fbpx
Wikipedia

Artemisia annua

Artemisia annua, also known as sweet wormwood,[2] sweet annie, sweet sagewort, annual mugwort[3] or annual wormwood (Chinese: 黄花蒿; pinyin: huánghuāhāo), is a common type of wormwood native to temperate Asia, but naturalized in many countries including scattered parts of North America.[4][5][6][7]

Artemisia annua
Scientific classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Asterids
Order: Asterales
Family: Asteraceae
Genus: Artemisia
Species:
A. annua
Binomial name
Artemisia annua
Synonyms[1]

Artemisia chamomilla C.Winkl.

An extract of A. annua, called artemisinin (or artesunate), is a medication used to treat malaria.[8] Discovery of artemisinin and its antimalarial properties by the Chinese scientist Tu Youyou led to the award of the 2011 Lasker Prize and 2015 Nobel Prize in Physiology or Medicine.[9]

Description Edit

Artemisia annua belongs to the plant family of Asteraceae and is an annual short-day plant. Its stem is erect brownish or violet brown. The plant itself is hairless and naturally grows from 30 to 100 cm tall, although in cultivation it is possible for plants to reach a height of 200 cm. The leaves of A. annua have a length of 3–5 cm and are divided by deep cuts into two or three small leaflets. The intensive aromatic scent of the leaves is characteristic.[10] The artemisinin content in dried leaves is in between 0% and 1.5%.[11] New hybrids of Artemisia annua developed in Switzerland can reach a leaf artemisinin content of up to 2%.[12] The small flowers have a diameter of 2–2.5 mm and are arranged in loose panicles. Their color is greenish yellow. The seeds are brown achenes with a diameter of only 0.6–0.8 mm. Their thousand-kernel weight (TKW) averages around 0.03 g (in comparison, wheat has a TKW of approximately 45 g).[10][13]

Agricultural practice Edit

 
Artemisia annua
 
Seeds

The growing period of Artemisia annua from seeding through to harvest is 190–240 days, depending on the climate and altitude of the production area. The plant is harvested at the beginning of flowering when the artemisinin content is highest.[11] Dry leaf yields of Artemisia annua plantations vary between 0.5 and 3 tonnes per hectare.[12]

Growth Phases[11] Days after sowing
Seed germination 4–10
Appearance of 1st pair of leaves 15–30
Appearance of 2nd pair of leaves 21–50
Branching 60–90
Cessation of growth in height 170–200
Flowering 190–240
Full fruition 230–280
Withering 260–310

In terms of the climate A. annua prefers sunny and warm conditions. Its optimal growth temperature lies between 20 and 25°C. Annual temperature sums of 3500–5000°C (sum of temperatures higher than 10°C over one year) are required to guarantee a proper maturing. The rainfall during the growing season should not be less than 600 mm (annual rainfall higher than 1150 mm). Especially the seedlings of A. annua. are susceptible to drought or water lodging. The mature plants on the other hand are quite resistant to those climate conditions. Nevertheless, the preferred soil conditions for A. annua are light soils with deep topsoils and good drainage properties.[11] But it is reported, that the plant is adaptable to different soil types. Paired with the relatively low demand on the environment Artemisia annua can have characteristics of a neophytic plant.[14]

A. annua is best sown in rows to facilitate removal of weeds, which has to be done mechanically or manually because herbicides are typically not used. It is recommended to sow 1.4 – 2 seeds per square meter.[12] The fertilizer requirements are at a low level. Potassium should be used as base fertilizer. It is taken up by the plant during the whole growing season.[11] Nitrogen is required during early branching stages, an amount of approximately 70 kg N/ha is sufficient for the plant.[15] Phosphate on the other hand is required during the blooming stages. Phosphate fertilization can lead to a higher artemsinin content in the leaves.[16] The application of salicylic acid to the leaves shortly before harvesting the plant also can raise its artemisinin content.[17] Besides few viral diseases Artemisia a. has no major diseases that need to be controlled.

