fbpx
Wikipedia

Diabetes medication

Drugs used in diabetes treat diabetes mellitus by decreasing glucose levels in the blood. With the exception of insulin, most GLP-1 receptor agonists (liraglutide, exenatide, and others), and pramlintide, all diabetes medications are administered orally and are thus called oral hypoglycemic agents or oral antihyperglycemic agents. There are different classes of hypoglycemic drugs, and selection of the appropriate agent depends on the nature of diabetes, age, and situation of the person, as well as other patient factors.

Diabetes mellitus type 1 is a disease caused by the lack of insulin. Thus, Insulin is the main treatment agent for type 1 and is typically administered via subcutaneous injection.

Diabetes mellitus type 2 is a disease of insulin resistance by cells. Type 2 diabetes mellitus is the most common type of diabetes. Treatments include agents that (1) increase the amount of insulin secreted by the pancreas, (2) increase the sensitivity of target organs to insulin, (3) decrease the rate at which glucose is absorbed from the gastrointestinal tract, and (4) increase the loss of glucose through urination.

Several drug classes are indicated for use in type 2 diabetes and are often used in combination. Therapeutic combinations may include several insulin isoforms or varying classes of oral antihyperglycemic agents. As of 2020, 23 unique antihyperglycemic drug combinations were approved by the FDA.[1] The first triple combination of oral anti-diabetics was approved in 2019, consisting of metformin, saxagliptin, and dapagliflozin. Another triple combination approval for metformin, linagliptin, and empagliflozin followed in 2020.[1]

Mechanisms of action edit

Diabetes medications have four main mechanisms of action:[citation needed]

Insulin edit

Insulin is usually given subcutaneously, either by injections or by an insulin pump. In acute care settings, insulin may also be given intravenously. Insulins are typically characterized by the rate at which they are metabolized by the body, yielding different peak times and durations of action.[2] Faster-acting insulins peak quickly and are subsequently metabolized, while longer-acting insulins tend to have extended peak times and remain active in the body for more significant periods.[3]

Examples of rapid-acting insulins (peak at ~1 hour) are:

Examples of short-acting insulins (peak 2–4 hours) are:

  • Regular insulin (Humulin R, Novolin R)
  • Prompt insulin zinc (Semilente)

Examples of intermediate-acting insulins (peak 4–10 hours) are:

  • Isophane insulin, neutral protamine Hagedorn (NPH) (Humulin N, Novolin N)
  • Insulin zinc (Lente)

Examples of long-acting insulins (duration 24 hours, often without peak) are:

  • Extended insulin zinc insulin (Ultralente)
  • Insulin glargine (Lantus)
  • Insulin detemir (Levemir)
  • Insulin degludec (Tresiba)

Insulin degludec is sometimes classed separately as an "ultra-long" acting insulin due to its duration of action of about 42 hours, compared with 24 hours for most other long-acting insulin preparations.[3]

As a systematic review of studies comparing insulin detemir, insulin glargine, insulin degludec and NPH insulin did not show any clear benefits or serious adverse effects for any particular form of insulin for nocturnal hypoglycemia, severe hypoglycemia, glycated hemoglobin A1c, non-fatal myocardial infarction/stroke, health-related quality of life or all-cause mortality.[4] The same review did not find any differences in effects of using these insulin analogues between adults and children.[4]

Most oral anti-diabetic agents are contraindicated in pregnancy, in which case insulin is preferred.[5]

Insulin is not administered by other routes, although this has been studied. An inhaled form was briefly licensed but was subsequently withdrawn.[citation needed]

Sensitizers edit

Insulin sensitizers address the core problem in type 2 diabetes – insulin resistance.

Biguanides edit

Biguanides reduce hepatic glucose output and increase uptake of glucose by the periphery, including skeletal muscle. Although it must be used with caution in patients with impaired liver or kidney function, Metformin, a biguanide, has become the most commonly used agent for type 2 diabetes in children and teenagers. Among common diabetic drugs, Metformin is the only widely used oral drug that does not cause weight gain.[citation needed]

Typical reduction in glycated hemoglobin (A1C) values for Metformin is 1.5–2.0%

  • Metformin (Glucophage) may be the best choice for patients who also have heart failure,[6] but it should be temporarily discontinued before any radiographic procedure involving intravenous iodinated contrast, as patients are at an increased risk of lactic acidosis.
  • Phenformin (DBI) was used from 1960s through 1980s, but was withdrawn due to lactic acidosis risk.[7]
  • Buformin also was withdrawn due to lactic acidosis risk.[8]

Metformin is a first-line medication used for treatment of type 2 diabetes. It is generally prescribed at initial diagnosis in conjunction with exercise and weight loss, as opposed to the past, where it was prescribed after diet and exercise had failed. There is an immediate-release as well as an extended-release formulation, typically reserved for patients experiencing gastrointestinal side-effects. It is also available in combination with other oral diabetic medications.

Thiazolidinediones edit

Thiazolidinediones (TZDs), also known as "glitazones," bind to PPARγ, peroxisome proliferator activated receptor γ, a type of nuclear regulatory protein involved in the transcription of genes that regulate glucose and fat metabolism. These PPARs act on peroxisome proliferator responsive elements (PPRE).[9] The PPREs influence insulin-sensitive genes, which enhance production of mRNAs of insulin-dependent enzymes. The final result is better use of glucose by the cells. These drugs also enhance PPAR-α activity and hence lead to a rise in HDL and some larger components of LDL.[citation needed]

Typical reductions in glycated hemoglobin (A1C) values are 1.5–2.0%. Some examples are:

Multiple retrospective studies have resulted in a concern about rosiglitazone's safety, although it is established that the group, as a whole, has beneficial effects on diabetes. The greatest concern is an increase in the number of severe cardiac events in patients taking it. The ADOPT study showed that initial therapy with drugs of this type may prevent the progression of disease,[13] as did the DREAM trial.[14] The American Association of Clinical Endocrinologists (AACE), which provides clinical practice guidelines for management of diabetes, retains thiazolidinediones as recommended first, second, or third line agents for type 2 diabetes mellitus, as of their 2019 executive summary, over sulfonylureas and α-glucosidase inhibitors. However, they are less preferred than GLP-1 agonists or SGLT2 inhibitors, especially in patients with cardiovascular disease (which liraglutide, empagliflozin, and canagliflozin are all FDA approved to treat).[15]

Concerns about the safety of rosiglitazone arose when a retrospective meta-analysis was published in the New England Journal of Medicine.[16] There have been a significant number of publications since then, and a Food and Drug Administration panel[17] voted, with some controversy, 20:3 that available studies "supported a signal of harm", but voted 22:1 to keep the drug on the market. The meta-analysis was not supported by an interim analysis of the trial designed to evaluate the issue, and several other reports have failed to conclude the controversy. This weak evidence for adverse effects has reduced the use of rosiglitazone, despite its important and sustained effects on glycemic control.[18] Safety studies are continuing.

