fbpx
Wikipedia

Type 2 diabetes

Type 2 diabetes (T2D), formerly known as adult-onset diabetes, is a form of diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin.[6] Common symptoms include increased thirst, frequent urination, fatigue and unexplained weight loss.[3] Symptoms may also include increased hunger, having a sensation of pins and needles, and sores (wounds) that do not heal.[3] Often symptoms come on slowly.[6] Long-term complications from high blood sugar include heart disease, strokes, diabetic retinopathy which can result in blindness, kidney failure, and poor blood flow in the limbs which may lead to amputations.[1] The sudden onset of hyperosmolar hyperglycemic state may occur; however, ketoacidosis is uncommon.[4][5]

Type 2 diabetes
Other namesDiabetes mellitus type 2;
adult-onset diabetes;[1]
noninsulin-dependent diabetes mellitus (NIDDM)
A blue circle is the universal symbol of diabetes.[2]
Pronunciation
SpecialtyEndocrinology
SymptomsIncreased thirst, frequent urination, unexplained weight loss, increased hunger[3]
ComplicationsHyperosmolar hyperglycemic state, diabetic ketoacidosis, heart disease, strokes, diabetic retinopathy, kidney failure, amputations[1][4][5]
Usual onsetMiddle or older age[6]
DurationLong term[6]
CausesObesity, lack of exercise, genetics[1][6]
Diagnostic methodBlood test[3]
PreventionMaintaining normal weight, exercising, healthy diet[1]
TreatmentDietary changes, metformin, insulin, bariatric surgery[1][7][8][9]
Prognosis10 year shorter life expectancy[10]
Frequency392 million (2015)[11]

Type 2 diabetes primarily occurs as a result of obesity and lack of exercise.[1] Some people are genetically more at risk than others.[6]

Type 2 diabetes makes up about 90% of cases of diabetes, with the other 10% due primarily to type 1 diabetes and gestational diabetes.[1] In type 1 diabetes there is a lower total level of insulin to control blood glucose, due to an autoimmune induced loss of insulin-producing beta cells in the pancreas.[12][13] Diagnosis of diabetes is by blood tests such as fasting plasma glucose, oral glucose tolerance test, or glycated hemoglobin (A1C).[3]

Type 2 diabetes is largely preventable by staying a normal weight, exercising regularly, and eating a healthy diet (high in fruits and vegetables and low in sugar and saturated fats).[1] Treatment involves exercise and dietary changes.[1] If blood sugar levels are not adequately lowered, the medication metformin is typically recommended.[7][14] Many people may eventually also require insulin injections.[9] In those on insulin, routinely checking blood sugar levels (such as through a continuous glucose monitor) is advised; however, this may not be needed in those who are not on insulin therapy.[15] Bariatric surgery often improves diabetes in those who are obese.[8][16]

Rates of type 2 diabetes have increased markedly since 1960 in parallel with obesity.[17] As of 2015 there were approximately 392 million people diagnosed with the disease compared to around 30 million in 1985.[11][18] Typically it begins in middle or older age,[6] although rates of type 2 diabetes are increasing in young people.[19][20] Type 2 diabetes is associated with a ten-year-shorter life expectancy.[10] Diabetes was one of the first diseases ever described, dating back to an Egyptian manuscript from c. 1500 BCE.[21] The importance of insulin in the disease was determined in the 1920s.[22]

Signs and symptoms

 
Overview of the most significant symptoms of diabetes

The classic symptoms of diabetes are frequent urination (polyuria), increased thirst (polydipsia), increased hunger (polyphagia), and weight loss.[23] Other symptoms that are commonly present at diagnosis include a history of blurred vision, itchiness, peripheral neuropathy, recurrent vaginal infections, and fatigue.[13] Other symptoms may include loss of taste.[24] Many people, however, have no symptoms during the first few years and are diagnosed on routine testing.[13] A small number of people with type 2 diabetes can develop a hyperosmolar hyperglycemic state (a condition of very high blood sugar associated with a decreased level of consciousness and low blood pressure).[13]

Complications

Type 2 diabetes is typically a chronic disease associated with a ten-year-shorter life expectancy.[10] This is partly due to a number of complications with which it is associated, including: two to four times the risk of cardiovascular disease, including ischemic heart disease and stroke; a 20-fold increase in lower limb amputations, and increased rates of hospitalizations.[10] In the developed world, and increasingly elsewhere, type 2 diabetes is the largest cause of nontraumatic blindness and kidney failure.[25] It has also been associated with an increased risk of cognitive dysfunction and dementia through disease processes such as Alzheimer's disease and vascular dementia.[26] Other complications include hyperpigmentation of skin (acanthosis nigricans), sexual dysfunction, and frequent infections.[23] There is also an association between type 2 diabetes and mild hearing loss.[27]

Causes

The development of type 2 diabetes is caused by a combination of lifestyle and genetic factors.[25][28] While some of these factors are under personal control, such as diet and obesity, other factors are not, such as increasing age, female sex, and genetics.[10] Obesity is more common in women than men in many parts of Africa.[29] The nutritional status of a mother during fetal development may also play a role, with one proposed mechanism being that of DNA methylation.[30] The intestinal bacteria Prevotella copri and Bacteroides vulgatus have been connected with type 2 diabetes.[31]

Lifestyle

Lifestyle factors are important to the development of type 2 diabetes, including obesity and being overweight (defined by a body mass index of greater than 25), lack of physical activity, poor diet, psychological stress, and urbanization.[10][32] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of cases in Pima Indians and Pacific Islanders.[13] Among those who are not obese, a high waist–hip ratio is often present.[13] Smoking appears to increase the risk of type 2 diabetes.[33] A lack of sleep has also been linked to type 2 diabetes.[34] Laboratory studies have linked short-term sleep deprivations to changes in glucose metabolism, nervous system activity, or hormonal factors that may lead to diabetes.[34]

Dietary factors also influence the risk of developing type 2 diabetes. Consumption of sugar-sweetened drinks in excess is associated with an increased risk.[35][36] The type of fats in the diet are important, with saturated fats and trans fatty acids increasing the risk, and polyunsaturated and monounsaturated fat decreasing the risk.[28] Eating a lot of white rice appears to play a role in increasing risk.[37] A lack of exercise is believed to cause 7% of cases.[38] Persistent organic pollutants may also play a role.[39]

Genetics

Most cases of diabetes involve many genes, with each being a small contributor to an increased probability of becoming a type 2 diabetic.[10] The proportion of diabetes that is inherited is estimated at 72%.[40] More than 36 genes and 80 single nucleotide polymorphisms (SNPs) had been found that contribute to the risk of type 2 diabetes.[41][42] All of these genes together still only account for 10% of the total heritable component of the disease.[41] The TCF7L2 allele, for example, increases the risk of developing diabetes by 1.5 times and is the greatest risk of the common genetic variants.[13] Most of the genes linked to diabetes are involved in pancreatic beta cell functions.[13]

There are a number of rare cases of diabetes that arise due to an abnormality in a single gene (known as monogenic forms of diabetes or "other specific types of diabetes").[10][13] These include maturity onset diabetes of the young (MODY), Donohue syndrome, and Rabson–Mendenhall syndrome, among others.[10] Maturity onset diabetes of the young constitute 1–5% of all cases of diabetes in young people.[43]

Epigenetics

Epigenetic regulation occurs at multiple levels including (1) direct methylation of cytosine and adenine residues in DNA, (2) covalent modification of histone proteins in chromatin, and (3) action of non coding microRNAs (for other examples, see Wikipedia article "Epigenetics"). On November 17–19, 2017, the American Diabetes Association held a research symposium entitled "Epigenetics and Epigenomics: Implications for Diabetes and Obesity." As a result of this symposium, an overview of the state of the field was presented in which it was noted that over 1,000 research articles have been published that address the intersection of diabetes and epigenetics or epigenomics.[44] The current state of knowledge in this field is addressed the Wikipedia article "Epigenetics of diabetes Type 2."

Medical conditions

There are a number of medications and other health problems that can predispose to diabetes.[45] Some of the medications include: glucocorticoids, thiazides, beta blockers, atypical antipsychotics,[46] and statins.[47] Those who have previously had gestational diabetes are at a higher risk of developing type 2 diabetes.[23] Other health problems that are associated include: acromegaly, Cushing's syndrome, hyperthyroidism, pheochromocytoma, and certain cancers such as glucagonomas.[45] Individuals with cancer may be at a higher risk of mortality if they also have diabetes.[48] Testosterone deficiency is also associated with type 2 diabetes.[49][50] Eating disorders may also interact with type 2 diabetes, with bulimia nervosa increasing the risk and anorexia nervosa decreasing it.[51]

Pathophysiology

Type 2 diabetes is due to insufficient insulin production from beta cells in the setting of insulin resistance.[13] Insulin resistance, which is the inability of cells to respond adequately to normal levels of insulin, occurs primarily within the muscles, liver, and fat tissue.[52] In the liver, insulin normally suppresses glucose release. However, in the setting of insulin resistance, the liver inappropriately releases glucose into the blood.[10] The proportion of insulin resistance versus beta cell dysfunction differs among individuals, with some having primarily insulin resistance and only a minor defect in insulin secretion and others with slight insulin resistance and primarily a lack of insulin secretion.[13]

Other potentially important mechanisms associated with type 2 diabetes and insulin resistance include: increased breakdown of lipids within fat cells, resistance to and lack of incretin, high glucagon levels in the blood, increased retention of salt and water by the kidneys, and inappropriate regulation of metabolism by the central nervous system.[10] However, not all people with insulin resistance develop diabetes since an impairment of insulin secretion by pancreatic beta cells is also required.[13]

In the early stages of insulin resistance, the mass of beta cells expands, increasing the output of insulin to compensate for the insulin insensitivity.[53] But when type 2 diabetes has become manifest, a type 2 diabetic will have lost about half of their beta cells.[53]Fatty acids in the beta cells activate FOXO1, resulting in apoptosis of the beta cells.[53]

The causes of the aging-related insulin resistance seen in obesity and in type 2 diabetes are uncertain. Effects of intracellular lipid metabolism and ATP production in liver and muscle cells may contribute to insulin resistance.[54] New evidence also points to a role of a brain region called the hypothalamus in the development of insulin resistance. For one thing, a gene called Dusp8 is linked with an increased risk for diabetes.[55] This gene codes for a protein that regulates neuronal signaling in the hypothalamus. Also, infusions into the hypothalamus of a hormone called leptin normalize blood glucose and diminish insulin resistance in diabetic animals.[56] Activation of hypothalamic cells by leptin has an important role in maintaining normal levels of blood glucose. Thus, both the endocrine cells of the pancreas AND cells in the hypothalamus may have a role in the etiology of type 2 diabetes.

Hypothalamic cells regulate blood glucose via projections to the autonomic nervous system. Autonomic innervation of liver and muscle cells stimulates an increased uptake of glucose. In diabetic humans, the control of blood glucose by the autonomic nervous system is abnormal.[57] Leptin-sensitive, glucose regulating neurons become resistant to leptin during aging or during exposure to a high-fat diet. These leptin-resistant neurons fail to restrain food intake, obesity, and blood glucose. The reasons for this lowered responsiveness to leptin are uncertain and are part of the puzzle of the causes of type 2 diabetes.[58]

Blood glucose levels can also be normalized in diabetic rodents by a single intrahypothalamic infusion of Fibroblast Growth Factor 1 (FGF1), an effect that persists for months even in severely diabetic animals. This remarkable cure of diabetes is accomplished by a stimulation of accessory brain cells called astrocytes.[59][60] Hypothalamic astrocytes that produce Fatty Acid Binding Protein 7 (FABP7) are targets of FGF1; these cells are also in close contact with leptin-sensitive neurons, influence their function, and regulate leptin sensitivity.[61][62] An abnormal function of FABP7+ astrocytes thus may contribute to the resistance to leptin and insulin that appear during aging and during exposure to high-fat diets.

During aging, FABP7+ astrocytes develop cytoplasmic granules derived from degenerating mitochondria. This mitochondrial degeneration is partly due to the oxidative stress of the heightened amounts of fatty acids that are taken up by these cells and oxidized within mitochondria.[63][64] A pathological degeneration of mitochondria in these cells may compromise their normal functions and contribute to abnormalities in the control of blood glucose by the hypothalamus.

Diagnosis

WHO diabetes diagnostic criteria[65][66]  edit
Condition 2-hour glucose Fasting glucose HbA1c
Unit mmol/L mg/dL mmol/L mg/dL mmol/mol DCCT %
Normal < 7.8 < 140 < 6.1 < 110 < 42 < 6.0
Impaired fasting glycaemia < 7.8 < 140 6.1–7.0 110–125 42–46 6.0–6.4
Impaired glucose tolerance ≥ 7.8 ≥ 140 < 7.0 < 126 42–46 6.0–6.4
Diabetes mellitus ≥ 11.1 ≥ 200 ≥ 7.0 ≥ 126 ≥ 48 ≥ 6.5

The World Health Organization definition of diabetes (both type 1 and type 2) is for a single raised glucose reading with symptoms, otherwise raised values on two occasions, of either:[67]

  • fasting plasma glucose ≥ 7.0 mmol/L (126 mg/dL)
or

A random blood sugar of greater than 11.1 mmol/L (200 mg/dL) in association with typical symptoms[23] or a glycated hemoglobin (HbA1c) of ≥ 48 mmol/mol (≥ 6.5 DCCT %) is another method of diagnosing diabetes.[10] In 2009 an International Expert Committee that included representatives of the American Diabetes Association (ADA), the International Diabetes Federation (IDF), and the European Association for the Study of Diabetes (EASD) recommended that a threshold of ≥ 48 mmol/mol (≥ 6.5 DCCT %) should be used to diagnose diabetes.[68] This recommendation was adopted by the American Diabetes Association in 2010.[69] Positive tests should be repeated unless the person presents with typical symptoms and blood sugars >11.1 mmol/L (>200 mg/dL).[68]

ADA diabetes diagnostic criteria in 2015[70]  
Diabetes mellitus Prediabetes
HbA1c ≥6.5% 5.7–6.4%
Fasting glucose ≥126 mg/dL 100–125 mg/dL
2h glucose ≥200 mg/dL 140–199 mg/dL
Random glucose with classic symptoms ≥200 mg/dL Not available

Threshold for diagnosis of diabetes is based on the relationship between results of glucose tolerance tests, fasting glucose or HbA1c and complications such as retinal problems.[10] A fasting or random blood sugar is preferred over the glucose tolerance test, as they are more convenient for people.[10] HbA1c has the advantages that fasting is not required and results are more stable but has the disadvantage that the test is more costly than measurement of blood glucose.[71] It is estimated that 20% of people with diabetes in the United States do not realize that they have the disease.[10]

Type 2 diabetes is characterized by high blood glucose in the context of insulin resistance and relative insulin deficiency.[72] This is in contrast to type 1 diabetes in which there is an absolute insulin deficiency due to destruction of islet cells in the pancreas and gestational diabetes that is a new onset of high blood sugars associated with pregnancy.[13] Type 1 and type 2 diabetes can typically be distinguished based on the presenting circumstances.[68] If the diagnosis is in doubt antibody testing may be useful to confirm type 1 diabetes and C-peptide levels may be useful to confirm type 2 diabetes,[73] with C-peptide levels normal or high in type 2 diabetes, but low in type 1 diabetes.[74]

Screening

Universal screening for diabetes in people without risk factors or symptoms is not recommended.[75][76] Screening is recommended by the World Health Organization, the United States Preventive Services Task Force (USPSTF), and the American Diabetes Association for high-risk adults.[77][78][79] Risk factors considered by the USPSTF include adults over 35 years old who are overweight or have obesity and adults without symptoms whose blood pressure is greater than 135/80 mmHg.[80][needs update][77] For those whose blood pressure is less, the evidence is insufficient to recommend for or against screening.[80][needs update] The American Diabetes Society recommends screening for adults with a body mass index (BMI) over 25.[79] For people of Asian descent, screening is recommended if they have a BMI over 23.[79] Other high risk groups include people with a first degree relative with diabetes; some ethnic groups, including Hispanics, African-Americans, and Native-Americans; a history of gestational diabetes; polycystic ovary syndrome; excess weight; and conditions associated with metabolic syndrome.[23] There is no evidence that screening changes the risk of death and any benefit of screening on adverse effects, incidence of type 2 diabetes, HbA1c or socioeconomic effects are not clear.[76][81]

In the UK, NICE guidelines suggest taking action to prevent diabetes for people with a body mass index (BMI) of 30 or more.[82] For people of Black African, African-Caribbean, South Asian and Chinese descent the recommendation to start prevention starts at the BMI of 27,5.[82] A study based on a large sample of people in England suggest even lower BMIs for certain ethnic groups for the start of prevention, for example 24 in South Asian and 21 in Bangladeshi populations.[83][84]

Prevention

Onset of type 2 diabetes can be delayed or prevented through proper nutrition and regular exercise.[85][86] Intensive lifestyle measures may reduce the risk by over half.[25][87] The benefit of exercise occurs regardless of the person's initial weight or subsequent weight loss.[88] High levels of physical activity reduce the risk of diabetes by about 28%.[89] Evidence for the benefit of dietary changes alone, however, is limited,[90] with some evidence for a diet high in green leafy vegetables[91] and some for limiting the intake of sugary drinks.[92] There is an association between higher intake of sugar-sweetened fruit juice and diabetes, but no evidence of an association with 100% fruit juice.[93] A 2019 review found evidence of benefit from dietary fiber.[94]

In those with impaired glucose tolerance, a 2019 systematic review found moderate-quality evidence that Metformin, when compared to diet and exercise or a placebo intervention, appeared to delay or reduce the risk of developing type 2 diabetes.[95] This same review found moderate-quality evidence that when compared to intensive diet and exercise, Metformin did not reduce risk of developing type 2 diabetes, as well as very low-quality evidence that combining Metformin with intensive diet and exercise does not appear to have any effect on risk of developing type 2 diabetes when compared to intensive diet and exercise alone.[95] This systematic review only found one suitable trial comparing Metformin with Sulphonylurea in reducing risk of type 2 diabetes but it did not report any patient-relevant outcomes.[95]

A Cochrane systematic review assessed the effect of alpha-glucosidase inhibitors in people with impaired glucose tolerance, impaired fasting blood glucose, elevated glycated hemoglobin A1c (HbA1c).[96] It was found that Acarbose appeared to reduce incidence of diabetes mellitus type 2 when compared to placebo, however there was no conclusive evidence that acarbose compare to diet and exercise, metformin, placebo, no intervention improved all-cause mortality, reduced or increased risk of cardiovascular mortality, serious or non-serious adverse events, non-fatal stroke, congestive heart failure, or non-fatal myocardial infarction.[96] The same review found that there was no conclusive evidence that voglibose compared to diet and exercise or placebo reduced incidence of diabetes mellitus type 2, or any of the other measured outcomes.[96]

A 2017 review found that, long term, lifestyle changes decreased the risk by 28%, while medication does not reduce risk after withdrawal.[97] While low vitamin D levels are associated with an increased risk of diabetes, correcting the levels by supplementing vitamin D3 does not improve that risk.[98]

Management

Management of type 2 diabetes focuses on lifestyle interventions, lowering other cardiovascular risk factors, and maintaining blood glucose levels in the normal range.[25] Self-monitoring of blood glucose for people with newly diagnosed type 2 diabetes may be used in combination with education,[99] although the benefit of self-monitoring in those not using multi-dose insulin is questionable.[25] In those who do not want to measure blood levels, measuring urine levels may be done.[100] Managing other cardiovascular risk factors, such as hypertension, high cholesterol, and microalbuminuria, improves a person's life expectancy.[25] Decreasing the systolic blood pressure to less than 140 mmHg is associated with a lower risk of death and better outcomes.[101] Intensive blood pressure management (less than 130/80 mmHg) as opposed to standard blood pressure management (less than 140-160 mmHg systolic to 85–100 mmHg diastolic) results in a slight decrease in stroke risk but no effect on overall risk of death.[102]