The harvest of the plant is best done in the state of flower budding. The whole plant is harvested and cut into branches which are dried in the sun or in an oven. The drying temperature should not exceed 40°C. The dry branches are shaken or beaten to separate the leaves from the stem. The leaves are then packed into fabric bags and shipped to further processing.[11] It is important that the temperatures during transportation and storage never get higher than 40°C, as artemisinin is volatile and is lost into the air. The leaves should not be crushed before long-term storage (one year). The optimum storage conditions are either 20°C with 85% relative humidity (RH) or 30°C with 30–40% RH.[11]

Artemisinin and other phytochemicals Edit

In 1971, scientists demonstrated that the plant extracts had antimalarial activity in primate models, and in 1972 the active ingredient, artemisinin (formerly referred to as arteannuin), was isolated and its chemical structure described.[8][18] Artemisinin may be extracted using a low-boiling-point solvent, such as diethylether, is found in the glandular trichomes of the leaves, stems, and inflorescences, and is concentrated in the upper portions of plant within new growth.[8][19]

The first isolation of artemisinin from the herb occurred from a military project known as Project 523, following the study of traditional medicine pharmacopoeias performed by Tu Youyou and other researchers within the project.[20] A. annua contains diverse phytochemicals, including polyphenols such as coumarins, flavones, flavonols, and phenolic acids which have unknown biological properties in vivo.[21][22] Other phytochemicals include 38 sesquiterpenes.[8] Dihydroartemisinin is the active metabolite of artemisinin, and artesunate is a water-soluble derivative of artemisinin.[8]

Malaria treatment Edit

Research to develop antimalarial drugs led to the discovery of artemisinin in the 1970s by the Chinese scientist Tu Youyou, who shared the 2015 Nobel Prize in Physiology or Medicine.[9][18][23] An improved extract was obtained by using a low-temperature ether-based extraction method, further showing the artemisinin derivative artemether to be an effective antimalarial drug.[8][18]

Artemisinin is a sesquiterpene lactone with an endoperoxide bridge and has been produced as an antimalarial drug.[8] The efficacy of tea, made with either water or urine and A. annua, for the treatment of malaria is dubious, and is discouraged by the World Health Organization (WHO).[11][24] Research has found that artemisinin is not soluble in water and the concentrations in these infusions are considered insufficient to treat malaria.[25][26][27] A 2012 review stated that artemisinin-based remedies are the most effective drugs for the treatment of malaria.[28] A 2013 review suggested that although Artemisia annua may not cause hepatotoxicity, haematotoxicity, or hyperlipidemia, it should be used cautiously during pregnancy owing to a potential risk of embryotoxicity at a high dose.[29]

The WHO has approved riamet (Coartem), a combination of lumefantrine (120 mg) and artemether (an artemisinin derivative extracted with ether, 20 mg) in repeat treatments over two days, producing efficacy of up to 98% against malaria.[8]

Mechanism Edit

The proposed mechanism of action of artemisinin involves cleavage of endoperoxide bridges by iron, producing free radicals (hypervalent iron-oxo species, epoxides, aldehydes, and dicarbonyl compounds) which damage biological macromolecules causing oxidative stress in the cells of the malaria parasite.[8][30] Malaria is caused by apicomplexans, primarily Plasmodium falciparum, which largely reside in red blood cells and contain iron-rich heme-groups (in the form of hemozoin).[8][31] In 2015, artemisinin was shown to bind to a large number of cell targets, indicating its potential for diverse effects.[32]

Artemisinin resistance Edit

Despite global efforts in combating malaria, it remains a large burden for the population, particularly in tropical and subtropical regions.[8][33] As of 2013, it seems that the pathogenic agent of malaria is becoming resistant to artemisinin-based drugs.[34][35] Emergence of artemisinin resistance has been identified in Cambodia and the border of Thailand.[36] Although the WHO recommends artemisinin-based remedies for treating uncomplicated malaria, artemisinin resistance has become a concern.[33] The causes that affected the emergence of artemisinin resistance include the use of artemisinin-based remedies.[33] Encouraging herbal alternatives are in the pipeline, but a more dependable solution for the eradication of malaria would be the creation of an effective vaccination.[33] Resistance will likely spread to other endemic areas across the world.[36]

Traditional medicine Edit

In traditional Chinese medicine (TCM), A. annua is prepared with hot water to treat fever.[8][23] Owing to duplication in ancient TCM sources, A. annua is more commonly referred to as qinghao (Chinese: 青蒿; pinyin: qīnghāo), the modern Chinese name for Artemisia carvifolia, as opposed to its current Chinese name huanghuahao.[37]

