fbpx
Wikipedia

Erythrocyte sedimentation rate

The erythrocyte sedimentation rate (ESR or sed rate) is the rate at which red blood cells in anticoagulated whole blood descend in a standardized tube over a period of one hour. It is a common hematology test, and is a non-specific measure of inflammation. To perform the test, anticoagulated blood is traditionally placed in an upright tube, known as a Westergren tube, and the distance which the red blood cells fall is measured and reported in millimetres at the end of one hour.[3]

Erythrocyte sedimentation rate
Westergren pipet array on StaRRsed automated ESR analyzer. The ESR is the height (in mm) of the colourless portion at the top of the pipette after one hour.
Synonymssedimentation rate, Westergren ESR, ESR, sed rate[1]
Reference rangeMale: ≤ age/2 ; Female: ≤ (age + 10)/2.[2] (Unit: mm/hour).[2]
PurposeDetection of inflammation in body.[1]
Test ofThe rate of sedimentation of erythrocytes in a vertical tube over an hour.[1]
Based onThe millimeters of transparent fluid present at the top portion of the vertical tube after an hour.[1]
MeSHD001799
MedlinePlus003638
LOINC30341-2

Since the introduction of automated analyzers into the clinical laboratory, the ESR test has been automatically performed.

The ESR is influenced by the aggregation of red blood cells: blood plasma proteins, mainly fibrinogen, promote the formation of red cell clusters called rouleaux or larger structures (interconnected rouleaux, irregular clusters). As according to Stokes' law the sedimentation velocity varies like the square of the object's diameter, larger aggregates settle faster. While aggregation already takes place at normal physiological fibrinogen levels, these tend to increase when an inflammatory process is present, leading to increased ESR.

The ESR is increased in inflammation, pregnancy, anemia, autoimmune disorders (such as rheumatoid arthritis and lupus), infections, some kidney diseases and some cancers (such as lymphoma and multiple myeloma). The ESR is decreased in polycythemia, hyperviscosity, sickle cell anemia, leukemia, chronic fatigue syndrome,[4] low plasma protein (due to liver or kidney disease) and congestive heart failure. Although increases in immunoglobulins usually increase the ESR, very high levels can reduce it again due to hyperviscosity of the plasma.[5] This is especially likely with IgM-class paraproteins, and to a lesser extent, IgA-class. The basal ESR is slightly higher in females.[6]

Stages edit

Erythrocyte sedimentation rate (ESR) is the measure of ability of erythrocytes (red blood cell) to fall through the blood plasma and accumulate together at the base of container in one hour.[7]

There are three stages in erythrocyte sedimentation:[8]

  1. Rouleaux formation
  2. Sedimentation or settling stage
  3. Packing stage - 10 minutes (sedimentation slows and cells start to pack at the bottom of the tube)

In normal conditions, the red blood cells are negatively charged and therefore repel each other rather than stacking. ESR is also reduced by high blood viscosity, which slows the rate of fall.[7]

Causes of elevation edit

The rate of erythrocyte sedimentation is affected by both inflammatory and non-inflammatory conditions.

Inflammation edit

In inflammatory conditions, fibrinogen, other clotting proteins, and alpha globulin are positively charged, thus increasing the ESR.[9] ESR begins to rise at 24 to 48 hours after the onset of acute self-limited inflammation, decreases slowly as inflammation resolves, and can take weeks to months to return to normal levels. For ESR values more than 100 mm/hour, there is a 90% probability that an underlying cause would be found upon investigation.[9]

Non-inflammatory conditions edit

In non-inflammatory conditions, plasma albumin concentration, size, shape, and number of red blood cells, and the concentration of immunoglobulin can affect the ESR. Non-inflammatory conditions that can cause raised ESR include anemia, kidney failure, obesity, ageing, and female sex.[7] ESR is also higher in women during menstruation and pregnancy.[9] The value of ESR does not change whether dialysis is performed or not. Therefore, ESR is not a reliable measure of inflammation in those with kidney injuries as the ESR value is already elevated.[10]

Causes of reduction edit

An increased number of red blood cells (polycythemia) causes reduced ESR as blood viscosity increases. Hemoglobinopathy such as sickle-cell disease can have low ESR due to an improper shape of red blood cells that impairs stacking.[citation needed]

Medical uses edit

Diagnosis edit

ESR can sometimes be useful in diagnosing diseases, such as multiple myeloma, temporal arteritis, polymyalgia rheumatica, various autoimmune diseases, systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease[11] and chronic kidney diseases. In many of these cases, the ESR may exceed 100 mm/hour.[12]

It is commonly used for a differential diagnosis for Kawasaki's disease (from Takayasu's arteritis; which would have a markedly elevated ESR) and it may be increased in some chronic infective conditions like tuberculosis and infective endocarditis. It is also elevated in subacute thyroiditis also known as DeQuervain's.