Intensive blood sugar lowering (HbA1c<6%) as opposed to standard blood sugar lowering (HbA1c of 7–7.9%) does not appear to change mortality.[103][104] The goal of treatment is typically an HbA1c of 7 to 8% or a fasting glucose of less than 7.2 mmol/L (130 mg/dL); however these goals may be changed after professional clinical consultation, taking into account particular risks of hypoglycemia and life expectancy.[79][105][106] Hypoglycemia is associated with adverse outcomes in older people with type 2 diabetes.[107] Despite guidelines recommending that intensive blood sugar control be based on balancing immediate harms with long-term benefits, many people – for example people with a life expectancy of less than nine years who will not benefit, are over-treated.[108]

It is recommended that all people with type 2 diabetes get regular eye examinations.[13] There is moderate evidence suggesting that treating gum disease by scaling and root planing results in an improvement in blood sugar levels for people with diabetes.[109]

Lifestyle

Exercise

A proper diet and regular exercise are foundations of diabetic care,[23] with one review indicating that a greater amount of exercise improved outcomes.[110] Regular exercise may improve blood sugar control, decrease body fat content, and decrease blood lipid levels.[111]

Diet

Calorie restriction to promote weight loss is generally recommended.[112][70] Around 80 percent of obese people with type 2 diabetes achieve complete remission with no need for medication if they sustain a weight loss of at least 15 kilograms (33 lb),[113][114] but most patients are not able to achieve or sustain significant weight loss.[115] Even modest weight loss can produce significant improvements in glycemic control and reduce the need for medication.[116]

Several diets may be effective such as the Dietary Approaches to Stop Hypertension (DASH), Mediterranean diet, low-fat diet, or monitored carbohydrate diets such as a low carbohydrate diet.[70][117][118] Other recommendations include emphasizing intake of fruits, vegetables, reduced saturated fat and low-fat dairy products, and with a macronutrient intake tailored to the individual, to distribute calories and carbohydrates throughout the day.[70][119] A 2021 review showed that consumption of tree nuts (walnuts, almonds, and hazelnuts) reduced fasting blood glucose in diabetic people.[120] As of 2015, there is insufficient data to recommend nonnutritive sweeteners, which may help reduce caloric intake.[121] An elevated intake of microbiota-accessible carbohydrates can help reducing the effects of T2D.[122] Viscous fiber supplements may be useful in those with diabetes.[123]

Culturally appropriate education may help people with type 2 diabetes control their blood sugar levels for up to 24 months.[124] There is not enough evidence to determine if lifestyle interventions affect mortality in those who already have type 2 diabetes.[87]

Stress management

Although psychological stress is recognized as a risk factor for type 2 diabetes,[10] the effect of stress management interventions on disease progression are not established.[125] A Cochrane review is under way to assess the effects of mindfulness‐based interventions for adults with type 2 diabetes.[126]

Medications

 
Metformin 500 mg tablets

Blood sugar control

There are several classes of anti-diabetic medications available. Metformin is generally recommended as a first line treatment as there is some evidence that it decreases mortality;[7][25][127] however, this conclusion is questioned.[128] Metformin should not be used in those with severe kidney or liver problems.[23] The American Diabetes Association and European Association for the Study of Diabetes recommend using a GLP-1 receptor agonist or SGLT2 inhibitor as the first-line treatment in patients who have or are at high risk for atherosclerotic cardiovascular disease, heart failure, or kidney disease.[129][130] The higher cost of these drugs compared to metformin has limited their use.[115][131][132]

A second oral agent of another class or insulin may be added if metformin is not sufficient after three months.[105] Other classes of medications include: sulfonylureas, thiazolidinediones, dipeptidyl peptidase-4 inhibitors, SGLT2 inhibitors, and GLP-1 receptor agonists.[105] A 2018 review found that SGLT2 inhibitors and GLP-1 agonists, but not DPP-4 inhibitors, were associated with lower mortality than placebo or no treatment.[133] Rosiglitazone, a thiazolidinedione, has not been found to improve long-term outcomes even though it improves blood sugar levels.[134] Additionally it is associated with increased rates of heart disease and death.[135]

Injections of insulin may either be added to oral medication or used alone.[25] Most people do not initially need insulin.[13] When it is used, a long-acting formulation is typically added at night, with oral medications being continued.[23][25] Doses are then increased to effect (blood sugar levels being well controlled).[25] When nightly insulin is insufficient, twice daily insulin may achieve better control.[23] The long acting insulins glargine and detemir are equally safe and effective,[136] and do not appear much better than neutral protamine Hagedorn (NPH) insulin, but as they are significantly more expensive, they are not cost effective as of 2010.[137] In those who are pregnant, insulin is generally the treatment of choice.[23]

Blood pressure lowering

Many international guidelines recommend blood pressure treatment targets that are lower than 140/90 mmHg for people with diabetes.[138] However, there is only limited evidence regarding what the lower targets should be. A 2016 systematic review found potential harm to treating to targets lower than 140 mmHg,[139] and a subsequent review in 2019 found no evidence of additional benefit from blood pressure lowering to between 130–140mmHg, although there was an increased risk of adverse events.[140]

2015 American Diabetes Association recommendations are that people with diabetes and albuminuria should receive an inhibitor of the renin-angiotensin system to reduce the risks of progression to end-stage renal disease, cardiovascular events, and death.[70] There is some evidence that angiotensin converting enzyme inhibitors (ACEIs) are superior to other inhibitors of the renin-angiotensin system such as angiotensin receptor blockers (ARBs),[141] or aliskiren in preventing cardiovascular disease.[142] Although a more recent review found similar effects of ACEIs and ARBs on major cardiovascular and renal outcomes.[143] There is no evidence that combining ACEIs and ARBs provides additional benefits.[143]

Other

The use of aspirin to prevent cardiovascular disease in diabetes is controversial.[70] Aspirin is recommended in people at high risk of cardiovascular disease, however routine use of aspirin has not been found to improve outcomes in uncomplicated diabetes.[144] 2015 American Diabetes Association recommendations for aspirin use (based on expert consensus or clinical experience) are that low-dose aspirin use is reasonable in adults with diabetes who are at intermediate risk of cardiovascular disease (10-year cardiovascular disease risk, 5–10%).[70]

Vitamin D supplementation to people with type 2 diabetes may improve markers of insulin resistance and HbA1c.[145]

Sharing their electronic health records with people who have type 2 diabetes helps them to reduce their blood sugar levels. It is a way of helping people understand their own health condition and involving them actively in its management.[146][147]

Surgery

Weight loss surgery in those who are obese is an effective measure to treat diabetes.[148] Many are able to maintain normal blood sugar levels with little or no medication following surgery[149] and long-term mortality is decreased.[150] There however is some short-term mortality risk of less than 1% from the surgery.[151] The body mass index cutoffs for when surgery is appropriate are not yet clear.[150] It is recommended that this option be considered in those who are unable to get both their weight and blood sugar under control.[152][153]

Epidemiology

 
Prevalence of total diabetes by age and Global Burden of Disease super-region in 2021

The International Diabetes Federation estimates nearly 537 million people lived with diabetes worldwide in 2021,[154] 90–95% of whom have type 2 diabetes.[155] Diabetes is common both in the developed and the developing world.[10]

Some ethnic groups such as South Asians, Pacific Islanders, Latinos, and Native Americans are at particularly high risk of developing type 2 diabetes.[23] Type 2 diabetes in normal weight individuals represents 60 to 80 percent of all cases in some Asian countries. The mechanism causing diabetes in non-obese individuals is poorly understood.[156][157][158]

Rates of diabetes in 1985 were estimated at 30 million, increasing to 135 million in 1995 and 217 million in 2005.[18] This increase is believed to be primarily due to the global population aging, a decrease in exercise, and increasing rates of obesity.[18] Traditionally considered a disease of adults, type 2 diabetes is increasingly diagnosed in children in parallel with rising obesity rates.[10] The five countries with the greatest number of people with diabetes as of 2000 are India having 31.7 million, China 20.8 million, the United States 17.7 million, Indonesia 8.4 million, and Japan 6.8 million.[159] It is recognized as a global epidemic by the World Health Organization.[1]

History

Diabetes is one of the first diseases described[21] with an Egyptian manuscript from c. 1500 BCE mentioning "too great emptying of the urine."[160] The first described cases are believed to be of type 1 diabetes.[160] Indian physicians around the same time identified the disease and classified it as madhumeha or honey urine noting that the urine would attract ants.[160] The term "diabetes" or "to pass through" was first used in 230 BCE by the Greek Apollonius Memphites.[160] The disease was rare during the time of the Roman empire with Galen commenting that he had only seen two cases during his career.[160]

Type 1 and type 2 diabetes were identified as separate conditions for the first time by the Indian physicians Sushruta and Charaka in 400–500 AD with type 1 associated with youth and type 2 with being overweight.[160] Effective treatment was not developed until the early part of the 20th century when the Canadians Frederick Banting and Charles Best discovered insulin in 1921 and 1922.[160] This was followed by the development of the long acting NPH insulin in the 1940s.[160]

In 1916, Elliot Joslin proposed that in people with diabetes, periods of fasting are helpful.[161] Subsequent research has supported this, and weight loss is a first line treatment in type 2 diabetes.[161]

Research

Researchers developed the Diabetes Severity Score (DISSCO), a tool that might better than the standard blood test at identify if a person's condition is declining. It uses a computer algorithm to analyse data from anonymised electronic patient records and produces a score based on 34 indicators.[162][163]

