fbpx
Wikipedia

Coal gas

Coal gas is a flammable gaseous fuel made from coal and supplied to the user via a piped distribution system. It is produced when coal is heated strongly in the absence of air. Town gas is a more general term referring to manufactured gaseous fuels produced for sale to consumers and municipalities.[1]

The original coal gas was produced by the coal gasification reaction,[2] and thus the burnable component consisted of mixture of carbon monoxide and hydrogen in roughly equal quantities by volume. Thus, coal gas is highly toxic.[3] Other compositions contain additional calorific gases such as methane,[4] produced by the Fischer-Tropsch process, and volatile hydrocarbons together with small quantities of non-calorific gases such as carbon dioxide and nitrogen.

Prior to the development of natural gas, supply and transmission—during the 1940s and 1950s in the United States and during the late 1960s and 1970s in the United Kingdom and Australia—almost all gas for fuel and lighting was manufactured from coal. Town gas was supplied to households via municipally owned piped distribution systems. Sometimes, this was called artificial gas, in contrast to natural gas.[5] At the time, a popular method for committing suicide was to turn on an oven without lighting the gas, open the oven door, and slide the top half of one's body in. The carbon monoxide would kill quickly.[6][7] Sylvia Plath famously committed suicide that way.

Originally created as a by-product of the coking process, its use developed during the 19th and early 20th centuries tracking the industrial revolution and urbanization. By-products from the production process included coal tars and ammonia, which were important raw materials (or "chemical feedstock") for the dye and chemical industry with a wide range of artificial dyes being made from coal gas and coal tar. Facilities where the gas was produced were often known as a manufactured gas plant (MGP) or a gasworks.

The discovery of large reserves of natural gas, or sea gas as it was known colloquially, in the Southern North Sea off the coasts of Norfolk and Yorkshire in 1965[8][9] led to the expensive conversion or replacement of most of the Britain's gas cookers and gas heaters, from the late 1960s onwards.

The production process differs from other methods used to generate gaseous fuels known variously as manufactured gas, syngas, Dowson gas, and producer gas. These gases are made by partial combustion of a wide variety of feedstocks in some mixture of air, oxygen, or steam, to reduce the latter to hydrogen and carbon monoxide although some destructive distillation may also occur.

Manufacturing processes

 
Gas Works Park, Seattle, preserves most of the equipment for making coal gas. This is the only such plant surviving in the United States.

Manufactured gas can be made by two processes: carbonization or gasification. Carbonization refers to the devolatilization of an organic feedstock to yield gas and char. Gasification is the process of subjecting a feedstock to chemical reactions that produce gas.[10][11]

The first process used was the carbonization and partial pyrolysis of coal. The off gases liberated in the high-temperature carbonization (coking) of coal in coke ovens were collected, scrubbed and used as fuel. Depending on the goal of the plant, the desired product was either a high quality coke for metallurgical use, with the gas being a side product, or the production of a high quality gas, with coke being the side product. Coke plants are typically associated with metallurgical facilities such as smelters or blast furnaces, while gas works typically served urban areas.

A facility used to manufacture coal gas, carburetted water gas (CWG), and oil gas is today generally referred to as a manufactured gas plant (MGP).

In the early years of MGP operations, the goal of a utility gas works was to produce the greatest amount of illuminating gas. The illuminating power of a gas was related to amount of soot-forming hydrocarbons ("illuminants") dissolved in it. These hydrocarbons gave the gas flame its characteristic bright yellow color. Gas works would typically use oily bituminous coals as feedstock. These coals would give off large amounts of volatile hydrocarbons into the coal gas, but would leave behind a crumbly, low-quality coke not suitable for metallurgical processes. Coal or coke oven gas typically had a calorific value between 10 and 20 megajoules per cubic metre (270 and 540 Btu/cu ft); with values around 20 MJ/m3 (540 Btu/cu ft) being typical.

The advent of electric lighting forced utilities to search for other markets for manufactured gas. MGPs that once produced gas almost exclusively for lighting shifted their efforts towards supplying gas primarily for heating and cooking, and even refrigeration and cooling.

Gas for industrial use

 
An illustration of typical polycyclic aromatic hydrocarbons. Source: NASA

Fuel gas for industrial use was made using producer gas technology. Producer gas is made by blowing air through an incandescent fuel bed (commonly coke or coal) in a gas producer. The reaction of fuel with insufficient air for total combustion produces carbon monoxide (CO); this reaction is exothermic and self-sustaining. It was discovered that adding steam to the input air of a gas producer would increase the calorific value of the fuel gas by enriching it with CO and hydrogen (H2) produced by water gas reactions. Producer gas has a very low calorific value of 3.7 to 5.6 MJ/m3 (99 to 150 Btu/cu ft); because the calorific gases CO/H2 are diluted with much inert nitrogen (from air) and carbon dioxide (CO2) (from combustion)

2C (s) + O2 → 2 CO (exothermic producer gas reaction)
C (s) + H2O (g) → CO + H2 (endothermic water gas reaction)
C + 2 H2O → CO2 + 2 H2 (endothermic)
CO + H2O → CO2 + H2 (exothermic water gas shift reaction)

The problem of nitrogen dilution was overcome by the blue water gas (BWG) process, developed in the 1850s by Sir William Siemens. The incandescent fuel bed would be alternately blasted with air followed by steam. The air reactions during the blow cycle are exothermic, heating up the bed, while the steam reactions during the make cycle, are endothermic and cool down the bed. The products from the air cycle contain non-calorific nitrogen and are exhausted out the stack while the products of the steam cycle are kept as blue water gas. This gas is composed almost entirely of CO and H2, and burns with a pale blue flame similar to natural gas. BWG has a calorific value of 11 MJ/m3 (300 BTU/cu ft).