In markedly increased ESR of over 100 mm/h, infection is the most common cause (33% of cases in an American study), followed by cancer (17%), kidney disease (17%) and noninfectious inflammatory disorders (14%).[13] Yet, in pneumonia the ESR stays under 100.[14]

The usefulness of the ESR in current practice has been questioned by some, as it is a relatively imprecise and non-specific test compared to other available diagnostic tests.[15] Current literature suggests that and ESR should be "obtained on all patients over the age of 50" who have an intense headache.[16]

Disease severity edit

It is a component of the PCDAI (pediatric Crohn's disease activity index), an index for assessment of the severity of inflammatory bowel disease in children.[citation needed]

Monitoring response to therapy edit

The clinical usefulness of ESR is limited to monitoring the response to therapy in certain inflammatory diseases such as temporal arteritis, polymyalgia rheumatica and rheumatoid arthritis. It can also be used as a crude measure of response in Hodgkin's lymphoma. Additionally, ESR levels are used to define one of the several possible adverse prognostic factors in the staging of Hodgkin's lymphoma.[citation needed]

Normal values edit

Note: mm/h. = millimeters per hour.

Westergren's original normal values (men 3 mm/h and women 7 mm/h)[17] made no allowance for a person's age. Later studies from 1967 confirmed that ESR values tend to rise with age and to be generally higher in women.[18] Values of the ESR also appear to be slightly higher in normal populations of African-Americans than Caucasians of both genders.[19] Values also appear to be higher in anemic individuals than non-anemic individuals.[20]

Adults edit

The widely used[21] rule calculating normal maximum ESR values in adults (98% confidence limit) is given by a formula devised in 1983 from a study of ≈1000 individuals over the age of 20:[22] The normal values of ESR in men is age (in years) divided by 2; for women, the normal value is age (in years) plus 10, divided by 2.[9]

 

Other studies confirm a dependence of ESR on age and gender, as seen in the following:

ESR reference ranges from a large 1996 study of 3,910 healthy adults (NB. these use 95% confidence intervals rather than the 98% intervals used in the study used to derive the formula above, and because of the skewness of the data, these values appear to be less than expected from the above formula):[23]

Age 20 55 90
Men—5% exceed 12 14 19
Women—5% exceed 18 21 23

Children edit

Normal values of ESR have been quoted as 1[24] to 2[25] mm/h at birth, rising to 4 mm/h 8 days after delivery,[25] and then to 17 mm/h by day 14.[24]

Typical normal ranges quoted are:[6]

  • Newborn: 0 to 2 mm/h
  • Neonatal to puberty: 3 to 13 mm/h, but other laboratories place an upper limit of 20.[26]

Relation to C-reactive protein edit

C-reactive protein (CRP) is an acute phase protein. Therefore, it is a better marker for acute phase reaction than ESR. While ESR and CRP generally together correlate with the degree of inflammation, this is not always the case and results may be discordant[9] in 12.5% of the cases.[7] Cases with raised CRP but normal ESR may demonstrate a combination of infection and some other tissue damage such as myocardial infarction, and venous thromboembolism. Such inflammation may not be enough to raise the level of ESR. Those with high ESR usually do not have demonstrable inflammation. However, in cases of low grade bacterial infections of bone and joints such as coagulase negative staphylococcus (CoNS), and systemic lupus erythematosus (SLE), ESR can be a good marker for the inflammatory process. This may be due to the production of Interferon type I that inhibits the CRP production in liver cells during SLE.[27] CRP is a better marker for other autoimmune diseases such as polymyalgia rheumatica, giant cell arteritis,[7] post-operative sepsis, and neonatal sepsis. ESR may be reduced in those who are taking statins and non-steroidal anti-inflammatory drugs (NSAIDs).[9]

High ESR/Low CRP[9] Low ESR/High CRP[9]
Systemic lupus erythematosis

Bone and joint infections

Ischemic stroke

Waldenstrom's macroglobulinemia

Multiple myeloma

IgG4 related disease

Chronic kidney disease

Low serum albumin

Urinary tract, GI, lung and bloodstream infections

Myocardial infarction

Venous thromboembolic disease

Rheumatoid arthritis

Low serum albumin

History edit

The test was invented in 1897 by the Polish pathologist Edmund Biernacki.[28][29] In some parts of the world the test continues to be referred to as Biernacki's Reaction (Polish: odczyn Biernackiego, OB).[30] In 1918, Dr Robert Fåhræus noted that ESR differed only during pregnancy. Therefore, he suggested that ESR could be used as an indicator of pregnancy. In 1921, Dr Alf Vilhelm Albertsson Westergren used ESR to measure the disease outcome of tuberculosis. He defined the measurement standards of ESR which is still being used today.[7] Robert Fåhræus and Alf Vilhelm Albertsson Westergren are eponymously remembered for the 'Fahraeus-Westergren test' (abbreviated as FW test; in the UK, usually termed Westergren test),[30] which uses sodium citrate-anti-coagulated specimens.[31]

Research edit

According to a study released in 2015, a stop gain mutation in HBB gene (p. Gln40stop) was shown to be associated with ESR values in Sardinian population. The red blood cell count, whose values are inversely related to ESR, is affected in carriers of this SNP. This mutation is almost exclusive of the inhabitants of Sardinia and is a common cause of beta thalassemia.[32]