References

  1. ^ a b c d e f g h i j k . World Health Organization. August 2011. Archived from the original on 26 August 2013. Retrieved 2012-01-09.
  2. ^ . International Diabetes Federation. 17 March 2006. Archived from the original on 5 August 2007.
  3. ^ a b c d e . National Institute of Diabetes and Digestive and Kidney Diseases. June 2014. Archived from the original on 6 March 2016. Retrieved 10 February 2016.
  4. ^ a b Pasquel FJ, Umpierrez GE (November 2014). "Hyperosmolar hyperglycemic state: a historic review of the clinical presentation, diagnosis, and treatment". Diabetes Care. 37 (11): 3124–31. doi:10.2337/dc14-0984. PMC 4207202. PMID 25342831.
  5. ^ a b Fasanmade OA, Odeniyi IA, Ogbera AO (June 2008). "Diabetic ketoacidosis: diagnosis and management". African Journal of Medicine and Medical Sciences. 37 (2): 99–105. PMID 18939392.
  6. ^ a b c d e f g "Causes of Diabetes". National Institute of Diabetes and Digestive and Kidney Diseases. June 2014. from the original on 2 February 2016. Retrieved 10 February 2016.
  7. ^ a b c Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, Chu Y, Iyoha E, Segal JB, Bolen S (June 2016). "Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes: A Systematic Review and Meta-analysis". Annals of Internal Medicine. 164 (11): 740–51. doi:10.7326/M15-2650. PMID 27088241. S2CID 32016657.
  8. ^ a b Cetinkunar S, Erdem H, Aktimur R, Sozen S (June 2015). "Effect of bariatric surgery on humoral control of metabolic derangements in obese patients with type 2 diabetes mellitus: How it works". World Journal of Clinical Cases. 3 (6): 504–9. doi:10.12998/wjcc.v3.i6.504. PMC 4468896. PMID 26090370.
  9. ^ a b Krentz AJ, Bailey CJ (February 2005). "Oral antidiabetic agents: current role in type 2 diabetes mellitus". Drugs. 65 (3): 385–411. doi:10.2165/00003495-200565030-00005. PMID 15669880. S2CID 29670619.
  10. ^ a b c d e f g h i j k l m n o p q r Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. (2011). Williams textbook of endocrinology (12th ed.). Philadelphia: Elsevier/Saunders. pp. 1371–1435. ISBN 978-1-4377-0324-5.
  11. ^ a b Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, et al. (GBD 2015 Disease and Injury Incidence and Prevalence Collaborators) (October 2016). "Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015". Lancet. 388 (10053): 1545–1602. doi:10.1016/S0140-6736(16)31678-6. PMC 5055577. PMID 27733282.
  12. ^ MacKay I, Rose N, eds. (2014). The Autoimmune Diseases. Academic Press. p. 575. ISBN 978-0-123-84929-8. OCLC 965646175.
  13. ^ a b c d e f g h i j k l m n o Gardner DG, Shoback D, eds. (2011). "Chapter 17: Pancreatic hormones & diabetes mellitus". Greenspan's basic & clinical endocrinology (9th ed.). New York: McGraw-Hill Medical. ISBN 978-0-07-162243-1. OCLC 613429053.
  14. ^ Saenz A, Fernandez-Esteban I, Mataix A, Ausejo M, Roque M, Moher D (July 2005). Saenz A (ed.). "Metformin monotherapy for type 2 diabetes mellitus". The Cochrane Database of Systematic Reviews (3): CD002966. doi:10.1002/14651858.CD002966.pub3. PMID 16034881. (Retracted)
  15. ^ Malanda UL, Welschen LM, Riphagen II, Dekker JM, Nijpels G, Bot SD (January 2012). "Self-monitoring of blood glucose in patients with type 2 diabetes mellitus who are not using insulin". The Cochrane Database of Systematic Reviews. 1: CD005060. doi:10.1002/14651858.CD005060.pub3. hdl:1871/48558. PMID 22258959. S2CID 205176936.
  16. ^ Ganguly S, Tan HC, Lee PC, Tham KW (April 2015). "Metabolic bariatric surgery and type 2 diabetes mellitus: an endocrinologist's perspective". Journal of Biomedical Research. 29 (2): 105–11. doi:10.7555/JBR.29.20140127. PMC 4389109. PMID 25859264.
  17. ^ Moscou S (2013). "Getting the word out: advocacy, social marketing, and policy development and enforcement". In Truglio-Londrigan M, Lewenson SB (eds.). Public health nursing: practicing population-based care (2nd ed.). Burlington, MA: Jones & Bartlett Learning. p. 317. ISBN 978-1-4496-4660-8. OCLC 758391750.
  18. ^ a b c Smyth S, Heron A (January 2006). "Diabetes and obesity: the twin epidemics". Nature Medicine. 12 (1): 75–80. doi:10.1038/nm0106-75. PMID 16397575. S2CID 1042625.
  19. ^ Tfayli H, Arslanian S (March 2009). "Pathophysiology of type 2 diabetes mellitus in youth: the evolving chameleon". Arquivos Brasileiros de Endocrinologia e Metabologia. 53 (2): 165–74. doi:10.1590/s0004-27302009000200008. PMC 2846552. PMID 19466209.
  20. ^ Imperatore G, Boyle JP, Thompson TJ, Case D, Dabelea D, Hamman RF, Lawrence JM, Liese AD, Liu LL, Mayer-Davis EJ, Rodriguez BL, Standiford D (December 2012). "Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2050: dynamic modeling of incidence, mortality, and population growth". Diabetes Care. 35 (12): 2515–20. doi:10.2337/dc12-0669. PMC 3507562. PMID 23173134.
  21. ^ a b Leutholtz BC, Ripoll I (2011). "Diabetes". Exercise and disease management (2nd ed.). Boca Raton: CRC Press. p. 25. ISBN 978-1-4398-2759-8. OCLC 725919496.
  22. ^ Zaccardi F, Webb DR, Yates T, Davies MJ (February 2016). "Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective". Postgraduate Medical Journal. 92 (1084): 63–9. doi:10.1136/postgradmedj-2015-133281. PMID 26621825. S2CID 28169759.
  23. ^ a b c d e f g h i j k Vijan S (March 2010). "In the clinic. Type 2 diabetes". Annals of Internal Medicine. 152 (5): ITC31–15, quiz ITC316. doi:10.7326/0003-4819-152-5-201003020-01003. PMID 20194231. S2CID 207535925.
  24. ^ Rathee M, Prachi J (2019). "Ageusia". StatPearls. StatPearls Publishing. PMID 31747182.
  25. ^ a b c d e f g h i j Ripsin CM, Kang H, Urban RJ (January 2009). "Management of blood glucose in type 2 diabetes mellitus". American Family Physician. 79 (1): 29–36. PMID 19145963.
  26. ^ Pasquier F (October 2010). "Diabetes and cognitive impairment: how to evaluate the cognitive status?". Diabetes & Metabolism. 36 (Suppl 3): S100-5. doi:10.1016/S1262-3636(10)70475-4. PMID 21211730.
  27. ^ Akinpelu OV, Mujica-Mota M, Daniel SJ (March 2014). "Is type 2 diabetes mellitus associated with alterations in hearing? A systematic review and meta-analysis". The Laryngoscope. 124 (3): 767–776. doi:10.1002/lary.24354. PMID 23945844. S2CID 25569962.
  28. ^ a b Risérus U, Willett WC, Hu FB (January 2009). "Dietary fats and prevention of type 2 diabetes". Progress in Lipid Research. 48 (1): 44–51. doi:10.1016/j.plipres.2008.10.002. PMC 2654180. PMID 19032965.
  29. ^ Hilawe EH, Yatsuya H, Kawaguchi L, Aoyama A (September 2013). "Differences by sex in the prevalence of diabetes mellitus, impaired fasting glycaemia and impaired glucose tolerance in sub-Saharan Africa: a systematic review and meta-analysis". Bulletin of the World Health Organization. 91 (9): 671–682D. doi:10.2471/BLT.12.113415. PMC 3790213. PMID 24101783.
  30. ^ Christian P, Stewart CP (March 2010). "Maternal micronutrient deficiency, fetal development, and the risk of chronic disease". The Journal of Nutrition. 140 (3): 437–45. doi:10.3945/jn.109.116327. PMID 20071652.
  31. ^ Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. (July 2016). "Human gut microbes impact host serum metabolome and insulin sensitivity". Nature. 535 (7612): 376–81. Bibcode:2016Natur.535..376P. doi:10.1038/nature18646. PMID 27409811. S2CID 4459808.[permanent dead link]
  32. ^ Abdullah A, Peeters A, de Courten M, Stoelwinder J (September 2010). "The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies". Diabetes Research and Clinical Practice. 89 (3): 309–19. doi:10.1016/j.diabres.2010.04.012. PMID 20493574.
  33. ^ Pan A, Wang Y, Talaei M, Hu FB, Wu T (December 2015). "Relation of active, passive, and quitting smoking with incident type 2 diabetes: a systematic review and meta-analysis". The Lancet. Diabetes & Endocrinology. 3 (12): 958–67. doi:10.1016/S2213-8587(15)00316-2. PMC 4656094. PMID 26388413.
  34. ^ a b Touma C, Pannain S (August 2011). "Does lack of sleep cause diabetes?". Cleveland Clinic Journal of Medicine. 78 (8): 549–58. doi:10.3949/ccjm.78a.10165. PMID 21807927. S2CID 45708828.
  35. ^ Malik VS, Popkin BM, Bray GA, Després JP, Hu FB (March 2010). "Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk". Circulation. 121 (11): 1356–64. doi:10.1161/CIRCULATIONAHA.109.876185. PMC 2862465. PMID 20308626.
  36. ^ Malik VS, Popkin BM, Bray GA, Després JP, Willett WC, Hu FB (November 2010). "Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis". Diabetes Care. 33 (11): 2477–83. doi:10.2337/dc10-1079. PMC 2963518. PMID 20693348.
  37. ^ Hu EA, Pan A, Malik V, Sun Q (March 2012). "White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review". BMJ. 344: e1454. doi:10.1136/bmj.e1454. PMC 3307808. PMID 22422870.
  38. ^ Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT (July 2012). "Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy". Lancet. 380 (9838): 219–29. doi:10.1016/S0140-6736(12)61031-9. PMC 3645500. PMID 22818936.
  39. ^ Lind L, Lind PM (June 2012). "Can persistent organic pollutants and plastic-associated chemicals cause cardiovascular disease?". Journal of Internal Medicine. 271 (6): 537–53. doi:10.1111/j.1365-2796.2012.02536.x. PMID 22372998. S2CID 41018361.
  40. ^ Willemsen G, Ward KJ, Bell CG, Christensen K, Bowden J, Dalgård C, et al. (December 2015). "The Concordance and Heritability of Type 2 Diabetes in 34,166 Twin Pairs From International Twin Registers: The Discordant Twin (DISCOTWIN) Consortium". Twin Research and Human Genetics. 18 (6): 762–771. doi:10.1017/thg.2015.83. PMID 26678054.
  41. ^ a b Herder C, Roden M (June 2011). "Genetics of type 2 diabetes: pathophysiologic and clinical relevance". European Journal of Clinical Investigation. 41 (6): 679–692. doi:10.1111/j.1365-2362.2010.02454.x. PMID 21198561. S2CID 43548816.
  42. ^ Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. (August 2016). "The genetic architecture of type 2 diabetes". Nature. 536 (7614): 41–47. Bibcode:2016Natur.536...41F. doi:10.1038/nature18642. PMC 5034897. PMID 27398621.
  43. ^ "Monogenic Forms of Diabetes: Neonatal Diabetes Mellitus and Maturity-onset Diabetes of the Young". National Diabetes Information Clearinghouse (NDIC). National Institute of Diabetes and Digestive and Kidney Diseases, NIH. March 2007. from the original on 2008-07-04. Retrieved 2008-08-04.
  44. ^ Rosen ED, Kaestner KH, Natarajan R, Patti ME, Sallari R, Sander M, Susztak K. Epigenetics and Epigenomics: Implications for Diabetes and Obesity. Diabetes. 2018 Oct;67(10):1923-1931. doi: 10.2337/db18-0537. PMID 30237160; PMCID: PMC6463748
  45. ^ a b Funnell MM, Anderson RM (2008). "Influencing self-management: from compliance to collaboration". In Bethel MN, Feinglos MA (eds.). Type 2 diabetes mellitus: an evidence-based approach to practical management. Contemporary endocrinology. Totowa, NJ: Humana Press. p. 462. ISBN 978-1-58829-794-5. OCLC 261324723.
  46. ^ Izzedine H, Launay-Vacher V, Deybach C, Bourry E, Barrou B, Deray G (November 2005). "Drug-induced diabetes mellitus". Expert Opinion on Drug Safety. 4 (6): 1097–1109. doi:10.1517/14740338.4.6.1097. PMID 16255667. S2CID 21532595.
  47. ^ Sampson UK, Linton MF, Fazio S (July 2011). "Are statins diabetogenic?". Current Opinion in Cardiology. 26 (4): 342–347. doi:10.1097/HCO.0b013e3283470359. PMC 3341610. PMID 21499090.
  48. ^ Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. (July 2010). "Diabetes and cancer: a consensus report". Diabetes Care (Professional society guidelines). 33 (7): 1674–1685. doi:10.2337/dc10-0666. PMC 2890380. PMID 20587728.
  49. ^ Saad F, Gooren L (March 2009). "The role of testosterone in the metabolic syndrome: a review". The Journal of Steroid Biochemistry and Molecular Biology. 114 (1–2): 40–43. doi:10.1016/j.jsbmb.2008.12.022. PMID 19444934. S2CID 22222112.
  50. ^ Farrell JB, Deshmukh A, Baghaie AA (2008). "Low testosterone and the association with type 2 diabetes". The Diabetes Educator. 34 (5): 799–806. doi:10.1177/0145721708323100. PMID 18832284.
  51. ^ Nieto-Martínez R, González-Rivas JP, Medina-Inojosa JR, Florez H (November 2017). "Are Eating Disorders Risk Factors for Type 2 Diabetes? A Systematic Review and Meta-analysis". Current Diabetes Reports (Systematic review and meta-analysis). 17 (12): 138. doi:10.1007/s11892-017-0949-1. PMID 29168047. S2CID 3688434.
  52. ^ Diabetes mellitus a guide to patient care. Philadelphia: Lippincott Williams & Wilkins. 2007. p. 15. ISBN 978-1-58255-732-8.
  53. ^ a b c Sun T, Han X (2019). "Death versus dedifferentiation: The molecular bases of beta cell mass reduction in type 2 diabetes". Seminars in Cell and Developmental Biology. 103: 76–82. doi:10.1016/j.semcdb.2019.12.002. PMID 31831356. S2CID 209341381.
  54. ^ Reed J, Bain S, Kanamarlapudi V (August 2021). "A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives". Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 14: 3567–3602. doi:10.2147/DMSO.S319895. PMC 8369920. PMID 34413662.
  55. ^ Schriever SC, Kabra DG, Pfuhlmann K, Baumann P, Baumgart EV, Nagler J, et al. (November 2020). "Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity". The Journal of Clinical Investigation. 130 (11): 6093–6108. doi:10.1172/JCI136363. PMC 7598066. PMID 32780722.
  56. ^ German JP, Wisse BE, Thaler JP, Oh-I S, Sarruf DA, Ogimoto K, et al. (July 2010). "Leptin deficiency causes insulin resistance induced by uncontrolled diabetes". Diabetes. 59 (7): 1626–1634. doi:10.2337/db09-1918. PMC 2889761. PMID 20424233.
  57. ^ Lundqvist MH, Almby K, Wiklund U, Abrahamsson N, Kamble PG, Pereira MJ, Eriksson JW (March 2021). "Altered hormonal and autonomic nerve responses to hypo- and hyperglycaemia are found in overweight and insulin-resistant individuals and may contribute to the development of type 2 diabetes". Diabetologia. 64 (3): 641–655. doi:10.1007/s00125-020-05332-z. PMC 7864814. PMID 33241460.
  58. ^ Salazar J, Chávez-Castillo M, Rojas J, Ortega A, Nava M, Pérez J, et al. (2020-07-23). "Is "Leptin Resistance" Another Key Resistance to Manage Type 2 Diabetes?". Current Diabetes Reviews. 16 (7): 733–749. doi:10.2174/1573399816666191230111838. PMID 31886750. S2CID 209510992.
  59. ^ Alonge KM, D'Alessio DA, Schwartz MW (January 2021). "Brain control of blood glucose levels: implications for the pathogenesis of type 2 diabetes". Diabetologia. 64 (1): 5–14. doi:10.1007/s00125-020-05293-3. PMC 7718404. PMID 33043401.
  60. ^ Bentsen MA, Rausch DM, Mirzadeh Z, Muta K, Scarlett JM, Brown JM, et al. (September 2020). "Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission". Nature Communications. 11 (1): 4458. Bibcode:2020NatCo..11.4458B. doi:10.1038/s41467-020-17720-5. PMC 7477234. PMID 32895383.
  61. ^ Adlanmerini M, Nguyen HC, Krusen BM, Teng CW, Geisler CE, Peed LC, et al. (January 2021). "Hypothalamic REV-ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet-induced obese mice". The Journal of Clinical Investigation. 131 (1): e140424. doi:10.1172/JCI140424. PMC 7773391. PMID 33021965.
  62. ^ Yasumoto Y, Miyazaki H, Ogata M, Kagawa Y, Yamamoto Y, Islam A, et al. (December 2018). "Glial Fatty Acid-Binding Protein 7 (FABP7) Regulates Neuronal Leptin Sensitivity in the Hypothalamic Arcuate Nucleus". Molecular Neurobiology. 55 (12): 9016–9028. doi:10.1007/s12035-018-1033-9. PMID 29623545. S2CID 4632807.
  63. ^ Young JK, Baker JH, Muller T (March 1996). "Immunoreactivity for brain-fatty acid binding protein in gomori-positive astrocytes". Glia. 16 (3): 218–226. doi:10.1002/(SICI)1098-1136(199603)16:3<218::AID-GLIA4>3.0.CO;2-Y. PMID 8833192. S2CID 9757285.
  64. ^ Schmidt SP, Corydon TJ, Pedersen CB, Vang S, Palmfeldt J, Stenbroen V, et al. (April 2011). "Toxic response caused by a misfolding variant of the mitochondrial protein short-chain acyl-CoA dehydrogenase". Journal of Inherited Metabolic Disease. 34 (2): 465–475. doi:10.1007/s10545-010-9255-7. PMC 3063561. PMID 21170680.
  65. ^ Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: Report of a WHO/IDF consultation (PDF). Geneva: World Health Organization. 2006. p. 21. ISBN 978-92-4-159493-6.
  66. ^ Vijan S (March 2010). "In the clinic. Type 2 diabetes". Annals of Internal Medicine. 152 (5): ITC31-15, quiz ITC316. doi:10.7326/0003-4819-152-5-201003020-01003. PMID 20194231.
  67. ^ World Health Organization. . Archived from the original on 2007-05-29. Retrieved 2007-05-29.
  68. ^ a b c International Expert Committee (July 2009). "International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes". Diabetes Care. 32 (7): 1327–34. doi:10.2337/dc09-9033. PMC 2699715. PMID 19502545.
  69. ^ American Diabetes Association (January 2010). "Diagnosis and classification of diabetes mellitus". Diabetes Care. 33 (Supplement_1): S62-9. doi:10.2337/dc10-S062. PMC 2797383. PMID 20042775.
  70. ^ a b c d e f g Fox CS, Golden SH, Anderson C, Bray GA, Burke LE, de Boer IH, et al. (September 2015). "Update on Prevention of Cardiovascular Disease in Adults With Type 2 Diabetes Mellitus in Light of Recent Evidence: A Scientific Statement From the American Heart Association and the American Diabetes Association". Diabetes Care (Professional society guidelines). 38 (9): 1777–1803. doi:10.2337/dci15-0012. PMC 4876675. PMID 26246459.
  71. ^ American Diabetes Association (January 2012). "Diagnosis and classification of diabetes mellitus". Diabetes Care. 35 (Suppl 1): S64-71. doi:10.2337/dc12-s064. PMC 3632174. PMID 22187472.
  72. ^ Kumar V, Fausto N, Abbas AK, Cotran RS, Robbins SL (2005). Robbins and Cotran Pathologic Basis of Disease (7th ed.). Philadelphia, Pa.: Saunders. pp. 1194–95. ISBN 978-0-7216-0187-8.
  73. ^ Diabetes mellitus a guide to patient care. Philadelphia: Lippincott Williams & Wilkins. 2007. p. 201. ISBN 978-1-58255-732-8.
  74. ^ Vivian EM, Blackorbay B (2013). "Chapter 13: Endocrine Disorders". In Lee M (ed.). Basic Skills in Interpreting Laboratory Data (5th ed.). Bethesda, MD: American Society of Health-System Pharmacists. ISBN 978-1-58528-345-3. OCLC 859778842.
  75. ^ Valdez R (July 2009). "Detecting undiagnosed type 2 diabetes: family history as a risk factor and screening tool". Journal of Diabetes Science and Technology. 3 (4): 722–6. doi:10.1177/193229680900300417. PMC 2769984. PMID 20144319.
  76. ^ a b Selph S, Dana T, Blazina I, Bougatsos C, Patel H, Chou R (June 2015). "Screening for type 2 diabetes mellitus: a systematic review for the U.S. Preventive Services Task Force". Annals of Internal Medicine. 162 (11): 765–76. doi:10.7326/M14-2221. PMID 25867111.
  77. ^ a b "Recommendation: Prediabetes and Type 2 Diabetes: Screening | United States Preventive Services Taskforce". www.uspreventiveservicestaskforce.org. Retrieved 2023-01-13.
  78. ^ Siu AL (December 2015). "Screening for Abnormal Blood Glucose and Type 2 Diabetes Mellitus: U.S. Preventive Services Task Force Recommendation Statement". Annals of Internal Medicine. 163 (11): 861–8. doi:10.7326/M15-2345. PMID 26501513.
  79. ^ a b c d "Standards of medical care in diabetes--2015: summary of revisions". Diabetes Care. 38 (38): S4. January 2015. doi:10.2337/dc15-S003. PMID 25537706.
  80. ^ a b "Archived: Diabetes Mellitus (Type 2) in Adults: Screening". U.S. Preventive Services Task Force. June 2008. from the original on 2014-02-07. Retrieved 2014-03-16.
  81. ^ Peer N, Balakrishna Y, Durao S (May 2020). "Screening for type 2 diabetes mellitus". The Cochrane Database of Systematic Reviews. 5 (6): CD005266. doi:10.1002/14651858.cd005266.pub2. PMC 7259754. PMID 32470201.
  82. ^ a b "Diabetes: putting people at the heart of services". NIHR Evidence. National Institute for Health and Care Research. 2022-07-26. doi:10.3310/nihrevidence_52026. S2CID 251299176.
  83. ^ "Are you at risk of diabetes? Research finds prevention should start at a different BMI for each ethnic group". NIHR Evidence (Plain English summary). National Institute for Health and Care Research. 2022-03-10. doi:10.3310/alert_48878. S2CID 247390548.
  84. ^ Caleyachetty R, Barber TM, Mohammed NI, Cappuccio FP, Hardy R, Mathur R, et al. (July 2021). "Ethnicity-specific BMI cutoffs for obesity based on type 2 diabetes risk in England: a population-based cohort study". The Lancet. Diabetes & Endocrinology. 9 (7): 419–426. doi:10.1016/S2213-8587(21)00088-7. PMC 8208895. PMID 33989535.
  85. ^ Raina Elley C, Kenealy T (December 2008). "Lifestyle interventions reduced the long-term risk of diabetes in adults with impaired glucose tolerance". Evidence-Based Medicine. 13 (6): 173. doi:10.1136/ebm.13.6.173. PMID 19043031. S2CID 26714233.
  86. ^ Hemmingsen B, Gimenez-Perez G, Mauricio D, Roqué I, Figuls M, Metzendorf MI, Richter B (December 2017). "Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus". The Cochrane Database of Systematic Reviews. 2017 (12): CD003054. doi:10.1002/14651858.CD003054.pub4. PMC 6486271. PMID 29205264.
  87. ^ a b Schellenberg ES, Dryden DM, Vandermeer B, Ha C, Korownyk C (October 2013). "Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis". Annals of Internal Medicine. 159 (8): 543–551. doi:10.7326/0003-4819-159-8-201310150-00007. PMID 24126648.
  88. ^ O'Gorman DJ, Krook A (September 2011). "Exercise and the treatment of diabetes and obesity". The Medical Clinics of North America. 95 (5): 953–969. doi:10.1016/j.mcna.2011.06.007. PMID 21855702.
  89. ^ Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, et al. (August 2016). "Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013". BMJ. 354: i3857. doi:10.1136/bmj.i3857. PMC 4979358. PMID 27510511.