In contrast, at least one large prospective study, PROactive 05, has shown that pioglitazone may decrease the overall incidence of cardiac events in people with type 2 diabetes who have already had a heart attack.[19]

LYN Kinase Activators edit

The LYN kinase activator Tolimidone has been reported to potentiate insulin signaling in a manner that is distinct from the glitazones.[20] The compound has demonstrated positive results in a Phase 2a clinical study involving 130 diabetic subjects.[21]

Secretagogues edit

Secretagogues are drugs that increase output from a gland, in the case of insulin from the pancreas.

Sulfonylureas edit

Sulfonylureas were the first widely used oral anti-hyperglycemic medications. They are insulin secretagogues, triggering insulin release by inhibiting the KATP channel of the pancreatic beta cells. Eight types of these pills have been marketed in North America, but not all remain available. The "second-generation" sulfonylureas are now more commonly used. They are more effective than first-generation drugs and have fewer side-effects. All may cause weight gain.

Current clinical practice guidelines from the AACE rate sulfonylureas (as well as glinides) below all other classes of antidiabetic drugs in terms of suggested use as first, second, or third line agents - this includes Bromocriptine, the bile acid sequestrant Colesevelam, α-glucosidase inhibitors, Thiazolidinediones (glitazones), and DPP-4 inhibitors (gliptins).[15] The low cost of most sulfonylureas, however, especially when considering their significant efficacy in blood glucose reduction, tends to keep them as a more feasible option in many patients - neither SGLT2 inhibitors nor GLP-1 agonists, the classes most favored by the AACE guidelines after metformin, are currently available as generics.

Sulfonylureas bind strongly to plasma proteins. Sulfonylureas are useful only in type 2 diabetes, as they work by stimulating endogenous release of insulin. They work best with patients over 40 years old who have had diabetes mellitus for under ten years. They cannot be used with type 1 diabetes, or diabetes of pregnancy. They can be safely used with metformin or glitazones. The primary side-effect is hypoglycemia, which appears to happen more commonly with sulfonylureas than with other treatments.[22]

A Cochrane systematic review from 2011 showed that treatment with Sulfonylureas did not improve control of glucose levels more than insulin at 3 nor 12 months of treatment.[23] This same review actually found evidence that treatment with Sulfonylureas could lead to earlier insulin dependence, with 30% of cases requiring insulin at 2 years.[23] When studies measured fasting C-peptide, no intervention influenced its concentration, but insulin maintained concentration better compared to Sulphonylurea.[23] Still, it is important to highlight that the studies available to be included in this review presented considerable flaws in quality and design.[23]

Typical reductions in glycated hemoglobin (A1C) values for second-generation sulfonylureas are 1.0–2.0%.

Meglitinides edit

Meglitinides help the pancreas produce insulin and are often called "short-acting secretagogues." They act on the same potassium channels as sulfonylureas, but at a different binding site.[24] By closing the potassium channels of the pancreatic beta cells, they open the calcium channels, thereby enhancing insulin secretion.[25]

They are taken with or shortly before meals to boost the insulin response to each meal. If a meal is skipped, the medication is also skipped.

Typical reductions in glycated hemoglobin (A1C) values are 0.5–1.0%.

Adverse reactions include weight gain and hypoglycemia.

Alpha-glucosidase inhibitors edit

Alpha-glucosidase inhibitors are a class of diabetes drugs, however, they are technically not hypoglycemic agents because they do not have a direct effect on insulin secretion or sensitivity. These agents slow the digestion of starch in the small intestine, such that glucose from the starch of enters the bloodstream at a slower rate, and can be matched more effectively by an impaired insulin response or sensitivity. These agents are effective by themselves only in the earliest stages of impaired glucose tolerance, but can be helpful in combination with other agents in type 2 diabetes.

Typical reductions in glycated hemoglobin (A1C) values are 0.5–1.0%.

These medications are rarely used in the United States because of the severity of their side-effects (flatulence and bloating). They are more commonly prescribed in Europe. They do have the potential to cause weight loss by lowering the amount of sugar metabolized.

Peptide analogs edit

 
Overview of insulin secretion

Injectable incretin mimetics edit

Incretins are also insulin secretagogues. The two main candidate molecules that fulfill criteria for being an incretin are glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (glucose-dependent insulinotropic peptide, GIP). Both GLP-1 and GIP are rapidly inactivated by the enzyme dipeptidyl peptidase-4 (DPP-4).

Injectable glucagon-like peptide analogs and agonists edit

Glucagon-like peptide (GLP) agonists bind to a membrane GLP receptor.[25] As a consequence, insulin release from the pancreatic beta cells is increased. Endogenous GLP has a half-life of only a few minutes, thus an analogue of GLP would not be practical. As of 2019, the AACE lists GLP-1 agonists, along with SGLT2 inhibitors, as the most preferred anti-diabetic agents after metformin. Liraglutide in particular may be considered first-line in diabetic patients with cardiovascular disease, as it has received FDA approval for reduction of risk of major adverse cardiovascular events in patients with type 2 diabetes.[15][26] In a 2011 Cochrane review, GLP-1 agonists showed approximately a 1% reduction in HbA1c when compared to placebo.[22] GLP-1 agonists also show improvement of beta-cell function, but this effect does not last after treatment is stopped.[22] Due to shorter duration of studies, this review did not allow for long-term positiver or negative effects to be assessed.[22]

