fbpx
Wikipedia

Underground coal gasification

Underground coal gasification (UCG) is an industrial process which converts coal into product gas. UCG is an in-situ gasification process, carried out in non-mined coal seams using injection of oxidants and steam. The product gas is brought to the surface through production wells drilled from the surface.[1]

Underground coal gasification
Process typechemical
Industrial sector(s)oil and gas industry
coal industry
Feedstockcoal
Product(s)coal gas
Leading companiesAfricary
Linc Energy
Carbon Energy
Main facilitiesAngren Power Station (Uzbekistan)
Majuba Power Station (South Africa)
Chinchilla Demonstration Facility (Australia)
InventorCarl Wilhelm Siemens
Year of invention1868
Developer(s)African Carbon Energy
Ergo Exergy Technologies
Skochinsky Institute of Mining

The predominant product gases are methane, hydrogen, carbon monoxide and carbon dioxide. Ratios vary depending upon formation pressure, depth of coal and oxidant balance. Gas output may be combusted for electricity production. Alternatively, the gas output can be used to produce synthetic natural gas, or hydrogen and carbon monoxide can be used as a chemical feedstock for the production of fuels (e.g. diesel), fertilizer, explosives and other products.

The technique can be applied to coal resources that are otherwise unprofitable or technically complicated to extract by traditional mining methods. UCG offers an alternative to conventional coal mining methods for some resources. It has been linked to a number of concerns from environmental campaigners.[2]

History

The earliest recorded mention of the idea of underground coal gasification was in 1868, when Sir William Siemens in his address to the Chemical Society of London suggested the underground gasification of waste and slack coal in the mine.[3][4] Russian chemist Dmitri Mendeleyev further developed Siemens' idea over the next couple of decades.[4][5]

In 1909–1910, American, Canadian, and British patents were granted to American engineer Anson G. Betts for "a method of using unmined coal".[4][5] The first experimental work on UCG was planned to start in 1912 in Durham, the United Kingdom, under the leadership of Nobel Prize winner Sir William Ramsay. However, Ramsay was unable to commence the UCG field work before the beginning of the World War I, and the project was abandoned.[4][5]

Initial tests

In 1913, Ramsay's work was noticed by Russian exile Vladimir Lenin who wrote in the newspaper Pravda an article "Great Victory of Technology" promising to liberate workers from hazardous work in coal mines by underground coal gasification.[4][5][6]

Between 1928 and 1939, underground tests were conducted in the Soviet Union by the state-owned organization Podzemgaz.[6] The first test using the chamber method started on 3 March 1933 in the Moscow coal basin at Krutova mine. This test and several following tests failed. The first successful test was conducted on 24 April 1934 in Lysychansk, Donetsk Basin, by the Donetsk Institute of Coal Chemistry.[5]

The first pilot-scale process started 8 February 1935 in Horlivka, Donetsk Basin. Production gradually increased, and, in 1937–1938, the local chemical plant began using the produced gas. In 1940, experimental plants were built in Lysychansk and Tula.[5] After World War II, the Soviet activities culminated in the operation of five industrial-scale UCG plants in the early 1960s. However, Soviet activities subsequently declined due to the discovery of extensive natural gas resources. In 1964, the Soviet program was downgraded.[5] As of 2004 only Angren site in Uzbekistan and Yuzhno-Abinsk site in Russia continued operations.[7]

Post-war experiments

After World War II, the shortage in energy and the diffusion of the Soviets' results provoked new interest in Western Europe and the United States. In the United States, tests were conducted in 1947–1958 in Gorgas, Alabama. The experiments were carried out in a partnership between Alabama Power and the US Bureau of Mines. The experiments at Gorgas continued for seven years until 1953, at which point the US Bureau of Mines withdrew its support for them after the US Congress withdrew funding. In total 6,000 tons of coal were combusted by 1953 in these experiments. The experiments succeeded in producing combustible synthetic gas.[8] The experiments were reactivated after 1954, this time with hydrofracturing using a mixture of oil and sand, but finally discontinued in 1958 as uneconomical.[9] From 1973–1989, extensive testing was carried out. The United States Department of Energy and several large oil and gas companies conducted several tests. Lawrence Livermore National Laboratory conducted three tests in 1976–1979 at the Hoe Creek test site in Campbell County, Wyoming.[4][5]

In cooperation with Sandia National Laboratories and Radian Corporation, Livermore conducted experiments in 1981–1982 at the WIDCO Mine near Centralia, Washington.[4] In 1979–1981, an underground gasification of steeply dipping seams was demonstrated near Rawlins, Wyoming. The program culminated in the Rocky Mountain trial in 1986–1988 near Hanna, Wyoming.[5][7]

In Europe, the stream method was tested at Bois-la-Dame, Belgium, in 1948 and in Jerada, Morocco, in 1949.[7] The borehole method was tested at Newman Spinney and Bayton, United Kingdom, in 1949–1950. A few years later, a first attempt was made to develop a commercial pilot plan, the P5 Trial, at Newman Spinney Derbyshire in 1958–1959.[5][7] The Newman Spinney project was authorised in 1957 and comprised a steam boiler and a 3.75 MW turbo-alternator to generate electricity.[10] The National Coal Board abandoned the gasification scheme in summer 1959.[10] During the 1960s, European work stopped, due to an abundance of energy and low oil prices, but recommenced in the 1980s. Field tests were conducted in 1981 at Bruay-en-Artois, in 1983–1984 at La Haute Deule, France, in 1982–1985 at Thulin, Belgium and in 1992–1999 at the El Tremedal site, Province of Teruel, Spain.[4] In 1988, the Commission of the European Communities and six European countries formed a European Working Group.[7]

In New Zealand, a small scale trial was operated in 1994 in the Huntly Coal Basin. In Australia, tests were conducted starting in 1999.[7] China has operated the largest program since the late 1980s, including 16 trials.[4][11]

Process

 
The underground coal gasification process.