Blue water gas lacked illuminants; it would not burn with a luminous flame in a simple fishtail gas jet as existed prior to the invention of the gas mantle in the 1890s. Various attempts were made to enrich BWG with illuminants from gas oil in the 1860s. Gas oil (an early form of gasoline) was the flammable waste product from kerosene refining, made from the lightest and most volatile fractions (tops) of crude oil. In 1875 Thaddeus S. C. Lowe invented the carburetted water gas process. This process revolutionized the manufactured gas industry and was the standard technology until the end of manufactured gas era.[12] A CWG generating set consisted of three elements; a producer (generator), carburettor and a super heater connected in series with gas pipes and valves.[13]

During a make run, steam would be passed through the generator to make blue water gas. From the generator the hot water gas would pass into the top of the carburettor where light petroleum oils would be injected into the gas stream. The light oils would be thermocracked as they came in contact with the white hot checkerwork fire bricks inside the carburettor. The hot enriched gas would then flow into the superheater, where the gas would be further cracked by more hot fire bricks.[14]

Gas in post-war Britain

 
Mantles in their unused flat-packed form

New manufacturing processes

Following the Second World War the slow recovery of the British coal mining industry led to shortages of coal and high prices.[15]

UK Coal Production
Year Production, million tons Production cost, £/ton
1947 197 2.00
1950 216 2.40
1953 223 3.05
1956 222 3.85
1959 206 4.15
1961 191 4.55
1965 187 4.60
1967 172 4.95

The decline of coal as a feedstock for town gas production using carbonisation is demonstrated in this graph.[16]

Coal-based town gas production, millions of therms

New technologies for manufacturing coal gas using oil, refinery tail gases, and light distillates were developed. Processes included the Lurgi Process, catalytic reforming, the catalytic rich gas process, steam reforming of rich gas, and the gas recycle hydrogenator process.[17] The catalytic rich gas process used natural gas as a feedstock to manufacture town gas. These facilities utilised the chemical reaction processes described above.

The rise of oil as a feedstock to manufacture town gas is shown on the graph below. The peak usage in 1968/9 and subsequent decline coincides with the availability of North Sea gas which, over the next few years, displaced town gas as a primary fuel and led to the decline of oil as a feedstock for gas making, as shown.[16]

Oil-based town gas production, millions of therms

Domestic heating

By the 1960s, manufactured gas, compared with its main rival in the energy market, electricity, was considered "nasty, smelly, dirty and dangerous" (to quote market research of the time) and seemed doomed to lose market share still further, except for cooking where its controllability gave it marked advantages over both electricity and solid fuel. The development of more efficient gas fires assisted gas to resist competition in the market for room heating. Concurrently a new market for whole house central heating by hot water was being developed by the oil industry and the gas industry followed suit. Gas warm air heating found a market niche in new local authority housing where low installation costs gave it an advantage. These developments, the realignment of managerial thinking away from commercial management (selling what the industry produced) to marketing management (meeting the needs and desires of customers) and the lifting of an early moratorium preventing nationalised industries from using television advertising, saved the gas industry for long enough to provide a viable market for what was to come.

Natural gas as feedstock

In 1959 the Gas Council in Great Britain demonstrated that liquid natural gas (LNG) could be transported safely, efficiently and economically over long distances by sea. The Methane Pioneer shipped a consignment of LNG from Lake Charles, Louisiana, US, to a new LNG terminal on Canvey Island, in the Thames estuary in Essex, England. A 212-mile (341 km) long high-pressure trunk pipeline was built from Canvey Island to Bradford.[18] The pipeline and its branches provided Area Gas Boards with natural gas for use in reforming processes to make town gas. A large-scale LNG reception plant was commissioned on Canvey in 1964, which received LNG from Algeria in two dedicated tankers, each of 12,000 tonnes.[19]

Conversion to natural gas

The slow decline of the town gas industry in the UK was signalled by the discovery of natural gas by the drilling rig Sea Gem, on 17 September 1965, some forty miles off Grimsby, over 8,000 feet (2,400 m) below the seabed. Subsequently, the North Sea was found to have many substantial gas fields on both sides of the median line defining which nations should have rights over the reserves.

In a pilot scheme customers on Canvey Island were converted from town gas to natural gas supplied from the LNG plant on Canvey.[15][20]

The Fuel Policy White Paper of 1967 (Cmd. 3438) pointed the industry in the direction of building up the use of natural gas speedily to 'enable the country to benefit as soon as possible from the advantages of this new indigenous energy source'. As a result, there was a 'rush to gas' for use in peak load electricity generation and in low grade uses in industry. The effects on the coal industry were very significant; not only did coal lose its market for town gas production, it came to be displaced from much of the bulk energy market also.

The growth in availability of natural gas is shown in the graph below.[16] Until 1968 this was from supplies of LNG from Algeria, until North Sea gas was available from 1968.

Natural gas available, millions of therms

The exploitation of the North Sea gas reserves, entailing landing gas at Easington, Bacton and St Fergus made viable the building of a national distribution grid, of over 3,000 miles (4,800 km), consisting of two parallel and interconnected pipelines running the length of the country. This became the National Transmission System. All gas equipment in Great Britain (but not Northern Ireland) was converted (by the fitting of different-sized burner jets to give the correct gas/air mixture) from town gas to natural gas (mainly methane) over the period from 1967 to 1977 at a cost of about £100 million, including writing off redundant town gas manufacturing plants. All the gas-using equipment of almost thirteen million domestic, four hundred thousand commercial, and sixty thousand industrial customers were converted. Many dangerous appliances were discovered in this exercise and were taken out of service. The UK town gas industry died in 1987 when operations ceased at the last town gas manufacturing plants in Northern Ireland (Belfast, Portadown and Carrickfergus; Carrickfergus gas works is now a restored gasworks museum).[21] The Portadown site has been cleared and is now the subject of a long-term experiment into the use of bacteria for the purpose of cleaning up contaminated industrial land. As well as requiring little processing before use, natural gas is non-toxic; the carbon monoxide (CO) in town gas made it extremely poisonous, accidental poisoning and suicide by gas being commonplace. Poisoning from natural gas appliances is only due to incomplete combustion, which creates CO, and flue leaks to living accommodation. As with town gas, a small amount of foul-smelling substance (mercaptan) is added to the gas to indicate to the user that there is a leak or an unlit burner, the gas having no odour of its own.