References Edit

  1. ^ The Plant List Artemisia annua L.
  2. ^ (PDF). Pocheon: Korea National Arboretum. 2015. p. 359. ISBN 978-89-97450-98-5. Archived from the original (PDF) on 25 May 2017. Retrieved 25 January 2016 – via Korea Forest Service.
  3. ^ (xls). Botanical Society of Britain and Ireland. Archived from the original (xls) on 2015-06-26. Retrieved 2014-10-17.
  4. ^ Flora of China Vol. 19, 20 and 21 Page 523 Sweet Annie, sweet sagewort, armoise annuelle Artemisia annua Linnaeus, Sp. Pl. 2: 847. 1753.
  5. ^ Flora of China Vol. 20–21 Page 691 黄花蒿 huang hua hao Artemisia annua Linnaeus, Sp. Pl. 2: 847. 1753
  6. ^ Flora of Pakistan
  7. ^ Altervista Flora Italiana, Assenzio annuale Artemisia annua L.[permanent dead link]
  8. ^ a b c d e f g h i j k l "Sweet wormwood (Artemisia annua L.)". Drugs.com. 23 March 2020. Retrieved 20 December 2020.
  9. ^ a b "Youyou Tu – Facts and biography: The Nobel Prize in Physiology or Medicine 2015". The Nobel Foundation. 2015. Retrieved 20 December 2020.
  10. ^ a b . Royal Botanic Gardens. Archived from the original on October 6, 2015. Retrieved November 25, 2015.
  11. ^ a b c d e f g h WHO monograph on good agricultural and collection practices (GACP) for Artemisia annua L. (PDF). World Health Organization. 2006.
  12. ^ a b c Simonnet, X.; Quennoz, M.; Carlen, C. (2006). "New Artemisia annua hybrids with high artemisinin content". XXVII International Horticultural Congress-IHC2006: International Symposium on Asian Plants with Unique Horticultural 769: 371–373.
  13. ^ Forestry, Government of Alberta, Alberta Agriculture and (1993-09-01). "Using 1,000 Kernel Weight for Calculating Seeding Rates and Harvest Losses". www1.agric.gov.ab.ca. Retrieved 2015-11-15.{{cite web}}: CS1 maint: multiple names: authors list (link)
  14. ^ Müller, Meike; Brandes, Dietmar (1997). "Growth and development of Artemisia annua L. on different soil types". Verhandlungen-Gesellschaft für Ökologie. 27: 453–460.
  15. ^ Simon, James E; et al. (1990). "Artemisia annua L.: A promising aromatic and medicinal". Advances in New Crops: 522–526.
  16. ^ Kapoor, Rupam; Chaudhary, Vidhi; Bhatnagar, AK (2007). "Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L". Mycorrhiza. 17 (7): 581–587. doi:10.1007/s00572-007-0135-4. PMID 17578608. S2CID 13498398.
  17. ^ Pu, Gao-Bin; et al. (2009). "Salicylic acid activates artemisinin biosynthesis in Artemisia annua L". Plant Cell Reports. 28 (7): 1127–1135. doi:10.1007/s00299-009-0713-3. PMID 19521701. S2CID 29237295.
  18. ^ a b c Miller, Louis H.; Su, Xinzhuan (2011). "Artemisinin: Discovery from the Chinese herbal garden". Cell. 146 (6): 855–8. doi:10.1016/j.cell.2011.08.024. PMC 3414217. PMID 21907397.
  19. ^ Duke SO, Paul RN (1993). "Development and Fine Structure of the Glandular Trichomes of Artemisia annua L.". Int. J. Plant Sci. 154 (1): 107–18. doi:10.1086/297096. JSTOR 2995610. S2CID 86584892.
    Ferreira JF, Janick J (1995). "Floral Morphology of Artemisia annua with Special Reference to Trichomes". Int. J. Plant Sci. 156 (6): 807. doi:10.1086/297304. S2CID 84594350.
  20. ^ Tom Phillips (October 6, 2015). "Tu Youyou: how Mao's challenge to malaria pioneer led to the Nobel prize". The Guardian.
  21. ^ Ferreira, Jorge F. S.; Luthria, Devanand L.; Sasaki, Tomikazu; Heyerick, Arne (2010-04-29). "Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer". Molecules. 15 (5): 3135–3170. doi:10.3390/molecules15053135. PMC 6263261. PMID 20657468.
  22. ^ Nahar, Lutfun; Guo, Mingquan; Sarker, Satyajit D. (2019). "A review on the latest advances in extraction and analysis of artemisinin (Review)" (PDF). Phytochemical Analysis. 31 (1): 5–14. doi:10.1002/pca.2873. ISSN 0958-0344. PMID 31370102. S2CID 199382005.