According to a 2010 study, there is a reverse correlation between ESR and general intelligence (IQ) in Swedish males aged 18–20.[33]

References edit

  1. ^ a b c d "Erythrocyte Sedimentation Rate (ESR)". Lab Tests Online. Retrieved 2019-12-23.
  2. ^ a b Miller, A; Green, M; Robinson, D (1983-01-22). "Simple rule for calculating normal erythrocyte sedimentation rate". British Medical Journal (Clinical Research Ed.). BMJ. 286 (6361): 266. doi:10.1136/bmj.286.6361.266. ISSN 0959-8138. PMC 1546487. PMID 6402065.
  3. ^ "Erythrocyte Sedimentation Rate (ESR)". labtestsonline.org. Retrieved 2019-12-12.
  4. ^ Saha, Amit K; Schmidt, Brendan R; Wilhelmy, Julie; Nguyen, Vy; Do, Justin; Suja, Vineeth C; Nemat-Gorgani, Mohsen; Ramasubramanian, Anand K; Davis, Ronald W (2018-11-21). "Erythrocyte Deformability As a Potential Biomarker for Chronic Fatigue Syndrome". Blood. 132 (Suppl 1): 4874. doi:10.1182/blood-2018-99-117260. ISSN 0006-4971. Retrieved 2019-06-19.
  5. ^ Eastham, R. D (1954). "The Erythrocyte Sedimentation Rate and the Plasma Viscosity". Journal of Clinical Pathology. 7 (2): 164–167. doi:10.1136/jcp.7.2.164. PMC 1023757. PMID 13163203.
  6. ^ a b MedlinePlus Encyclopedia: ESR
  7. ^ a b c d e f Harrison, Michael (June 2015). "Erythrocyte sedimentation rate and C-reactive protein". Australian Prescriber. 38 (3): 93–4. doi:10.18773/austprescr.2015.034. PMC 4653962. PMID 26648629.
  8. ^ "Erythrocyte sedimentation rate (ESR)" (PDF). National Institute of Open Schooling, India. Retrieved 8 April 2018. Sedimentation occurs in three stages. In the first stage, the red cells form rouleaux. In the second stage, sinking of the aggregates occurs at a constant speed. In the final stage, the rate of sedimentation slows as the aggregated cells pack at the bottom of the tube.
  9. ^ a b c d e f g h Bray C, Bell LN, Liang H, Haykal R, Kaiksow F, Mazza JJ, Yale SH (December 2016). "Erythrocyte Sedimentation Rate and C-reactive Protein Measurements and Their Relevance in Clinical Medicine" (PDF). WMJ. 115 (6): 317–21. PMID 29094869.
  10. ^ Arik N, Bedir A, Günaydin M, Adam B, Halefi I (October 2000). "Do erythrocyte sedimentation rate and C-reactive protein levels have diagnostic usefulness in patients with renal failure?". Nephron (Letter to the editor). 86 (2): 224. doi:10.1159/000045760. PMID 11015011. S2CID 5967575.
  11. ^ Liu S, Ren J, Xia Q, Wu X, Han G, Ren H, Yan D, Wang G, Gu G, Li J (December 2013). "Preliminary case-control study to evaluate diagnostic values of C-reactive protein and erythrocyte sedimentation rate in differentiating active Crohn's disease from intestinal lymphoma, intestinal tuberculosis and Behcet's syndrome". The American Journal of the Medical Sciences. 346 (6): 467–72. doi:10.1097/MAJ.0b013e3182959a18. PMID 23689052. S2CID 5173681.
  12. ^ "Sedimentation Rate". WebMD. 2006-06-16. Retrieved 2008-03-01.
  13. ^ Raiten, Daniel J; Ashour, Fayrouz A Sakr; Ross, A Catharine; Meydani, Simin N; Dawson, Harry D; Stephensen, Charles B; Brabin, Bernard J; Suchdev, Parminder S; van Ommen, Ben (2015). "Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE)". The Journal of Nutrition. 145 (5): 1039S–1108S. doi:10.3945/jn.114.194571. ISSN 0022-3166. PMC 4448820. PMID 25833893.
    -Which cites: Fincher, Ruth-Marie E. (1986). "Clinical Significance of Extreme Elevation of the Erythrocyte Sedimentation Rate". Archives of Internal Medicine. 146 (8): 1581–3. doi:10.1001/archinte.1986.00360200151024. ISSN 0003-9926. PMID 3729639.
  14. ^ Falk, G.; Fahey, T. (2008). "C-reactive protein and community-acquired pneumonia in ambulatory care: systematic review of diagnostic accuracy studies". Family Practice. 26 (1): 10–21. doi:10.1093/fampra/cmn095. ISSN 0263-2136. PMID 19074757.
  15. ^ Jurado, Rafael L. (2001). "Why Shouldn't We Determine the Erythrocyte Sedimentation Rate?". Clinical Infectious Diseases. 33 (4): 548–549. doi:10.1086/322605. PMID 11462193. S2CID 7244484.
  16. ^ Diamond, Seymour; Nissan, George R. (2011-01-01), Waldman, Steven D. (ed.), "Chapter 27 - Acute Headache", Pain Management (Second Edition), Philadelphia: W.B. Saunders, pp. 249–257, doi:10.1016/b978-1-4377-0721-2.00027-1, ISBN 978-1-4377-0721-2, retrieved 2022-05-24