  90. ^ Nield L, Summerbell CD, Hooper L, Whittaker V, Moore H (July 2008). Nield L (ed.). "Dietary advice for the prevention of type 2 diabetes mellitus in adults". The Cochrane Database of Systematic Reviews (3): CD005102. doi:10.1002/14651858.CD005102.pub2. hdl:10149/92337. PMID 18646120. S2CID 23039006. (Retracted)
  91. ^ Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ (August 2010). "Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis". BMJ. 341: c4229. doi:10.1136/bmj.c4229. PMC 2924474. PMID 20724400.
  92. ^ Schwingshackl L, Hoffmann G, Lampousi AM, Knüppel S, Iqbal K, Schwedhelm C, et al. (May 2017). "Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies". European Journal of Epidemiology. 32 (5): 363–375. doi:10.1007/s10654-017-0246-y. PMC 5506108. PMID 28397016.
  93. ^ Xi B, Li S, Liu Z, Tian H, Yin X, Huai P, et al. (2014). "Intake of fruit juice and incidence of type 2 diabetes: a systematic review and meta-analysis". PLOS ONE. 9 (3): e93471. Bibcode:2014PLoSO...993471X. doi:10.1371/journal.pone.0093471. PMC 3969361. PMID 24682091.
  94. ^ Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L (February 2019). "Carbohydrate quality and human health: a series of systematic reviews and meta-analyses". Lancet. 393 (10170): 434–445. doi:10.1016/S0140-6736(18)31809-9. PMID 30638909. S2CID 58632705.
  95. ^ a b c Madsen KS, Chi Y, Metzendorf MI, Richter B, Hemmingsen B, et al. (Cochrane Metabolic and Endocrine Disorders Group) (December 2019). "Metformin for prevention or delay of type 2 diabetes mellitus and its associated complications in persons at increased risk for the development of type 2 diabetes mellitus". The Cochrane Database of Systematic Reviews. 2019 (12): CD008558. doi:10.1002/14651858.CD008558.pub2. PMC 6889926. PMID 31794067.
  96. ^ a b c Moelands, Suzanne VL; Lucassen, Peter LBJ; Akkermans, Reinier P; De Grauw, Wim JC; Van de Laar, Floris A (2018-12-28). Cochrane Metabolic and Endocrine Disorders Group (ed.). "Alpha-glucosidase inhibitors for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus". Cochrane Database of Systematic Reviews. 2018 (12): CD005061. doi:10.1002/14651858.CD005061.pub3. PMC 6517235. PMID 30592787.
  97. ^ Haw JS, Galaviz KI, Straus AN, Kowalski AJ, Magee MJ, Weber MB, Wei J, Narayan KM, Ali MK (December 2017). "Long-term Sustainability of Diabetes Prevention Approaches: A Systematic Review and Meta-analysis of Randomized Clinical Trials". JAMA Internal Medicine. 177 (12): 1808–1817. doi:10.1001/jamainternmed.2017.6040. PMC 5820728. PMID 29114778.
  98. ^ Seida JC, Mitri J, Colmers IN, Majumdar SR, Davidson MB, Edwards AL, Hanley DA, Pittas AG, Tjosvold L, Johnson JA (October 2014). "Clinical review: Effect of vitamin D3 supplementation on improving glucose homeostasis and preventing diabetes: a systematic review and meta-analysis". The Journal of Clinical Endocrinology and Metabolism. 99 (10): 3551–60. doi:10.1210/jc.2014-2136. PMC 4483466. PMID 25062463.
  99. ^ Mannucci E, Giaccari A, Gallo M, Bonifazi A, Belén ÁD, Masini ML, et al. (February 2022). "Self-management in patients with type 2 diabetes: Group-based versus individual education. A systematic review with meta-analysis of randomized trails". Nutrition, Metabolism, and Cardiovascular Diseases. 32 (2): 330–336. doi:10.1016/j.numecd.2021.10.005. PMID 34893413. S2CID 244580173.
  100. ^ "Type 2 diabetes: The management of type 2 diabetes". May 2009. from the original on 2015-05-22.
  101. ^ Emdin CA, Rahimi K, Neal B, Callender T, Perkovic V, Patel A (February 2015). "Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis". JAMA. 313 (6): 603–615. doi:10.1001/jama.2014.18574. PMID 25668264.
  102. ^ McBrien K, Rabi DM, Campbell N, Barnieh L, Clement F, Hemmelgarn BR, et al. (September 2012). "Intensive and Standard Blood Pressure Targets in Patients With Type 2 Diabetes Mellitus: Systematic Review and Meta-analysis". Archives of Internal Medicine. 172 (17): 1296–1303. doi:10.1001/archinternmed.2012.3147. PMID 22868819.
  103. ^ Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, Lafont S, Bergeonneau C, Kassaï B, Erpeldinger S, Wright JM, Gueyffier F, Cornu C (July 2011). "Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials". BMJ. 343: d4169. doi:10.1136/bmj.d4169. PMC 3144314. PMID 21791495.
  104. ^ Webster MW (July 2011). "Clinical practice and implications of recent diabetes trials". Current Opinion in Cardiology. 26 (4): 288–93. doi:10.1097/HCO.0b013e328347b139. PMID 21577100. S2CID 20819316.
  105. ^ a b c Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR (March 2015). "Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes". Diabetologia. 58 (3): 429–42. doi:10.1007/s00125-014-3460-0. PMID 25583541.
  106. ^ Qaseem A, Wilt TJ, Kansagara D, Horwitch C, Barry MJ, Forciea MA (April 2018). "Hemoglobin A1c Targets for Glycemic Control With Pharmacologic Therapy for Nonpregnant Adults With Type 2 Diabetes Mellitus: A Guidance Statement Update From the American College of Physicians". Annals of Internal Medicine. 168 (8): 569–576. doi:10.7326/M17-0939. PMID 29507945.
  107. ^ Seaquist ER, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L, et al. (May 2013). "Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society". Diabetes Care (Professional society guidelines). 36 (5): 1384–1395. doi:10.2337/dc12-2480. PMC 3631867. PMID 23589542.
  108. ^ Makam AN, Nguyen OK (January 2017). "An Evidence-Based Medicine Approach to Antihyperglycemic Therapy in Diabetes Mellitus to Overcome Overtreatment". Circulation. 135 (2): 180–195. doi:10.1161/CIRCULATIONAHA.116.022622. PMC 5502688. PMID 28069712.
  109. ^ Simpson TC, Clarkson JE, Worthington HV, MacDonald L, Weldon JC, Needleman I, Iheozor-Ejiofor Z, Wild SH, Qureshi A, Walker A, Patel VA, Boyers D, Twigg J (April 14, 2022). "Treatment of periodontitis for glycaemic control in people with diabetes mellitus". The Cochrane Database of Systematic Reviews. 2022 (4): CD004714. doi:10.1002/14651858.CD004714.pub4. hdl:2164/20480. PMC 9009294. PMID 35420698.
  110. ^ Smith AD, Crippa A, Woodcock J, Brage S (December 2016). "Physical activity and incident type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of prospective cohort studies". Diabetologia. 59 (12): 2527–2545. doi:10.1007/s00125-016-4079-0. PMC 6207340. PMID 27747395.
  111. ^ Thomas DE, Elliott EJ, Naughton GA (July 2006). "Exercise for type 2 diabetes mellitus". The Cochrane Database of Systematic Reviews. 2009 (3): CD002968. doi:10.1002/14651858.CD002968.pub2. PMC 8989410. PMID 16855995. S2CID 25505640.
  112. ^ Davis N, Forbes B, Wylie-Rosett J (June 2009). "Nutritional strategies in type 2 diabetes mellitus". The Mount Sinai Journal of Medicine, New York. 76 (3): 257–268. doi:10.1002/msj.20118. PMID 19421969.
  113. ^ Magkos, Faidon; Hjorth, Mads F.; Astrup, Arne (October 2020). "Diet and exercise in the prevention and treatment of type 2 diabetes mellitus". Nature Reviews Endocrinology. 16 (10): 545–555. doi:10.1038/s41574-020-0381-5. ISSN 1759-5037. PMID 32690918. S2CID 220651657. A weight loss of ~15 kg, achieved by calorie restriction as part of an intensive management programme, can lead to remission of T2DM in ~80% of patients with obesity and T2DM.
  114. ^ "Achieving Type 2 Diabetes Remission through Weight Loss". National Institute of Diabetes and Digestive and Kidney Diseases. 30 September 2020. Retrieved 29 November 2023.
  115. ^ a b "Initial management of hyperglycemia in adults with type 2 diabetes mellitus". UpToDate. September 2023. Retrieved 29 November 2023.
  116. ^ American Diabetes Association (1 January 2021). "8. Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes—2021". Diabetes Care. 44 (Supplement_1): S100–S110. doi:10.2337/dc21-S008. PMID 33298419. S2CID 228087486.
  117. ^ Thomas D, Elliott EJ (January 2009). Thomas D (ed.). "Low glycaemic index, or low glycaemic load, diets for diabetes mellitus". The Cochrane Database of Systematic Reviews. 2009 (1): CD006296. doi:10.1002/14651858.CD006296.pub2. PMC 6486008. PMID 19160276.
  118. ^ Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman EC, et al. (January 2015). "Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base". Nutrition. 31 (1): 1–13. doi:10.1016/j.nut.2014.06.011. PMID 25287761.
  119. ^ Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ, et al. (January 2014). "Nutrition therapy recommendations for the management of adults with diabetes". Diabetes Care (Professional society guidelines). 37 (Supplement_1): S120–S143. doi:10.2337/dc14-S120. PMID 24357208.
  120. ^ Muley A, Fernandez R, Ellwood L, Muley P, Shah M (May 2021). "Effect of tree nuts on glycemic outcomes in adults with type 2 diabetes mellitus: a systematic review". JBI Evidence Synthesis. 19 (5): 966–1002. doi:10.11124/JBISRIR-D-19-00397. PMID 33141798. S2CID 226250006.
  121. ^ Gardner C, Wylie-Rosett J, Gidding SS, Steffen LM, Johnson RK, Reader D, Lichtenstein AH (August 2012). "Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart Association and the American Diabetes Association". Diabetes Care. 35 (8): 1798–1808. doi:10.2337/dc12-9002. PMC 3402256. PMID 22778165.
  122. ^ Xu B, Fu J, Qiao Y, Cao J, Deehan EC, Li Z, et al. (June 2021). "Higher intake of microbiota-accessible carbohydrates and improved cardiometabolic risk factors: a meta-analysis and umbrella review of dietary management in patients with type 2 diabetes". The American Journal of Clinical Nutrition. 113 (6): 1515–1530. doi:10.1093/ajcn/nqaa435. PMID 33693499.
  123. ^ Jovanovski E, Khayyat R, Zurbau A, Komishon A, Mazhar N, Sievenpiper JL, et al. (May 2019). "Should Viscous Fiber Supplements Be Considered in Diabetes Control? Results From a Systematic Review and Meta-analysis of Randomized Controlled Trials". Diabetes Care. 42 (5): 755–766. doi:10.2337/dc18-1126. PMID 30617143. S2CID 58665219.
  124. ^ Attridge M, Creamer J, Ramsden M, Cannings-John R, Hawthorne K (September 2014). "Culturally appropriate health education for people in ethnic minority groups with type 2 diabetes mellitus". The Cochrane Database of Systematic Reviews. 2014 (9): CD006424. doi:10.1002/14651858.CD006424.pub3. PMC 10680058. PMID 25188210.
  125. ^ Hackett, Ruth A.; Steptoe, Andrew (2017). "Type 2 diabetes mellitus and psychological stress — a modifiable risk factor". Nature Reviews Endocrinology. 13 (9): 547–560. doi:10.1038/nrendo.2017.64. ISSN 1759-5029. PMID 28664919. S2CID 34925223.
  126. ^ Ee, Carolyn C; Armour, Mike; Piya, Milan K; McMorrow, Rita; Al-Kanini, Ieman; Sabag, Angelo (2021-12-23). Cochrane Metabolic and Endocrine Disorders Group (ed.). "Mindfulness-based interventions for adults with type 2 diabetes mellitus". Cochrane Database of Systematic Reviews. 2021 (12): CD014881. doi:10.1002/14651858.CD014881. PMC 8701561.
  127. ^ Palmer SC, Mavridis D, Nicolucci A, Johnson DW, Tonelli M, Craig JC, Maggo J, Gray V, De Berardis G, Ruospo M, Natale P, Saglimbene V, Badve SV, Cho Y, Nadeau-Fredette AC, Burke M, Faruque L, Lloyd A, Ahmad N, Liu Y, Tiv S, Wiebe N, Strippoli GF (July 2016). "Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes: A Meta-analysis". JAMA. 316 (3): 313–24. doi:10.1001/jama.2016.9400. PMID 27434443.
  128. ^ Boussageon R, Supper I, Bejan-Angoulvant T, Kellou N, Cucherat M, Boissel JP, Kassai B, Moreau A, Gueyffier F, Cornu C (2012). Groop L (ed.). "Reappraisal of metformin efficacy in the treatment of type 2 diabetes: a meta-analysis of randomised controlled trials". PLOS Medicine. 9 (4): e1001204. doi:10.1371/journal.pmed.1001204. PMC 3323508. PMID 22509138.
  129. ^ Marx, Nikolaus; Davies, Melanie J; Grant, Peter J; Mathieu, Chantal; Petrie, John R; Cosentino, Francesco; Buse, John B (January 2021). "Guideline recommendations and the positioning of newer drugs in type 2 diabetes care". The Lancet Diabetes & Endocrinology. 9 (1): 46–52. doi:10.1016/S2213-8587(20)30343-0. PMID 33159841. S2CID 226280186.
  130. ^ American Diabetes Association Professional Practice Committee (January 2022). "9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022". Diabetes Care. 45 (Suppl 1): S125–S143. doi:10.2337/dc22-S009. PMID 34964831. S2CID 245538347.
  131. ^ Choi, Jin G.; Winn, Aaron N.; Skandari, M. Reza; Franco, Melissa I.; Staab, Erin M.; Alexander, Jason; Wan, Wen; Zhu, Mengqi; Huang, Elbert S.; Philipson, Louis; Laiteerapong, Neda (October 2022). "First-Line Therapy for Type 2 Diabetes With Sodium-Glucose Cotransporter-2 Inhibitors and Glucagon-Like Peptide-1 Receptor Agonists : A Cost-Effectiveness Study". Annals of Internal Medicine. 175 (10): 1392–1400. doi:10.7326/M21-2941. ISSN 1539-3704. PMC 10155215. PMID 36191315.
  132. ^ Baker, Chelsea; Retzik-Stahr, Cimmaron; Singh, Vatsala; Plomondon, Renee; Anderson, Victoria; Rasouli, Neda (13 January 2021). "Should metformin remain the first-line therapy for treatment of type 2 diabetes?". Therapeutic Advances in Endocrinology and Metabolism. 12: 2042018820980225. doi:10.1177/2042018820980225. ISSN 2042-0188. PMC 7809522. PMID 33489086.
  133. ^ Zheng SL, Roddick AJ, Aghar-Jaffar R, Shun-Shin MJ, Francis D, Oliver N, Meeran K (April 2018). "Association Between Use of Sodium-Glucose Cotransporter 2 Inhibitors, Glucagon-like Peptide 1 Agonists, and Dipeptidyl Peptidase 4 Inhibitors With All-Cause Mortality in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis". JAMA. 319 (15): 1580–1591. doi:10.1001/jama.2018.3024. PMC 5933330. PMID 29677303.
  134. ^ Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim SH (July 2007). Richter B (ed.). "Rosiglitazone for type 2 diabetes mellitus" (PDF). The Cochrane Database of Systematic Reviews. 2007 (3): CD006063. doi:10.1002/14651858.CD006063.pub2. PMC 7389529. PMID 17636824.
  135. ^ Chen X, Yang L, Zhai SD (December 2012). "Risk of cardiovascular disease and all-cause mortality among diabetic patients prescribed rosiglitazone or pioglitazone: a meta-analysis of retrospective cohort studies". Chinese Medical Journal. 125 (23): 4301–6. PMID 23217404.
  136. ^ Swinnen SG, Simon AC, Holleman F, Hoekstra JB, Devries JH (July 2011). Simon AC (ed.). "Insulin detemir versus insulin glargine for type 2 diabetes mellitus". The Cochrane Database of Systematic Reviews. 2011 (7): CD006383. doi:10.1002/14651858.CD006383.pub2. PMC 6486036. PMID 21735405.
  137. ^ Waugh N, Cummins E, Royle P, Clar C, Marien M, Richter B, Philip S (July 2010). "Newer agents for blood glucose control in type 2 diabetes: systematic review and economic evaluation". Health Technology Assessment. 14 (36): 1–248. doi:10.3310/hta14360. PMID 20646668.
  138. ^ Mitchell S, Malanda B, Damasceno A, Eckel RH, Gaita D, Kotseva K, et al. (September 2019). "A Roadmap on the Prevention of Cardiovascular Disease Among People Living With Diabetes". Global Heart. 14 (3): 215–240. doi:10.1016/j.gheart.2019.07.009. PMID 31451236.
  139. ^ Brunström M, Carlberg B (February 2016). "Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses". BMJ. 352: i717. doi:10.1136/bmj.i717. PMC 4770818. PMID 26920333.
  140. ^ Brunström M, Carlberg B (September 2019). "Benefits and harms of lower blood pressure treatment targets: systematic review and meta-analysis of randomised placebo-controlled trials". BMJ Open. 9 (9): e026686. doi:10.1136/bmjopen-2018-026686. PMC 6773352. PMID 31575567.
  141. ^ Cheng J, Zhang W, Zhang X, Han F, Li X, He X, et al. (May 2014). "Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis". JAMA Internal Medicine. 174 (5): 773–785. doi:10.1001/jamainternmed.2014.348. PMID 24687000.
  142. ^ Zheng SL, Roddick AJ, Ayis S (September 2017). "Effects of aliskiren on mortality, cardiovascular outcomes and adverse events in patients with diabetes and cardiovascular disease or risk: A systematic review and meta-analysis of 13,395 patients". Diabetes & Vascular Disease Research. 14 (5): 400–406. doi:10.1177/1479164117715854. PMC 5600262. PMID 28844155.
  143. ^ a b Catalá-López F, Macías Saint-Gerons D, González-Bermejo D, Rosano GM, Davis BR, Ridao M, et al. (March 2016). "Cardiovascular and Renal Outcomes of Renin-Angiotensin System Blockade in Adult Patients with Diabetes Mellitus: A Systematic Review with Network Meta-Analyses". PLOS Medicine. 13 (3): e1001971. doi:10.1371/journal.pmed.1001971. PMC 4783064. PMID 26954482.
  144. ^ Pignone M, Alberts MJ, Colwell JA, Cushman M, Inzucchi SE, Mukherjee D, Rosenson RS, Williams CD, Wilson PW, Kirkman MS (June 2010). "Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus document of the American College of Cardiology Foundation". Diabetes Care. 33 (6): 1395–402. doi:10.2337/dc10-0555. PMC 2875463. PMID 20508233.
  145. ^ Mirhosseini N, Vatanparast H, Mazidi M, Kimball SM (September 2017). "The Effect of Improved Serum 25-Hydroxyvitamin D Status on Glycemic Control in Diabetic Patients: A Meta-Analysis". The Journal of Clinical Endocrinology and Metabolism. 102 (9): 3097–3110. doi:10.1210/jc.2017-01024. PMID 28957454.
  146. ^ Neves AL, Freise L, Laranjo L, Carter AW, Darzi A, Mayer E (December 2020). "Impact of providing patients access to electronic health records on quality and safety of care: a systematic review and meta-analysis". BMJ Quality & Safety. 29 (12): 1019–1032. doi:10.1136/bmjqs-2019-010581. PMC 7785164. PMID 32532814.
  147. ^ "Sharing electronic records with patients led to improved control of type two diabetes". NIHR Evidence (Plain English summary). 2020-10-21. doi:10.3310/alert_42103. S2CID 242149388.
  148. ^ Picot J, Jones J, Colquitt JL, Gospodarevskaya E, Loveman E, Baxter L, Clegg AJ (September 2009). "The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation". Health Technology Assessment. 13 (41): 1–190, 215–357, iii–iv. doi:10.3310/hta13410. hdl:10536/DRO/DU:30064294. PMID 19726018.
  149. ^ Frachetti KJ, Goldfine AB (April 2009). "Bariatric surgery for diabetes management". Current Opinion in Endocrinology, Diabetes and Obesity. 16 (2): 119–24. doi:10.1097/MED.0b013e32832912e7. PMID 19276974. S2CID 31797748.
  150. ^ a b Schulman AP, del Genio F, Sinha N, Rubino F (September–October 2009). ""Metabolic" surgery for treatment of type 2 diabetes mellitus". Endocrine Practice. 15 (6): 624–31. doi:10.4158/EP09170.RAR. PMID 19625245.
  151. ^ Colucci RA (January 2011). "Bariatric surgery in patients with type 2 diabetes: a viable option". Postgraduate Medicine. 123 (1): 24–33. doi:10.3810/pgm.2011.01.2242. PMID 21293081. S2CID 207551737.
  152. ^ Dixon JB, le Roux CW, Rubino F, Zimmet P (June 2012). "Bariatric surgery for type 2 diabetes". Lancet. 379 (9833): 2300–11. doi:10.1016/S0140-6736(12)60401-2. PMID 22683132. S2CID 5198462.
  153. ^ Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KG, Zimmet PZ, Del Prato S, Ji L, Sadikot SM, Herman WH, Amiel SA, Kaplan LM, Taroncher-Oldenburg G, Cummings DE (June 2016). "Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations". Diabetes Care. 39 (6): 861–77. doi:10.2337/dc16-0236. PMID 27222544.
  154. ^ International Diabetes Federation 2021, p. 33.
  155. ^ Kahn, Ferris & O'Neill 2020, Epidemiology.
  156. ^ Olaogun, Idowu; Farag, Mina; Hamid, Pousettef (2020). "The Pathophysiology of Type 2 Diabetes Mellitus in Non-obese Individuals: An Overview of the Current Understanding". Cureus. 12 (4): e7614. doi:10.7759/cureus.7614. ISSN 2168-8184. PMC 7213678. PMID 32399348.
  157. ^ Salvatore, Teresa; Galiero, Raffaele; Caturano, Alfredo; Rinaldi, Luca; Criscuolo, Livio; Di Martino, Anna; Albanese, Gaetana; Vetrano, Erica; Catalini, Christian; Sardu, Celestino; Docimo, Giovanni; Marfella, Raffaele; Sasso, Ferdinando Carlo (30 December 2022). "Current Knowledge on the Pathophysiology of Lean/Normal-Weight Type 2 Diabetes". International Journal of Molecular Sciences. 24 (1): 658. doi:10.3390/ijms24010658. ISSN 1422-0067. PMC 9820420. PMID 36614099.
  158. ^ Vipin, Vidyadharan Alukkal; Blesson, Chellakkan Selvanesan; Yallampalli, Chandra (15 March 2022). "Maternal low protein diet and fetal programming of lean type 2 diabetes". World Journal of Diabetes. 13 (3): 185–202. doi:10.4239/wjd.v13.i3.185. ISSN 1948-9358. PMC 8984567. PMID 35432755.
  159. ^ Wild S, Roglic G, Green A, Sicree R, King H (May 2004). "Global prevalence of diabetes: estimates for the year 2000 and projections for 2030". Diabetes Care. 27 (5): 1047–53. doi:10.2337/diacare.27.5.1047. PMID 15111519.
  160. ^ a b c d e f g h Zajac J, Shrestha A, Patel P, Poretsky L (2009). "The Main Events in the History of Diabetes Mellitus". In Poretsky L (ed.). Principles of diabetes mellitus (2nd ed.). New York: Springer. pp. 3–16. ISBN 978-0-387-09840-1. OCLC 663097550.
  161. ^ a b Koutroumpakis E, Jozwik B, Aguilar D, Taegtmeyer H (March 2020). "Strategies of Unloading the Failing Heart from Metabolic Stress". The American Journal of Medicine (Review). 133 (3): 290–296. doi:10.1016/j.amjmed.2019.08.035. PMC 7054139. PMID 31520618.
  162. ^ "New tool for assessing the severity of type 2 diabetes could help personalise treatment and improve outcomes". NIHR Evidence (Plain English summary). National Institute for Health and Care Research. 2020-08-07. doi:10.3310/alert_40652. S2CID 242997909.
  163. ^ Zghebi SS, Mamas MA, Ashcroft DM, Salisbury C, Mallen CD, Chew-Graham CA, et al. (May 2020). "Development and validation of the DIabetes Severity SCOre (DISSCO) in 139 626 individuals with type 2 diabetes: a retrospective cohort study". BMJ Open Diabetes Research & Care. 8 (1): e000962. doi:10.1136/bmjdrc-2019-000962. PMC 7228474. PMID 32385076.