The organisation of the British gas industry adapted to these changes, first, by the Gas Act 1965 by empowering the Gas Council to acquire and supply gas to the twelve area gas boards. Then, the Gas Act 1972 formed the British Gas Corporation as a single commercial entity, embracing all the twelve area gas boards, allowing them to acquire, distribute and market gas and gas appliances to industrial commercial and domestic customers throughout the UK. In 1986, British Gas was privatised and the government no longer has any direct control over it.

During the era of North Sea gas, many of the original cast iron gas pipes installed in towns and cities for town gas were replaced by plastic.

As reported in the DTI Energy Review 'Our Energy Challenge' January 2006 North Sea gas resources have been depleted at a faster rate than had been anticipated and gas supplies for the UK are being sought from remote sources, a strategy made possible by developments in the technologies of pipelaying that enable the transmission of gas over land and under sea across and between continents. Natural gas is now a world commodity. Such sources of supply are exposed to all the risks of any import.

In popular culture

Monty Python parodied the conversion from coal to North Sea gas, and the jumping through hoops some encountered, in their "New Cooker Sketch," as part of the episode that began its second series in 1970.

It was used to power several historic balloon ascents in the 19th century (see The Aeronauts).

Gas production in Germany

In many ways, Germany took the lead in coal gas research and carbon chemistry. With the labours of August Wilhelm von Hofmann, the whole German chemical industry emerged. Using the coal gas waste as feedstock, researchers developed new processes and synthesized natural organic compounds such as Vitamin C and aspirin.

The German economy relied on coal gas during the Second World War as petroleum shortages forced Nazi Germany to develop the Fischer–Tropsch synthesis to produce synthetic fuel for aircraft and tanks.

 
Coke oven at smokeless fuel plant, South Wales

Issues in gas processing

WWI-interwar era developments

  • Loss of high-quality gas oil (used as motor fuel) and feed coke (diverted for steelmaking) leads to massive tar problems. CWG (carburetted water gas) tar is less valuable than coal gasification tar as a feed stock. Tar-water emulsions are uneconomical to process due to unsellable water and lower quality by products.
CWG tar is full of lighter polycyclic aromatic hydrocarbons, good for making pitch, but poor in chemical precursors.
  • Various "back-run" procedures for CWG generation lower fuel consumption and help deal with issues from the use of bituminous coal in CWG sets.
  • Development of high-pressure pipeline welding encourages the creation of large municipal gas plants and the consolidation of the MG industry. Sets the stage for rise of natural gas.
  • Electric lighting replaces gaslight. MG industry peak is sometime in the mid-1920s.
  • 1936 or so. Development of Lurgi gasifier. Germans continue work on gasification/synfuels due to oil shortages.
 
Ruins of the German synthetic petrol plant (Hydrierwerke Pölitz – Aktiengesellschaft) in Police, Poland

Post WWII: the decline of manufactured gas

  • Development of natural gas industry. Natural gas has an energy content of 37 MJ/m3, compared to the 10-20 MJ/m3 of town gas.
  • Petrochemicals kill much of the value of coal tar as a source of chemical feed stocks. (BTX, Phenols, Pitch)
  • Decline in creosote use for wood preserving.
  • Direct coal/natural gas injection reduces demand for metallurgical coke. 25 to 40% less coke is needed in blast furnaces.
  • BOF and EAF processes obsolete cupola furnaces. Reduce need for coke in recycling steel scrap. Less need for fresh steel/iron.
  • Cast iron & steel are replaced with aluminum and plastics.
  • Phthalic anhydride production shifts from catalytic oxidation of naphthalene to the o-xylol process.

Post WWII positive developments

  • Catalytic upgrading of gas by use of hydrogen to react with tarry vapours in the gas
  • The decline of coke making in the US leads to a coal tar crisis since coal tar pitch is vital for the production of carbon electrodes for EAF/aluminium. US now has to import coal tar from China
  • Development of process to make methanol via hydrogenation of CO/H2 mixtures.
  • Mobil M-gas process for making petrol from methanol
  • SASOL coal process plant in South Africa.
  • Direct hydrogenation of coal into liquid and gaseous fuels
  • Dankuni Coal Complex is the only plant in India that is producing coal gas (town gas) in Kolkata using the Continuous Vertical Retort Technology of Babcock-Woodall Duckham (UK), constructed on the recommendation of GoI's Fuel Policy Committee of 1974 after the crippling 1973 Oil Crisis. The plant uses a modified low temperature carbonisation to produce the town gas and soft coke. The plant in the 1990s produced various chemicals like xylenol, cresol and phenol.[22][23]

By-products

The by-products of coal gas manufacture included coke, coal tar, sulfur and ammonia and these were all useful products. Dyes, medicines such as sulfa drugs, saccharine, and dozens of organic compounds are made from coal tar.[citation needed]

The coal used, and the town gas and by-products produced, by the major three gas companies of London are summarised in the table.[24][25][26]

Company Gas, Light and Coke South Metropolitan Commercial
Year 1913 1920 1934 1913 1920 1934 1913 1920 1934
Coal carbonised, tons 1,988,241 2,279,253 3,011,227 1,125,779 1,211,857 1,118,573 187,291 235,406 244,644
Gas made, million cubic feet 29,634 35,149 51,533 14,097 15,182 15,034 3,702 4,340 3,487
Coke made, tons 1,246,624 1,469,220 1,867038 695,214 743,982 664,555 117,057 158,899 159,019
Coke made, hundredweight per ton of coal (20 hundredweight = 1 ton) 12.54 12.89 12.40 12.35 12.28 11.88 12.50 13.50 13.00
Coal tar made, million gallons 19.88 20.5 31.32 10.81 11.27 12.97 1.97 0.94 2.39
Coal tar made, gallons per ton of coal 10.0 9.0 10.4 9.6 9.3 10.7 10.5 9.4 9.8
Ammoniacal liquor made, million gallons 59.25 61.77 71.06 36.93 37.93 36.69 5.94 6.54 7.41
Ammoniacal liquor made, gallons per ton of coal 29.8 27.1 23.6 32.8 31.3 32.8 31.7 27.8 30.3

Coke

Coke is used as a smokeless fuel and for the manufacture of water gas and producer gas.

