haematology 115 4 719 28 doi 10 1046 j 1365 2141 2001 03130 x PMID 11843802 S2CID 10602937 Archived from the original PDF on 8 July 2011 History of Blood Transfusion American Red Cross redcrossblood org Archived from the original on 4 February 2016 Retrieved 21 March 2021 Lawlor R 1991 Voices of the first day awakening in the Aboriginal dreamtime Rochester VT Inner Traditions International pp 102 103 ISBN 978 0 89281 355 1 Koshering Meat Archived 16 December 2013 at the Wayback Machine Chabad org Removing the Blood Archived 16 December 2013 at the Wayback Machine Chabad org Citron R Aryeh All About Kosher Fish Archived 16 December 2013 at the Wayback Machine Chabad org Schneerson R Menachem M Igrot Kodesh vol vii p 270 The Watchtower 15 June 2004 p 22 Be Guided by the Living God Nostalgia Artwork in blood Archived 8 January 2009 at the Wayback MachineExternal links Wikiquote has quotations related to Blood Look up blood in Wiktionary the free dictionary Wikimedia Commons has media related to Blood Blood Groups and Red Cell Antigens Free online book at NCBI Bookshelf ID NBK2261 Blood on In Our Time at the BBC Blood Photomicrographs Retrieved from https en wikipedia org w index php title Blood amp oldid 1137486671, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.