Works cited

  • Kahn CR, Ferris HA, O'Neill BT (2020). "Pathophysiology of Type 1 Diabetes Mellitus". Williams Textbook of Endocrinology (14 ed.). Elsevier. pp. 1349–1370.
  • International Diabetes Federation (2021). IDF Diabetes Atlas (PDF) (10 ed.). International Diabetes Federation. ISBN 9782930229980. Retrieved 18 March 2022.

External links

  • IDF Diabetes Atlas 2015
  • National Diabetes Information Clearinghouse 2010-02-21 at the Wayback Machine
  • Centers for Disease Control (Endocrine pathology)
  • ADA's Standards of Medical Care in Diabetes 2019

type, diabetes, formerly, known, adult, onset, diabetes, form, diabetes, mellitus, that, characterized, high, blood, sugar, insulin, resistance, relative, lack, insulin, common, symptoms, include, increased, thirst, frequent, urination, fatigue, unexplained, w. Type 2 diabetes T2D formerly known as adult onset diabetes is a form of diabetes mellitus that is characterized by high blood sugar insulin resistance and relative lack of insulin 6 Common symptoms include increased thirst frequent urination fatigue and unexplained weight loss 3 Symptoms may also include increased hunger having a sensation of pins and needles and sores wounds that do not heal 3 Often symptoms come on slowly 6 Long term complications from high blood sugar include heart disease strokes diabetic retinopathy which can result in blindness kidney failure and poor blood flow in the limbs which may lead to amputations 1 The sudden onset of hyperosmolar hyperglycemic state may occur however ketoacidosis is uncommon 4 5 Type 2 diabetesOther namesDiabetes mellitus type 2 adult onset diabetes 1 noninsulin dependent diabetes mellitus NIDDM A blue circle is the universal symbol of diabetes 2 Pronunciation d aɪ e b iː t e s SpecialtyEndocrinologySymptomsIncreased thirst frequent urination unexplained weight loss increased hunger 3 ComplicationsHyperosmolar hyperglycemic state diabetic ketoacidosis heart disease strokes diabetic retinopathy kidney failure amputations 1 4 5 Usual onsetMiddle or older age 6 DurationLong term 6 CausesObesity lack of exercise genetics 1 6 Diagnostic methodBlood test 3 PreventionMaintaining normal weight exercising healthy diet 1 TreatmentDietary changes metformin insulin bariatric surgery 1 7 8 9 Prognosis10 year shorter life expectancy 10 Frequency392 million 2015 11 Type 2 diabetes primarily occurs as a result of obesity and lack of exercise 1 Some people are genetically more at risk than others 6 Type 2 diabetes makes up about 90 of cases of diabetes with the other 10 due primarily to type 1 diabetes and gestational diabetes 1 In type 1 diabetes there is a lower total level of insulin to control blood glucose due to an autoimmune induced loss of insulin producing beta cells in the pancreas 12 13 Diagnosis of diabetes is by blood tests such as fasting plasma glucose oral glucose tolerance test or glycated hemoglobin A1C 3 Type 2 diabetes is largely preventable by staying a normal weight exercising regularly and eating a healthy diet high in fruits and vegetables and low in sugar and saturated fats 1 Treatment involves exercise and dietary changes 1 If blood sugar levels are not adequately lowered the medication metformin is typically recommended 7 14 Many people may eventually also require insulin injections 9 In those on insulin routinely checking blood sugar levels such as through a continuous glucose monitor is advised however this may not be needed in those who are not on insulin therapy 15 Bariatric surgery often improves diabetes in those who are obese 8 16 Rates of type 2 diabetes have increased markedly since 1960 in parallel with obesity 17 As of 2015 there were approximately 392 million people diagnosed with the disease compared to around 30 million in 1985 11 18 Typically it begins in middle or older age 6 although rates of type 2 diabetes are increasing in young people 19 20 Type 2 diabetes is associated with a ten year shorter life expectancy 10 Diabetes was one of the first diseases ever described dating back to an Egyptian manuscript from c 1500 BCE 21 The importance of insulin in the disease was determined in the 1920s 22 Contents 1 Signs and symptoms 1 1 Complications 2 Causes 2 1 Lifestyle 2 2 Genetics 2 3 Epigenetics 2 4 Medical conditions 3 Pathophysiology 4 Diagnosis 5 Screening 6 Prevention 7 Management 7 1 Lifestyle 7 1 1 Exercise 7 1 2 Diet 7 1 3 Stress management 7 2 Medications 7 2 1 Blood sugar control 7 2 2 Blood pressure lowering 7 2 3 Other 7 3 Surgery 8 Epidemiology 9 History 10 Research 11 References 11 1 Works cited 12 External linksSigns and symptoms nbsp Overview of the most significant symptoms of diabetesThe classic symptoms of diabetes are frequent urination polyuria increased thirst polydipsia increased hunger polyphagia and weight loss 23 Other symptoms that are commonly present at diagnosis include a history of blurred vision itchiness peripheral neuropathy recurrent vaginal infections and fatigue 13 Other symptoms may include loss of taste 24 Many people however have no symptoms during the first few years and are diagnosed on routine testing 13 A small number of people with type 2 diabetes can develop a hyperosmolar hyperglycemic state a condition of very high blood sugar associated with a decreased level of consciousness and low blood pressure 13 Complications Main article Complications of diabetes Type 2 diabetes is typically a chronic disease associated with a ten year shorter life expectancy 10 This is partly due to a number of complications with which it is associated including two to four times the risk of cardiovascular disease including ischemic heart disease and stroke a 20 fold increase in lower limb amputations and increased rates of hospitalizations 10 In the developed world and increasingly elsewhere type 2 diabetes is the largest cause of nontraumatic blindness and kidney failure 25 It has also been associated with an increased risk of cognitive dysfunction and dementia through disease processes such as Alzheimer s disease and vascular dementia 26 Other complications include hyperpigmentation of skin acanthosis nigricans sexual dysfunction and frequent infections 23 There is also an association between type 2 diabetes and mild hearing loss 27 CausesThe development of type 2 diabetes is caused by a combination of lifestyle and genetic factors 25 28 While some of these factors are under personal control such as diet and obesity other factors are not such as increasing age female sex and genetics 10 Obesity is more common in women than men in many parts of Africa 29 The nutritional status of a mother during fetal development may also play a role with one proposed mechanism being that of DNA methylation 30 The intestinal bacteria Prevotella copri and Bacteroides vulgatus have been connected with type 2 diabetes 31 Lifestyle Main article Lifestyle causes of type 2 diabetes Lifestyle factors are important to the development of type 2 diabetes including obesity and being overweight defined by a body mass index of greater than 25 lack of physical activity poor diet psychological stress and urbanization 10 32 Excess body fat is associated with 30 of cases in those of Chinese and Japanese descent 60 80 of cases in those of European and African descent and 100 of cases in Pima Indians and Pacific Islanders 13 Among those who are not obese a high waist hip ratio is often present 13 Smoking appears to increase the risk of type 2 diabetes 33 A lack of sleep has also been linked to type 2 diabetes 34 Laboratory studies have linked short term sleep deprivations to changes in glucose metabolism nervous system activity or hormonal factors that may lead to diabetes 34 Dietary factors also influence the risk of developing type 2 diabetes Consumption of sugar sweetened drinks in excess is associated with an increased risk 35 36 The type of fats in the diet are important with saturated fats and trans fatty acids increasing the risk and polyunsaturated and monounsaturated fat decreasing the risk 28 Eating a lot of white rice appears to play a role in increasing risk 37 A lack of exercise is believed to cause 7 of cases 38 Persistent organic pollutants may also play a role 39 Genetics Main article Genetic causes of type 2 diabetes Most cases of diabetes involve many genes with each being a small contributor to an increased probability of becoming a type 2 diabetic 10 The proportion of diabetes that is inherited is estimated at 72 40 More than 36 genes and 80 single nucleotide polymorphisms SNPs had been found that contribute to the risk of type 2 diabetes 41 42 All of these genes together still only account for 10 of the total heritable component of the disease 41 The TCF7L2 allele for example increases the risk of developing diabetes by 1 5 times and is the greatest risk of the common genetic variants 13 Most of the genes linked to diabetes are involved in pancreatic beta cell functions 13 There are a number of rare cases of diabetes that arise due to an abnormality in a single gene known as monogenic forms of diabetes or other specific types of diabetes 10 13 These include maturity onset diabetes of the young MODY Donohue syndrome and Rabson Mendenhall syndrome among others 10 Maturity onset diabetes of the young constitute 1 5 of all cases of diabetes in young people 43 Epigenetics Epigenetic regulation occurs at multiple levels including 1 direct methylation of cytosine and adenine residues in DNA 2 covalent modification of histone proteins in chromatin and 3 action of non coding microRNAs for other examples see Wikipedia article Epigenetics On November 17 19 2017 the American Diabetes Association held a research symposium entitled Epigenetics and Epigenomics Implications for Diabetes and Obesity As a result of this symposium an overview of the state of the field was presented in which it was noted that over 1 000 research articles have been published that address the intersection of diabetes and epigenetics or epigenomics 44 The current state of knowledge in this field is addressed the Wikipedia article Epigenetics of diabetes Type 2 Medical conditions There are a number of medications and other health problems that can predispose to diabetes 45 Some of the medications include glucocorticoids thiazides beta blockers atypical antipsychotics 46 and statins 47 Those who have previously had gestational diabetes are at a higher risk of developing type 2 diabetes 23 Other health problems that are associated include acromegaly Cushing s syndrome hyperthyroidism pheochromocytoma and certain cancers such as glucagonomas 45 Individuals with cancer may be at a higher risk of mortality if they also have diabetes 48 Testosterone deficiency is also associated with type 2 diabetes 49 50 Eating disorders may also interact with type 2 diabetes with bulimia nervosa increasing the risk and anorexia nervosa decreasing it 51 PathophysiologyType 2 diabetes is due to insufficient insulin production from beta cells in the setting of insulin resistance 13 Insulin resistance which is the inability of cells to respond adequately to normal levels of insulin occurs primarily within the muscles liver and fat tissue 52 In the liver insulin normally suppresses glucose release However in the setting of insulin resistance the liver inappropriately releases glucose into the blood 10 The proportion of insulin resistance versus beta cell dysfunction differs among individuals with some having primarily insulin resistance and only a minor defect in insulin secretion and others with slight insulin resistance and primarily a lack of insulin secretion 13 Other potentially important mechanisms associated with type 2 diabetes and insulin resistance include increased breakdown of lipids within fat cells resistance to and lack of incretin high glucagon levels in the blood increased retention of salt and water by the kidneys and inappropriate regulation of metabolism by the central nervous system 10 However not all people with insulin resistance develop diabetes since an impairment of insulin secretion by pancreatic beta cells is also required 13 In the early stages of insulin resistance the mass of beta cells expands increasing the output of insulin to compensate for the insulin insensitivity 53 But when type 2 diabetes has become manifest a type 2 diabetic will have lost about half of their beta cells 53 Fatty acids in the beta cells activate FOXO1 resulting in apoptosis of the beta cells 53 The causes of the aging related insulin resistance seen in obesity and in type 2 diabetes are uncertain Effects of intracellular lipid metabolism and ATP production in liver and muscle cells may contribute to insulin resistance 54 New evidence also points to a role of a brain region called the hypothalamus in the development of insulin resistance For one thing a gene called Dusp8 is linked with an increased risk for diabetes 55 This gene codes for a protein that regulates neuronal signaling in the hypothalamus Also infusions into the hypothalamus of a hormone called leptin normalize blood glucose and diminish insulin resistance in diabetic animals 56 Activation of hypothalamic cells by leptin has an important role in maintaining normal levels of blood glucose Thus both the endocrine cells of the pancreas AND cells in the hypothalamus may have a role in the etiology of type 2 diabetes Hypothalamic cells regulate blood glucose via projections to the autonomic nervous system Autonomic innervation of liver and muscle cells stimulates an increased uptake of glucose In diabetic humans the control of blood glucose by the autonomic nervous system is abnormal 57 Leptin sensitive glucose regulating neurons become resistant to leptin during aging or during exposure to a high fat diet These leptin resistant neurons fail to restrain food intake obesity and blood glucose The reasons for this lowered responsiveness to leptin are uncertain and are part of the puzzle of the causes of type 2 diabetes 58 Blood glucose levels can also be normalized in diabetic rodents by a single intrahypothalamic infusion of Fibroblast Growth Factor 1 FGF1 an effect that persists for months even in severely diabetic animals This remarkable cure of diabetes is accomplished by a stimulation of accessory brain cells called astrocytes 59 60 Hypothalamic astrocytes that produce Fatty Acid Binding Protein 7 FABP7 are targets of FGF1 these cells are also in close contact with leptin sensitive neurons influence their function and regulate leptin sensitivity 61 62 An abnormal function of FABP7 astrocytes thus may contribute to the resistance to leptin and insulin that appear during aging and during exposure to high fat diets During aging FABP7 astrocytes develop cytoplasmic granules derived from degenerating mitochondria This mitochondrial degeneration is partly due to the oxidative stress of the heightened amounts of fatty acids that are taken up by these cells and oxidized within mitochondria 63 64 A pathological degeneration of mitochondria in these cells may compromise their normal functions and contribute to abnormalities in the control of blood glucose by the hypothalamus DiagnosisWHO diabetes diagnostic criteria 65 66 edit Condition 2 hour glucose Fasting glucose HbA1cUnit mmol L mg dL mmol L mg dL mmol mol DCCT Normal lt 7 8 lt 140 lt 6 1 lt 110 lt 42 lt 6 0Impaired fasting glycaemia lt 7 8 lt 140 6 1 7 0 110 125 42 46 6 0 6 4Impaired glucose tolerance 7 8 140 lt 7 0 lt 126 42 46 6 0 6 4Diabetes mellitus 11 1 200 7 0 126 48 6 5The World Health Organization definition of diabetes both type 1 and type 2 is for a single raised glucose reading with symptoms otherwise raised values on two occasions of either 67 fasting plasma glucose 7 0 mmol L 126 mg dL orwith a glucose tolerance test two hours after the oral dose a plasma glucose 11 1 mmol L 200 mg dL A random blood sugar of greater than 11 1 mmol L 200 mg dL in association with typical symptoms 23 or a glycated hemoglobin HbA1c of 48 mmol mol 6 5 DCCT is another method of diagnosing diabetes 10 In 2009 an International Expert Committee that included representatives of the American Diabetes Association ADA the International Diabetes Federation IDF and the European Association for the Study of Diabetes EASD recommended that a threshold of 48 mmol mol 6 5 DCCT should be used to diagnose diabetes 68 This recommendation was adopted by the American Diabetes Association in 2010 69 Positive tests should be repeated unless the person presents with typical symptoms and blood sugars gt 11 1 mmol L gt 200 mg dL 68 ADA diabetes diagnostic criteria in 2015 70 Diabetes mellitus PrediabetesHbA1c 6 5 5 7 6 4 Fasting glucose 126 mg dL 100 125 mg dL2h glucose 200 mg dL 140 199 mg dLRandom glucose with classic symptoms 200 mg dL Not availableThreshold for diagnosis of diabetes is based on the relationship between results of glucose tolerance tests fasting glucose or HbA1c and complications such as retinal problems 10 A fasting or random blood sugar is preferred over the glucose tolerance test as they are more convenient for people 10 HbA1c has the advantages that fasting is not required and results are more stable but has the disadvantage that the test is more costly than measurement of blood glucose 71 It is estimated that 20 of people with diabetes in the United States do not realize that they have the disease 10 Type 2 diabetes is characterized by high blood glucose in the context of insulin resistance and relative insulin deficiency 72 This is in contrast to type 1 diabetes in which there is an absolute insulin deficiency due to destruction of islet cells in the pancreas and gestational diabetes that is a new onset of high blood sugars associated with pregnancy 13 Type 1 and type 2 diabetes can typically be distinguished based on the presenting circumstances 68 If the diagnosis is in doubt antibody testing may be useful to confirm type 1 diabetes and C peptide levels may be useful to confirm type 2 diabetes 73 with C peptide levels normal or high in type 2 diabetes but low in type 1 diabetes 74 ScreeningUniversal screening for diabetes in people without risk factors or symptoms is not recommended 75 76 Screening is recommended by the World Health Organization the United States Preventive Services Task Force USPSTF and the American Diabetes Association for high risk adults 77 78 79 Risk factors considered by the USPSTF include adults over 35 years old who are overweight or have obesity and adults without symptoms whose blood pressure is greater than 135 80 mmHg 80 needs update 77 For those whose blood pressure is less the evidence is insufficient to recommend for or against screening 80 needs update The American Diabetes Society recommends screening for adults with a body mass index BMI over 25 79 For people of Asian descent screening is recommended if they have a BMI over 23 79 Other high risk groups include people with a first degree relative with diabetes some ethnic groups including Hispanics African Americans and Native Americans a history of gestational diabetes polycystic ovary syndrome excess weight and conditions associated with metabolic