Coal tar

Coal tar was subjected to fractional distillation to recover various products, including

Sulfur

Used in the manufacture of sulfuric acid

Ammonia

Used in the manufacture of fertilisers

Structure of the UK coal gas industry

Coal gas was initially manufactured by independent companies but in the United Kingdom many of these later became municipal services. In 1948 there was a total of 1,062 gas undertakings. Both the private companies, about two-thirds of the total, and the municipal gas undertakings, about one-third, were nationalised under the Gas Act 1948. Further restructuring took place under the Gas Act 1972. For further details see British Gas plc.

Apart from in the steel industry's coke ovens' by-products plants, coal gas is no longer made in the UK. It was replaced first by gas made from oil and later by natural gas from the North Sea.

See also

References

Notes

  1. ^ Speight, James G. (2000). "Fuels, Synthetic, Gaseous Fuels". Kirk‐Othmer Encyclopedia of Chemical Technology. doi:10.1002/0471238961.0701190519160509.a01. ISBN 9780471484943.
  2. ^ Shapley,Coal Gasification, University of Illinois.
  3. ^ Terry, Herbert (14 July 1881). "Coal-Gas Poisoning". The Boston Medical and Surgical Journal. 105 (2): 29–32. doi:10.1056/NEJM188107141050202.
  4. ^ "coal gas | chemical compound | Britannica". www.britannica.com. Retrieved 2 April 2022.
  5. ^ Artificial gas. (n.d.) 1001 Words and Phrases You Never Knew You Didn’t Know. (2011). Retrieved October 15 2022 from https://www.thefreedictionary.com/Artificial+gas
  6. ^ "How do people die by putting their head in the oven?".
  7. ^ "Why have people stopped committing suicide with gas?". 9 November 2012.
  8. ^ National Gas Museum: Gas industry timeline
  9. ^ West Sole Gas Fields
  10. ^ Beychok, M.R., Process and environmentals technology for producing SNG and liquid fuels, U.S, EPA report EPA-660/2-2-75-011, May 1975
  11. ^ Beychok, M.R., Coal gasification and the phenolsolvan process, American Chemical Society 168th National Meeting, Atlantic City, September 1974
  12. ^ "The Introduction of Water Gas in the United States" (Google Books excerpt). The Baltimore Gas and Electric News. Consolidated Gas, Electric Light, and Power Company of Baltimore. 5 (6): 383. 1916.
  13. ^ Proceedings of the American Gas Light Association ... By American Gas Light Association, 1881 p.117 https://books.google.com/books?id=OSNLAAAAMAAJ&pg=PA116
  14. ^ Power: devoted to the generation and transmission of power, Volume 26 1906 p.686 https://books.google.com/books?id=DcEfAQAAMAAJ&pg=PA687&lpg=PA687
  15. ^ a b Williams, Trevor I (1981). A History of the British Gas Industry. Oxford: Oxford University Press. pp. 182–89, 290. ISBN 0198581572.
  16. ^ a b c British Gas (1980). Gas Chronology: the development of the British gas industry. London: British Gas. pp. Appendix 1.
  17. ^ Scott Wilson, D. (1969). The Modern Gas Industry. London: Edward Arnold. pp. 11–34.
  18. ^ Copp, A. D. L., R. G. Hildrew and L. S. Cooper (May 1966). "The Design, Commissioning and Operation of the United Kingdom Gas Industry's Methane Pipeline". Institution of Gas Engineers. Communication 708: 1–18.
  19. ^ Murray, Stephen (2017). "A history of the oil, gas and petrochemical industries on Canvey Island". Essex Archaeology and History. 8: 214–127.
  20. ^ Falkus, Malcolm (1988). Always under Pressure – A History of North Thames Gas since 1949. London: Macmillan. pp. 89–122. ISBN 0333468198.
  21. ^ "Flame Gasworks". flamegasworks.co.uk.
  22. ^ History of Coal India Limited, 1979-80, https://www.coalindia.in/en-us/company/history.aspx 4 February 2018 at the Wayback Machine,
  23. ^ LTC Coke and By-Products, https://www.coalindia.in/en-us/ourbusiness/productsservices.aspx
  24. ^ London County Council (1915). London Statistics vol. 24. London: London County Council. p. 527.
  25. ^ London County Council (1922). London Statistics vol. 27. London: London County Council. p. 266.
  26. ^ London Council Council (1936). London Statistics vol. XXXIX 1934-5. London: London Council Council. p. 341.

Sources

  • Everard, Stirling (1949). The History of the Gas Light and Coke Company 1812–1949. London: Ernest Benn Limited. (Reprinted 1992, London: A&C Black (Publishers) Limited for the London Gas Museum. ISBN 0-7136-3664-5.)