  23. ^ a b "Hard to swallow". Nature. 448 (7150): 105–6. 2007. Bibcode:2007Natur.448S.105.. doi:10.1038/448106a. PMID 17625521.
  24. ^ van der Kooy F, Sullivan SE (2013). "The complexity of medicinal plants: the traditional Artemisia annua formulation, current status and future perspectives". J Ethnopharmacol (Review). 150 (1): 1–13. doi:10.1016/j.jep.2013.08.021. PMID 23973523.
  25. ^ Mueller, Markus S; Runyambo, Nyabuhanga; Wagner, Irmela; Borrmann, Steffen; Dietz, Klaus; Heide, Lutz (2004). "Randomized controlled trial of a traditional preparation of Artemisia annua L. (Annual Wormwood) in the treatment of malaria". Trans R Soc Trop Med Hyg. 98 (5): 318–21. doi:10.1016/j.trstmh.2003.09.001. PMID 15109558.
  26. ^ Räth, K; Taxis, K; Walz, G; Gleiter, CH; Li, SM; Heide, L (1 February 2004). "Pharmacokinetic study of artemisinin after oral intake of a traditional preparation of Artemisia annua L. (annual wormwood)". Am J Trop Med Hyg. 70 (2): 128–32. doi:10.4269/ajtmh.2004.70.128. PMID 14993622.
  27. ^ Jansen FH (2006). "The herbal tea approach for artemesinin as a therapy for malaria?". Trans R Soc Trop Med Hyg. 100 (3): 285–6. doi:10.1016/j.trstmh.2005.08.004. PMID 16274712.
  28. ^ Fairhurst, RM; Nayyar, GM; Breman, JG; Hallett, R; Vennerstrom, JL; Duong, S; Ringwald, P; Wellems, TE; Plowe, CV; Dondorp, AM (2012). "Artemisinin-resistant malaria: Research challenges, opportunities, and public health implications". The American Journal of Tropical Medicine and Hygiene. 87 (2): 231–41. doi:10.4269/ajtmh.2012.12-0025. PMC 3414557. PMID 22855752.
  29. ^ Abolaji, AO; Eteng, MU; Ebong, PE; Brisibe, EA; Dar, A; Kabir, N; Choudhary, MI (2013). "A safety assessment of the antimalarial herb Artemisia annua during pregnancy in Wistar rats". Phytotherapy Research. 27 (5): 647–54. doi:10.1002/ptr.4760. PMID 22736625. S2CID 22650085.
  30. ^ Cumming JN; Ploypradith P; Posner GH (1996). Antimalarial Activity of Artemisinin (Qinghaosu) and Related Trioxanes: Mechanism (S) of Action. Advances in Pharmacology. Vol. 37. pp. 253–97. doi:10.1016/S1054-3589(08)60952-7. ISBN 9780120329380. PMID 8891104.
  31. ^ Gary H. Posner & Paul M. O’Neil (2004). "Knowledge of the Proposed Chemical Mechanism of Action and Cytochrome P450 Metabolism of Antimalarial Trioxanes Like Artemisinin Allows Rational Design of New Antimalarial Peroxides". Acc. Chem. Res. 37 (6): 397–404. doi:10.1021/ar020227u. PMID 15196049.
  32. ^ Wang J, Zhang CJ, Chia WN, Loh CC, Li Z, Lee YM, He Y, Yuan LX, Lim TK, Liu M, Liew CX, Lee YQ, Zhang J, Lu N, Lim CT, Hua ZC, Liu B, Shen HM, Tan KS, Lin Q (2015). "Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum". Nature Communications. 6: 10111. Bibcode:2015NatCo...610111W. doi:10.1038/ncomms10111. PMC 4703832. PMID 26694030.
  33. ^ a b c d Chrubasik, C; Jacobson, RL (2010). "The development of artemisinin resistance in malaria: Reasons and solutions". Phytotherapy Research. 24 (7): 1104–6. doi:10.1002/ptr.3133. PMID 20578122. S2CID 37901416.
  34. ^ News published on the Center for Strategic and International Studies website (Nov. 7, 2013)
  35. ^ Tulloch, Jim; David, Benedict; Newman, Robert D; Meek, Sylvia (2013). "Artemisinin-resistant malaria in the Asia-Pacific region". The Lancet. 381 (9881): e16–7. doi:10.1016/S0140-6736(12)61820-0. PMID 23122219. S2CID 1814045.
  36. ^ a b Na-Bangchang, K; Karbwang, J (2013). "Emerging artemisinin resistance in the border areas of Thailand". Expert Review of Clinical Pharmacology. 6 (3): 307–22. doi:10.1586/ecp.13.17. PMID 23656342. S2CID 207210000.
  37. ^ Liu, Artemisia (2015-10-09). "【2015诺贝尔奖】青蒿素、青蒿、黄花蒿,究竟什么关系?" [2015 Nobel: Artemisinin, qinghao, and huanghuahao, how are they related?] (in Chinese). guokr. Retrieved 19 January 2017.