Underground coal gasification converts coal to gas while still in the coal seam (in-situ). Gas is produced and extracted through wells drilled into the unmined coal seam. Injection wells are used to supply the oxidants (air, oxygen) and steam to ignite and fuel the underground combustion process. Separate production wells are used to bring the product gas to the surface.[7][12] The high pressure combustion is conducted at temperature of 700–900 °C (1,290–1,650 °F), but it may reach up to 1,500 °C (2,730 °F).[4][7]

The process decomposes coal and generates carbon dioxide (CO
2
), hydrogen (H
2
), carbon monoxide (CO) and methane (CH
4
). In addition, small quantities of various contaminants including sulfur oxides (SO
x
), mono-nitrogen oxides (NO
x
), and hydrogen sulfide (H
2
S
) are produced.[7] As the coal face burns and the immediate area is depleted, the volumes of oxidants injected are controlled by the operator.[4]

There are a variety of designs for underground coal gasification, all of which provide a means of injecting oxidant and possibly steam into the reaction zone, and also provide a path for production gases to flow in a controlled manner to the surface. As coal varies considerably in its resistance to flow, depending on its age, composition and geological history, the natural permeability of the coal to transport the gas is generally not adequate. For high pressure break-up of the coal, hydro-fracturing, electric-linkage, and reverse combustion may be used in varying degrees.[4][12]

The simplest design uses two vertical wells: one injection and one production. Sometimes it is necessary to establish communication between the two wells, and a common method is to use reverse combustion to open internal pathways in the coal. Another alternative is to drill a lateral well connecting the two vertical wells.[13] UCG with simple vertical wells, inclined wells, and long deflected wells was used in the Soviet Union. The Soviet UCG technology was further developed by Ergo Exergy and tested at Linc's Chinchilla site in 1999–2003, in Majuba UCG plant (2007) and in Cougar Energy's failed UCG pilot in Australia (2010).

In the 1980s and 1990s, a method known as CRIP (controlled retraction and injection point) was developed (but not patented) by the Lawrence Livermore National Laboratory and demonstrated in the United States and Spain. This method uses a vertical production well and an extended lateral well drilled directionally in the coal. The lateral well is used for injection of oxidants and steam, and the injection point can be changed by retracting the injector.[13]

Carbon Energy was the first to adopt a system which uses a pair of lateral wells in parallel. This system allows a consistent separation distance between the injection and production wells, while progressively mining the coal between the two wells. This approach is intended to provide access to the greatest quantity of coal per well set and also allows greater consistency in production gas quality.[14]

A new technology has been announced in May 2012 by developer Portman Energy wherein a method called SWIFT (Single Well Integrated Flow Tubing) uses a single vertical well for both oxidant delivery and syngas recovery. The design has a single casing of tubing strings enclosed and filled with an inert gas to allow for leak monitoring, corrosion prevention and heat transfer. A series of horizontally drilled lateral oxidant delivery lines into the coal and a single or multiple syngas recovery pipeline(s) allow for a larger area of coal to be combusted at one time. The developers claim this method will increase syngas production by up to ten (10) times above earlier design approaches. The single well design means development costs are significantly lower and the facilities and wellheads are concentrated at a single point reducing surface access roads, pipelines and facilities footprint.[9] The UK patent office have advised that the full patent application GB2501074 by Portman Energy be published 16 October 2013.

A wide variety of coals are amenable to the UCG process and coal grades from lignite through to bituminous may be successfully gasified. A great many factors are taken into account in selecting appropriate locations for UCG, including surface conditions, hydrogeology, lithology, coal quantity, and quality. According to Andrew Beath of CSIRO Exploration & Mining other important criteria include:

  • Depth of 100–600 metres (330–1,970 ft)
  • Thickness more than 5 metres (16 ft)
  • Ash content less than 60%
  • Minimal discontinuities
  • Isolation from valued aquifers.[15]

According to Peter Sallans of Liberty Resources Limited, the key criteria are:

  • Depth of 100–1,400 metres (330–4,590 ft)
  • Thickness more than 3 metres (9.8 ft)
  • Ash content less than 60%
  • Minimal discontinuities
  • Isolation from valued aquifers.[16]

Economics

Underground coal gasification allows access to coal resources that are not economically recoverable by other technologies, e.g., seams that are too deep, low grade, or that have a thin stratum profile.[4] By some estimates, UCG will increase economically recoverable reserves by 600 billion tonnes.[17] Lawrence Livermore National Laboratory estimates that UCG could increase recoverable coal reserves in the US by 300%.[18] Livermore and Linc Energy claim that UCG capital and operating costs are lower than those for traditional mining.[4][19]

UCG product gas is used to fire combined cycle gas turbine (CCGT) power plants, with some studies suggesting power island efficiencies of up to 55%, with a combined UCG/CCGT process efficiency of up to 43%. CCGT power plants using UCG product gas instead of natural gas can achieve higher outputs than pulverized-coal-fired power stations (and associated upstream processes), resulting in a large decrease in greenhouse gas (GHG) emissions.[citation needed]

UCG product gas can also be used for:

  • Synthesis of liquid fuels;
  • Manufacture of chemicals, such as ammonia and fertilizers;
  • Production of synthetic natural gas;
  • Production of hydrogen.