Further reading

  • Barty-King, H. (1985). New Flame: How Gas changed the commercial, domestic and industrial life in Britain from 1783 to 1984. Tavistock: Graphmitre. ISBN 0-948051-00-0.
  • Peebles, Malcolm W. H. (1980). Evolution of the Gas Industry. London and Basingstoke: Macmillan. ISBN 0-333-27971-9.
  • Fressoz, J. B. (2007). "The gas lighting controversy, technological risk, expertise and regulation in Paris and London, 1815-1850". Journal of Urban History. 33 (5): 729–755. doi:10.1177/0096144207301418. S2CID 143904635.

coal, also, ification, coal, seam, towngas, redirects, here, towngas, also, refer, brand, name, hong, kong, china, company, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, u. See also Coal gasification and Coal seam gas Towngas redirects here Towngas may also refer to the brand name of The Hong Kong and China Gas Company This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Coal gas news newspapers books scholar JSTOR June 2009 Learn how and when to remove this template message Coal gas is a flammable gaseous fuel made from coal and supplied to the user via a piped distribution system It is produced when coal is heated strongly in the absence of air Town gas is a more general term referring to manufactured gaseous fuels produced for sale to consumers and municipalities 1 The original coal gas was produced by the coal gasification reaction 2 and thus the burnable component consisted of mixture of carbon monoxide and hydrogen in roughly equal quantities by volume Thus coal gas is highly toxic 3 Other compositions contain additional calorific gases such as methane 4 produced by the Fischer Tropsch process and volatile hydrocarbons together with small quantities of non calorific gases such as carbon dioxide and nitrogen Prior to the development of natural gas supply and transmission during the 1940s and 1950s in the United States and during the late 1960s and 1970s in the United Kingdom and Australia almost all gas for fuel and lighting was manufactured from coal Town gas was supplied to households via municipally owned piped distribution systems Sometimes this was called artificial gas in contrast to natural gas 5 At the time a popular method for committing suicide was to turn on an oven without lighting the gas open the oven door and slide the top half of one s body in The carbon monoxide would kill quickly 6 7 Sylvia Plath famously committed suicide that way Originally created as a by product of the coking process its use developed during the 19th and early 20th centuries tracking the industrial revolution and urbanization By products from the production process included coal tars and ammonia which were important raw materials or chemical feedstock for the dye and chemical industry with a wide range of artificial dyes being made from coal gas and coal tar Facilities where the gas was produced were often known as a manufactured gas plant MGP or a gasworks The discovery of large reserves of natural gas or sea gas as it was known colloquially in the Southern North Sea off the coasts of Norfolk and Yorkshire in 1965 8 9 led to the expensive conversion or replacement of most of the Britain s gas cookers and gas heaters from the late 1960s onwards The production process differs from other methods used to generate gaseous fuels known variously as manufactured gas syngas Dowson gas and producer gas These gases are made by partial combustion of a wide variety of feedstocks in some mixture of air oxygen or steam to reduce the latter to hydrogen and carbon monoxide although some destructive distillation may also occur Contents 1 Manufacturing processes 2 Gas for industrial use 3 Gas in post war Britain 3 1 New manufacturing processes 3 2 Domestic heating 3 3 Natural gas as feedstock 3 4 Conversion to natural gas 3 4 1 In popular culture 4 Gas production in Germany 5 Issues in gas processing 6 WWI interwar era developments 7 Post WWII the decline of manufactured gas 8 Post WWII positive developments 8 1 By products 8 1 1 Coke 8 1 2 Coal tar 8 1 3 Sulfur 8 1 4 Ammonia 8 2 Structure of the UK coal gas industry 9 See also 10 References 10 1 Notes 10 2 Sources 11 Further readingManufacturing processes EditMain article Coal gasification See also Gasification and Illuminating gas Gas Works Park Seattle preserves most of the equipment for making coal gas This is the only such plant surviving in the United States Manufactured gas can be made by two processes carbonization or gasification Carbonization refers to the devolatilization of an organic feedstock to yield gas and char Gasification is the process of subjecting a feedstock to chemical reactions that produce gas 10 11 The first process used was the carbonization and partial pyrolysis of coal The off gases liberated in the high temperature carbonization coking of coal in coke ovens were collected scrubbed and used as fuel Depending on the goal of the plant the desired product was either a high quality coke for metallurgical use with the gas being a side product or the production of a high quality gas with coke being the side product Coke plants are typically associated with metallurgical facilities such as smelters or blast furnaces while gas works typically served urban areas A facility used to manufacture coal gas carburetted water gas CWG and oil gas is today generally referred to as a manufactured gas plant MGP In the early years of MGP operations the goal of a utility gas works was to produce the greatest amount of illuminating gas The illuminating power of a gas was related to amount of soot forming hydrocarbons illuminants dissolved in it These hydrocarbons gave the gas flame its characteristic bright yellow color Gas works would typically use oily bituminous coals as feedstock These coals would give off large amounts of volatile hydrocarbons into the coal gas but would leave behind a crumbly low quality coke not suitable for metallurgical processes Coal or coke oven gas typically had a calorific value between 10 and 20 megajoules per cubic metre 270 and 540 Btu cu ft with values around 20 MJ m3 540 Btu cu ft being typical The advent of electric lighting forced utilities to search for other markets for manufactured gas MGPs that once produced gas almost exclusively for lighting shifted their efforts towards supplying gas primarily for heating and cooking and even refrigeration and cooling Gas for industrial use EditMain article Syngas An illustration of typical polycyclic aromatic hydrocarbons Source NASA Fuel gas for industrial use was made using producer gas technology Producer gas is made by blowing air through an incandescent fuel bed commonly coke or coal in a gas producer The reaction of fuel with insufficient air for total combustion produces carbon monoxide CO this reaction is exothermic and self sustaining It was discovered