syndrome 23 There is no evidence that screening changes the risk of death and any benefit of screening on adverse effects incidence of type 2 diabetes HbA1c or socioeconomic effects are not clear 76 81 In the UK NICE guidelines suggest taking action to prevent diabetes for people with a body mass index BMI of 30 or more 82 For people of Black African African Caribbean South Asian and Chinese descent the recommendation to start prevention starts at the BMI of 27 5 82 A study based on a large sample of people in England suggest even lower BMIs for certain ethnic groups for the start of prevention for example 24 in South Asian and 21 in Bangladeshi populations 83 84 PreventionMain article Prevention of type 2 diabetes Onset of type 2 diabetes can be delayed or prevented through proper nutrition and regular exercise 85 86 Intensive lifestyle measures may reduce the risk by over half 25 87 The benefit of exercise occurs regardless of the person s initial weight or subsequent weight loss 88 High levels of physical activity reduce the risk of diabetes by about 28 89 Evidence for the benefit of dietary changes alone however is limited 90 with some evidence for a diet high in green leafy vegetables 91 and some for limiting the intake of sugary drinks 92 There is an association between higher intake of sugar sweetened fruit juice and diabetes but no evidence of an association with 100 fruit juice 93 A 2019 review found evidence of benefit from dietary fiber 94 In those with impaired glucose tolerance a 2019 systematic review found moderate quality evidence that Metformin when compared to diet and exercise or a placebo intervention appeared to delay or reduce the risk of developing type 2 diabetes 95 This same review found moderate quality evidence that when compared to intensive diet and exercise Metformin did not reduce risk of developing type 2 diabetes as well as very low quality evidence that combining Metformin with intensive diet and exercise does not appear to have any effect on risk of developing type 2 diabetes when compared to intensive diet and exercise alone 95 This systematic review only found one suitable trial comparing Metformin with Sulphonylurea in reducing risk of type 2 diabetes but it did not report any patient relevant outcomes 95 A Cochrane systematic review assessed the effect of alpha glucosidase inhibitors in people with impaired glucose tolerance impaired fasting blood glucose elevated glycated hemoglobin A1c HbA1c 96 It was found that Acarbose appeared to reduce incidence of diabetes mellitus type 2 when compared to placebo however there was no conclusive evidence that acarbose compare to diet and exercise metformin placebo no intervention improved all cause mortality reduced or increased risk of cardiovascular mortality serious or non serious adverse events non fatal stroke congestive heart failure or non fatal myocardial infarction 96 The same review found that there was no conclusive evidence that voglibose compared to diet and exercise or placebo reduced incidence of diabetes mellitus type 2 or any of the other measured outcomes 96 A 2017 review found that long term lifestyle changes decreased the risk by 28 while medication does not reduce risk after withdrawal 97 While low vitamin D levels are associated with an increased risk of diabetes correcting the levels by supplementing vitamin D3 does not improve that risk 98 ManagementFurther information Diabetes management Management of type 2 diabetes focuses on lifestyle interventions lowering other cardiovascular risk factors and maintaining blood glucose levels in the normal range 25 Self monitoring of blood glucose for people with newly diagnosed type 2 diabetes may be used in combination with education 99 although the benefit of self monitoring in those not using multi dose insulin is questionable 25 In those who do not want to measure blood levels measuring urine levels may be done 100 Managing other cardiovascular risk factors such as hypertension high cholesterol and microalbuminuria improves a person s life expectancy 25 Decreasing the systolic blood pressure to less than 140 mmHg is associated with a lower risk of death and better outcomes 101 Intensive blood pressure management less than 130 80 mmHg as opposed to standard blood pressure management less than 140 160 mmHg systolic to 85 100 mmHg diastolic results in a slight decrease in stroke risk but no effect on overall risk of death 102 Intensive blood sugar lowering HbA1c lt 6 as opposed to standard blood sugar lowering HbA1c of 7 7 9 does not appear to change mortality 103 104 The goal of treatment is typically an HbA1c of 7 to 8 or a fasting glucose of less than 7 2 mmol L 130 mg dL however these goals may be changed after professional clinical consultation taking into account particular risks of hypoglycemia and life expectancy 79 105 106 Hypoglycemia is associated with adverse outcomes in older people with type 2 diabetes 107 Despite guidelines recommending that intensive blood sugar control be based on balancing immediate harms with long term benefits many people for example people with a life expectancy of less than nine years who will not benefit are over treated 108 It is recommended that all people with type 2 diabetes get regular eye examinations 13 There is moderate evidence suggesting that treating gum disease by scaling and root planing results in an improvement in blood sugar levels for people with diabetes 109 Lifestyle Exercise A proper diet and regular exercise are foundations of diabetic care 23 with one review indicating that a greater amount of exercise improved outcomes 110 Regular exercise may improve blood sugar control decrease body fat content and decrease blood lipid levels 111 Diet Further information Diabetic diet Calorie restriction to promote weight loss is generally recommended 112 70 Around 80 percent of obese people with type 2 diabetes achieve complete remission with no need for medication if they sustain a weight loss of at least 15 kilograms 33 lb 113 114 but most patients are not able to achieve or sustain significant weight loss 115 Even modest weight loss can produce significant improvements in glycemic control and reduce the need for medication 116 Several diets may be effective such as the Dietary Approaches to Stop Hypertension DASH Mediterranean diet low fat diet or monitored carbohydrate diets such as a low carbohydrate diet 70 117 118 Other recommendations include emphasizing intake of fruits vegetables reduced saturated fat and low fat dairy products and with a macronutrient intake tailored to the individual to distribute calories and carbohydrates throughout the day 70 119 A 2021 review showed that consumption of tree nuts walnuts almonds and hazelnuts reduced fasting blood glucose in diabetic people 120 As of 2015 update there is insufficient data to recommend nonnutritive sweeteners which may help reduce caloric intake 121 An elevated intake of microbiota accessible carbohydrates can help reducing the effects of T2D 122 Viscous fiber supplements may be useful in those with diabetes 123 Culturally appropriate education may help people with type 2 diabetes control their blood sugar levels for up to 24 months 124 There is not enough evidence to determine if lifestyle interventions affect mortality in those who already have type 2 diabetes 87 Stress management Although psychological stress is recognized as a risk factor for type 2 diabetes 10 the effect of stress management interventions on disease progression are not established 125 A Cochrane review is under way to assess the effects of mindfulness based interventions for adults with type 2 diabetes 126 Medications nbsp Metformin 500 mg tabletsBlood sugar control See also Anti diabetic medication There are several classes of anti diabetic medications available Metformin is generally recommended as a first line treatment as there is some evidence that it decreases mortality 7 25 127 however this conclusion is questioned 128 Metformin should not be used in those with severe kidney or liver problems 23 The American Diabetes Association and European Association for the Study of Diabetes recommend using a GLP 1 receptor agonist or SGLT2 inhibitor as the first line treatment in patients who have or are at high risk for atherosclerotic cardiovascular disease heart failure or kidney disease 129 130 The higher cost of these drugs compared to metformin has limited their use 115 131 132 A second oral agent of another class or insulin may be added if metformin is not sufficient after three months 105 Other classes of medications include sulfonylureas thiazolidinediones dipeptidyl peptidase 4 inhibitors SGLT2 inhibitors and GLP 1 receptor agonists 105 A 2018 review found that SGLT2 inhibitors and GLP 1 agonists but not DPP 4 inhibitors were associated with lower mortality than placebo or no treatment 133 Rosiglitazone a thiazolidinedione has not been found to improve long term outcomes even though it improves blood sugar levels 134 Additionally it is associated with increased rates of heart disease and death 135 Injections of insulin may either be added to oral medication or used alone 25 Most people do not initially need insulin 13 When it is used a long acting formulation is typically added at night with oral medications being continued 23 25 Doses are then increased to effect blood sugar levels being well controlled 25 When nightly insulin is insufficient twice daily insulin may achieve better control 23 The long acting insulins glargine and detemir are equally safe and effective 136 and do not appear much better than neutral protamine Hagedorn NPH insulin but as they are significantly more expensive they are not cost effective as of 2010 137 In those who are pregnant insulin is generally the treatment of choice 23 Blood pressure lowering Many international guidelines recommend blood pressure treatment targets that are lower than 140 90 mmHg for people with diabetes 138 However there is only limited evidence regarding what the lower targets should be A 2016 systematic review found potential harm to treating to targets lower than 140 mmHg 139 and a subsequent review in 2019 found no evidence of additional benefit from blood pressure lowering to between 130 140mmHg although there was an increased risk of adverse events 140 2015 American Diabetes Association recommendations are that people with diabetes and albuminuria should receive an inhibitor of the renin angiotensin system to reduce the risks of progression to end stage renal disease cardiovascular events and death 70 There is some evidence that angiotensin converting enzyme inhibitors ACEIs are superior to other inhibitors of the renin angiotensin system such as angiotensin receptor blockers ARBs 141 or aliskiren in preventing cardiovascular disease 142 Although a more recent review found similar effects of ACEIs and ARBs on major cardiovascular and renal outcomes 143 There is no evidence that combining ACEIs and ARBs provides additional benefits 143 Other The use of aspirin to prevent cardiovascular disease in diabetes is controversial 70 Aspirin is recommended in people at high risk of cardiovascular disease however routine use of aspirin has not been found to improve outcomes in uncomplicated diabetes 144 2015 American Diabetes Association recommendations for aspirin use based on expert consensus or clinical experience are that low dose aspirin use is reasonable in adults with diabetes who are at intermediate risk of cardiovascular disease 10 year cardiovascular disease risk 5 10 70 Vitamin D supplementation to people with type 2 diabetes may improve markers of insulin resistance and HbA1c 145 Sharing their electronic health records with people who have type 2 diabetes helps them to reduce their blood sugar levels It is a way of helping people understand their own health condition and involving them actively in its management 146 147 Surgery Weight loss surgery in those who are obese is an effective measure to treat diabetes 148 Many are able to maintain normal blood sugar levels with little or no medication following surgery 149 and long term mortality is decreased 150 There however is some short term mortality risk of less than 1 from the surgery 151 The body mass index cutoffs for when surgery is appropriate are not yet clear 150 It is recommended that this option be considered in those who are unable to get both their weight and blood sugar under control 152 153 EpidemiologyFurther information Epidemiology of diabetes nbsp Prevalence of total diabetes by age and Global Burden of Disease super region in 2021The International Diabetes Federation estimates nearly 537 million people lived with diabetes worldwide in 2021 154 90 95 of whom have type 2 diabetes 155 Diabetes is common both in the developed and the developing world 10 Some ethnic groups such as South Asians Pacific Islanders Latinos and Native Americans are at particularly high risk of developing type 2 diabetes 23 Type 2 diabetes in normal weight individuals represents 60 to 80 percent of all cases in some Asian countries The mechanism causing diabetes in non obese individuals is poorly understood 156 157 158 Rates of diabetes in 1985 were estimated at 30 million increasing to 135 million in 1995 and 217 million in 2005 18 This increase is believed to be primarily due to the global population aging a decrease in exercise and increasing rates of obesity 18 Traditionally considered a disease of adults type 2 diabetes is increasingly diagnosed in children in parallel with rising obesity rates 10 The five countries with the greatest number of people with diabetes as of 2000 are India having 31 7 million China 20 8 million the United States 17 7 million Indonesia 8 4 million and Japan 6 8 million 159 It is recognized as a global epidemic by the World Health Organization 1 HistoryFurther information History of diabetes Diabetes is one of the first diseases described 21 with an Egyptian manuscript from c 1500 BCE mentioning too great emptying of the urine 160 The first described cases are believed to be of type 1 diabetes 160 Indian physicians around the same time identified the disease and classified it as madhumeha or honey urine noting that the urine would attract ants 160 The term diabetes or to pass through was first used in 230 BCE by the Greek Apollonius Memphites 160 The disease was rare during the time of the Roman empire with Galen commenting that he had only seen two cases during his career 160 Type 1 and type 2 diabetes were identified as separate conditions for the first time by the Indian physicians Sushruta and Charaka in 400 500 AD with type 1 associated with youth and type 2 with being overweight 160 Effective treatment was not developed until the early part of the 20th century when the Canadians Frederick Banting and Charles Best discovered insulin in 1921 and 1922 160 This was followed by the development of the long acting NPH insulin in the 1940s 160 In 1916 Elliot Joslin proposed that in people with diabetes periods of fasting are helpful 161 Subsequent research has supported this and weight loss is a first line treatment in type 2 diabetes 161 ResearchResearchers developed the Diabetes Severity Score DISSCO a tool that might better than the standard blood test at identify if a person s condition is declining It uses a computer algorithm to analyse data from anonymised electronic patient records and produces a score based on 34 indicators 162 163 References a b c d e f g h i j k Diabetes Fact sheet N 312 World Health Organization August 2011 Archived from the original on 26 August 2013 Retrieved 2012 01 09 Diabetes Blue Circle Symbol International Diabetes Federation 17 March 2006 Archived from the original on 5 August 2007 a b c d e Diagnosis of Diabetes and Prediabetes National Institute of Diabetes and Digestive and Kidney Diseases June 2014 Archived from the original on 6 March 2016 Retrieved 10 February 2016 a b Pasquel FJ Umpierrez GE November 2014 Hyperosmolar hyperglycemic state a historic review of the clinical presentation diagnosis and treatment Diabetes Care 37 11 3124 31 doi 10 2337 dc14 0984 PMC 4207202 PMID 25342831 a b Fasanmade OA Odeniyi IA Ogbera AO June 2008 Diabetic ketoacidosis diagnosis and management African Journal of Medicine and Medical Sciences 37 2 99 105 PMID 18939392 a b c d e f g Causes of Diabetes National Institute of Diabetes and Digestive and Kidney Diseases June 2014 Archived from the original on 2 February 2016 Retrieved 10 February 2016 a b c Maruthur NM Tseng E Hutfless S Wilson LM Suarez Cuervo C Berger Z Chu Y Iyoha E Segal JB Bolen S June 2016 Diabetes Medications as Monotherapy or Metformin Based Combination Therapy for Type 2 Diabetes A Systematic Review and Meta analysis Annals of Internal Medicine 164 11 740 51 doi 10 7326 M15 2650 PMID 27088241 S2CID 32016657 a b Cetinkunar S Erdem H Aktimur R Sozen S June 2015 Effect of bariatric surgery on humoral control of metabolic derangements in obese patients with type 2 diabetes mellitus How it works World Journal of Clinical Cases 3 6 504 9 doi 10 12998 wjcc v3 i6 504 PMC 4468896 PMID 26090370 a b Krentz AJ Bailey CJ February 2005 Oral antidiabetic agents current role in type 2 diabetes mellitus Drugs 65 3 385 411 doi 10 2165 00003495 200565030 00005 PMID 15669880 S2CID 29670619 a b c d e f g h i j k l m n o p q r Melmed S Polonsky KS Larsen PR Kronenberg HM eds 2011 Williams textbook of endocrinology 12th ed Philadelphia Elsevier Saunders pp 1371 1435 ISBN 978 1 4377 0324 5 a b Vos T Allen C Arora M Barber RM Bhutta ZA Brown A et al GBD 2015 Disease and Injury Incidence and Prevalence Collaborators October 2016 Global regional and national incidence prevalence and years lived with disability for 310 diseases and injuries 1990 2015 a systematic analysis for the Global Burden of Disease Study 2015 Lancet 388 10053 1545 1602 doi 10 1016 S0140 6736 16 31678 6 PMC 5055577 PMID 27733282 MacKay I Rose N eds 2014 The Autoimmune Diseases Academic Press p 575 ISBN 978 0 123 84929 8 OCLC 965646175 a b c d e f g h i j k l m n o Gardner DG Shoback D eds 2011 Chapter 17 Pancreatic hormones amp diabetes mellitus Greenspan s basic amp clinical endocrinology 9th ed New York McGraw Hill Medical ISBN 978 0 07 162243 1 OCLC 613429053 Saenz A Fernandez Esteban I Mataix A Ausejo M Roque M Moher D July 2005 Saenz A ed Metformin monotherapy for type 2 diabetes mellitus The Cochrane Database of Systematic Reviews 3 CD002966 doi 10 1002 14651858 CD002966 pub3 PMID 16034881 Retracted Malanda UL Welschen LM Riphagen II Dekker JM Nijpels G Bot SD January 2012 Self monitoring of blood glucose in patients with type 2 diabetes mellitus who are not using insulin The Cochrane Database of Systematic Reviews 1 CD005060 doi 10 1002 14651858 CD005060 pub3 hdl 1871 48558 PMID 22258959 S2CID 205176936 Ganguly S Tan HC Lee PC Tham KW April 2015 Metabolic bariatric surgery and type 2 diabetes mellitus an endocrinologist s perspective Journal of Biomedical Research 29 2 105 11 doi 10 7555 JBR 29 20140127 PMC 4389109 PMID 25859264 Moscou S 2013 Getting the word out advocacy