  • Exenatide (also Exendin-4, marketed as Byetta) is the first GLP-1 agonist approved for the treatment of type 2 diabetes. Exenatide is not an analogue of GLP but rather a GLP agonist.[27][28] Exenatide has only 53% homology with GLP, which increases its resistance to degradation by DPP-4 and extends its half-life.[29] A 2011 Cochrane review showed a HbA1c reduction of 0.20% more with Exenatide 2 mg compared to insulin glargine, exenatide 10 µg twice daily, sitagliptin and pioglitazone.[22] Exenatide, together with liraglutide, led to greater weight loss than glucagon-like peptide analogues.[22]
  • Liraglutide, a once-daily human analogue (97% homology), has been developed by Novo Nordisk under the brand name Victoza. The product was approved by the European Medicines Agency (EMEA) on July 3, 2009, and by the U.S. Food and Drug Administration (FDA) on January 25, 2010.[30][31][32][33][34][35] A 2011 Cochrane review showed a HbA1c reduction of 0.24% more with liraglutide 1.8 mg compared to insulin glargine, 0.33% more than exenatide 10 µg twice daily, sitagliptin and rosiglitazone.[22] Liraglutide, together with exenatide, led to greater weight loss than glucagon-like peptide analogues.[22]
  • Taspoglutide is presently in Phase III clinical trials with Hoffman-La Roche.
  • Lixisenatide (Lyxumia) Sanofi Aventis
  • Semaglutide (Ozempic) (oral version is Rybelsus)
  • Dulaglutide (Trulicity) - once weekly
  • Albiglutide (Tanzeum) - once weekly

These agents may also cause a decrease in gastric motility, responsible for the common side-effect of nausea, which tends to subside with time.[22]

Gastric inhibitory peptide analogs edit

Dipeptidyl peptidase-4 inhibitors edit

GLP-1 analogs resulted in weight loss and had more gastrointestinal side-effects, while in general dipeptidyl peptidase-4 (DPP-4) inhibitors were weight-neutral and are associated with increased risk for infection and headache. Both classes appear to present an alternative to other antidiabetic drugs. However, weight gain and/or hypoglycemia have been observed when dipeptidyl peptidase-4 inhibitors were used with sulfonylureas; effects on long-term health and morbidity rates are still unknown.[36]

DPP-4 inhibitors increase blood concentration of the incretin GLP-1 by inhibiting its degradation by DPP-4.

Examples are:

DPP-4 inhibitors lowered hemoglobin A1C values by 0.74%, comparable to other antidiabetic drugs.[37]

A result in one RCT comprising 206 patients aged 65 or older (mean baseline HgbA1c of 7.8%) receiving either 50 or 100 mg/d of sitagliptin was shown to reduce HbA1c by 0.7% (combined result of both doses).[38] A combined result of 5 RCTs enlisting a total of 279 patients aged 65 or older (mean baseline HbA1c of 8%) receiving 5 mg/d of saxagliptin was shown to reduce HbA1c by 0.73%.[39] A combined result of 5 RCTs enlisting a total of 238 patients aged 65 or older (mean baseline HbA1c of 8.6%) receiving 100 mg/d of vildagliptin was shown to reduce HbA1c by 1.2%.[40] Another set of 6 combined RCTs involving alogliptin (approved by FDA in 2013) was shown to reduce HbA1c by 0.73% in 455 patients aged 65 or older who received 12.5 or 25 mg/d of the medication.[41]

Injectable amylin analogues edit

Amylin agonist analogues slow gastric emptying and suppress glucagon. They have all the incretins actions except stimulation of insulin secretion. As of 2007, pramlintide is the only clinically available amylin analogue. Like insulin, it is administered by subcutaneous injection. The most frequent and severe adverse effect of pramlintide is nausea, which occurs mostly at the beginning of treatment and gradually reduces. Typical reductions in A1C values are 0.5–1.0%.[citation needed]

SGLT2 inhibitors edit

SGLT2 inhibitors block the sodium-glucose linked transporter 2 proteins in renal tubules of nephrons in kidneys, reabsorption of glucose in into the renal tubules, promoting excretion of glucose in the urine. This causes both mild weight loss, and a mild reduction in blood sugar levels with little risk of hypoglycemia.[42] Oral preparations may be available alone or in combination with other agents.[43] Along with GLP-1 agonists, they are considered preferred second or third agents for type 2 diabetics sub-optimally controlled with metformin alone, according to most recent clinical practice guidelines.[15] Because they are taken by mouth, rather than injected (like GLP-1 agonists), patients who are injection-averse may prefer these agents over the former. They may be considered first line in diabetic patients with cardiovascular disease, especially heart failure, as these medications have been shown to reduce the risk of hospitalization in patients with such comorbidities.[44] Because they are not available as generic medications, however, cost may limit their feasibility for many patients. Furthermore, there has been growing evidence that the effectiveness and safety of this drug class could depend on genetic variability of the patients.[45]

Examples include:

The side effects of SGLT2 inhibitors are derived directly from their mechanism of action; these include an increased risk of: ketoacidosis, urinary tract infections, candidal vulvovaginitis, and hypoglycemia.[46]

Comparison edit

The following table compares some common anti-diabetic agents, generalizing classes, although there may be substantial variation in individual drugs of each class. When the table makes a comparison such as "lower risk" or "more convenient" the comparison is with the other drugs on the table.

Comparison of anti-diabetic medication[47][48]
Drug class[48] Mechanism of action[5] Advantages[48] Disadvantages[48]
Sulfonylureas (glyburide, glimepiride, glipizide) Stimulating insulin release by pancreatic beta cells by inhibiting the KATP channel
  • Cause an average of 2–5 kg weight gain
  • Increase the risk of hypoglycemia
  • Glyburide increases risk of hypoglycemia slightly more compared to glimepiride and glipizide
Metformin Acts on the liver to reduce gluconeogenesis and causes a decrease in insulin resistance via increasing AMPK signalling.
  • Associated with weight loss
  • Lower risk of hypoglycemia compared to other antidiabetics
  • Decreases low-density lipoprotein
  • Decreases triglycerides
  • No effect on blood pressure
  • Lowered all-cause mortality in diabetics
  • Inexpensive
Alpha-glucosidase inhibitors (acarbose, miglitol, voglibose) Inhibit carbohydrate digestion in the small intestine by inhibiting enzymes that break down polysaccharides
  • Slightly lower risk of hypoglycemia compared to sulfonylureas
  • Associated with modest weight loss
  • Decreases triglycerides
  • No detrimental effect on cholesterol
  • Less effective than most other diabetes pills in lowering glycated hemoglobin
  • Increased risk of GI side effects than other diabetes pills except metformin
  • Inconvenient dosing
Thiazolidinediones (Pioglitazone, Rosiglitazone) Reduce insulin resistance by activating PPAR-γ in fat and muscle
  • Lower the risk of hypoglycemia
  • May slightly increase high-density lipoprotein
  • Rosiglitazone linked to decreased triglycerides
  • Convenient dosing
  • Increase the risk of heart failure
  • Cause an average of 2–5 kg weight gain
  • Are associated with a higher risk of edema, anemia and bone fractures
  • Can increase low-density lipoprotein
  • Rosiglitazone has been linked to increased triglycerides and an increased risk of a heart attack
  • Pioglitazone has been linked to an increased risk of bladder cancer
  • Have a slower onset of action
  • Require monitoring for hepatotoxicity
  • Expensive
SGLT2 inhibitors

Generics edit

Many anti-diabetes drugs are available as generics. These include:[49]

No generics are available for dipeptidyl peptidase-4 inhibitors (Onglyza), the glifozins, the incretins and various combinations. Sitagliptin patent expired in July 2022, leading to launch of generic sitagliptin[50] brands . This lowered the cost of therapy for type 2 diabetes using sitagliptin .