that adding steam to the input air of a gas producer would increase the calorific value of the fuel gas by enriching it with CO and hydrogen H2 produced by water gas reactions Producer gas has a very low calorific value of 3 7 to 5 6 MJ m3 99 to 150 Btu cu ft because the calorific gases CO H2 are diluted with much inert nitrogen from air and carbon dioxide CO2 from combustion 2C s O2 2 CO exothermic producer gas reaction C s H2O g CO H2 endothermic water gas reaction C 2 H2O CO2 2 H2 endothermic CO H2O CO2 H2 exothermic water gas shift reaction The problem of nitrogen dilution was overcome by the blue water gas BWG process developed in the 1850s by Sir William Siemens The incandescent fuel bed would be alternately blasted with air followed by steam The air reactions during the blow cycle are exothermic heating up the bed while the steam reactions during the make cycle are endothermic and cool down the bed The products from the air cycle contain non calorific nitrogen and are exhausted out the stack while the products of the steam cycle are kept as blue water gas This gas is composed almost entirely of CO and H2 and burns with a pale blue flame similar to natural gas BWG has a calorific value of 11 MJ m3 300 BTU cu ft Blue water gas lacked illuminants it would not burn with a luminous flame in a simple fishtail gas jet as existed prior to the invention of the gas mantle in the 1890s Various attempts were made to enrich BWG with illuminants from gas oil in the 1860s Gas oil an early form of gasoline was the flammable waste product from kerosene refining made from the lightest and most volatile fractions tops of crude oil In 1875 Thaddeus S C Lowe invented the carburetted water gas process This process revolutionized the manufactured gas industry and was the standard technology until the end of manufactured gas era 12 A CWG generating set consisted of three elements a producer generator carburettor and a super heater connected in series with gas pipes and valves 13 During a make run steam would be passed through the generator to make blue water gas From the generator the hot water gas would pass into the top of the carburettor where light petroleum oils would be injected into the gas stream The light oils would be thermocracked as they came in contact with the white hot checkerwork fire bricks inside the carburettor The hot enriched gas would then flow into the superheater where the gas would be further cracked by more hot fire bricks 14 Gas in post war Britain Edit Mantles in their unused flat packed form New manufacturing processes Edit Following the Second World War the slow recovery of the British coal mining industry led to shortages of coal and high prices 15 UK Coal Production Year Production million tons Production cost ton1947 197 2 001950 216 2 401953 223 3 051956 222 3 851959 206 4 151961 191 4 551965 187 4 601967 172 4 95The decline of coal as a feedstock for town gas production using carbonisation is demonstrated in this graph 16 Coal based town gas production millions of thermsGraphs are temporarily unavailable due to technical issues New technologies for manufacturing coal gas using oil refinery tail gases and light distillates were developed Processes included the Lurgi Process catalytic reforming the catalytic rich gas process steam reforming of rich gas and the gas recycle hydrogenator process 17 The catalytic rich gas process used natural gas as a feedstock to manufacture town gas These facilities utilised the chemical reaction processes described above The rise of oil as a feedstock to manufacture town gas is shown on the graph below The peak usage in 1968 9 and subsequent decline coincides with the availability of North Sea gas which over the next few years displaced town gas as a primary fuel and led to the decline of oil as a feedstock for gas making as shown 16 Oil based town gas production millions of thermsGraphs are temporarily unavailable due to technical issues Domestic heating Edit By the 1960s manufactured gas compared with its main rival in the energy market electricity was considered nasty smelly dirty and dangerous to quote market research of the time and seemed doomed to lose market share still further except for cooking where its controllability gave it marked advantages over both electricity and solid fuel The development of more efficient gas fires assisted gas to resist competition in the market for room heating Concurrently a new market for whole house central heating by hot water was being developed by the oil industry and the gas industry followed suit Gas warm air heating found a market niche in new local authority housing where low installation costs gave it an advantage These developments the realignment of managerial thinking away from commercial management selling what the industry produced to marketing management meeting the needs and desires of customers and the lifting of an early moratorium preventing nationalised industries from using television advertising saved the gas industry for long enough to provide a viable market for what was to come Natural gas as feedstock Edit In 1959 the Gas Council in Great Britain demonstrated that liquid natural gas LNG could be transported safely efficiently and economically over long distances by sea The Methane Pioneer shipped a consignment of LNG from Lake Charles Louisiana US to a new LNG terminal on Canvey Island in the Thames estuary in Essex England A 212 mile 341 km long high pressure trunk pipeline was built from Canvey Island to Bradford 18 The pipeline and its branches provided Area Gas Boards with natural gas for use in reforming processes to make town gas A large scale LNG reception plant was commissioned on Canvey in 1964 which received LNG from Algeria in two dedicated tankers each of 12 000 tonnes 19 Conversion to natural gas Edit The slow decline of the town gas industry in the UK was signalled by the discovery of natural gas by the drilling rig Sea Gem on 17 September 1965 some forty miles off Grimsby over 8 000 feet 2 400 m below the seabed Subsequently the North Sea was found to have many substantial gas fields on both sides of the median line defining which nations should have rights over the reserves In a pilot scheme customers on Canvey Island were converted from town gas to natural gas supplied from the LNG plant on Canvey 15 20 The Fuel Policy White Paper of 1967 Cmd 3438 pointed the industry in the direction of building up the use of natural gas speedily to enable the country to benefit as soon as possible from the advantages of this new indigenous energy source As a result there was a rush to gas for use in peak load electricity generation and in low grade uses in industry The effects on the coal industry were very significant not only did coal lose its market for town gas production it came to be displaced