External links Edit

  • Project to improve artemesinin yield at the University of York (UK)
  • Data sheet about Artemisia annua from Purdue University

artemisia, annua, sweet, annie, redirects, here, song, sweet, annie, also, known, sweet, wormwood, sweet, annie, sweet, sagewort, annual, mugwort, annual, wormwood, chinese, 黄花蒿, pinyin, huánghuāhāo, common, type, wormwood, native, temperate, asia, naturalized. Sweet annie redirects here For the song see Sweet Annie Artemisia annua also known as sweet wormwood 2 sweet annie sweet sagewort annual mugwort 3 or annual wormwood Chinese 黄花蒿 pinyin huanghuahao is a common type of wormwood native to temperate Asia but naturalized in many countries including scattered parts of North America 4 5 6 7 Artemisia annuaScientific classificationKingdom PlantaeClade TracheophytesClade AngiospermsClade EudicotsClade AsteridsOrder AsteralesFamily AsteraceaeGenus ArtemisiaSpecies A annuaBinomial nameArtemisia annuaL Synonyms 1 Artemisia chamomilla C Winkl An extract of A annua called artemisinin or artesunate is a medication used to treat malaria 8 Discovery of artemisinin and its antimalarial properties by the Chinese scientist Tu Youyou led to the award of the 2011 Lasker Prize and 2015 Nobel Prize in Physiology or Medicine 9 Contents 1 Description 2 Agricultural practice 3 Artemisinin and other phytochemicals 4 Malaria treatment 4 1 Mechanism 4 2 Artemisinin resistance 5 Traditional medicine 6 References 7 External linksDescription EditArtemisia annua belongs to the plant family of Asteraceae and is an annual short day plant Its stem is erect brownish or violet brown The plant itself is hairless and naturally grows from 30 to 100 cm tall although in cultivation it is possible for plants to reach a height of 200 cm The leaves of A annua have a length of 3 5 cm and are divided by deep cuts into two or three small leaflets The intensive aromatic scent of the leaves is characteristic 10 The artemisinin content in dried leaves is in between 0 and 1 5 11 New hybrids of Artemisia annua developed in Switzerland can reach a leaf artemisinin content of up to 2 12 The small flowers have a diameter of 2 2 5 mm and are arranged in loose panicles Their color is greenish yellow The seeds are brown achenes with a diameter of only 0 6 0 8 mm Their thousand kernel weight TKW averages around 0 03 g in comparison wheat has a TKW of approximately 45 g 10 13 Agricultural practice Edit nbsp Artemisia annua nbsp SeedsThe growing period of Artemisia annua from seeding through to harvest is 190 240 days depending on the climate and altitude of the production area The plant is harvested at the beginning of flowering when the artemisinin content is highest 11 Dry leaf yields of Artemisia annua plantations vary between 0 5 and 3 tonnes per hectare 12 Growth Phases 11 Days after sowingSeed germination 4 10Appearance of 1st pair of leaves 15 30Appearance of 2nd pair of leaves 21 50Branching 60 90Cessation of growth in height 170 200Flowering 190 240Full fruition 230 280Withering 260 310In terms of the climate A annua prefers sunny and warm conditions Its optimal growth temperature lies between 20 and 25 C Annual temperature sums of 3500 5000 C sum of temperatures higher than 10 C over one year are required to guarantee a proper maturing The rainfall during the growing season should not be less than 600 mm annual rainfall higher than 1150 mm Especially the seedlings of A annua are susceptible to drought or water lodging The mature plants on the other hand are quite resistant to those climate conditions Nevertheless the preferred soil conditions for A annua are light soils with deep topsoils and good drainage properties 11 But it is reported that the plant is adaptable to different soil types Paired with the relatively low demand on the environment Artemisia annua can have characteristics of a neophytic plant 14 A annua is best sown in rows to facilitate removal of weeds which has to be done mechanically or manually because herbicides are typically not used It is recommended to sow 1 4 2 seeds per square meter 12 The fertilizer requirements are at a low level Potassium should be used as base fertilizer It is taken up by the plant during the whole growing