Alternative Medicine edit

The effect of Ayurvedic treatments has been researched, however due to methodological flaws of relevant studies and research, it has not been possible to draw conclusions regarding efficacy of these treatments and there is insufficient evidence to recommend them.[51]

References edit

  1. ^ a b Dahlén AD, Dashi G, Maslov I, Attwood MM, Jonsson J, Trukhan V, Schiöth HB (January 2022). "Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales". Front Pharmacol. 12: 4119. doi:10.3389/fphar.2021.807548. PMC 8807560. PMID 35126141.
  2. ^ Powers AC (2011). "Diabetes Mellitus". In Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J (eds.). Harrison's Principles of Internal Medicine (18th ed.). McGraw-Hill. ISBN 978-0071748896.
  3. ^ a b Donner T, Sarkar S (2000). "Insulin – Pharmacology, Therapeutic Regimens, and Principles of Intensive Insulin Therapy". In Feingold KR, Anawalt B, Boyce A, Chrousos G (eds.). Endotext. MDText.com, Inc. PMID 25905175. Retrieved November 16, 2019.
  4. ^ a b Hemmingsen B, Metzendorf MI, Richter B (March 2021). "(Ultra-)long-acting insulin analogues for people with type 1 diabetes mellitus". The Cochrane Database of Systematic Reviews. 3 (4): CD013498. doi:10.1002/14651858.cd013498.pub2. PMC 8094220. PMID 33662147.
  5. ^ a b c d Table entries taken from page 185 in: Elizabeth D Agabegi; Agabegi, Steven S. (2008). Step-Up to Medicine (Step-Up Series). Hagerstwon, MD: Lippincott Williams & Wilkins. ISBN 978-0-7817-7153-5.
  6. ^ Eurich DT, McAlister FA, Blackburn DF, Majumdar SR, Tsuyuki RT, Varney J, Johnson JA (September 2007). "Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review". BMJ. 335 (7618): 497. doi:10.1136/bmj.39314.620174.80. PMC 1971204. PMID 17761999.
  7. ^ Fimognari FL, Pastorelli R, Incalzi RA (April 2006). "Phenformin-induced lactic acidosis in an older diabetic patient: a recurrent drama (phenformin and lactic acidosis)". Diabetes Care. 29 (4): 950–951. doi:10.2337/diacare.29.04.06.dc06-0012. PMID 16567854. Archived from the original on December 9, 2012.
  8. ^ Verdonck LF, Sangster B, van Heijst AN, de Groot G, Maes RA (1981). "Buformin concentrations in a case of fatal lactic acidosis". Diabetologia. 20 (1): 45–46. doi:10.1007/BF01789112. PMID 7202882.
  9. ^ "diabetesinsulinPPAR". www.healthvalue.net. from the original on March 3, 2016. Retrieved May 6, 2018.
  10. ^ European Medicines Agency, "European Medicines Agency recommends suspension of Avandia, Avandamet and Avaglim" February 3, 2014, at the Wayback Machine, EMA, 23 September 2009
  11. ^ Lincoff AM, Wolski K, Nicholls SJ, Nissen SE (September 2007). "Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials". JAMA. 298 (10): 1180–1188. doi:10.1001/jama.298.10.1180. PMID 17848652.
  12. ^ Hinterthuer A (October 1, 2008). "Retired Drugs: Failed Blockbusters, Homicidal Tampering, Fatal Oversights". Wired News. from the original on December 4, 2008. Retrieved June 21, 2009.
  13. ^ Haffner SM (2007). "Expert Column – A Diabetes Outcome Progression Trial (ADOPT)". Medscape. Retrieved September 21, 2007.
  14. ^ Gagnon L (October 24, 2006). "DREAM: Rosiglitazone Effective in Preventing Diabetes". Medscape. from the original on December 2, 2008. Retrieved September 21, 2007.
  15. ^ a b c d Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. (January 2019). "Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm - 2019 Executive Summary". Endocrine Practice. 25 (1): 69–100. doi:10.4158/cs-2018-0535. PMID 30742570.
  16. ^ Nissen SE, Wolski K (June 2007). "Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes". The New England Journal of Medicine. 356 (24): 2457–2471. doi:10.1056/NEJMoa072761. PMID 17517853.
  17. ^ Wood S (July 31, 2007). "FDA Advisory Panels Acknowledge Signal of Risk With Rosiglitazone, but Stop Short of Recommending Its Withdrawal". Heartwire. from the original on March 18, 2014. Retrieved September 21, 2007.
  18. ^ Ajjan RA, Grant PJ (July 2008). "The cardiovascular safety of rosiglitazone". Expert Opinion on Drug Safety. 7 (4): 367–376. doi:10.1517/14740338.7.4.367. PMID 18613801. S2CID 73109231.
  19. ^ Erdmann E, Dormandy JA, Charbonnel B, Massi-Benedetti M, Moules IK, Skene AM (May 2007). "The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction: results from the PROactive (PROactive 05) Study". Journal of the American College of Cardiology. 49 (17): 1772–1780. doi:10.1016/j.jacc.2006.12.048. PMID 17466227.
  20. ^ Müller G, Wied S, Frick W (July 2000). "Cross talk of pp125(FAK) and pp59(Lyn) non-receptor tyrosine kinases to insulin-mimetic signaling in adipocytes". Molecular and Cellular Biology. 20 (13): 4708–4723. doi:10.1128/mcb.20.13.4708-4723.2000. PMC 85892. PMID 10848597.
  21. ^ "Melior Pharmaceuticals Announces Positive Phase 2A Results in Type 2 Diabetes Study". businesswire.com. June 13, 2016. from the original on August 12, 2017. Retrieved May 6, 2018.
  22. ^ a b c d e f g h i Shyangdan DS, Royle P, Clar C, Sharma P, Waugh N, Snaith A (October 2011). "Glucagon-like peptide analogues for type 2 diabetes mellitus". The Cochrane Database of Systematic Reviews. 2011 (10): CD006423. doi:10.1002/14651858.cd006423.pub2. PMC 6486297. PMID 21975753.
  23. ^ a b c d Brophy S, Davies H, Mannan S, Brunt H, Williams R (September 2011). "Interventions for latent autoimmune diabetes (LADA) in adults". The Cochrane Database of Systematic Reviews. 2011 (9): CD006165. doi:10.1002/14651858.cd006165.pub3. PMC 6486159. PMID 21901702.
  24. ^ Rendell M (September 2004). "Advances in diabetes for the millennium: drug therapy of type 2 diabetes". MedGenMed. 6 (3 Suppl): 9. PMC 1474831. PMID 15647714.
  25. ^ a b "Helping the pancreas produce insulin". HealthValue. from the original on September 27, 2007. Retrieved September 21, 2007.
  26. ^ "Victoza (liraglutide) is Approved to Reduce the Risk of Three Major Adverse Cardiovascular Events in Type 2 Diabetes Patients". Drugs.com. Retrieved November 16, 2019.