In addition, carbon dioxide produced as a by-product of underground coal gasification may be re-directed and used for enhanced oil recovery.[citation needed]

Underground product gas is an alternative to natural gas and potentially offers cost savings by eliminating mining, transport, and solid waste. The expected cost savings could increase given higher coal prices driven by emissions trading, taxes, and other emissions reduction policies, e.g. the Australian Government's proposed Carbon Pollution Reduction Scheme.[citation needed]

Projects

Cougar Energy and Linc Energy conducted pilot projects in Queensland, Australia based on UCG technology provided by Ergo Exergy until their activities were banned in 2016.[20][21][22][23][24][25] Yerostigaz, a subsidiary of Linc Energy, produces about 1 million cubic metres (35 million cubic feet) of syngas per day in Angren, Uzbekistan. The produced syngas is used as fuel in the Angren Power Station.[26]

In South Africa, Eskom (with Ergo Exergy as technology provider) is operating a demonstration plant in preparation for supplying commercial quantities of syngas for commercial production of electricity.[27][28][29] African Carbon Energy[30] has received environmental approval for a 50 MW power station near Theunissen in the Free State province and is bid-ready to participate in the DOE's Independent Power Producer (IPP) gas program[31] where UCG has been earmarked as a domestic gas supply option.

ENN has operated a successful pilot project in China.[citation needed]

In addition, there are companies developing projects in Australia, UK, Hungary, Pakistan, Poland, Bulgaria, Canada, US, Chile, China, Indonesia, India, South Africa, Botswana, and other countries.[27] According to the Zeus Development Corporation, more than 60 projects are in development around the world.

Environmental and social impacts

Eliminating mining eliminates mine safety issues.[32] Compared to traditional coal mining and processing, the underground coal gasification eliminates surface damage and solid waste discharge, and reduces sulfur dioxide (SO
2
) and nitrogen oxide (NO
x
) emissions.[4][33] For comparison, the ash content of UCG syngas is estimated to be approximately 10 mg/m3 compared to smoke from traditional coal burning where ash content may be up to 70 mg/m3.[18] However, UCG operations cannot be controlled as precisely as surface gasifiers. Variables include the rate of water influx, the distribution of reactants in the gasification zone, and the growth rate of the cavity. These can only be estimated from temperature measurements, and analyzing product gas quality and quantity.[4]

Subsidence is a common issue with all forms of extractive industry. While UCG leaves the ash behind in the cavity, the depth of the void left after UCG is typically greater than that with other methods of coal extraction.[4]

Underground combustion produces NO
x
and SO
2
and lowers emissions, including acid rain.

Regarding emissions of atmospheric CO
2
, proponents of UCG have argued that the process has advantages for geologic carbon storage.[4] Combining UCG with CCS (Carbon capture and storage) technology allows re-injecting some of the CO
2
on-site into the highly permeable rock created during the burning process, i.e. the cavity where the coal used to be.[34] Contaminants, such as ammonia and hydrogen sulfide, can be removed from product gas at a relatively low cost.[citation needed]

However, as of late 2013, CCS had never been successfully implemented on a commercial scale as it was not within the scope of UCG projects and some had also resulted in environmental concerns. In Australia in 2014 the Government filed charges over alleged serious environmental harm stemming from Linc Energy's pilot Underground Coal Gasification plant near Chinchilla in the Queensland's foodbowl of the Darling Downs.[35] When UCG was banned in April, 2016 the Queensland Mines Minister Dr Anthony Lynham stated "The potential risks to Queensland's environment and our valuable agricultural industries far outweigh any potential economic benefits. UCG activity simply doesn't stack up for further use in Queensland."[25]

Meanwhile, as an article in the Bulletin of Atomic Sciences pointed out in March 2010 that UCG could result in massive carbon emissions. "If an additional 4 trillion tonnes [of coal] were extracted without the use of carbon capture or other mitigation technologies atmospheric carbon-dioxide levels could quadruple", the article stated, "resulting in a global mean temperature increase of between 5 and 10 degrees Celsius".[36][37]

Aquifer contamination is a potential environmental concern.[4][38] Organic and often toxic materials (such as phenol) could remain in the underground chamber after gasification if the chamber is not decommissioned. Site decommissioning and rehabilitation are standard requirements in resources development approvals whether that be UCG, oil and gas, or mining, and decommissioning of UCG chambers is relatively straightforward. Phenol leachate is the most significant environmental hazard due to its high water solubility and high reactiveness to gasification. The US Dept of Energy's Lawrence Livermore Institute conducted an early UCG experiment at very shallow depth and without hydrostatic pressure at Hoe Creek, Wyoming. They did not decommission that site and testing showed contaminants (including the carcinogen benzene) in the chamber. The chamber was later flushed and the site successfully rehabilitated. Some research has shown that the persistence of minor quantities of these contaminants in groundwater is short-lived and that ground water recovers within two years.[33] Even so, proper practice, supported by regulatory requirements, should be to flush and decommission each chamber and to rehabilitate UCG sites.

Newer UCG technologies and practices claim to address environmental concerns, such as issues related to groundwater contamination, by implementing the "Clean Cavern" concept.[39] This is the process whereby the gasifier is self-cleaned via the steam produced during operation and also after decommissioning. Another important practice is maintaining the pressure of the underground gasifier below that of the surrounding groundwater. The pressure difference forces groundwater to flow continuously into the gasifier and no chemical from the gasifier can escape into the surrounding strata. The pressure is controlled by the operator using pressure valves at the surface.[39]