  17. ^ Westergren A (March 1957). "Diagnostic tests: the erythrocyte sedimentation rate range and limitations of the technique". Triangle; the Sandoz Journal of Medical Science. 3 (1): 20–5. PMID 13455726.
  18. ^ Böttiger LE, Svedberg CA (April 1967). "Normal erythrocyte sedimentation rate and age". British Medical Journal. 2 (5544): 85–7. doi:10.1136/bmj.2.5544.85. PMC 1841240. PMID 6020854.
  19. ^ Gillum RF (January 1993). "A racial difference in erythrocyte sedimentation". Journal of the National Medical Association. 85 (1): 47–50. PMC 2571720. PMID 8426384.
  20. ^ Kanfer EJ, Nicol BA (January 1997). "Haemoglobin concentration and erythrocyte sedimentation rate in primary care patients" (Scanned & PDF). Journal of the Royal Society of Medicine. 90 (1): 16–8. doi:10.1177/014107689709000106. PMC 1296109. PMID 9059375.
  21. ^ "Reference range (ESR)". GPnotebook.
  22. ^ Miller A, Green M, Robinson D (January 1983). "Simple rule for calculating normal erythrocyte sedimentation rate". British Medical Journal. 286 (6361): 266. doi:10.1136/bmj.286.6361.266. PMC 1546487. PMID 6402065.
  23. ^ Wetteland P, Røger M, Solberg HE, Iversen OH (September 1996). "Population-based erythrocyte sedimentation rates in 3910 subjectively healthy Norwegian adults. A statistical study based on men and women from the Oslo area". Journal of Internal Medicine. 240 (3): 125–31. doi:10.1046/j.1365-2796.1996.30295851000.x. PMID 8862121. S2CID 10871066. - listing upper reference levels expected to be exceeded only by chance in 5% of subjects
  24. ^ a b Adler SM, Denton RL (June 1975). "The erythrocyte sedimentation rate in the newborn period". The Journal of Pediatrics. 86 (6): 942–8. doi:10.1016/S0022-3476(75)80233-2. PMID 1168702.
  25. ^ a b Ibsen KK, Nielsen M, Prag J, Hørlyk H, Vrang C, Korner B, Peitersen B (1980). "The value of the micromethod erythrocyte sedimentation rate in the diagnosis of infections in newborns". Scandinavian Journal of Infectious Diseases. Supplementum. Suppl 23: 143–5. PMID 6937959.
  26. ^ Pediatric Inflammatory Bowel Disease Collaborative Research Group , Mack DR, Langton C, Markowitz J, LeLeiko N, Griffiths A, et al. (June 2007). "Laboratory values for children with newly diagnosed inflammatory bowel disease". Pediatrics. 119 (6): 1113–9. doi:10.1542/peds.2006-1865. PMID 17545378. S2CID 5558076.
    • Lay summary in: Bauchner H (July 13, 2007). "Lab Screening in Children with Suspected Inflammatory Bowel Disease". NEJM Journal Watch.
  27. ^ Enocsson, Helena; Sjöwall, Christopher; Skogh, Thomas; Eloranta, Maija-Leena; Rönnblom, Lars; Wetterö, Jonas (December 2009). "Interferon-α mediates suppression of C-reactive protein: Explanation for muted C-reactive protein response in lupus flares?". Arthritis & Rheumatism. 60 (12): 3755–3760. doi:10.1002/art.25042. PMID 19950271.
  28. ^ Iłowiecki, Maciej (1981). Dzieje nauki polskiej. Warszawa: Wydawnictwo "Interpress". p. 195. ISBN 978-83-223-1876-8.
  29. ^ Edmund Faustyn Biernacki and eponymously named Biernacki's test at Who Named It?
  30. ^ a b Robert (Robin) Sanno Fåhræus and Alf Vilhelm Albertsson Westergren who are eponymously named for the Fåhræus-Westergren test (aka Westergren test) at Who Named It?
  31. ^ International Council for Standardization in Haematology (Expert Panel on Blood Rheology) (March 1993). "ICSH recommendations for measurement of erythrocyte sedimentation rate. International Council for Standardization in Haematology (Expert Panel on Blood Rheology)". Journal of Clinical Pathology. 46 (3): 198–203. doi:10.1136/jcp.46.3.198. PMC 501169. PMID 8463411.
  32. ^ Sidore C, Busonero F, Maschio A, Porcu E, Naitza S, Zoledziewska M, et al. (November 2015). "Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers". Nature Genetics. 47 (11): 1272–1281. doi:10.1038/ng.3368. PMC 4627508. PMID 26366554.
  33. ^ Karlsson, Håkan; Ahlborg, Björn; Dalman, Christina; Hemmingsson, Tomas (August 2010). "Association between erythrocyte sedimentation rate and IQ in Swedish males aged 18–20". Brain, Behavior, and Immunity. 24 (6): 868–873. doi:10.1016/j.bbi.2010.02.009. PMID 20226851. S2CID 7185302.