  27. ^ Briones M, Bajaj M (June 2006). "Exenatide: a GLP-1 receptor agonist as novel therapy for Type 2 diabetes mellitus". Expert Opinion on Pharmacotherapy. 7 (8): 1055–1064. doi:10.1517/14656566.7.8.1055. PMID 16722815. S2CID 43740629.
  28. ^ Gallwitz B (December 2006). "Exenatide in type 2 diabetes: treatment effects in clinical studies and animal study data". International Journal of Clinical Practice. 60 (12): 1654–1661. doi:10.1111/j.1742-1241.2006.01196.x. PMID 17109672. S2CID 8800490.
  29. ^ Cvetković RS, Plosker GL (2007). "Exenatide: a review of its use in patients with type 2 diabetes mellitus (as an adjunct to metformin and/or a sulfonylurea)". Drugs. 67 (6): 935–954. doi:10.2165/00003495-200767060-00008. PMID 17428109. S2CID 195691202.
  30. ^ "Novo Nordisk Files for Regulatory Approval of Liraglutide in Both the US and Europe". from the original on December 15, 2017. Retrieved January 23, 2018. May 2008
  31. ^ "Liraglutide Provides Significantly Better Glucose Control Than Insulin Glargine in Phase 3 Study". from the original on July 23, 2010. Retrieved February 9, 2010. "Liraglutide Provides Significantly Better Glucose Control Than Insulin Glargine In Phase 3 Study" June 2007
  32. ^ "Clinical Study Shows Liraglutide Reduced Blood Sugar, Weight, and Blood Pressure in Patients with Type 2 Diabetes". from the original on February 5, 2009. Retrieved February 9, 2010. "Clinical Study Shows Liraglutide Reduced Blood Sugar, Weight, And Blood Pressure In Patients With Type 2 Diabetes" June 2008
  33. ^ "Liraglutide – Next-Generation Antidiabetic Medication". from the original on June 18, 2010. Retrieved February 9, 2010.
  34. ^ . Archived from the original on January 9, 2010. Retrieved February 9, 2010. Oct 2008 Inc results of LEAD 6 extension
  35. ^ "Novo Nordisk Receives US Approval for Victoza(R) (Liraglutide) for the Treatment of Type 2 Diabetes". from the original on January 29, 2010. Retrieved February 9, 2010. January 2009
  36. ^ National Prescribing Service (August 1, 2010). "Dipeptidyl peptidase-4 inhibitors ('gliptins') for type 2 diabetes mellitus". RADAR. Retrieved March 7, 2021.
  37. ^ Amori RE, Lau J, Pittas AG (July 2007). "Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis". JAMA. 298 (2): 194–206. doi:10.1001/jama.298.2.194. PMID 17622601.
  38. ^ Barzilei N, Mahoney EM, Guo H (2009). "Sitagliptin is well tolerated and leads to rapid improvement in blood glucose in the first days of monotherapy in patients aged 65 years and older with T2DM". Diabetes. 58: 587.
  39. ^ Doucet J, Chacra A, Maheux P, Lu J, Harris S, Rosenstock J (April 2011). "Efficacy and safety of saxagliptin in older patients with type 2 diabetes mellitus". Current Medical Research and Opinion. 27 (4): 863–869. doi:10.1185/03007995.2011.554532. PMID 21323504. S2CID 206965817.
  40. ^ Pratley RE, Rosenstock J, Pi-Sunyer FX, Banerji MA, Schweizer A, Couturier A, Dejager S (December 2007). "Management of type 2 diabetes in treatment-naive elderly patients: benefits and risks of vildagliptin monotherapy". Diabetes Care. 30 (12): 3017–3022. doi:10.2337/dc07-1188. PMID 17878242.
  41. ^ Pratley RE, McCall T, Fleck PR, Wilson CA, Mekki Q (November 2009). "Alogliptin use in elderly people: a pooled analysis from phase 2 and 3 studies". Journal of the American Geriatrics Society. 57 (11): 2011–2019. doi:10.1111/j.1532-5415.2009.02484.x. PMID 19793357. S2CID 28683917.
  42. ^ Dietrich E, Powell J, Taylor JR (November 2013). "Canagliflozin: a novel treatment option for type 2 diabetes". Drug Design, Development and Therapy. 7: 1399–1408. doi:10.2147/DDDT.S48937. PMC 3840773. PMID 24285921.
  43. ^ Center for Drug Evaluation and Research. "Drug Safety and Availability - Sodium-glucose Cotransporter-2 (SGLT2) Inhibitors". www.fda.gov. from the original on November 29, 2016. Retrieved August 26, 2017.
  44. ^ "UpToDate". www.uptodate.com. Retrieved November 16, 2019.
  45. ^ Imamovic Kadric S, Kulo Cesic A, Dujic T. Pharmacogenetics of new classes of antidiabetic drugs. Bosn J of Basic Med Sci. 2021. DOI: https://doi.org/10.17305/bjbms.2021.5646
  46. ^ "SGLT2 Inhibitors (Gliflozins) – Drugs, Suitability, Benefits & Side Effects". from the original on August 27, 2017. Retrieved August 26, 2017.
  47. ^ Cambon-Thomsen A, Rial-Sebbag E, Knoppers BM (August 2007). "Trends in ethical and legal frameworks for the use of human biobanks". The European Respiratory Journal. 30 (2): 373–382. doi:10.1183/09031936.00165006. PMID 17666560. adapted from table 2, which includes a list of issues
  48. ^ a b c d Consumer Reports Health Best Buy Drugs. "The Oral Diabetes Drugs: Treating Type 2 Diabetes" (PDF). Best Buy Drugs. Consumer Reports: 20. (PDF) from the original on February 27, 2013. Retrieved September 18, 2012., which is citing
    • Agency for Healthcare Research and Quality (March 2011). (PDF). Comparative Effectiveness Review (27). Archived from the original (PDF) on September 27, 2013. Retrieved November 28, 2012.
    • Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM, Chatterjee R, et al. (May 2011). "Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations". Annals of Internal Medicine. 154 (9): 602–613. doi:10.7326/0003-4819-154-9-201105030-00336. PMC 3733115. PMID 21403054.
  49. ^ "The Oral Diabetes Drugs Treating Type 2 Diabetes Comparing Effectiveness, Safety, and Price" (PDF). (PDF) from the original on June 15, 2013. Retrieved July 17, 2013.
  50. ^ "Sitagliptin Generic Alternatives". www.sastimedic.com. January 31, 2024. Retrieved January 31, 2024.
  51. ^ Sridharan K, Mohan R, Ramaratnam S, Panneerselvam D, et al. (Cochrane Metabolic and Endocrine Disorders Group) (December 2011). "Ayurvedic treatments for diabetes mellitus". The Cochrane Database of Systematic Reviews (12): CD008288. doi:10.1002/14651858.CD008288.pub2. PMC 3718571. PMID 22161426.