season 11 Nitrogen is required during early branching stages an amount of approximately 70 kg N ha is sufficient for the plant 15 Phosphate on the other hand is required during the blooming stages Phosphate fertilization can lead to a higher artemsinin content in the leaves 16 The application of salicylic acid to the leaves shortly before harvesting the plant also can raise its artemisinin content 17 Besides few viral diseases Artemisia a has no major diseases that need to be controlled The harvest of the plant is best done in the state of flower budding The whole plant is harvested and cut into branches which are dried in the sun or in an oven The drying temperature should not exceed 40 C The dry branches are shaken or beaten to separate the leaves from the stem The leaves are then packed into fabric bags and shipped to further processing 11 It is important that the temperatures during transportation and storage never get higher than 40 C as artemisinin is volatile and is lost into the air The leaves should not be crushed before long term storage one year The optimum storage conditions are either 20 C with 85 relative humidity RH or 30 C with 30 40 RH 11 Artemisinin and other phytochemicals EditIn 1971 scientists demonstrated that the plant extracts had antimalarial activity in primate models and in 1972 the active ingredient artemisinin formerly referred to as arteannuin was isolated and its chemical structure described 8 18 Artemisinin may be extracted using a low boiling point solvent such as diethylether is found in the glandular trichomes of the leaves stems and inflorescences and is concentrated in the upper portions of plant within new growth 8 19 The first isolation of artemisinin from the herb occurred from a military project known as Project 523 following the study of traditional medicine pharmacopoeias performed by Tu Youyou and other researchers within the project 20 A annua contains diverse phytochemicals including polyphenols such as coumarins flavones flavonols and phenolic acids which have unknown biological properties in vivo 21 22 Other phytochemicals include 38 sesquiterpenes 8 Dihydroartemisinin is the active metabolite of artemisinin and artesunate is a water soluble derivative of artemisinin 8 Malaria treatment EditResearch to develop antimalarial drugs led to the discovery of artemisinin in the 1970s by the Chinese scientist Tu Youyou who shared the 2015 Nobel Prize in Physiology or Medicine 9 18 23 An improved extract was obtained by using a low temperature ether based extraction method further showing the artemisinin derivative artemether to be an effective antimalarial drug 8 18 Artemisinin is a sesquiterpene lactone with an endoperoxide bridge and has been produced as an antimalarial drug 8 The efficacy of tea made with either water or urine and A annua for the treatment of malaria is dubious and is discouraged by the World Health Organization WHO 11 24 Research has found that artemisinin is not soluble in water and the concentrations in these infusions are considered insufficient to treat malaria 25 26 27 A 2012 review stated that artemisinin based remedies are the most effective drugs for the treatment of malaria 28 A 2013 review suggested that although Artemisia annua may not cause hepatotoxicity haematotoxicity or hyperlipidemia it should be used cautiously during pregnancy owing to a potential risk of embryotoxicity at a high dose 29 The WHO has approved riamet Coartem a combination of lumefantrine 120 mg and artemether an artemisinin derivative extracted with ether 20 mg in repeat treatments over two days producing efficacy of up to 98 against malaria 8 Mechanism Edit The proposed mechanism of action of artemisinin involves cleavage of endoperoxide bridges by iron producing free radicals hypervalent iron oxo species epoxides aldehydes and dicarbonyl compounds which damage biological macromolecules causing oxidative stress in the cells of the malaria parasite 8 30 Malaria is caused by apicomplexans primarily Plasmodium falciparum which largely reside in red blood cells and contain iron rich heme groups in the form of hemozoin 8 31 In 2015 artemisinin was shown to bind to a large number of cell targets indicating its