External links edit

  • Mediscuss on ESR
  • Brigden ML (October 1999). "Clinical utility of the erythrocyte sedimentation rate". American Family Physician. 60 (5): 1443–50. PMID 10524488.
  • ESR at Lab Tests Online

erythrocyte, sedimentation, rate, erythrocyte, sedimentation, rate, rate, rate, which, blood, cells, anticoagulated, whole, blood, descend, standardized, tube, over, period, hour, common, hematology, test, specific, measure, inflammation, perform, test, antico. The erythrocyte sedimentation rate ESR or sed rate is the rate at which red blood cells in anticoagulated whole blood descend in a standardized tube over a period of one hour It is a common hematology test and is a non specific measure of inflammation To perform the test anticoagulated blood is traditionally placed in an upright tube known as a Westergren tube and the distance which the red blood cells fall is measured and reported in millimetres at the end of one hour 3 Erythrocyte sedimentation rateWestergren pipet array on StaRRsed automated ESR analyzer The ESR is the height in mm of the colourless portion at the top of the pipette after one hour Synonymssedimentation rate Westergren ESR ESR sed rate 1 Reference rangeMale age 2 Female age 10 2 2 Unit mm hour 2 PurposeDetection of inflammation in body 1 Test ofThe rate of sedimentation of erythrocytes in a vertical tube over an hour 1 Based onThe millimeters of transparent fluid present at the top portion of the vertical tube after an hour 1 MeSHD001799MedlinePlus003638LOINC30341 2Since the introduction of automated analyzers into the clinical laboratory the ESR test has been automatically performed The ESR is influenced by the aggregation of red blood cells blood plasma proteins mainly fibrinogen promote the formation of red cell clusters called rouleaux or larger structures interconnected rouleaux irregular clusters As according to Stokes law the sedimentation velocity varies like the square of the object s diameter larger aggregates settle faster While aggregation already takes place at normal physiological fibrinogen levels these tend to increase when an inflammatory process is present leading to increased ESR The ESR is increased in inflammation pregnancy anemia autoimmune disorders such as rheumatoid arthritis and lupus infections some kidney diseases and some cancers such as lymphoma and multiple myeloma The ESR is decreased in polycythemia hyperviscosity sickle cell anemia leukemia chronic fatigue syndrome 4 low plasma protein due to liver or kidney disease and congestive heart failure Although increases in immunoglobulins usually increase the ESR very high levels can reduce it again due to hyperviscosity of the plasma 5 This is especially likely with IgM class paraproteins and to a lesser extent IgA class The basal ESR is slightly higher in females 6 Contents 1 Stages 2 Causes of elevation 2 1 Inflammation 2 2 Non inflammatory conditions 3 Causes of reduction 4 Medical uses 4 1 Diagnosis 4 2 Disease severity 4 3 Monitoring response to therapy 5 Normal values 5 1 Adults 5 2 Children 6 Relation to C reactive protein 7 History 8 Research 9 References 10 External linksStages editErythrocyte sedimentation rate ESR is the measure of ability of erythrocytes red blood cell to fall through the blood plasma and accumulate together at the base of container in one hour 7 There are three stages in erythrocyte sedimentation 8 Rouleaux formation Sedimentation or settling stage Packing stage 10 minutes sedimentation slows and cells start to pack at the bottom of the tube In normal conditions the red blood cells are negatively charged and therefore repel each other rather than stacking ESR is also reduced by high blood viscosity which slows the rate of fall 7 Causes of elevation editThe rate of erythrocyte sedimentation is affected by both inflammatory and non inflammatory conditions Inflammation edit In inflammatory conditions fibrinogen other clotting proteins and alpha globulin are positively charged thus increasing the ESR 9 ESR begins to rise at 24 to 48 hours after the onset of acute self limited inflammation decreases slowly as inflammation resolves and can take weeks to months to return to normal levels For ESR values more than 100 mm hour there is a 90 probability that an underlying cause would be found upon investigation 9 Non inflammatory conditions edit In non inflammatory conditions plasma albumin concentration size shape and number of red blood cells and the concentration of immunoglobulin can affect the ESR Non inflammatory conditions that can cause raised ESR include anemia kidney failure obesity ageing and female sex 7 ESR is also higher in women during menstruation and pregnancy 9 The value of ESR does not change whether dialysis is performed or not Therefore ESR is not a reliable measure of