from much of the bulk energy market also The growth in availability of natural gas is shown in the graph below 16 Until 1968 this was from supplies of LNG from Algeria until North Sea gas was available from 1968 Natural gas available millions of thermsGraphs are temporarily unavailable due to technical issues The exploitation of the North Sea gas reserves entailing landing gas at Easington Bacton and St Fergus made viable the building of a national distribution grid of over 3 000 miles 4 800 km consisting of two parallel and interconnected pipelines running the length of the country This became the National Transmission System All gas equipment in Great Britain but not Northern Ireland was converted by the fitting of different sized burner jets to give the correct gas air mixture from town gas to natural gas mainly methane over the period from 1967 to 1977 at a cost of about 100 million including writing off redundant town gas manufacturing plants All the gas using equipment of almost thirteen million domestic four hundred thousand commercial and sixty thousand industrial customers were converted Many dangerous appliances were discovered in this exercise and were taken out of service The UK town gas industry died in 1987 when operations ceased at the last town gas manufacturing plants in Northern Ireland Belfast Portadown and Carrickfergus Carrickfergus gas works is now a restored gasworks museum 21 The Portadown site has been cleared and is now the subject of a long term experiment into the use of bacteria for the purpose of cleaning up contaminated industrial land As well as requiring little processing before use natural gas is non toxic the carbon monoxide CO in town gas made it extremely poisonous accidental poisoning and suicide by gas being commonplace Poisoning from natural gas appliances is only due to incomplete combustion which creates CO and flue leaks to living accommodation As with town gas a small amount of foul smelling substance mercaptan is added to the gas to indicate to the user that there is a leak or an unlit burner the gas having no odour of its own The organisation of the British gas industry adapted to these changes first by the Gas Act 1965 by empowering the Gas Council to acquire and supply gas to the twelve area gas boards Then the Gas Act 1972 formed the British Gas Corporation as a single commercial entity embracing all the twelve area gas boards allowing them to acquire distribute and market gas and gas appliances to industrial commercial and domestic customers throughout the UK In 1986 British Gas was privatised and the government no longer has any direct control over it During the era of North Sea gas many of the original cast iron gas pipes installed in towns and cities for town gas were replaced by plastic As reported in the DTI Energy Review Our Energy Challenge January 2006 North Sea gas resources have been depleted at a faster rate than had been anticipated and gas supplies for the UK are being sought from remote sources a strategy made possible by developments in the technologies of pipelaying that enable the transmission of gas over land and under sea across and between continents Natural gas is now a world commodity Such sources of supply are exposed to all the risks of any import In popular culture Edit Monty Python parodied the conversion from coal to North Sea gas and the jumping through hoops some encountered in their New Cooker Sketch as part of the episode that began its second series in 1970 It was used to power several historic balloon ascents in the 19th century see The Aeronauts Gas production in Germany EditIn many ways Germany took the lead in coal gas research and carbon chemistry With the labours of August Wilhelm von Hofmann the whole German chemical industry emerged Using the coal gas waste as feedstock researchers developed new processes and synthesized natural organic compounds such as Vitamin C and aspirin The German economy relied on coal gas during the Second World War as petroleum shortages forced Nazi Germany to develop the Fischer Tropsch synthesis to produce synthetic fuel for aircraft and tanks Coke oven at smokeless fuel plant South WalesIssues in gas processing EditTar aerosols tar extractors condensers scrubbers Electrostatic precipitators in 1912 Light oil vapors oil washing Naphthalene oil tar washing Ammonia gas scrubbers Hydrogen sulfide gas purifier boxes Hydrogen cyanide gas purifier WWI interwar era developments EditLoss of high quality gas oil used as motor fuel and feed coke diverted for steelmaking leads to massive tar problems CWG carburetted water gas tar is less valuable than coal gasification tar as a feed stock Tar water emulsions are uneconomical to process due to unsellable water and lower quality by products CWG tar is full of lighter polycyclic aromatic hydrocarbons good for making pitch but poor in chemical precursors dd Various back run procedures for CWG generation lower fuel consumption and help deal with issues from the use of bituminous coal in CWG sets Development of high pressure pipeline welding encourages the creation of large municipal gas plants and the consolidation of the MG industry Sets the stage for rise of natural gas Electric lighting replaces gaslight MG industry peak is sometime in the mid 1920s 1936 or so Development of Lurgi gasifier Germans continue work on gasification synfuels due to oil shortages Ruins of the German synthetic petrol plant Hydrierwerke Politz Aktiengesellschaft in Police Poland The Public Utility Holding Company Act of 1935 in the US forces break up of integrated coke and gas companies in the United States Fischer Tropsch process for synthesis of liquid fuels from CO H2 gas Haber Bosch ammonia process creates a large demand for industrial hydrogen Post WWII the decline of manufactured gas EditDevelopment of natural gas industry Natural gas has an energy content of 37 MJ m3 compared to the 10 20 MJ m3 of town gas Petrochemicals kill much of the value of coal tar as a source of chemical feed stocks BTX Phenols Pitch Decline in creosote use for wood preserving Direct coal natural gas injection reduces demand for metallurgical coke 25 to 40 less coke is needed in blast furnaces BOF and EAF processes obsolete cupola furnaces Reduce need for coke in recycling steel scrap Less need for fresh steel iron Cast iron amp steel are replaced with aluminum and plastics Phthalic anhydride production shifts from catalytic oxidation of naphthalene to the o xylol process Post WWII positive developments EditCatalytic upgrading of gas by use of hydrogen to react with tarry vapours in the gas The decline of coke making in the US leads to a coal tar crisis since coal tar pitch is vital for the production of carbon electrodes for EAF aluminium US now has to import coal tar from China Development of process