Further reading edit

diabetes, medication, this, article, about, treatment, diabetes, mellitus, treatment, diabetes, insipidus, diabetes, insipidus, drugs, used, diabetes, treat, diabetes, mellitus, decreasing, glucose, levels, blood, with, exception, insulin, most, receptor, agon. This article is about treatment of diabetes mellitus For treatment of diabetes insipidus see Diabetes insipidus Drugs used in diabetes treat diabetes mellitus by decreasing glucose levels in the blood With the exception of insulin most GLP 1 receptor agonists liraglutide exenatide and others and pramlintide all diabetes medications are administered orally and are thus called oral hypoglycemic agents or oral antihyperglycemic agents There are different classes of hypoglycemic drugs and selection of the appropriate agent depends on the nature of diabetes age and situation of the person as well as other patient factors Diabetes mellitus type 1 is a disease caused by the lack of insulin Thus Insulin is the main treatment agent for type 1 and is typically administered via subcutaneous injection Diabetes mellitus type 2 is a disease of insulin resistance by cells Type 2 diabetes mellitus is the most common type of diabetes Treatments include agents that 1 increase the amount of insulin secreted by the pancreas 2 increase the sensitivity of target organs to insulin 3 decrease the rate at which glucose is absorbed from the gastrointestinal tract and 4 increase the loss of glucose through urination Several drug classes are indicated for use in type 2 diabetes and are often used in combination Therapeutic combinations may include several insulin isoforms or varying classes of oral antihyperglycemic agents As of 2020 23 unique antihyperglycemic drug combinations were approved by the FDA 1 The first triple combination of oral anti diabetics was approved in 2019 consisting of metformin saxagliptin and dapagliflozin Another triple combination approval for metformin linagliptin and empagliflozin followed in 2020 1 Contents 1 Mechanisms of action 2 Insulin 3 Sensitizers 3 1 Biguanides 3 2 Thiazolidinediones 3 3 LYN Kinase Activators 4 Secretagogues 4 1 Sulfonylureas 4 2 Meglitinides 5 Alpha glucosidase inhibitors 6 Peptide analogs 6 1 Injectable incretin mimetics 6 1 1 Injectable glucagon like peptide analogs and agonists 6 1 2 Gastric inhibitory peptide analogs 6 1 3 Dipeptidyl peptidase 4 inhibitors 6 2 Injectable amylin analogues 7 SGLT2 inhibitors 8 Comparison 9 Generics 10 Alternative Medicine 11 References 12 Further readingMechanisms of action editDiabetes medications have four main mechanisms of action citation needed Insulin sensitization Increased sensitivity of insulin receptors on cells leading to decreasedinsulin resistance and higher effects of insulin on blood glucose levels Stimulation of beta cells This stimulation increases insulin secretion from beta cells of pancreas Alpha glucosidase inhibition Inhibition of the alpha glucosidase enzyme decreases the rate at which glucose is absorbed from the gastrointestinal tract SGLT2 inhibition Inhibition of sodium glucose transport protein 2 SGLT2 decreases glucose reabsorption in the renal tubules of nephrons thus increasing the amount of glucose excreted in urine Insulin editMain article Insulin medication Insulin is usually given subcutaneously either by injections or by an insulin pump In acute care settings insulin may also be given intravenously Insulins are typically characterized by the rate at which they are metabolized by the body yielding different peak times and durations of action 2 Faster acting insulins peak quickly and are subsequently metabolized while longer acting insulins tend to have extended peak times and remain active in the body for more significant periods 3 Examples of rapid acting insulins peak at 1 hour are Insulin lispro Humalog Insulin aspart Novolog Insulin glulisine Apidra Examples of short acting insulins peak 2 4 hours are Regular insulin Humulin R Novolin R Prompt insulin zinc Semilente Examples of intermediate acting insulins peak 4 10 hours are Isophane insulin neutral protamine Hagedorn NPH Humulin N Novolin N Insulin zinc Lente Examples of long acting insulins duration 24 hours often without peak are Extended insulin zinc insulin Ultralente Insulin glargine Lantus Insulin detemir Levemir Insulin degludec Tresiba Insulin degludec is sometimes classed separately as an ultra long acting insulin due to its duration of action of about 42 hours compared with 24 hours for most other long acting insulin preparations 3 As a systematic review of studies comparing insulin detemir insulin glargine insulin degludec and NPH insulin did not show any clear benefits or serious adverse effects for any particular form of insulin for nocturnal hypoglycemia severe hypoglycemia glycated hemoglobin A1c non fatal myocardial infarction stroke health related quality of life or all cause mortality 4 The same review did not find any differences in effects of using these insulin analogues between adults and children 4 Most oral anti diabetic agents are contraindicated in pregnancy in which case insulin is preferred 5 Insulin is not administered by other routes although this has been studied An inhaled form was briefly licensed but was subsequently withdrawn citation needed Sensitizers editInsulin sensitizers address the core problem in type 2 diabetes insulin resistance Biguanides edit Main article Biguanide Biguanides reduce hepatic glucose output and increase uptake of glucose by the periphery including skeletal muscle Although it must be used with caution in patients with impaired liver or kidney function Metformin a biguanide has become the most commonly used agent for type 2 diabetes in children and teenagers Among common diabetic drugs Metformin is the only widely used oral drug that does not cause weight gain citation needed Typical reduction in glycated hemoglobin A1C values for Metformin is 1 5 2 0 Metformin Glucophage may be the best choice for patients who also have heart failure 6 but it should be temporarily discontinued before any radiographic procedure involving intravenous iodinated contrast as patients are at an increased risk of lactic acidosis Phenformin DBI was used from 1960s through 1980s but was withdrawn due to lactic acidosis risk 7 Buformin also was withdrawn due to lactic acidosis risk 8 Metformin is a first line medication used for treatment of type 2 diabetes It is generally prescribed at initial diagnosis in conjunction with exercise and weight loss as opposed to the past where it was prescribed after diet and exercise had failed There is an immediate release as well as an extended release formulation typically reserved for patients experiencing gastrointestinal side effects It is