social marketing and policy development and enforcement In Truglio Londrigan M Lewenson SB eds Public health nursing practicing population based care 2nd ed Burlington MA Jones amp Bartlett Learning p 317 ISBN 978 1 4496 4660 8 OCLC 758391750 a b c Smyth S Heron A January 2006 Diabetes and obesity the twin epidemics Nature Medicine 12 1 75 80 doi 10 1038 nm0106 75 PMID 16397575 S2CID 1042625 Tfayli H Arslanian S March 2009 Pathophysiology of type 2 diabetes mellitus in youth the evolving chameleon Arquivos Brasileiros de Endocrinologia e Metabologia 53 2 165 74 doi 10 1590 s0004 27302009000200008 PMC 2846552 PMID 19466209 Imperatore G Boyle JP Thompson TJ Case D Dabelea D Hamman RF Lawrence JM Liese AD Liu LL Mayer Davis EJ Rodriguez BL Standiford D December 2012 Projections of type 1 and type 2 diabetes burden in the U S population aged lt 20 years through 2050 dynamic modeling of incidence mortality and population growth Diabetes Care 35 12 2515 20 doi 10 2337 dc12 0669 PMC 3507562 PMID 23173134 a b Leutholtz BC Ripoll I 2011 Diabetes Exercise and disease management 2nd ed Boca Raton CRC Press p 25 ISBN 978 1 4398 2759 8 OCLC 725919496 Zaccardi F Webb DR Yates T Davies MJ February 2016 Pathophysiology of type 1 and type 2 diabetes mellitus a 90 year perspective Postgraduate Medical Journal 92 1084 63 9 doi 10 1136 postgradmedj 2015 133281 PMID 26621825 S2CID 28169759 a b c d e f g h i j k Vijan S March 2010 In the clinic Type 2 diabetes Annals of Internal Medicine 152 5 ITC31 15 quiz ITC316 doi 10 7326 0003 4819 152 5 201003020 01003 PMID 20194231 S2CID 207535925 Rathee M Prachi J 2019 Ageusia StatPearls StatPearls Publishing PMID 31747182 a b c d e f g h i j Ripsin CM Kang H Urban RJ January 2009 Management of blood glucose in type 2 diabetes mellitus American Family Physician 79 1 29 36 PMID 19145963 Pasquier F October 2010 Diabetes and cognitive impairment how to evaluate the cognitive status Diabetes amp Metabolism 36 Suppl 3 S100 5 doi 10 1016 S1262 3636 10 70475 4 PMID 21211730 Akinpelu OV Mujica Mota M Daniel SJ March 2014 Is type 2 diabetes mellitus associated with alterations in hearing A systematic review and meta analysis The Laryngoscope 124 3 767 776 doi 10 1002 lary 24354 PMID 23945844 S2CID 25569962 a b Riserus U Willett WC Hu FB January 2009 Dietary fats and prevention of type 2 diabetes Progress in Lipid Research 48 1 44 51 doi 10 1016 j plipres 2008 10 002 PMC 2654180 PMID 19032965 Hilawe EH Yatsuya H Kawaguchi L Aoyama A September 2013 Differences by sex in the prevalence of diabetes mellitus impaired fasting glycaemia and impaired glucose tolerance in sub Saharan Africa a systematic review and meta analysis Bulletin of the World Health Organization 91 9 671 682D doi 10 2471 BLT 12 113415 PMC 3790213 PMID 24101783 Christian P Stewart CP March 2010 Maternal micronutrient deficiency fetal development and the risk of chronic disease The Journal of Nutrition 140 3 437 45 doi 10 3945 jn 109 116327 PMID 20071652 Pedersen HK Gudmundsdottir V Nielsen HB Hyotylainen T Nielsen T Jensen BA et al July 2016 Human gut microbes impact host serum metabolome and insulin sensitivity Nature 535 7612 376 81 Bibcode 2016Natur 535 376P doi 10 1038 nature18646 PMID 27409811 S2CID 4459808 permanent dead link Abdullah A Peeters A de Courten M Stoelwinder J September 2010 The magnitude of association between overweight and obesity and the risk of diabetes a meta analysis of prospective cohort studies Diabetes Research and Clinical Practice 89 3 309 19 doi 10 1016 j diabres 2010 04 012 PMID 20493574 Pan A Wang Y Talaei M Hu FB Wu T December 2015 Relation of active passive and quitting smoking with incident type 2 diabetes a systematic review and meta analysis The Lancet Diabetes amp Endocrinology 3 12 958 67 doi 10 1016 S2213 8587 15 00316 2 PMC 4656094 PMID 26388413 a b Touma C Pannain S August 2011 Does lack of sleep cause diabetes Cleveland Clinic Journal of Medicine 78 8 549 58 doi 10 3949 ccjm 78a 10165 PMID 21807927 S2CID 45708828 Malik VS Popkin BM Bray GA Despres JP Hu FB March 2010 Sugar sweetened beverages obesity type 2 diabetes mellitus and cardiovascular disease risk Circulation 121 11 1356 64 doi 10 1161 CIRCULATIONAHA 109 876185 PMC 2862465 PMID 20308626 Malik VS Popkin BM Bray GA Despres JP Willett WC Hu FB November 2010 Sugar sweetened beverages and risk of metabolic syndrome and type 2 diabetes a meta analysis Diabetes Care 33 11 2477 83 doi 10 2337 dc10 1079 PMC 2963518 PMID 20693348 Hu EA Pan A Malik V Sun Q March 2012 White rice consumption and risk of type 2 diabetes meta analysis and systematic review BMJ 344 e1454 doi 10 1136 bmj e1454 PMC 3307808 PMID 22422870 Lee IM Shiroma EJ Lobelo F Puska P Blair SN Katzmarzyk PT July 2012 Effect of physical inactivity on major non communicable diseases worldwide an analysis of burden of disease and life expectancy Lancet 380 9838 219 29 doi 10 1016 S0140 6736 12 61031 9 PMC 3645500 PMID 22818936 Lind L Lind PM June 2012 Can persistent organic pollutants and plastic associated chemicals cause cardiovascular disease Journal of Internal Medicine 271 6 537 53 doi 10 1111 j 1365 2796 2012 02536 x PMID 22372998 S2CID 41018361 Willemsen G Ward KJ Bell CG Christensen K Bowden J Dalgard C et al December 2015 The Concordance and Heritability of Type 2 Diabetes in 34 166 Twin Pairs From International Twin Registers The Discordant Twin DISCOTWIN Consortium Twin Research and Human Genetics 18 6 762 771 doi 10 1017 thg 2015 83 PMID 26678054 a b Herder C Roden M June 2011 Genetics of type 2 diabetes pathophysiologic and clinical relevance European Journal of Clinical Investigation 41 6 679 692 doi 10 1111 j 1365 2362 2010 02454 x PMID 21198561 S2CID 43548816 Fuchsberger C Flannick J Teslovich TM Mahajan A Agarwala V Gaulton KJ et al August 2016 The genetic architecture of type 2 diabetes Nature 536 7614 41 47 Bibcode 2016Natur 536 41F doi 10 1038 nature18642 PMC 5034897 PMID 27398621 Monogenic Forms of Diabetes Neonatal Diabetes Mellitus and Maturity onset Diabetes of the Young National Diabetes Information Clearinghouse NDIC National Institute of Diabetes and Digestive and Kidney Diseases NIH March 2007 Archived from the original on 2008 07 04 Retrieved 2008 08 04 Rosen ED Kaestner KH Natarajan R Patti ME Sallari R Sander M Susztak K Epigenetics and Epigenomics Implications for Diabetes and Obesity Diabetes 2018 Oct 67 10 1923 1931 doi 10 2337 db18 0537 PMID 30237160 PMCID PMC6463748 a b Funnell MM Anderson RM 2008 Influencing self management from compliance to collaboration In Bethel MN Feinglos MA eds Type 2 diabetes mellitus an evidence based approach to practical management Contemporary endocrinology Totowa NJ Humana Press p 462 ISBN 978 1 58829 794 5 OCLC 261324723 Izzedine H Launay Vacher V Deybach C Bourry E Barrou B Deray G November 2005 Drug induced diabetes mellitus Expert Opinion on Drug Safety 4 6 1097 1109 doi 10 1517 14740338 4 6 1097 PMID 16255667 S2CID 21532595 Sampson UK Linton MF Fazio S July 2011 Are statins diabetogenic Current Opinion in Cardiology 26 4 342 347 doi 10 1097 HCO 0b013e3283470359 PMC 3341610 PMID 21499090 Giovannucci E Harlan DM Archer MC Bergenstal RM Gapstur SM Habel LA et al July 2010 Diabetes and cancer a consensus report Diabetes Care Professional society guidelines 33 7 1674 1685 doi 10 2337 dc10 0666 PMC 2890380 PMID 20587728 Saad F Gooren L March 2009 The role of testosterone in the metabolic syndrome a review The Journal of Steroid Biochemistry and Molecular Biology 114 1 2 40 43 doi 10 1016 j jsbmb 2008 12 022 PMID 19444934 S2CID 22222112 Farrell JB Deshmukh A Baghaie AA 2008 Low testosterone and the association with type 2 diabetes The Diabetes Educator 34 5 799 806 doi 10 1177 0145721708323100 PMID 18832284 Nieto Martinez R Gonzalez Rivas JP Medina Inojosa JR Florez H November 2017 Are Eating Disorders Risk Factors for Type 2 Diabetes A Systematic Review and Meta analysis Current Diabetes Reports Systematic review and meta analysis 17 12 138 doi 10 1007 s11892 017 0949 1 PMID 29168047 S2CID 3688434 Diabetes mellitus a guide to patient care Philadelphia Lippincott Williams amp Wilkins 2007 p 15 ISBN 978 1 58255 732 8 a b c Sun T Han X 2019 Death versus dedifferentiation The molecular bases of beta cell mass reduction in type 2 diabetes Seminars in Cell and Developmental Biology 103 76 82 doi 10 1016 j semcdb 2019 12 002 PMID 31831356 S2CID 209341381 Reed J Bain S Kanamarlapudi V August 2021 A Review of Current Trends with Type 2 Diabetes Epidemiology Aetiology Pathogenesis Treatments and Future Perspectives Diabetes Metabolic Syndrome and Obesity Targets and Therapy 14 3567 3602 doi 10 2147 DMSO S319895 PMC 8369920 PMID 34413662 Schriever SC Kabra DG Pfuhlmann K Baumann P Baumgart EV Nagler J et al November 2020 Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity The Journal of Clinical Investigation 130 11 6093 6108 doi 10 1172 JCI136363 PMC 7598066 PMID 32780722 German JP Wisse BE Thaler JP Oh I S Sarruf DA Ogimoto K et al July 2010 Leptin deficiency causes insulin resistance induced by uncontrolled diabetes Diabetes 59 7 1626 1634 doi 10 2337 db09 1918 PMC 2889761 PMID 20424233 Lundqvist MH Almby K Wiklund U Abrahamsson N Kamble PG Pereira MJ Eriksson JW March 2021 Altered hormonal and autonomic nerve responses to hypo and hyperglycaemia are found in overweight and insulin resistant individuals and may contribute to the development of type 2 diabetes Diabetologia 64 3 641 655 doi 10 1007 s00125 020 05332 z PMC 7864814 PMID 33241460 Salazar J Chavez Castillo M Rojas J Ortega A Nava M Perez J et al 2020 07 23 Is Leptin Resistance Another Key Resistance to Manage Type 2 Diabetes Current Diabetes Reviews 16 7 733 749 doi 10 2174 1573399816666191230111838 PMID 31886750 S2CID 209510992 Alonge KM D Alessio DA Schwartz MW January 2021 Brain control of blood glucose levels implications for the pathogenesis of type 2 diabetes Diabetologia 64 1 5 14 doi 10 1007 s00125 020 05293 3 PMC 7718404 PMID 33043401 Bentsen MA Rausch DM Mirzadeh Z Muta K Scarlett JM Brown JM et al September 2020 Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1 induced sustained diabetes remission Nature Communications 11 1 4458 Bibcode 2020NatCo 11 4458B doi 10 1038 s41467 020 17720 5 PMC 7477234 PMID 32895383 Adlanmerini M Nguyen HC Krusen BM Teng CW Geisler CE Peed LC et al January 2021 Hypothalamic REV ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet induced obese mice The Journal of Clinical Investigation 131 1 e140424 doi 10 1172 JCI140424 PMC 7773391 PMID 33021965 Yasumoto Y Miyazaki H Ogata M Kagawa Y Yamamoto Y Islam A et al December 2018 Glial Fatty Acid Binding Protein 7 FABP7 Regulates Neuronal Leptin Sensitivity in the Hypothalamic Arcuate Nucleus Molecular Neurobiology 55 12 9016 9028 doi 10 1007 s12035 018 1033 9 PMID 29623545 S2CID 4632807 Young JK Baker JH Muller T March 1996 Immunoreactivity for brain fatty acid binding protein in gomori positive astrocytes Glia 16 3 218 226 doi 10 1002 SICI 1098 1136 199603 16 3 lt 218 AID GLIA4 gt 3 0 CO 2 Y PMID 8833192 S2CID 9757285 Schmidt SP Corydon TJ Pedersen CB Vang S Palmfeldt J Stenbroen V et al April 2011 Toxic response caused by a misfolding variant of the mitochondrial protein short chain acyl CoA dehydrogenase Journal of Inherited Metabolic Disease 34 2 465 475 doi 10 1007 s10545 010 9255 7 PMC 3063561 PMID 21170680 Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia Report of a WHO IDF consultation PDF Geneva World Health Organization 2006 p 21 ISBN 978 92 4 159493 6 Vijan S March 2010 In the clinic Type 2 diabetes Annals of Internal Medicine 152 5 ITC31 15 quiz ITC316 doi 10 7326 0003 4819 152 5 201003020 01003 PMID 20194231 World Health Organization Definition diagnosis and classification of diabetes mellitus and its complications Report of a WHO Consultation Part 1 Diagnosis and classification of diabetes mellitus Archived from the original on 2007 05 29 Retrieved 2007 05 29 a b c International Expert Committee July 2009 International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes Diabetes Care 32 7 1327 34 doi 10 2337 dc09 9033 PMC 2699715 PMID 19502545 American Diabetes Association January 2010 Diagnosis and classification of diabetes mellitus Diabetes Care 33 Supplement 1 S62 9 doi 10 2337 dc10 S062 PMC 2797383 PMID 20042775 a b c d e f g Fox CS Golden SH Anderson C Bray GA Burke LE de Boer IH et al September 2015 Update on Prevention of Cardiovascular Disease in Adults With Type 2 Diabetes Mellitus in Light of Recent Evidence A Scientific Statement From the American Heart Association and the American Diabetes Association Diabetes Care Professional society guidelines 38 9 1777 1803 doi 10 2337 dci15 0012 PMC 4876675 PMID 26246459 American Diabetes Association January 2012 Diagnosis and classification of diabetes mellitus Diabetes Care 35 Suppl 1 S64 71 doi 10 2337 dc12 s064 PMC 3632174 PMID 22187472 Kumar V Fausto N Abbas AK Cotran RS Robbins SL 2005 Robbins and Cotran Pathologic Basis of Disease 7th ed Philadelphia Pa Saunders pp 1194 95 ISBN 978 0 7216 0187 8 Diabetes mellitus a guide to patient care Philadelphia Lippincott Williams amp Wilkins 2007 p 201 ISBN 978 1 58255 732 8 Vivian EM Blackorbay B 2013 Chapter 13 Endocrine Disorders In Lee M ed Basic Skills in Interpreting Laboratory Data 5th ed Bethesda MD American Society of Health System Pharmacists ISBN 978 1 58528 345 3 OCLC 859778842 Valdez R July 2009 Detecting undiagnosed type 2 diabetes family history as a risk factor and screening tool Journal of Diabetes Science and Technology 3 4 722 6 doi 10 1177 193229680900300417 PMC 2769984 PMID 20144319 a b Selph S Dana T Blazina I Bougatsos C Patel H Chou R June 2015 Screening for type 2 diabetes mellitus a systematic review for the U S Preventive Services Task Force Annals of Internal Medicine 162 11 765 76 doi 10 7326 M14 2221 PMID 25867111 a b Recommendation Prediabetes and Type 2 Diabetes Screening United States Preventive Services Taskforce www uspreventiveservicestaskforce org Retrieved 2023 01 13 Siu AL December 2015 Screening for Abnormal Blood Glucose and Type 2 Diabetes Mellitus U S Preventive Services Task Force Recommendation Statement Annals of Internal Medicine 163 11 861 8 doi 10 7326 M15 2345 PMID 26501513 a b c d Standards of medical care in diabetes 2015 summary of revisions Diabetes Care 38 38 S4 January 2015 doi 10 2337 dc15 S003 PMID 25537706 a b Archived Diabetes Mellitus Type 2 in Adults Screening U S Preventive Services Task Force June 2008 Archived from the original on 2014 02 07 Retrieved 2014 03 16 Peer N Balakrishna Y Durao S May 2020 Screening for type 2 diabetes mellitus The Cochrane Database of Systematic Reviews 5 6 CD005266 doi 10 1002 14651858 cd005266 pub2 PMC 7259754 PMID 32470201 a b Diabetes putting people at the heart of services NIHR Evidence National Institute for Health and Care Research 2022 07 26 doi 10 3310 nihrevidence 52026 S2CID 251299176 Are you at risk of diabetes Research finds prevention should start at a different BMI for each ethnic group NIHR Evidence Plain English summary National Institute for Health and Care Research 2022 03 10 doi 10 3310 alert 48878 S2CID 247390548 Caleyachetty R Barber TM Mohammed NI Cappuccio FP Hardy R Mathur R et al July 2021 Ethnicity specific BMI cutoffs for obesity based on type 2 diabetes risk in England a population based cohort study The Lancet Diabetes amp Endocrinology 9 7 419 426 doi 10 1016 S2213 8587 21 00088 7 PMC 8208895 PMID 33989535 Raina Elley C Kenealy T December 2008 Lifestyle interventions reduced the long term risk of diabetes in adults with impaired glucose tolerance Evidence Based Medicine 13 6 173 doi 10 1136 ebm 13 6 173 PMID 19043031 S2CID 26714233 Hemmingsen B Gimenez Perez G Mauricio D Roque I Figuls M Metzendorf MI Richter B December 2017 Diet physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus The Cochrane Database of Systematic Reviews 2017 12 CD003054 doi 10 1002 14651858 CD003054 pub4 PMC 6486271 PMID 29205264 a b Schellenberg ES Dryden DM Vandermeer B Ha C Korownyk C October 2013 Lifestyle interventions for patients with and at risk for type 2 diabetes a systematic review and meta analysis Annals of Internal Medicine 159 8 543 551 doi 10 7326 0003 4819 159 8 201310150 00007 PMID 24126648 O Gorman DJ Krook A September 2011 Exercise and the treatment of diabetes and obesity The Medical Clinics of North America 95 5 953 969 doi 10 1016 j mcna 2011 06 007 PMID 21855702 Kyu HH Bachman VF Alexander LT Mumford JE Afshin A Estep K et al August 2016 Physical activity and risk of breast cancer colon cancer diabetes ischemic heart disease and ischemic stroke events systematic review and dose response meta analysis for the Global Burden of Disease Study 2013 BMJ 354 i3857 doi 10 1136 bmj i3857 PMC 4979358 PMID 27510511 Nield L Summerbell CD Hooper L Whittaker V Moore H July 2008 Nield L ed Dietary advice for the prevention of type 2 diabetes mellitus in adults The Cochrane Database of Systematic Reviews 3 CD005102 doi 10 1002 14651858 CD005102 pub2 hdl 10149 92337 PMID 18646120 S2CID 23039006 Retracted Carter P Gray LJ Troughton J Khunti K Davies MJ August 2010 Fruit and vegetable intake and incidence of type 2 diabetes mellitus systematic review and meta analysis BMJ 341 c4229 doi 10 1136 bmj c4229 PMC 2924474 PMID 20724400 Schwingshackl L Hoffmann G Lampousi AM Knuppel S Iqbal K Schwedhelm C et al May 2017 Food groups and risk of type 2 diabetes mellitus a systematic review and meta analysis of prospective studies European Journal of Epidemiology 32 5 363 375 doi 10 1007 s10654 017 0246 y PMC 5506108 PMID 28397016 Xi B Li S Liu Z Tian H Yin X Huai P et al 2014 Intake of fruit juice and incidence of type 2 diabetes a systematic review and meta analysis PLOS ONE 9 3 e93471 Bibcode 2014PLoSO 993471X doi 10 1371 journal pone 0093471 PMC 3969361 PMID 24682091 Reynolds A Mann J Cummings J Winter N Mete E Te Morenga L February 2019 Carbohydrate quality and human health a series of systematic reviews and meta analyses Lancet 393 10170 434 445 doi 10 1016 S0140 6736 18 31809 9 PMID 30638909 S2CID 58632705 a b c Madsen KS Chi Y Metzendorf MI Richter B Hemmingsen B et al Cochrane Metabolic and Endocrine Disorders Group December 2019 Metformin for prevention or delay of type 2 diabetes mellitus and its associated complications in persons at increased risk for the development of type 2 diabetes mellitus The Cochrane Database of Systematic Reviews 2019 12 CD008558 doi 10 1002 14651858 CD008558 pub2 PMC 6889926 PMID 31794067 a b c Moelands Suzanne VL Lucassen Peter LBJ Akkermans Reinier P De Grauw Wim JC Van de Laar Floris A 2018 12 28 Cochrane Metabolic and Endocrine Disorders Group ed Alpha glucosidase inhibitors for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus Cochrane Database of Systematic Reviews 2018 12 CD005061 doi 10 1002 14651858 CD005061 pub3 PMC 6517235 PMID 30592787 Haw JS Galaviz KI Straus AN Kowalski AJ Magee MJ Weber MB Wei J Narayan KM Ali MK December 2017 Long term Sustainability of Diabetes Prevention Approaches A Systematic Review and Meta analysis of Randomized Clinical Trials JAMA Internal