inflammation in those with kidney injuries as the ESR value is already elevated 10 Causes of reduction editAn increased number of red blood cells polycythemia causes reduced ESR as blood viscosity increases Hemoglobinopathy such as sickle cell disease can have low ESR due to an improper shape of red blood cells that impairs stacking citation needed Medical uses editDiagnosis edit ESR can sometimes be useful in diagnosing diseases such as multiple myeloma temporal arteritis polymyalgia rheumatica various autoimmune diseases systemic lupus erythematosus rheumatoid arthritis inflammatory bowel disease 11 and chronic kidney diseases In many of these cases the ESR may exceed 100 mm hour 12 It is commonly used for a differential diagnosis for Kawasaki s disease from Takayasu s arteritis which would have a markedly elevated ESR and it may be increased in some chronic infective conditions like tuberculosis and infective endocarditis It is also elevated in subacute thyroiditis also known as DeQuervain s In markedly increased ESR of over 100 mm h infection is the most common cause 33 of cases in an American study followed by cancer 17 kidney disease 17 and noninfectious inflammatory disorders 14 13 Yet in pneumonia the ESR stays under 100 14 The usefulness of the ESR in current practice has been questioned by some as it is a relatively imprecise and non specific test compared to other available diagnostic tests 15 Current literature suggests that and ESR should be obtained on all patients over the age of 50 who have an intense headache 16 Disease severity edit It is a component of the PCDAI pediatric Crohn s disease activity index an index for assessment of the severity of inflammatory bowel disease in children citation needed Monitoring response to therapy edit The clinical usefulness of ESR is limited to monitoring the response to therapy in certain inflammatory diseases such as temporal arteritis polymyalgia rheumatica and rheumatoid arthritis It can also be used as a crude measure of response in Hodgkin s lymphoma Additionally ESR levels are used to define one of the several possible adverse prognostic factors in the staging of Hodgkin s lymphoma citation needed Normal values editNote mm h millimeters per hour Westergren s original normal values men 3 mm h and women 7 mm h 17 made no allowance for a person s age Later studies from 1967 confirmed that ESR values tend to rise with age and to be generally higher in women 18 Values of the ESR also appear to be slightly higher in normal populations of African Americans than Caucasians of both genders 19 Values also appear to be higher in anemic individuals than non anemic individuals 20 Adults edit The widely used 21 rule calculating normal maximum ESR values in adults 98 confidence limit is given by a formula devised in 1983 from a study of 1000 individuals over the age of 20 22 The normal values of ESR in men is age in years divided by 2 for women the normal value is age in years plus 10 divided by 2 9 E S R m m h A g e i n y e a r s 10 i f f e m a l e 2 displaystyle rm ESR mm h leq frac rm Age it in years 10 it if female 2 nbsp Other studies confirm a dependence of ESR on age and gender as seen in the following ESR reference ranges from a large 1996 study of 3 910 healthy adults NB these use 95 confidence intervals rather than the 98 intervals used in the study used to derive the formula above and because of the skewness of the data these values appear to be less than expected from the above formula 23 Age 20 55 90Men 5 exceed 12 14 19Women 5 exceed 18 21 23Children edit Normal values of ESR have been quoted as 1 24 to 2 25 mm h at birth rising to 4 mm h 8 days after delivery 25 and then to 17 mm h by day 14 24 Typical normal ranges quoted are 6 Newborn 0 to 2 mm h Neonatal to puberty 3 to 13 mm h but other laboratories place an upper limit of 20 26 Relation to C reactive protein editC reactive protein CRP is an acute phase protein Therefore it is a better marker for acute phase reaction than ESR While ESR and CRP generally together correlate with the degree of inflammation this is not always the case and results may be discordant 9 in 12 5 of the cases 7 Cases with raised CRP but normal ESR may demonstrate a combination of infection and some other tissue damage such as myocardial infarction and venous thromboembolism Such inflammation may not be enough to raise the level of ESR Those with high ESR usually do not have demonstrable inflammation However in cases of low grade bacterial infections of bone and joints such as coagulase negative staphylococcus CoNS and systemic lupus erythematosus SLE ESR can be a good marker for the inflammatory process This may be due to the production of Interferon type I that inhibits the CRP production in liver cells during SLE 27 CRP is a better marker for other