also available in combination with other oral diabetic medications Thiazolidinediones edit Main article Thiazolidinedione Thiazolidinediones TZDs also known as glitazones bind to PPARg peroxisome proliferator activated receptor g a type of nuclear regulatory protein involved in the transcription of genes that regulate glucose and fat metabolism These PPARs act on peroxisome proliferator responsive elements PPRE 9 The PPREs influence insulin sensitive genes which enhance production of mRNAs of insulin dependent enzymes The final result is better use of glucose by the cells These drugs also enhance PPAR a activity and hence lead to a rise in HDL and some larger components of LDL citation needed Typical reductions in glycated hemoglobin A1C values are 1 5 2 0 Some examples are Rosiglitazone Avandia the European Medicines Agency recommended in September 2010 that it be suspended from the EU market due to elevated cardiovascular risks 10 Pioglitazone Actos remains on the market but has also been associated with increased cardiovascular risks 11 Troglitazone Rezulin used in 1990s withdrawn due to hepatitis and liver damage risk 12 Multiple retrospective studies have resulted in a concern about rosiglitazone s safety although it is established that the group as a whole has beneficial effects on diabetes The greatest concern is an increase in the number of severe cardiac events in patients taking it The ADOPT study showed that initial therapy with drugs of this type may prevent the progression of disease 13 as did the DREAM trial 14 The American Association of Clinical Endocrinologists AACE which provides clinical practice guidelines for management of diabetes retains thiazolidinediones as recommended first second or third line agents for type 2 diabetes mellitus as of their 2019 executive summary over sulfonylureas and a glucosidase inhibitors However they are less preferred than GLP 1 agonists or SGLT2 inhibitors especially in patients with cardiovascular disease which liraglutide empagliflozin and canagliflozin are all FDA approved to treat 15 Concerns about the safety of rosiglitazone arose when a retrospective meta analysis was published in the New England Journal of Medicine 16 There have been a significant number of publications since then and a Food and Drug Administration panel 17 voted with some controversy 20 3 that available studies supported a signal of harm but voted 22 1 to keep the drug on the market The meta analysis was not supported by an interim analysis of the trial designed to evaluate the issue and several other reports have failed to conclude the controversy This weak evidence for adverse effects has reduced the use of rosiglitazone despite its important and sustained effects on glycemic control 18 Safety studies are continuing In contrast at least one large prospective study PROactive 05 has shown that pioglitazone may decrease the overall incidence of cardiac events in people with type 2 diabetes who have already had a heart attack 19 LYN Kinase Activators edit The LYN kinase activator Tolimidone has been reported to potentiate insulin signaling in a manner that is distinct from the glitazones 20 The compound has demonstrated positive results in a Phase 2a clinical study involving 130 diabetic subjects 21 Secretagogues editSecretagogues are drugs that increase output from a gland in the case of insulin from the pancreas Sulfonylureas edit This section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed January 2016 Learn how and when to remove this template message Main article Sulfonylurea Sulfonylureas were the first widely used oral anti hyperglycemic medications They are insulin secretagogues triggering insulin release by inhibiting the KATP channel of the pancreatic beta cells Eight types of these pills have been marketed in North America but not all remain available The second generation sulfonylureas are now more commonly used They are more effective than first generation drugs and have fewer side effects All may cause weight gain Current clinical practice guidelines from the AACE rate sulfonylureas as well as glinides below all other classes of antidiabetic drugs in terms of suggested use as first second or third line agents this includes Bromocriptine the bile acid sequestrant Colesevelam a glucosidase inhibitors Thiazolidinediones glitazones and DPP 4 inhibitors gliptins 15 The low cost of most sulfonylureas however especially when considering their significant efficacy in blood glucose reduction tends to keep them as a more feasible option in many patients neither SGLT2 inhibitors nor GLP 1 agonists the classes most favored by the AACE guidelines after metformin are currently available as generics Sulfonylureas bind strongly to plasma proteins Sulfonylureas are useful only in type 2 diabetes as they work by stimulating endogenous release of insulin They work best with patients over 40 years old who have had diabetes mellitus for under ten years They cannot be used with type 1 diabetes or diabetes of pregnancy They can be safely used with metformin or glitazones The primary side effect is hypoglycemia which appears to happen more commonly with sulfonylureas than with other treatments 22 A Cochrane systematic review from 2011 showed that treatment with Sulfonylureas did not improve control of glucose levels more than insulin at 3 nor 12 months of treatment 23 This same review actually found evidence that treatment with Sulfonylureas could lead to earlier insulin dependence with 30 of cases requiring insulin at 2 years 23 When studies measured fasting C peptide no intervention influenced its concentration but insulin maintained concentration better compared to Sulphonylurea 23 Still it is important to highlight that the studies available to be included in this review presented considerable flaws in quality and design 23 Typical reductions in glycated hemoglobin A1C values for second generation sulfonylureas are 1 0 2 0 First generation agents tolbutamide acetohexamide tolazamide chlorpropamide Second generation agents glipizide glyburide or glibenclamide glimepiride gliclazide glyclopyramide gliquidone Meglitinides edit Main article Meglitinide Meglitinides help the pancreas produce insulin and are often called short acting secretagogues They act on the same potassium channels as sulfonylureas but at a different binding site 24 By closing the potassium channels of the pancreatic beta cells they open the calcium channels thereby enhancing insulin secretion 25 They are taken with or shortly before meals to boost the insulin response to each meal If a meal is skipped the medication is also skipped Typical reductions in glycated hemoglobin A1C values are 0 5 1 0 repaglinide nateglinide Adverse reactions include weight gain