See also

References

  1. ^ Coal Gas, www.clarke-energy.com, retrieved 12.12.2013
  2. ^ https://www.bbc.co.uk/news/business-26921145 , BBC - Coal gasification: The clean energy of the future?, retrieved 12.07.2014
  3. ^ Siemens, C.W. (1868). "On the regenerative gas furnace as applied to the manufacture of cast steel". J. Chem. Soc. Chemical Society of London. 21 (21): 279–310. doi:10.1039/JS8682100279.
  4. ^ a b c d e f g h i j k l m n o p q r s Burton, Elizabeth; Friedmann, Julio; Upadhye, Ravi (2007). (PDF) (Report). Lawrence Livermore National Laboratory. W-7405-Eng-48. Archived from the original (PDF) on 6 June 2010. Retrieved 3 January 2013.
  5. ^ a b c d e f g h i j Klimenko, Alexander Y. (2009). "Early Ideas in Underground Coal Gasification and Their Evolution". Energies. MDPI Publishing. 2 (2): 456–476. doi:10.3390/en20200456. ISSN 1996-1073.
  6. ^ a b Lamb, George H. (1977). Underground coal gasification. Energy Technology Review № 14. Noyes Data Corp. p. 5. ISBN 978-0-8155-0670-6.
  7. ^ a b c d e f g h i Sury, Martin; et al. (November 2004). (PDF). WS Atkins Consultants LTD. Department of Trade and Industry. COAL R272 DTI/Pub URN 04/1880. Archived from the original (PDF) on 11 June 2007. Retrieved 18 July 2010.
  8. ^ "Gasification Tests On Coal Are Completed". The Terre Haute Tribune. 6 July 1953. p. 5. Retrieved 5 December 2020.
  9. ^ The US Bureau of Mines - Report for the Committee on Interior and Insular Affairs. US Government Printing Office. September 1976. pp. 61–62. Retrieved 5 December 2020.
  10. ^ a b Garrett, Frederick C. (1959). Garcke's Manual of Electricity Supply. London: Electrical Press. pp. A-79.
  11. ^ . UCG Engineering Ltd. Archived from the original on 19 November 2007. Retrieved 24 November 2007.
  12. ^ a b . UCG Association. Archived from the original on 12 September 2011. Retrieved 11 November 2007.
  13. ^ a b Portman Energy (3 May 2012). UCG–the 3rd way. 7th Underground Coal Gasification Association (UCGA) Conference. London. Retrieved 1 October 2012.
  14. ^ Morné Engelbrecht (2015). "Carbon Energy Delivers Innovations in Underground Coal Gasification". Vol. 3, no. 2. Cornerstone, The Official Journal of the World Coal Industry. pp. 61–64.
  15. ^ Beath, Andrew (18 August 2006). (PDF). CSIRO Exploration & Mining. Archived from the original (PDF) on 31 August 2007. Retrieved 11 November 2007.
  16. ^ Sallans, Peter (23 June 2010). Choosing the Best Coals in the Best Locations for UCG. Advanced Coal Technologies Conference. Laramie: University of Wyoming.
  17. ^ Copley, Christine (2007). (PDF). In Clarke, A. W.; Trinnaman, J. A. (eds.). Survey of energy resources (21st ed.). World Energy Council. p. 7. ISBN 978-0-946121-26-7. Archived from the original (PDF) on 9 April 2011.
  18. ^ a b Walter, Katie (2007). "Fire in the Hole". Lawrence Livermore National Laboratory. Retrieved 6 October 2008.
  19. ^ . Linc Energy. Archived from the original on 16 May 2010. Retrieved 18 July 2010.
  20. ^ "Cougar Energy Update on UCG Pilot Project at Kingaroy in Queensland". OilVoice. 27 April 2010. Retrieved 31 July 2010.
  21. ^ "Cougar To Ramp Up UCG Process Down Under". Cougar Energy. Downstream Today. 16 March 2010. Retrieved 31 July 2010.
  22. ^ "Linc pilot flows first GTL fuel". Upstream Online. NHST Media Group. 14 October 2008. Retrieved 6 August 2009.
  23. ^ "Linc Energy Opens CTL Demo Plant". Downstream Today. 24 April 2009. Retrieved 6 August 2009.
  24. ^ "Linc gears up for Chinchilla GTL". Upstream Online. NHST Media Group. 28 November 2007. Retrieved 6 August 2009.
  25. ^ a b "UCG banned immediately in Queensland". ABC Online. Australian Broadcasting Corporation. 18 April 2016. Retrieved 21 April 2016.
  26. ^ "Linc Energy Limited (ASX:LNC) Technology Update on Chinchilla Underground Coal Gasification (UCG) Operations". ABN Newswire. Asia Business News Ltd. 10 March 2009. Retrieved 8 August 2009.
  27. ^ a b "ESKOM's underground coal gasification project" (PDF). European Commission. 5 May 2008. Retrieved 4 September 2011.[permanent dead link]
  28. ^ Venter, Irma (12 February 2007). "Coal experts search for ways to cut emissions". Mining Weekly. Creamer Media. Retrieved 4 September 2011.
  29. ^ Hannah, Jessica (12 August 2011). "Coal gasification demo plant design study under way". Mining Weekly. Creamer Media. Retrieved 4 September 2011.
  30. ^ "Theunissen Project | Africary". www.africary.com. Retrieved 12 December 2016.
  31. ^ "South African IPP Gas Program".
  32. ^ Lazarenko, Sergey N.; Kochetkov, Valery N. (1997). "The underground coal gasification is the technology which answers o conditions of sustainable development of coal regions". In Strakos̆, Vladimír; Farana, R. (eds.). Mine Planning and Equipment Selection 1997. Taylor & Francis. pp. 167–168. ISBN 978-90-5410-915-0.
  33. ^ a b Shu-qin, L., Jun-hua, Y. (2002). Environmental Benefits of underground coal gasification. Journal of Environmental Sciences (China), vol. 12, no. 2, pp.284-288
  34. ^ Krupp, Fred; Horn, Miriam (2009). Earth: The Sequel: The Race to Reinvent Energy and Stop Global Warming. New York: Norton & Company. ISBN 978-0-393-33419-7.
  35. ^ "Queensland government hits Underground Coal Gasification player Linc Energy with environmental damage charges". 15 April 2014.
  36. ^ . ThinkProgress. Archived from the original on 13 November 2013.
  37. ^ "Is underground coal gasification a sensible option?". 29 March 2010.
  38. ^ National Research Council (U.S.). Committee on Ground-Water Resources in Relation to Coal Mining (1981). Coal mining and ground-water resources in the United States: a report. United States National Academies. p. 113. ISBN 9780309031868.
  39. ^ a b "Underground Coal Gasification: An Overview of an Emerging Coal Conversion Technology". Vol. 3, no. 2. Cornerstone, The Official Journal of the World Coal Industry. 2015. pp. 56–60.