autoimmune diseases such as polymyalgia rheumatica giant cell arteritis 7 post operative sepsis and neonatal sepsis ESR may be reduced in those who are taking statins and non steroidal anti inflammatory drugs NSAIDs 9 High ESR Low CRP 9 Low ESR High CRP 9 Systemic lupus erythematosis Bone and joint infectionsIschemic strokeWaldenstrom s macroglobulinemiaMultiple myelomaIgG4 related diseaseChronic kidney diseaseLow serum albumin Urinary tract GI lung and bloodstream infections Myocardial infarctionVenous thromboembolic diseaseRheumatoid arthritisLow serum albuminHistory editThe test was invented in 1897 by the Polish pathologist Edmund Biernacki 28 29 In some parts of the world the test continues to be referred to as Biernacki s Reaction Polish odczyn Biernackiego OB 30 In 1918 Dr Robert Fahraeus noted that ESR differed only during pregnancy Therefore he suggested that ESR could be used as an indicator of pregnancy In 1921 Dr Alf Vilhelm Albertsson Westergren used ESR to measure the disease outcome of tuberculosis He defined the measurement standards of ESR which is still being used today 7 Robert Fahraeus and Alf Vilhelm Albertsson Westergren are eponymously remembered for the Fahraeus Westergren test abbreviated as FW test in the UK usually termed Westergren test 30 which uses sodium citrate anti coagulated specimens 31 Research editAccording to a study released in 2015 a stop gain mutation in HBB gene p Gln40stop was shown to be associated with ESR values in Sardinian population The red blood cell count whose values are inversely related to ESR is affected in carriers of this SNP This mutation is almost exclusive of the inhabitants of Sardinia and is a common cause of beta thalassemia 32 According to a 2010 study there is a reverse correlation between ESR and general intelligence IQ in Swedish males aged 18 20 33 References edit a b c d Erythrocyte Sedimentation Rate ESR Lab Tests Online Retrieved 2019 12 23 a b Miller A Green M Robinson D 1983 01 22 Simple rule for calculating normal erythrocyte sedimentation rate British Medical Journal Clinical Research Ed BMJ 286 6361 266 doi 10 1136 bmj 286 6361 266 ISSN 0959 8138 PMC 1546487 PMID 6402065 Erythrocyte Sedimentation Rate ESR labtestsonline org Retrieved 2019 12 12 Saha Amit K Schmidt Brendan R Wilhelmy Julie Nguyen Vy Do Justin Suja Vineeth C Nemat Gorgani Mohsen Ramasubramanian Anand K Davis Ronald W 2018 11 21 Erythrocyte Deformability As a Potential Biomarker for Chronic Fatigue Syndrome Blood 132 Suppl 1 4874 doi 10 1182 blood 2018 99 117260 ISSN 0006 4971 Retrieved 2019 06 19 Eastham R D 1954 The Erythrocyte Sedimentation Rate and the Plasma Viscosity Journal of Clinical Pathology 7 2 164 167 doi 10 1136 jcp 7 2 164 PMC 1023757 PMID 13163203 a b MedlinePlus Encyclopedia ESR a b c d e f Harrison Michael June 2015 Erythrocyte sedimentation rate and C reactive protein Australian Prescriber 38 3 93 4 doi 10 18773 austprescr 2015 034 PMC 4653962 PMID 26648629 Erythrocyte sedimentation rate ESR PDF National Institute of Open Schooling India Retrieved 8 April 2018 Sedimentation occurs in three stages In the first stage the red cells form rouleaux In the second stage sinking of the aggregates occurs at a constant speed In the final stage the rate of sedimentation slows as the aggregated cells pack at the bottom of the tube a b c d e f g h Bray C Bell LN Liang H Haykal R Kaiksow F Mazza JJ Yale SH December 2016 Erythrocyte Sedimentation Rate and C reactive Protein Measurements and Their Relevance in Clinical Medicine PDF WMJ 115 6 317 21 PMID 29094869 Arik N Bedir A Gunaydin M Adam B Halefi I October 2000 Do erythrocyte sedimentation rate and C reactive protein levels have diagnostic usefulness in patients with renal failure Nephron Letter to the editor 86 2 224 doi 10 1159 000045760 PMID 11015011 S2CID 5967575 Liu S Ren J Xia Q Wu X Han G Ren H Yan D Wang G Gu G Li J December 2013 Preliminary case control study to evaluate diagnostic values of C reactive protein and erythrocyte sedimentation rate in differentiating active Crohn s disease from intestinal lymphoma intestinal tuberculosis and Behcet s syndrome The American Journal of the Medical Sciences 346 6 467 72 doi 10 1097 MAJ 0b013e3182959a18 PMID 23689052 S2CID 5173681 Sedimentation Rate WebMD 2006 06 16 Retrieved 2008 03 01 Raiten Daniel J Ashour Fayrouz A Sakr Ross A Catharine Meydani Simin N Dawson Harry D Stephensen Charles B Brabin Bernard J Suchdev Parminder S van Ommen Ben 2015 Inflammation and Nutritional Science for Programs Policies and Interpretation of Research Evidence INSPIRE The Journal of Nutrition 145 5 1039S 1108S doi 10 3945 jn 114 194571 ISSN 0022 3166 PMC 4448820 PMID 25833893 Which cites Fincher Ruth Marie E 1986 Clinical Significance of Extreme Elevation of the Erythrocyte Sedimentation Rate Archives of