potential for diverse effects 32 Artemisinin resistance Edit Despite global efforts in combating malaria it remains a large burden for the population particularly in tropical and subtropical regions 8 33 As of 2013 it seems that the pathogenic agent of malaria is becoming resistant to artemisinin based drugs 34 35 Emergence of artemisinin resistance has been identified in Cambodia and the border of Thailand 36 Although the WHO recommends artemisinin based remedies for treating uncomplicated malaria artemisinin resistance has become a concern 33 The causes that affected the emergence of artemisinin resistance include the use of artemisinin based remedies 33 Encouraging herbal alternatives are in the pipeline but a more dependable solution for the eradication of malaria would be the creation of an effective vaccination 33 Resistance will likely spread to other endemic areas across the world 36 Traditional medicine EditIn traditional Chinese medicine TCM A annua is prepared with hot water to treat fever 8 23 Owing to duplication in ancient TCM sources A annua is more commonly referred to as qinghao Chinese 青蒿 pinyin qinghao the modern Chinese name for Artemisia carvifolia as opposed to its current Chinese name huanghuahao 37 References Edit The Plant List Artemisia annua L English Names for Korean Native Plants PDF Pocheon Korea National Arboretum 2015 p 359 ISBN 978 89 97450 98 5 Archived from the original PDF on 25 May 2017 Retrieved 25 January 2016 via Korea Forest Service BSBI List 2007 xls Botanical Society of Britain and Ireland Archived from the original xls on 2015 06 26 Retrieved 2014 10 17 Flora of China Vol 19 20 and 21 Page 523 Sweet Annie sweet sagewort armoise annuelle Artemisia annua Linnaeus Sp Pl 2 847 1753 Flora of China Vol 20 21 Page 691 黄花蒿 huang hua hao Artemisia annua Linnaeus Sp Pl 2 847 1753 Flora of Pakistan Altervista Flora Italiana Assenzio annuale Artemisia annua L permanent dead link a b c d e f g h i j k l Sweet wormwood Artemisia annua L Drugs com 23 March 2020 Retrieved 20 December 2020 a b Youyou Tu Facts and biography The Nobel Prize in Physiology or Medicine 2015 The Nobel Foundation 2015 Retrieved 20 December 2020 a b Artemisia annua sweet wormwood Royal Botanic Gardens Archived from the original on October 6 2015 Retrieved November 25 2015 a b c d e f g h WHO monograph on good agricultural and collection practices GACP forArtemisia annuaL PDF World Health Organization 2006 a b c Simonnet X Quennoz M Carlen C 2006 New Artemisia annua hybrids with high artemisinin content XXVII International Horticultural Congress IHC2006 International Symposium on Asian Plants with Unique Horticultural 769 371 373 Forestry Government of Alberta Alberta Agriculture and 1993 09 01 Using 1 000 Kernel Weight for Calculating Seeding Rates and Harvest Losses www1 agric gov ab ca Retrieved 2015 11 15 a href Template Cite web html title Template Cite web cite web a CS1 maint multiple names authors list link Muller Meike Brandes Dietmar 1997 Growth and development of Artemisia annua L on different soil types Verhandlungen Gesellschaft fur Okologie 27 453 460 Simon James E et al 1990 Artemisia annua L A promising aromatic and medicinal Advances in New Crops 522 526 Kapoor Rupam Chaudhary Vidhi Bhatnagar AK 2007 Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L Mycorrhiza 17 7 581 587 doi 10 1007 s00572 007 0135 4 PMID 17578608 S2CID 13498398 Pu Gao Bin et al 2009 Salicylic acid activates artemisinin biosynthesis in Artemisia annua L Plant Cell Reports 28 7 1127 1135 doi 10 1007 s00299 009 0713 3 PMID 19521701 S2CID 29237295 a b c Miller Louis H Su Xinzhuan 2011 Artemisinin Discovery from the Chinese herbal garden Cell 146 6 855 8 doi 10 1016 j cell 2011 08 024 PMC 3414217 PMID 21907397 Duke SO Paul RN 1993 Development and Fine Structure of the Glandular Trichomes of Artemisia annua L Int J Plant Sci 154 1 107 18 doi 10 1086 297096 JSTOR 2995610 S2CID 86584892 Ferreira JF Janick J 1995 Floral Morphology of Artemisia annua with Special Reference to Trichomes Int J Plant Sci 156 6 807 doi 10 1086 297304 S2CID 84594350 Tom Phillips October 6 2015 Tu Youyou how Mao s challenge to malaria pioneer led to the Nobel prize The Guardian Ferreira Jorge F S