Further reading

"Beyond fracking", New Scientist feature article (Fred Pearce), 15 February 2014

External links

  • African Carbon Energy - 50 MW project
  • Ergo Exergy Tech - global supplier of UCG technology
  • UCG Association
  • Energy & Environmental Research Centre (EERC) - UCG overview
  • CO2 Storage in in situ Converted Coal Seams - Research Project at the RWTH Aachen University.

underground, coal, gasification, industrial, process, which, converts, coal, into, product, situ, gasification, process, carried, mined, coal, seams, using, injection, oxidants, steam, product, brought, surface, through, production, wells, drilled, from, surfa. Underground coal gasification UCG is an industrial process which converts coal into product gas UCG is an in situ gasification process carried out in non mined coal seams using injection of oxidants and steam The product gas is brought to the surface through production wells drilled from the surface 1 Underground coal gasificationProcess typechemicalIndustrial sector s oil and gas industrycoal industryFeedstockcoalProduct s coal gasLeading companiesAfricaryLinc EnergyCarbon EnergyMain facilitiesAngren Power Station Uzbekistan Majuba Power Station South Africa Chinchilla Demonstration Facility Australia InventorCarl Wilhelm SiemensYear of invention1868Developer s African Carbon EnergyErgo Exergy TechnologiesSkochinsky Institute of MiningThe predominant product gases are methane hydrogen carbon monoxide and carbon dioxide Ratios vary depending upon formation pressure depth of coal and oxidant balance Gas output may be combusted for electricity production Alternatively the gas output can be used to produce synthetic natural gas or hydrogen and carbon monoxide can be used as a chemical feedstock for the production of fuels e g diesel fertilizer explosives and other products The technique can be applied to coal resources that are otherwise unprofitable or technically complicated to extract by traditional mining methods UCG offers an alternative to conventional coal mining methods for some resources It has been linked to a number of concerns from environmental campaigners 2 Contents 1 History 1 1 Initial tests 1 2 Post war experiments 2 Process 3 Economics 3 1 Projects 4 Environmental and social impacts 5 See also 6 References 7 Further reading 8 External linksHistory EditThe earliest recorded mention of the idea of underground coal gasification was in 1868 when Sir William Siemens in his address to the Chemical Society of London suggested the underground gasification of waste and slack coal in the mine 3 4 Russian chemist Dmitri Mendeleyev further developed Siemens idea over the next couple of decades 4 5 In 1909 1910 American Canadian and British patents were granted to American engineer Anson G Betts for a method of using unmined coal 4 5 The first experimental work on UCG was planned to start in 1912 in Durham the United Kingdom under the leadership of Nobel Prize winner Sir William Ramsay However Ramsay was unable to commence the UCG field work before the beginning of the World War I and the project was abandoned 4 5 Initial tests Edit In 1913 Ramsay s work was noticed by Russian exile Vladimir Lenin who wrote in the newspaper Pravda an article Great Victory of Technology promising to liberate workers from hazardous work in coal mines by underground coal gasification 4 5 6 Between 1928 and 1939 underground tests were conducted in the Soviet Union by the state owned organization Podzemgaz 6 The first test using the chamber method started on 3 March 1933 in the Moscow coal basin at Krutova mine This test and several following tests failed The first successful test was conducted on 24 April 1934 in Lysychansk Donetsk Basin by the Donetsk Institute of Coal Chemistry 5 The first pilot scale process started 8 February 1935 in Horlivka Donetsk Basin Production gradually increased and in 1937 1938 the local chemical plant began using the produced gas In 1940 experimental plants were built in Lysychansk and Tula 5 After World War II the Soviet activities culminated in the operation of five industrial scale UCG plants in the early 1960s However Soviet activities subsequently declined due to the discovery of extensive natural gas resources In 1964 the Soviet program was downgraded 5 As of 2004 update only Angren site in Uzbekistan and Yuzhno Abinsk site in Russia continued operations 7 Post war experiments Edit After World War II the shortage in energy and the diffusion of the Soviets results provoked new interest in Western Europe and the United States In the United States tests were conducted in 1947 1958 in Gorgas Alabama The experiments were carried out in a partnership between Alabama Power and the US Bureau of Mines The experiments at Gorgas continued for seven years until 1953 at which point the US Bureau of Mines withdrew its support for them after the US Congress withdrew funding In total 6 000 tons of coal were combusted by 1953 in these experiments The experiments succeeded in producing combustible synthetic gas 8 The experiments were reactivated after 1954 this time with hydrofracturing using a mixture of oil and sand but finally discontinued in 1958 as uneconomical 9 From 1973 1989 extensive testing was carried out The United States Department of Energy and several large oil and gas companies conducted several tests Lawrence Livermore National Laboratory conducted three tests in 1976 1979 at the Hoe Creek test site in Campbell County Wyoming 4 5 In cooperation with Sandia National Laboratories and Radian Corporation Livermore conducted experiments in 1981 1982 at the WIDCO Mine near Centralia Washington 4 In 1979 1981 an underground gasification of steeply dipping seams was demonstrated near Rawlins Wyoming The program culminated in the Rocky Mountain trial in 1986 1988 near Hanna Wyoming 5 7 In Europe the stream method was tested at Bois la Dame Belgium in 1948 and in Jerada Morocco in 1949 7 The borehole method was tested at Newman Spinney and Bayton United Kingdom in 1949 1950 A few years later a first attempt was made to develop a commercial pilot plan the P5 Trial at Newman Spinney Derbyshire in 1958 1959 5 7 The Newman Spinney project was authorised in 1957 and comprised a steam boiler and a 3 75 MW turbo alternator to generate electricity 10 The National Coal Board abandoned the gasification scheme