Internal Medicine 146 8 1581 3 doi 10 1001 archinte 1986 00360200151024 ISSN 0003 9926 PMID 3729639 Falk G Fahey T 2008 C reactive protein and community acquired pneumonia in ambulatory care systematic review of diagnostic accuracy studies Family Practice 26 1 10 21 doi 10 1093 fampra cmn095 ISSN 0263 2136 PMID 19074757 Jurado Rafael L 2001 Why Shouldn t We Determine the Erythrocyte Sedimentation Rate Clinical Infectious Diseases 33 4 548 549 doi 10 1086 322605 PMID 11462193 S2CID 7244484 Diamond Seymour Nissan George R 2011 01 01 Waldman Steven D ed Chapter 27 Acute Headache Pain Management Second Edition Philadelphia W B Saunders pp 249 257 doi 10 1016 b978 1 4377 0721 2 00027 1 ISBN 978 1 4377 0721 2 retrieved 2022 05 24 Westergren A March 1957 Diagnostic tests the erythrocyte sedimentation rate range and limitations of the technique Triangle the Sandoz Journal of Medical Science 3 1 20 5 PMID 13455726 Bottiger LE Svedberg CA April 1967 Normal erythrocyte sedimentation rate and age British Medical Journal 2 5544 85 7 doi 10 1136 bmj 2 5544 85 PMC 1841240 PMID 6020854 Gillum RF January 1993 A racial difference in erythrocyte sedimentation Journal of the National Medical Association 85 1 47 50 PMC 2571720 PMID 8426384 Kanfer EJ Nicol BA January 1997 Haemoglobin concentration and erythrocyte sedimentation rate in primary care patients Scanned amp PDF Journal of the Royal Society of Medicine 90 1 16 8 doi 10 1177 014107689709000106 PMC 1296109 PMID 9059375 Reference range ESR GPnotebook Miller A Green M Robinson D January 1983 Simple rule for calculating normal erythrocyte sedimentation rate British Medical Journal 286 6361 266 doi 10 1136 bmj 286 6361 266 PMC 1546487 PMID 6402065 Wetteland P Roger M Solberg HE Iversen OH September 1996 Population based erythrocyte sedimentation rates in 3910 subjectively healthy Norwegian adults A statistical study based on men and women from the Oslo area Journal of Internal Medicine 240 3 125 31 doi 10 1046 j 1365 2796 1996 30295851000 x PMID 8862121 S2CID 10871066 listing upper reference levels expected to be exceeded only by chance in 5 of subjects a b Adler SM Denton RL June 1975 The erythrocyte sedimentation rate in the newborn period The Journal of Pediatrics 86 6 942 8 doi 10 1016 S0022 3476 75 80233 2 PMID 1168702 a b Ibsen KK Nielsen M Prag J Horlyk H Vrang C Korner B Peitersen B 1980 The value of the micromethod erythrocyte sedimentation rate in the diagnosis of infections in newborns Scandinavian Journal of Infectious Diseases Supplementum Suppl 23 143 5 PMID 6937959 Pediatric Inflammatory Bowel Disease Collaborative Research Group Mack DR Langton C Markowitz J LeLeiko N Griffiths A et al June 2007 Laboratory values for children with newly diagnosed inflammatory bowel disease Pediatrics 119 6 1113 9 doi 10 1542 peds 2006 1865 PMID 17545378 S2CID 5558076 Lay summary in Bauchner H July 13 2007 Lab Screening in Children with Suspected Inflammatory Bowel Disease NEJM Journal Watch Enocsson Helena SjA wall Christopher Skogh Thomas Eloranta Maija Leena RA nnblom Lars WetterA Jonas December 2009 Interferon I mediates suppression of C reactive protein Explanation for muted C reactive protein response in lupus flares Arthritis amp Rheumatism 60 12 3755 3760 doi 10 1002 art 25042 PMID 19950271 Ilowiecki Maciej 1981 Dzieje nauki polskiej Warszawa Wydawnictwo Interpress p 195 ISBN 978 83 223 1876 8 Edmund Faustyn Biernacki and eponymously named Biernacki s test at Who Named It a b Robert Robin Sanno Fahraeus and Alf Vilhelm Albertsson Westergren who are eponymously named for the Fahraeus Westergren test aka Westergren test at Who Named It International Council for Standardization in Haematology Expert Panel on Blood Rheology March 1993 ICSH recommendations for measurement of erythrocyte sedimentation rate International Council for Standardization in Haematology Expert Panel on Blood Rheology Journal of Clinical Pathology 46 3 198 203 doi 10 1136 jcp 46 3 198 PMC 501169 PMID 8463411 Sidore C Busonero F Maschio A Porcu E Naitza S Zoledziewska M et al November 2015 Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers Nature Genetics 47 11 1272 1281 doi 10 1038 ng 3368 PMC 4627508 PMID 26366554 Karlsson Hakan Ahlborg Bjorn Dalman Christina Hemmingsson Tomas August 2010 Association between erythrocyte sedimentation rate and IQ in Swedish males aged 18 20 Brain Behavior and Immunity 24 6 868 873 doi 10 1016 j bbi 2010 02 009 PMID 20226851 S2CID 7185302 External links editMediscuss on ESR Brigden ML October 1999 Clinical utility of the erythrocyte sedimentation rate American Family Physician 60 5 1443 50 PMID 10524488 ESR at Lab Tests Online Retrieved from https en wikipedia org w index php title Erythrocyte sedimentation rate amp oldid 1192509813, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.