Luthria Devanand L Sasaki Tomikazu Heyerick Arne 2010 04 29 Flavonoids from Artemisia annua L as antioxidants and their potential synergism with artemisinin against malaria and cancer Molecules 15 5 3135 3170 doi 10 3390 molecules15053135 PMC 6263261 PMID 20657468 Nahar Lutfun Guo Mingquan Sarker Satyajit D 2019 A review on the latest advances in extraction and analysis of artemisinin Review PDF Phytochemical Analysis 31 1 5 14 doi 10 1002 pca 2873 ISSN 0958 0344 PMID 31370102 S2CID 199382005 a b Hard to swallow Nature 448 7150 105 6 2007 Bibcode 2007Natur 448S 105 doi 10 1038 448106a PMID 17625521 van der Kooy F Sullivan SE 2013 The complexity of medicinal plants the traditional Artemisia annua formulation current status and future perspectives J Ethnopharmacol Review 150 1 1 13 doi 10 1016 j jep 2013 08 021 PMID 23973523 Mueller Markus S Runyambo Nyabuhanga Wagner Irmela Borrmann Steffen Dietz Klaus Heide Lutz 2004 Randomized controlled trial of a traditional preparation of Artemisia annua L Annual Wormwood in the treatment of malaria Trans R Soc Trop Med Hyg 98 5 318 21 doi 10 1016 j trstmh 2003 09 001 PMID 15109558 Rath K Taxis K Walz G Gleiter CH Li SM Heide L 1 February 2004 Pharmacokinetic study of artemisinin after oral intake of a traditional preparation of Artemisia annua L annual wormwood Am J Trop Med Hyg 70 2 128 32 doi 10 4269 ajtmh 2004 70 128 PMID 14993622 Jansen FH 2006 The herbal tea approach for artemesinin as a therapy for malaria Trans R Soc Trop Med Hyg 100 3 285 6 doi 10 1016 j trstmh 2005 08 004 PMID 16274712 Fairhurst RM Nayyar GM Breman JG Hallett R Vennerstrom JL Duong S Ringwald P Wellems TE Plowe CV Dondorp AM 2012 Artemisinin resistant malaria Research challenges opportunities and public health implications The American Journal of Tropical Medicine and Hygiene 87 2 231 41 doi 10 4269 ajtmh 2012 12 0025 PMC 3414557 PMID 22855752 Abolaji AO Eteng MU Ebong PE Brisibe EA Dar A Kabir N Choudhary MI 2013 A safety assessment of the antimalarial herb Artemisia annua during pregnancy in Wistar rats Phytotherapy Research 27 5 647 54 doi 10 1002 ptr 4760 PMID 22736625 S2CID 22650085 Cumming JN Ploypradith P Posner GH 1996 Antimalarial Activity of Artemisinin Qinghaosu and Related Trioxanes Mechanism S of Action Advances in Pharmacology Vol 37 pp 253 97 doi 10 1016 S1054 3589 08 60952 7 ISBN 9780120329380 PMID 8891104 Gary H Posner amp Paul M O Neil 2004 Knowledge of the Proposed Chemical Mechanism of Action and Cytochrome P450 Metabolism of Antimalarial Trioxanes Like Artemisinin Allows Rational Design of New Antimalarial Peroxides Acc Chem Res 37 6 397 404 doi 10 1021 ar020227u PMID 15196049 Wang J Zhang CJ Chia WN Loh CC Li Z Lee YM He Y Yuan LX Lim TK Liu M Liew CX Lee YQ Zhang J Lu N Lim CT Hua ZC Liu B Shen HM Tan KS Lin Q 2015 Haem activated promiscuous targeting of artemisinin in Plasmodium falciparum Nature Communications 6 10111 Bibcode 2015NatCo 610111W doi 10 1038 ncomms10111 PMC 4703832 PMID 26694030 a b c d Chrubasik C Jacobson RL 2010 The development of artemisinin resistance in malaria Reasons and solutions Phytotherapy Research 24 7 1104 6 doi 10 1002 ptr 3133 PMID 20578122 S2CID 37901416 News published on the Center for Strategic and International Studies website Nov 7 2013 Tulloch Jim David Benedict Newman Robert D Meek Sylvia 2013 Artemisinin resistant malaria in the Asia Pacific region The Lancet 381 9881 e16 7 doi 10 1016 S0140 6736 12 61820 0 PMID 23122219 S2CID 1814045 a b Na Bangchang K Karbwang J 2013 Emerging artemisinin resistance in the border areas of Thailand Expert Review of Clinical Pharmacology 6 3 307 22 doi 10 1586 ecp 13 17 PMID 23656342 S2CID 207210000 Liu Artemisia 2015 10 09 2015诺贝尔奖 青蒿素 青蒿 黄花蒿 究竟什么关系 2015 Nobel Artemisinin qinghao and huanghuahao how are they related in Chinese guokr Retrieved 19 January 2017 External links Edit nbsp Wikimedia Commons has media related to Artemisia annua Distribution of artemisinin in Artemisia annua Project to improve artemesinin yield at the University of York UK Data sheet about Artemisia annua from Purdue University Retrieved from https en wikipedia org w index php title Artemisia annua amp oldid 1179911384, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.