in summer 1959 10 During the 1960s European work stopped due to an abundance of energy and low oil prices but recommenced in the 1980s Field tests were conducted in 1981 at Bruay en Artois in 1983 1984 at La Haute Deule France in 1982 1985 at Thulin Belgium and in 1992 1999 at the El Tremedal site Province of Teruel Spain 4 In 1988 the Commission of the European Communities and six European countries formed a European Working Group 7 In New Zealand a small scale trial was operated in 1994 in the Huntly Coal Basin In Australia tests were conducted starting in 1999 7 China has operated the largest program since the late 1980s including 16 trials 4 11 Process Edit The underground coal gasification process Underground coal gasification converts coal to gas while still in the coal seam in situ Gas is produced and extracted through wells drilled into the unmined coal seam Injection wells are used to supply the oxidants air oxygen and steam to ignite and fuel the underground combustion process Separate production wells are used to bring the product gas to the surface 7 12 The high pressure combustion is conducted at temperature of 700 900 C 1 290 1 650 F but it may reach up to 1 500 C 2 730 F 4 7 The process decomposes coal and generates carbon dioxide CO2 hydrogen H2 carbon monoxide CO and methane CH4 In addition small quantities of various contaminants including sulfur oxides SOx mono nitrogen oxides NOx and hydrogen sulfide H2 S are produced 7 As the coal face burns and the immediate area is depleted the volumes of oxidants injected are controlled by the operator 4 There are a variety of designs for underground coal gasification all of which provide a means of injecting oxidant and possibly steam into the reaction zone and also provide a path for production gases to flow in a controlled manner to the surface As coal varies considerably in its resistance to flow depending on its age composition and geological history the natural permeability of the coal to transport the gas is generally not adequate For high pressure break up of the coal hydro fracturing electric linkage and reverse combustion may be used in varying degrees 4 12 The simplest design uses two vertical wells one injection and one production Sometimes it is necessary to establish communication between the two wells and a common method is to use reverse combustion to open internal pathways in the coal Another alternative is to drill a lateral well connecting the two vertical wells 13 UCG with simple vertical wells inclined wells and long deflected wells was used in the Soviet Union The Soviet UCG technology was further developed by Ergo Exergy and tested at Linc s Chinchilla site in 1999 2003 in Majuba UCG plant 2007 and in Cougar Energy s failed UCG pilot in Australia 2010 In the 1980s and 1990s a method known as CRIP controlled retraction and injection point was developed but not patented by the Lawrence Livermore National Laboratory and demonstrated in the United States and Spain This method uses a vertical production well and an extended lateral well drilled directionally in the coal The lateral well is used for injection of oxidants and steam and the injection point can be changed by retracting the injector 13 Carbon Energy was the first to adopt a system which uses a pair of lateral wells in parallel This system allows a consistent separation distance between the injection and production wells while progressively mining the coal between the two wells This approach is intended to provide access to the greatest quantity of coal per well set and also allows greater consistency in production gas quality 14 A new technology has been announced in May 2012 by developer Portman Energy wherein a method called SWIFT Single Well Integrated Flow Tubing uses a single vertical well for both oxidant delivery and syngas recovery The design has a single casing of tubing strings enclosed and filled with an inert gas to allow for leak monitoring corrosion prevention and heat transfer A series of horizontally drilled lateral oxidant delivery lines into the coal and a single or multiple syngas recovery pipeline s allow for a larger area of coal to be combusted at one time The developers claim this method will increase syngas production by up to ten 10 times above earlier design approaches The single well design means development costs are significantly lower and the facilities and wellheads are concentrated at a single point reducing surface access roads pipelines and facilities footprint 9 The UK patent office have advised that the full patent application GB2501074 by Portman Energy be published 16 October 2013 A wide variety of coals are amenable to the UCG process and coal grades from lignite through to bituminous may be successfully gasified A great many factors are taken into account in selecting appropriate locations for UCG including surface conditions hydrogeology lithology coal quantity and quality According to Andrew Beath of CSIRO Exploration amp Mining other important criteria include Depth of 100 600 metres 330 1 970 ft Thickness more than 5 metres 16 ft Ash content less than 60 Minimal discontinuities Isolation from valued aquifers 15 According to Peter Sallans of Liberty Resources Limited the key criteria are Depth of 100 1 400 metres 330 4 590 ft Thickness more than 3 metres 9 8 ft Ash content less than 60 Minimal discontinuities Isolation from valued aquifers 16 Economics EditUnderground coal gasification allows access to coal resources that are not economically recoverable by other technologies e g seams that are too deep low grade or that have a thin stratum profile 4 By some estimates UCG will increase economically recoverable reserves by 600 billion tonnes 17 Lawrence Livermore National Laboratory estimates that UCG could increase recoverable coal reserves in the US by 300 18 Livermore and Linc Energy claim that UCG capital and operating costs are lower than those for traditional mining 4 19 UCG product gas is used to fire combined cycle gas turbine CCGT power plants with some studies suggesting power island efficiencies of up to 55 with a combined UCG CCGT process efficiency of up to 43 CCGT power plants using UCG product gas instead of natural gas can achieve higher outputs than pulverized coal fired power stations and associated upstream processes resulting in a large decrease in greenhouse