Medicine 177 12 1808 1817 doi 10 1001 jamainternmed 2017 6040 PMC 5820728 PMID 29114778 Seida JC Mitri J Colmers IN Majumdar SR Davidson MB Edwards AL Hanley DA Pittas AG Tjosvold L Johnson JA October 2014 Clinical review Effect of vitamin D3 supplementation on improving glucose homeostasis and preventing diabetes a systematic review and meta analysis The Journal of Clinical Endocrinology and Metabolism 99 10 3551 60 doi 10 1210 jc 2014 2136 PMC 4483466 PMID 25062463 Mannucci E Giaccari A Gallo M Bonifazi A Belen AD Masini ML et al February 2022 Self management in patients with type 2 diabetes Group based versus individual education A systematic review with meta analysis of randomized trails Nutrition Metabolism and Cardiovascular Diseases 32 2 330 336 doi 10 1016 j numecd 2021 10 005 PMID 34893413 S2CID 244580173 Type 2 diabetes The management of type 2 diabetes May 2009 Archived from the original on 2015 05 22 Emdin CA Rahimi K Neal B Callender T Perkovic V Patel A February 2015 Blood pressure lowering in type 2 diabetes a systematic review and meta analysis JAMA 313 6 603 615 doi 10 1001 jama 2014 18574 PMID 25668264 McBrien K Rabi DM Campbell N Barnieh L Clement F Hemmelgarn BR et al September 2012 Intensive and Standard Blood Pressure Targets in Patients With Type 2 Diabetes Mellitus Systematic Review and Meta analysis Archives of Internal Medicine 172 17 1296 1303 doi 10 1001 archinternmed 2012 3147 PMID 22868819 Boussageon R Bejan Angoulvant T Saadatian Elahi M Lafont S Bergeonneau C Kassai B Erpeldinger S Wright JM Gueyffier F Cornu C July 2011 Effect of intensive glucose lowering treatment on all cause mortality cardiovascular death and microvascular events in type 2 diabetes meta analysis of randomised controlled trials BMJ 343 d4169 doi 10 1136 bmj d4169 PMC 3144314 PMID 21791495 Webster MW July 2011 Clinical practice and implications of recent diabetes trials Current Opinion in Cardiology 26 4 288 93 doi 10 1097 HCO 0b013e328347b139 PMID 21577100 S2CID 20819316 a b c Inzucchi SE Bergenstal RM Buse JB Diamant M Ferrannini E Nauck M Peters AL Tsapas A Wender R Matthews DR March 2015 Management of hyperglycaemia in type 2 diabetes 2015 a patient centred approach Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes Diabetologia 58 3 429 42 doi 10 1007 s00125 014 3460 0 PMID 25583541 Qaseem A Wilt TJ Kansagara D Horwitch C Barry MJ Forciea MA April 2018 Hemoglobin A1c Targets for Glycemic Control With Pharmacologic Therapy for Nonpregnant Adults With Type 2 Diabetes Mellitus A Guidance Statement Update From the American College of Physicians Annals of Internal Medicine 168 8 569 576 doi 10 7326 M17 0939 PMID 29507945 Seaquist ER Anderson J Childs B Cryer P Dagogo Jack S Fish L et al May 2013 Hypoglycemia and diabetes a report of a workgroup of the American Diabetes Association and the Endocrine Society Diabetes Care Professional society guidelines 36 5 1384 1395 doi 10 2337 dc12 2480 PMC 3631867 PMID 23589542 Makam AN Nguyen OK January 2017 An Evidence Based Medicine Approach to Antihyperglycemic Therapy in Diabetes Mellitus to Overcome Overtreatment Circulation 135 2 180 195 doi 10 1161 CIRCULATIONAHA 116 022622 PMC 5502688 PMID 28069712 Simpson TC Clarkson JE Worthington HV MacDonald L Weldon JC Needleman I Iheozor Ejiofor Z Wild SH Qureshi A Walker A Patel VA Boyers D Twigg J April 14 2022 Treatment of periodontitis for glycaemic control in people with diabetes mellitus The Cochrane Database of Systematic Reviews 2022 4 CD004714 doi 10 1002 14651858 CD004714 pub4 hdl 2164 20480 PMC 9009294 PMID 35420698 Smith AD Crippa A Woodcock J Brage S December 2016 Physical activity and incident type 2 diabetes mellitus a systematic review and dose response meta analysis of prospective cohort studies Diabetologia 59 12 2527 2545 doi 10 1007 s00125 016 4079 0 PMC 6207340 PMID 27747395 Thomas DE Elliott EJ Naughton GA July 2006 Exercise for type 2 diabetes mellitus The Cochrane Database of Systematic Reviews 2009 3 CD002968 doi 10 1002 14651858 CD002968 pub2 PMC 8989410 PMID 16855995 S2CID 25505640 Davis N Forbes B Wylie Rosett J June 2009 Nutritional strategies in type 2 diabetes mellitus The Mount Sinai Journal of Medicine New York 76 3 257 268 doi 10 1002 msj 20118 PMID 19421969 Magkos Faidon Hjorth Mads F Astrup Arne October 2020 Diet and exercise in the prevention and treatment of type 2 diabetes mellitus Nature Reviews Endocrinology 16 10 545 555 doi 10 1038 s41574 020 0381 5 ISSN 1759 5037 PMID 32690918 S2CID 220651657 A weight loss of 15 kg achieved by calorie restriction as part of an intensive management programme can lead to remission of T2DM in 80 of patients with obesity and T2DM Achieving Type 2 Diabetes Remission through Weight Loss National Institute of Diabetes and Digestive and Kidney Diseases 30 September 2020 Retrieved 29 November 2023 a b Initial management of hyperglycemia in adults with type 2 diabetes mellitus UpToDate September 2023 Retrieved 29 November 2023 American Diabetes Association 1 January 2021 8 Obesity Management for the Treatment of Type 2 Diabetes Standards of Medical Care in Diabetes 2021 Diabetes Care 44 Supplement 1 S100 S110 doi 10 2337 dc21 S008 PMID 33298419 S2CID 228087486 Thomas D Elliott EJ January 2009 Thomas D ed Low glycaemic index or low glycaemic load diets for diabetes mellitus The Cochrane Database of Systematic Reviews 2009 1 CD006296 doi 10 1002 14651858 CD006296 pub2 PMC 6486008 PMID 19160276 Feinman RD Pogozelski WK Astrup A Bernstein RK Fine EJ Westman EC et al January 2015 Dietary carbohydrate restriction as the first approach in diabetes management critical review and evidence base Nutrition 31 1 1 13 doi 10 1016 j nut 2014 06 011 PMID 25287761 Evert AB Boucher JL Cypress M Dunbar SA Franz MJ Mayer Davis EJ et al January 2014 Nutrition therapy recommendations for the management of adults with diabetes Diabetes Care Professional society guidelines 37 Supplement 1 S120 S143 doi 10 2337 dc14 S120 PMID 24357208 Muley A Fernandez R Ellwood L Muley P Shah M May 2021 Effect of tree nuts on glycemic outcomes in adults with type 2 diabetes mellitus a systematic review JBI Evidence Synthesis 19 5 966 1002 doi 10 11124 JBISRIR D 19 00397 PMID 33141798 S2CID 226250006 Gardner C Wylie Rosett J Gidding SS Steffen LM Johnson RK Reader D Lichtenstein AH August 2012 Nonnutritive sweeteners current use and health perspectives a scientific statement from the American Heart Association and the American Diabetes Association Diabetes Care 35 8 1798 1808 doi 10 2337 dc12 9002 PMC 3402256 PMID 22778165 Xu B Fu J Qiao Y Cao J Deehan EC Li Z et al June 2021 Higher intake of microbiota accessible carbohydrates and improved cardiometabolic risk factors a meta analysis and umbrella review of dietary management in patients with type 2 diabetes The American Journal of Clinical Nutrition 113 6 1515 1530 doi 10 1093 ajcn nqaa435 PMID 33693499 Jovanovski E Khayyat R Zurbau A Komishon A Mazhar N Sievenpiper JL et al May 2019 Should Viscous Fiber Supplements Be Considered in Diabetes Control Results From a Systematic Review and Meta analysis of Randomized Controlled Trials Diabetes Care 42 5 755 766 doi 10 2337 dc18 1126 PMID 30617143 S2CID 58665219 Attridge M Creamer J Ramsden M Cannings John R Hawthorne K September 2014 Culturally appropriate health education for people in ethnic minority groups with type 2 diabetes mellitus The Cochrane Database of Systematic Reviews 2014 9 CD006424 doi 10 1002 14651858 CD006424 pub3 PMC 10680058 PMID 25188210 Hackett Ruth A Steptoe Andrew 2017 Type 2 diabetes mellitus and psychological stress a modifiable risk factor Nature Reviews Endocrinology 13 9 547 560 doi 10 1038 nrendo 2017 64 ISSN 1759 5029 PMID 28664919 S2CID 34925223 Ee Carolyn C Armour Mike Piya Milan K McMorrow Rita Al Kanini Ieman Sabag Angelo 2021 12 23 Cochrane Metabolic and Endocrine Disorders Group ed Mindfulness based interventions for adults with type 2 diabetes mellitus Cochrane Database of Systematic Reviews 2021 12 CD014881 doi 10 1002 14651858 CD014881 PMC 8701561 Palmer SC Mavridis D Nicolucci A Johnson DW Tonelli M Craig JC Maggo J Gray V De Berardis G Ruospo M Natale P Saglimbene V Badve SV Cho Y Nadeau Fredette AC Burke M Faruque L Lloyd A Ahmad N Liu Y Tiv S Wiebe N Strippoli GF July 2016 Comparison of Clinical Outcomes and Adverse Events Associated With Glucose Lowering Drugs in Patients With Type 2 Diabetes A Meta analysis JAMA 316 3 313 24 doi 10 1001 jama 2016 9400 PMID 27434443 Boussageon R Supper I Bejan Angoulvant T Kellou N Cucherat M Boissel JP Kassai B Moreau A Gueyffier F Cornu C 2012 Groop L ed Reappraisal of metformin efficacy in the treatment of type 2 diabetes a meta analysis of randomised controlled trials PLOS Medicine 9 4 e1001204 doi 10 1371 journal pmed 1001204 PMC 3323508 PMID 22509138 Marx Nikolaus Davies Melanie J Grant Peter J Mathieu Chantal Petrie John R Cosentino Francesco Buse John B January 2021 Guideline recommendations and the positioning of newer drugs in type 2 diabetes care The Lancet Diabetes amp Endocrinology 9 1 46 52 doi 10 1016 S2213 8587 20 30343 0 PMID 33159841 S2CID 226280186 American Diabetes Association Professional Practice Committee January 2022 9 Pharmacologic Approaches to Glycemic Treatment Standards of Medical Care in Diabetes 2022 Diabetes Care 45 Suppl 1 S125 S143 doi 10 2337 dc22 S009 PMID 34964831 S2CID 245538347 Choi Jin G Winn Aaron N Skandari M Reza Franco Melissa I Staab Erin M Alexander Jason Wan Wen Zhu Mengqi Huang Elbert S Philipson Louis Laiteerapong Neda October 2022 First Line Therapy for Type 2 Diabetes With Sodium Glucose Cotransporter 2 Inhibitors and Glucagon Like Peptide 1 Receptor Agonists A Cost Effectiveness Study Annals of Internal Medicine 175 10 1392 1400 doi 10 7326 M21 2941 ISSN 1539 3704 PMC 10155215 PMID 36191315 Baker Chelsea Retzik Stahr Cimmaron Singh Vatsala Plomondon Renee Anderson Victoria Rasouli Neda 13 January 2021 Should metformin remain the first line therapy for treatment of type 2 diabetes Therapeutic Advances in Endocrinology and Metabolism 12 2042018820980225 doi 10 1177 2042018820980225 ISSN 2042 0188 PMC 7809522 PMID 33489086 Zheng SL Roddick AJ Aghar Jaffar R Shun Shin MJ Francis D Oliver N Meeran K April 2018 Association Between Use of Sodium Glucose Cotransporter 2 Inhibitors Glucagon like Peptide 1 Agonists and Dipeptidyl Peptidase 4 Inhibitors With All Cause Mortality in Patients With Type 2 Diabetes A Systematic Review and Meta analysis JAMA 319 15 1580 1591 doi 10 1001 jama 2018 3024 PMC 5933330 PMID 29677303 Richter B Bandeira Echtler E Bergerhoff K Clar C Ebrahim SH July 2007 Richter B ed Rosiglitazone for type 2 diabetes mellitus PDF The Cochrane Database of Systematic Reviews 2007 3 CD006063 doi 10 1002 14651858 CD006063 pub2 PMC 7389529 PMID 17636824 Chen X Yang L Zhai SD December 2012 Risk of cardiovascular disease and all cause mortality among diabetic patients prescribed rosiglitazone or pioglitazone a meta analysis of retrospective cohort studies Chinese Medical Journal 125 23 4301 6 PMID 23217404 Swinnen SG Simon AC Holleman F Hoekstra JB Devries JH July 2011 Simon AC ed Insulin detemir versus insulin glargine for type 2 diabetes mellitus The Cochrane Database of Systematic Reviews 2011 7 CD006383 doi 10 1002 14651858 CD006383 pub2 PMC 6486036 PMID 21735405 Waugh N Cummins E Royle P Clar C Marien M Richter B Philip S July 2010 Newer agents for blood glucose control in type 2 diabetes systematic review and economic evaluation Health Technology Assessment 14 36 1 248 doi 10 3310 hta14360 PMID 20646668 Mitchell S Malanda B Damasceno A Eckel RH Gaita D Kotseva K et al September 2019 A Roadmap on the Prevention of Cardiovascular Disease Among People Living With Diabetes Global Heart 14 3 215 240 doi 10 1016 j gheart 2019 07 009 PMID 31451236 Brunstrom M Carlberg B February 2016 Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus systematic review and meta analyses BMJ 352 i717 doi 10 1136 bmj i717 PMC 4770818 PMID 26920333 Brunstrom M Carlberg B September 2019 Benefits and harms of lower blood pressure treatment targets systematic review and meta analysis of randomised placebo controlled trials BMJ Open 9 9 e026686 doi 10 1136 bmjopen 2018 026686 PMC 6773352 PMID 31575567 Cheng J Zhang W Zhang X Han F Li X He X et al May 2014 Effect of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers on all cause mortality cardiovascular deaths and cardiovascular events in patients with diabetes mellitus a meta analysis JAMA Internal Medicine 174 5 773 785 doi 10 1001 jamainternmed 2014 348 PMID 24687000 Zheng SL Roddick AJ Ayis S September 2017 Effects of aliskiren on mortality cardiovascular outcomes and adverse events in patients with diabetes and cardiovascular disease or risk A systematic review and meta analysis of 13 395 patients Diabetes amp Vascular Disease Research 14 5 400 406 doi 10 1177 1479164117715854 PMC 5600262 PMID 28844155 a b Catala Lopez F Macias Saint Gerons D Gonzalez Bermejo D Rosano GM Davis BR Ridao M et al March 2016 Cardiovascular and Renal Outcomes of Renin Angiotensin System Blockade in Adult Patients with Diabetes Mellitus A Systematic Review with Network Meta Analyses PLOS Medicine 13 3 e1001971 doi 10 1371 journal pmed 1001971 PMC 4783064 PMID 26954482 Pignone M Alberts MJ Colwell JA Cushman M Inzucchi SE Mukherjee D Rosenson RS Williams CD Wilson PW Kirkman MS June 2010 Aspirin for primary prevention of cardiovascular events in people with diabetes a position statement of the American Diabetes Association a scientific statement of the American Heart Association and an expert consensus document of the American College of Cardiology Foundation Diabetes Care 33 6 1395 402 doi 10 2337 dc10 0555 PMC 2875463 PMID 20508233 Mirhosseini N Vatanparast H Mazidi M Kimball SM September 2017 The Effect of Improved Serum 25 Hydroxyvitamin D Status on Glycemic Control in Diabetic Patients A Meta Analysis The Journal of Clinical Endocrinology and Metabolism 102 9 3097 3110 doi 10 1210 jc 2017 01024 PMID 28957454 Neves AL Freise L Laranjo L Carter AW Darzi A Mayer E December 2020 Impact of providing patients access to electronic health records on quality and safety of care a systematic review and meta analysis BMJ Quality amp Safety 29 12 1019 1032 doi 10 1136 bmjqs 2019 010581 PMC 7785164 PMID 32532814 Sharing electronic records with patients led to improved control of type two diabetes NIHR Evidence Plain English summary 2020 10 21 doi 10 3310 alert 42103 S2CID 242149388 Picot J Jones J Colquitt JL Gospodarevskaya E Loveman E Baxter L Clegg AJ September 2009 The clinical effectiveness and cost effectiveness of bariatric weight loss surgery for obesity a systematic review and economic evaluation Health Technology Assessment 13 41 1 190 215 357 iii iv doi 10 3310 hta13410 hdl 10536 DRO DU 30064294 PMID 19726018 Frachetti KJ Goldfine AB April 2009 Bariatric surgery for diabetes management Current Opinion in Endocrinology Diabetes and Obesity 16 2 119 24 doi 10 1097 MED 0b013e32832912e7 PMID 19276974 S2CID 31797748 a b Schulman AP del Genio F Sinha N Rubino F September October 2009 Metabolic surgery for treatment of type 2 diabetes mellitus Endocrine Practice 15 6 624 31 doi 10 4158 EP09170 RAR PMID 19625245 Colucci RA January 2011 Bariatric surgery in patients with type 2 diabetes a viable option Postgraduate Medicine 123 1 24 33 doi 10 3810 pgm 2011 01 2242 PMID 21293081 S2CID 207551737 Dixon JB le Roux CW Rubino F Zimmet P June 2012 Bariatric surgery for type 2 diabetes Lancet 379 9833 2300 11 doi 10 1016 S0140 6736 12 60401 2 PMID 22683132 S2CID 5198462 Rubino F Nathan DM Eckel RH Schauer PR Alberti KG Zimmet PZ Del Prato S Ji L Sadikot SM Herman WH Amiel SA Kaplan LM Taroncher Oldenburg G Cummings DE June 2016 Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes A Joint Statement by International Diabetes Organizations Diabetes Care 39 6 861 77 doi 10 2337 dc16 0236 PMID 27222544 International Diabetes Federation 2021 p 33 Kahn Ferris amp O Neill 2020 Epidemiology Olaogun Idowu Farag Mina Hamid Pousettef 2020 The Pathophysiology of Type 2 Diabetes Mellitus in Non obese Individuals An Overview of the Current Understanding Cureus 12 4 e7614 doi 10 7759 cureus 7614 ISSN 2168 8184 PMC 7213678 PMID 32399348 Salvatore Teresa Galiero Raffaele Caturano Alfredo Rinaldi Luca Criscuolo Livio Di Martino Anna Albanese Gaetana Vetrano Erica Catalini Christian Sardu Celestino Docimo Giovanni Marfella Raffaele Sasso Ferdinando Carlo 30 December 2022 Current Knowledge on the Pathophysiology of Lean Normal Weight Type 2 Diabetes International Journal of Molecular Sciences 24 1 658 doi 10 3390 ijms24010658 ISSN 1422 0067 PMC 9820420 PMID 36614099 Vipin Vidyadharan Alukkal Blesson Chellakkan Selvanesan Yallampalli Chandra 15 March 2022 Maternal low protein diet and fetal programming of lean type 2 diabetes World Journal of Diabetes 13 3 185 202 doi 10 4239 wjd v13 i3 185 ISSN 1948 9358 PMC 8984567 PMID 35432755 Wild S Roglic G Green A Sicree R King H May 2004 Global prevalence of diabetes estimates for the year 2000 and projections for 2030 Diabetes Care 27 5 1047 53 doi 10 2337 diacare 27 5 1047 PMID 15111519 a b c d e f g h Zajac J Shrestha A Patel P Poretsky L 2009 The Main Events in the History of Diabetes Mellitus In Poretsky L ed Principles of diabetes mellitus 2nd ed New York Springer pp 3 16 ISBN 978 0 387 09840 1 OCLC 663097550 a b Koutroumpakis E Jozwik B Aguilar D Taegtmeyer H March 2020 Strategies of Unloading the Failing Heart from Metabolic Stress The American Journal of Medicine Review 133 3 290 296 doi 10 1016 j amjmed 2019 08 035 PMC 7054139 PMID 31520618 New tool for assessing the severity of type 2 diabetes could help personalise treatment and improve outcomes NIHR Evidence Plain English summary National Institute for Health and Care Research 2020 08 07 doi 10 3310 alert 40652 S2CID 242997909 Zghebi SS Mamas MA Ashcroft DM Salisbury C Mallen CD Chew Graham CA et al May 2020 Development and validation of the DIabetes Severity SCOre DISSCO in 139 626 individuals with type 2 diabetes a retrospective cohort study BMJ Open Diabetes Research amp Care 8 1 e000962 doi 10 1136 bmjdrc 2019 000962 PMC 7228474 PMID 32385076 Works cited Kahn CR Ferris HA O Neill BT 2020 Pathophysiology of Type 1 Diabetes Mellitus Williams Textbook of Endocrinology 14 ed Elsevier pp 1349 1370 International Diabetes Federation 2021 IDF Diabetes Atlas PDF 10 ed International Diabetes Federation ISBN 9782930229980 Retrieved 18 March 2022 External linksDiabetes mellitus at Wikipedia s sister projects nbsp Definitions from Wiktionary nbsp Media from Commons nbsp News from Wikinews nbsp Quotations from Wikiquote nbsp Texts from Wikisource nbsp Textbooks from Wikibooks nbsp Resources from Wikiversity IDF Diabetes Atlas 2015 National Diabetes Information Clearinghouse Archived 2010 02 21 at the Wayback Machine Centers for Disease Control Endocrine pathology ADA s Standards of Medical Care in Diabetes 2019 Retrieved from https en wikipedia org w index php title Type 2 diabetes amp oldid 1199146097, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.