to make methanol via hydrogenation of CO H2 mixtures Mobil M gas process for making petrol from methanol SASOL coal process plant in South Africa Direct hydrogenation of coal into liquid and gaseous fuels Dankuni Coal Complex is the only plant in India that is producing coal gas town gas in Kolkata using the Continuous Vertical Retort Technology of Babcock Woodall Duckham UK constructed on the recommendation of GoI s Fuel Policy Committee of 1974 after the crippling 1973 Oil Crisis The plant uses a modified low temperature carbonisation to produce the town gas and soft coke The plant in the 1990s produced various chemicals like xylenol cresol and phenol 22 23 By products Edit The by products of coal gas manufacture included coke coal tar sulfur and ammonia and these were all useful products Dyes medicines such as sulfa drugs saccharine and dozens of organic compounds are made from coal tar citation needed The coal used and the town gas and by products produced by the major three gas companies of London are summarised in the table 24 25 26 Company Gas Light and Coke South Metropolitan CommercialYear 1913 1920 1934 1913 1920 1934 1913 1920 1934Coal carbonised tons 1 988 241 2 279 253 3 011 227 1 125 779 1 211 857 1 118 573 187 291 235 406 244 644Gas made million cubic feet 29 634 35 149 51 533 14 097 15 182 15 034 3 702 4 340 3 487Coke made tons 1 246 624 1 469 220 1 867038 695 214 743 982 664 555 117 057 158 899 159 019Coke made hundredweight per ton of coal 20 hundredweight 1 ton 12 54 12 89 12 40 12 35 12 28 11 88 12 50 13 50 13 00Coal tar made million gallons 19 88 20 5 31 32 10 81 11 27 12 97 1 97 0 94 2 39Coal tar made gallons per ton of coal 10 0 9 0 10 4 9 6 9 3 10 7 10 5 9 4 9 8Ammoniacal liquor made million gallons 59 25 61 77 71 06 36 93 37 93 36 69 5 94 6 54 7 41Ammoniacal liquor made gallons per ton of coal 29 8 27 1 23 6 32 8 31 3 32 8 31 7 27 8 30 3Coke Edit Coke is used as a smokeless fuel and for the manufacture of water gas and producer gas Coal tar Edit Coal tar was subjected to fractional distillation to recover various products including tar for roads benzole a motor fuel creosote a wood preservative phenol used in the manufacture of plastics cresols disinfectantsSulfur Edit Used in the manufacture of sulfuric acid Ammonia Edit Used in the manufacture of fertilisers Structure of the UK coal gas industry Edit Coal gas was initially manufactured by independent companies but in the United Kingdom many of these later became municipal services In 1948 there was a total of 1 062 gas undertakings Both the private companies about two thirds of the total and the municipal gas undertakings about one third were nationalised under the Gas Act 1948 Further restructuring took place under the Gas Act 1972 For further details see British Gas plc Apart from in the steel industry s coke ovens by products plants coal gas is no longer made in the UK It was replaced first by gas made from oil and later by natural gas from the North Sea See also EditDamp mining Environmental remediation Gas lighting Gas Works Park Gasifier Gasometer Gasworks History of manufactured gas Illuminating gas Mond gas Wood gasReferences EditNotes Edit Speight James G 2000 Fuels Synthetic Gaseous Fuels Kirk Othmer Encyclopedia of Chemical Technology doi 10 1002 0471238961 0701190519160509 a01 ISBN 9780471484943 Shapley Coal Gasification University of Illinois Terry Herbert 14 July 1881 Coal Gas Poisoning The Boston Medical and Surgical Journal 105 2 29 32 doi 10 1056 NEJM188107141050202 coal gas chemical compound Britannica www britannica com Retrieved 2 April 2022 Artificial gas n d 1001 Words and Phrases You Never Knew You Didn t Know 2011 Retrieved October 15 2022 from https www thefreedictionary com Artificial gas How do people die by putting their head in the oven Why have people stopped committing suicide with gas 9 November 2012 National Gas Museum Gas industry timeline West Sole Gas Fields Beychok M R Process and environmentals technology for producing SNG and liquid fuels U S EPA report EPA 660 2 2 75 011 May 1975 Beychok M R Coal gasification and the phenolsolvan process American Chemical Society 168th National Meeting Atlantic City September 1974 The Introduction of Water Gas in the United States Google Books excerpt The Baltimore Gas and Electric News Consolidated Gas Electric Light and Power Company of Baltimore 5 6 383 1916 Proceedings of the American Gas Light Association By American Gas Light Association 1881 p 117 https books google com books id OSNLAAAAMAAJ amp pg PA116 Power devoted to the generation and transmission of power Volume 26 1906 p 686 https books google com books id DcEfAQAAMAAJ amp pg PA687 amp lpg PA687 a b Williams Trevor I 1981 A History of the British Gas Industry Oxford Oxford University Press pp 182 89 290 ISBN 0198581572 a b c British Gas 1980 Gas Chronology the development of the British gas industry London British Gas pp Appendix 1 Scott Wilson D 1969 The Modern Gas Industry London Edward Arnold pp 11 34 Copp A D L R G Hildrew and L S Cooper May 1966 The Design Commissioning and Operation of the United Kingdom Gas Industry s Methane Pipeline Institution of Gas Engineers Communication 708 1 18 Murray Stephen 2017 A history of the oil gas and petrochemical industries on Canvey Island Essex Archaeology and History 8 214 127 Falkus Malcolm 1988 Always under Pressure A History of North Thames Gas since 1949 London Macmillan pp 89 122 ISBN 0333468198 Flame Gasworks flamegasworks co uk History of Coal India Limited 1979 80 https www coalindia in en us company history aspx Archived 4 February 2018 at the Wayback Machine LTC Coke and By Products https www coalindia in en us ourbusiness productsservices aspx London County Council 1915 London Statistics vol 24 London London County Council p 527 London County Council 1922 London Statistics vol 27 London London County Council p 266 London Council Council 1936 London Statistics vol XXXIX 1934 5 London London Council Council p 341 Sources Edit Everard Stirling 1949 The History of the Gas Light and Coke Company 1812 1949 London Ernest Benn Limited Reprinted 1992 London A amp C Black Publishers Limited for the London Gas Museum ISBN 0 7136 3664 5 Further reading EditBarty King H 1985 New Flame How Gas changed the commercial domestic and industrial life in Britain from 1783 to 1984 Tavistock Graphmitre ISBN 0 948051 00 0 Peebles Malcolm W H 1980 Evolution of the Gas Industry London and Basingstoke Macmillan ISBN 0 333 27971 9 Fressoz J B 2007 The gas lighting controversy technological risk expertise and regulation in Paris and London 1815 1850 Journal of Urban History 33 5 729 755 doi 10 1177 0096144207301418 S2CID 143904635 Retrieved from https en wikipedia org w index php title Coal gas amp oldid 1150345094, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.