gas GHG emissions citation needed UCG product gas can also be used for Synthesis of liquid fuels Manufacture of chemicals such as ammonia and fertilizers Production of synthetic natural gas Production of hydrogen In addition carbon dioxide produced as a by product of underground coal gasification may be re directed and used for enhanced oil recovery citation needed Underground product gas is an alternative to natural gas and potentially offers cost savings by eliminating mining transport and solid waste The expected cost savings could increase given higher coal prices driven by emissions trading taxes and other emissions reduction policies e g the Australian Government s proposed Carbon Pollution Reduction Scheme citation needed Projects Edit Cougar Energy and Linc Energy conducted pilot projects in Queensland Australia based on UCG technology provided by Ergo Exergy until their activities were banned in 2016 20 21 22 23 24 25 Yerostigaz a subsidiary of Linc Energy produces about 1 million cubic metres 35 million cubic feet of syngas per day in Angren Uzbekistan The produced syngas is used as fuel in the Angren Power Station 26 In South Africa Eskom with Ergo Exergy as technology provider is operating a demonstration plant in preparation for supplying commercial quantities of syngas for commercial production of electricity 27 28 29 African Carbon Energy 30 has received environmental approval for a 50 MW power station near Theunissen in the Free State province and is bid ready to participate in the DOE s Independent Power Producer IPP gas program 31 where UCG has been earmarked as a domestic gas supply option ENN has operated a successful pilot project in China citation needed In addition there are companies developing projects in Australia UK Hungary Pakistan Poland Bulgaria Canada US Chile China Indonesia India South Africa Botswana and other countries 27 According to the Zeus Development Corporation more than 60 projects are in development around the world Environmental and social impacts EditEliminating mining eliminates mine safety issues 32 Compared to traditional coal mining and processing the underground coal gasification eliminates surface damage and solid waste discharge and reduces sulfur dioxide SO2 and nitrogen oxide NOx emissions 4 33 For comparison the ash content of UCG syngas is estimated to be approximately 10 mg m3 compared to smoke from traditional coal burning where ash content may be up to 70 mg m3 18 However UCG operations cannot be controlled as precisely as surface gasifiers Variables include the rate of water influx the distribution of reactants in the gasification zone and the growth rate of the cavity These can only be estimated from temperature measurements and analyzing product gas quality and quantity 4 Subsidence is a common issue with all forms of extractive industry While UCG leaves the ash behind in the cavity the depth of the void left after UCG is typically greater than that with other methods of coal extraction 4 Underground combustion produces NOx and SO2 and lowers emissions including acid rain Regarding emissions of atmospheric CO2 proponents of UCG have argued that the process has advantages for geologic carbon storage 4 Combining UCG with CCS Carbon capture and storage technology allows re injecting some of the CO2 on site into the highly permeable rock created during the burning process i e the cavity where the coal used to be 34 Contaminants such as ammonia and hydrogen sulfide can be removed from product gas at a relatively low cost citation needed However as of late 2013 CCS had never been successfully implemented on a commercial scale as it was not within the scope of UCG projects and some had also resulted in environmental concerns In Australia in 2014 the Government filed charges over alleged serious environmental harm stemming from Linc Energy s pilot Underground Coal Gasification plant near Chinchilla in the Queensland s foodbowl of the Darling Downs 35 When UCG was banned in April 2016 the Queensland Mines Minister Dr Anthony Lynham stated The potential risks to Queensland s environment and our valuable agricultural industries far outweigh any potential economic benefits UCG activity simply doesn t stack up for further use in Queensland 25 Meanwhile as an article in the Bulletin of Atomic Sciences pointed out in March 2010 that UCG could result in massive carbon emissions If an additional 4 trillion tonnes of coal were extracted without the use of carbon capture or other mitigation technologies atmospheric carbon dioxide levels could quadruple the article stated resulting in a global mean temperature increase of between 5 and 10 degrees Celsius 36 37 Aquifer contamination is a potential environmental concern 4 38 Organic and often toxic materials such as phenol could remain in the underground chamber after gasification if the chamber is not decommissioned Site decommissioning and rehabilitation are standard requirements in resources development approvals whether that be UCG oil and gas or mining and decommissioning of UCG chambers is relatively straightforward Phenol leachate is the most significant environmental hazard due to its high water solubility and high reactiveness to gasification The US Dept of Energy s Lawrence Livermore Institute conducted an early UCG experiment at very shallow depth and without hydrostatic pressure at Hoe Creek Wyoming They did not decommission that site and testing showed contaminants including the carcinogen benzene in the chamber The chamber was later flushed and the site successfully rehabilitated Some research has shown that the persistence of minor quantities of these contaminants in groundwater is short lived and that ground water recovers within two years 33 Even so proper practice supported by regulatory requirements should be to flush and decommission each chamber and to rehabilitate UCG sites Newer UCG technologies and practices claim to address environmental concerns such as issues related to groundwater contamination by implementing the Clean Cavern concept 39 This is the process whereby the gasifier is self cleaned via the steam produced during operation and also after decommissioning Another important practice is maintaining the pressure of the underground gasifier below that of the surrounding groundwater The pressure difference forces groundwater to flow continuously into the gasifier and no chemical from the gasifier can escape into the surrounding strata The pressure is controlled by the operator using pressure valves at the surface 39 See also EditCoalbed methane Landfill gas Fischer Tropsch processReferences Edit Coal Gas www clarke energy com retrieved 12 12 2013 https www bbc co uk news business 26921145 BBC Coal gasification The clean energy of the future retrieved 12 07 2014 Siemens C W 1868 On the regenerative gas furnace as applied to the manufacture of cast steel J Chem Soc Chemical Society of London 21 21 279 310 doi 10 1039 JS8682100279 a b c d e f g h i j k l m n o p q r s Burton Elizabeth Friedmann Julio Upadhye Ravi 2007 Best Practices in Underground Coal Gasification PDF Report Lawrence Livermore National Laboratory W 7405 Eng 48 Archived from the original PDF on 6 June 2010 Retrieved 3 January 2013 a b c d e f g h i j Klimenko Alexander Y 2009 Early Ideas in Underground Coal Gasification and Their Evolution Energies MDPI Publishing 2 2 456 476 doi 10 3390 en20200456 ISSN 1996 1073 a b Lamb George H 1977 Underground coal gasification Energy Technology Review 14 Noyes Data Corp p 5 ISBN 978 0 8155 0670 6 a b c d e f g h i Sury Martin et al November 2004 Review of Environmental Issues of Underground Coal Gasification PDF WS Atkins Consultants LTD Department of Trade and Industry COAL R272 DTI Pub URN 04 1880 Archived from the original PDF on 11 June 2007 Retrieved 18 July 2010 Gasification Tests On Coal Are Completed The Terre Haute Tribune 6 July 1953 p 5 Retrieved 5 December 2020 The US Bureau of Mines Report for the Committee on Interior and Insular Affairs US Government Printing Office September 1976 pp 61 62 Retrieved 5 December 2020 a b Garrett Frederick C 1959 Garcke s Manual of Electricity Supply London Electrical Press pp A 79 Underground Coal Gasification Current Developments 1990 to date UCG Engineering Ltd Archived from the original on 19 November 2007 Retrieved 24 November 2007 a b How UCG Works UCG Association Archived from the original on 12 September 2011 Retrieved 11 November 2007 a b Portman Energy 3 May 2012 UCG the 3rd way 7th Underground Coal Gasification Association UCGA Conference London Retrieved 1 October 2012 Morne Engelbrecht 2015 Carbon Energy Delivers Innovations in Underground Coal Gasification Vol 3 no 2 Cornerstone The Official Journal of the World Coal Industry pp 61 64 Beath Andrew 18 August 2006 Underground Coal Gasification Resource Utilisation Efficiency PDF CSIRO Exploration amp Mining Archived from the original PDF on 31 August 2007 Retrieved 11 November 2007 Sallans Peter 23 June 2010 Choosing the Best Coals in the Best Locations for UCG Advanced Coal Technologies Conference Laramie University of Wyoming Copley Christine 2007 Coal PDF In Clarke A W Trinnaman J A eds Survey of energy resources 21st ed World Energy Council p 7 ISBN 978 0 946121 26 7 Archived from the original PDF on 9 April 2011 a b Walter Katie 2007 Fire in the Hole Lawrence Livermore National Laboratory Retrieved 6 October 2008 Underground Coal Gasification Linc Energy Archived from the original on 16 May 2010 Retrieved 18 July 2010 Cougar Energy Update on UCG Pilot Project at Kingaroy in Queensland OilVoice 27 April 2010 Retrieved 31 July 2010 Cougar To Ramp Up UCG Process Down Under Cougar Energy Downstream Today 16 March 2010 Retrieved 31 July 2010 Linc pilot flows first GTL fuel Upstream Online NHST Media Group 14 October 2008 Retrieved 6 August 2009 Linc Energy Opens CTL Demo Plant Downstream Today 24 April 2009 Retrieved 6 August 2009 Linc gears up for Chinchilla GTL Upstream Online NHST Media Group 28 November 2007 Retrieved 6 August 2009 a b UCG banned immediately in Queensland ABC Online Australian Broadcasting Corporation 18 April 2016 Retrieved 21 April 2016 Linc Energy Limited ASX LNC Technology Update on Chinchilla Underground Coal Gasification UCG Operations ABN Newswire Asia Business News Ltd 10 March 2009 Retrieved 8 August 2009 a b ESKOM s underground coal gasification project PDF European Commission 5 May 2008 Retrieved 4 September 2011 permanent dead link Venter Irma 12 February 2007 Coal experts search for ways to cut emissions Mining Weekly Creamer Media Retrieved 4 September 2011 Hannah Jessica 12 August 2011 Coal gasification demo plant design study under way Mining Weekly Creamer Media Retrieved 4 September 2011 Theunissen Project Africary www africary com Retrieved 12 December 2016 South African IPP Gas Program Lazarenko Sergey N Kochetkov Valery N 1997 The underground coal gasification is the technology which answers o conditions of sustainable development of coal regions In Strakos Vladimir Farana R eds Mine Planning and Equipment Selection 1997 Taylor amp Francis pp 167 168 ISBN 978 90 5410 915 0 a b Shu qin L Jun hua Y 2002 Environmental Benefits of underground coal gasification Journal of Environmental Sciences China vol 12 no 2 pp 284 288 Krupp Fred Horn Miriam 2009 Earth The Sequel The Race to Reinvent Energy and Stop Global Warming New York Norton amp Company ISBN 978 0 393 33419 7 Queensland government hits Underground Coal Gasification player Linc Energy with environmental damage charges 15 April 2014 The Untold Story Of The Dangerous New Experiment Coal Companies Want To Bring To America ThinkProgress ThinkProgress Archived from the original on 13 November 2013 Is underground coal gasification a sensible option 29 March 2010 National Research Council U S Committee on Ground Water Resources in Relation to Coal Mining 1981 Coal mining and ground water resources in the United States a report United States National Academies p 113 ISBN 9780309031868 a b Underground Coal Gasification An Overview of an Emerging Coal Conversion Technology Vol 3 no 2 Cornerstone The Official Journal of the World Coal Industry 2015 pp 56 60 Further reading Edit Beyond fracking New Scientist feature article Fred Pearce 15 February 2014External links EditAfrican Carbon Energy 50 MW project Ergo Exergy Tech global supplier of UCG technology UCG Association Energy amp Environmental Research Centre EERC UCG overview CO2SINUS CO2 Storage in in situ Converted Coal Seams Research Project at the RWTH Aachen University Retrieved from https en wikipedia org w index php title Underground coal gasification amp oldid 1077403079, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.