and hypoglycemia Alpha glucosidase inhibitors editThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed January 2016 Learn how and when to remove this template message Main article Alpha glucosidase inhibitor Alpha glucosidase inhibitors are a class of diabetes drugs however they are technically not hypoglycemic agents because they do not have a direct effect on insulin secretion or sensitivity These agents slow the digestion of starch in the small intestine such that glucose from the starch of enters the bloodstream at a slower rate and can be matched more effectively by an impaired insulin response or sensitivity These agents are effective by themselves only in the earliest stages of impaired glucose tolerance but can be helpful in combination with other agents in type 2 diabetes Typical reductions in glycated hemoglobin A1C values are 0 5 1 0 miglitol acarbose voglibose These medications are rarely used in the United States because of the severity of their side effects flatulence and bloating They are more commonly prescribed in Europe They do have the potential to cause weight loss by lowering the amount of sugar metabolized Peptide analogs editThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed January 2016 Learn how and when to remove this template message nbsp Overview of insulin secretion Injectable incretin mimetics edit Incretins are also insulin secretagogues The two main candidate molecules that fulfill criteria for being an incretin are glucagon like peptide 1 GLP 1 and gastric inhibitory peptide glucose dependent insulinotropic peptide GIP Both GLP 1 and GIP are rapidly inactivated by the enzyme dipeptidyl peptidase 4 DPP 4 Injectable glucagon like peptide analogs and agonists edit Glucagon like peptide GLP agonists bind to a membrane GLP receptor 25 As a consequence insulin release from the pancreatic beta cells is increased Endogenous GLP has a half life of only a few minutes thus an analogue of GLP would not be practical As of 2019 the AACE lists GLP 1 agonists along with SGLT2 inhibitors as the most preferred anti diabetic agents after metformin Liraglutide in particular may be considered first line in diabetic patients with cardiovascular disease as it has received FDA approval for reduction of risk of major adverse cardiovascular events in patients with type 2 diabetes 15 26 In a 2011 Cochrane review GLP 1 agonists showed approximately a 1 reduction in HbA1c when compared to placebo 22 GLP 1 agonists also show improvement of beta cell function but this effect does not last after treatment is stopped 22 Due to shorter duration of studies this review did not allow for long term positiver or negative effects to be assessed 22 Exenatide also Exendin 4 marketed as Byetta is the first GLP 1 agonist approved for the treatment of type 2 diabetes Exenatide is not an analogue of GLP but rather a GLP agonist 27 28 Exenatide has only 53 homology with GLP which increases its resistance to degradation by DPP 4 and extends its half life 29 A 2011 Cochrane review showed a HbA1c reduction of 0 20 more with Exenatide 2 mg compared to insulin glargine exenatide 10 µg twice daily sitagliptin and pioglitazone 22 Exenatide together with liraglutide led to greater weight loss than glucagon like peptide analogues 22 Liraglutide a once daily human analogue 97 homology has been developed by Novo Nordisk under the brand name Victoza The product was approved by the European Medicines Agency EMEA on July 3 2009 and by the U S Food and Drug Administration FDA on January 25 2010 30 31 32 33 34 35 A 2011 Cochrane review showed a HbA1c reduction of 0 24 more with liraglutide 1 8 mg compared to insulin glargine 0 33 more than exenatide 10 µg twice daily sitagliptin and rosiglitazone 22 Liraglutide together with exenatide led to greater weight loss than glucagon like peptide analogues 22 Taspoglutide is presently in Phase III clinical trials with Hoffman La Roche Lixisenatide Lyxumia Sanofi Aventis Semaglutide Ozempic oral version is Rybelsus Dulaglutide Trulicity once weekly Albiglutide Tanzeum once weekly These agents may also cause a decrease in gastric motility responsible for the common side effect of nausea which tends to subside with time 22 Gastric inhibitory peptide analogs edit Dipeptidyl peptidase 4 inhibitors edit Main article Dipeptidyl peptidase 4 inhibitor GLP 1 analogs resulted in weight loss and had more gastrointestinal side effects while in general dipeptidyl peptidase 4 DPP 4 inhibitors were weight neutral and are associated with increased risk for infection and headache Both classes appear to present an alternative to other antidiabetic drugs However weight gain and or hypoglycemia have been observed when dipeptidyl peptidase 4 inhibitors were used with sulfonylureas effects on long term health and morbidity rates are still unknown 36 DPP 4 inhibitors increase blood concentration of the incretin GLP 1 by inhibiting its degradation by DPP 4 Examples are vildagliptin Galvus EU Approved 2008 sitagliptin Januvia FDA approved Oct 2006 saxagliptin Onglyza FDA Approved July 2009 linagliptin Tradjenta FDA Approved May 2 2011 alogliptin septagliptin teneligliptin gemigliptin Zemiglo DPP 4 inhibitors lowered hemoglobin A1C values by 0 74 comparable to other antidiabetic drugs 37 A result in one RCT comprising 206 patients aged 65 or older mean baseline HgbA1c of 7 8 receiving either 50 or 100 mg d of sitagliptin was shown to reduce HbA1c by 0 7 combined result of both doses 38 A combined result of 5 RCTs enlisting a total of 279 patients aged 65 or older mean baseline HbA1c of 8 receiving 5 mg d of saxagliptin was shown to reduce HbA1c by 0 73 39 A combined result of 5 RCTs enlisting a total of 238 patients aged 65 or older mean baseline HbA1c of 8 6 receiving 100 mg d of vildagliptin was shown to reduce HbA1c by 1 2 40 Another set of 6 combined RCTs involving alogliptin approved by FDA in 2013 was shown to reduce HbA1c by 0 73 in 455 patients aged 65 or older who received 12 5 or 25 mg d of the medication 41 Injectable amylin analogues edit Amylin agonist analogues slow gastric emptying and suppress glucagon They have all the incretins actions except stimulation of insulin secretion As of 2007 update pramlintide is the only clinically available amylin analogue Like insulin it is administered by subcutaneous injection The most frequent and severe adverse effect of pramlintide is nausea which occurs mostly at the beginning of treatment and gradually reduces Typical reductions in A1C values are 0 5 1 0 citation needed SGLT2 inhibitors editMain article Gliflozin SGLT2 inhibitors block the sodium glucose linked transporter 2 proteins in renal tubules of nephrons in kidneys reabsorption of glucose in into the renal tubules promoting excretion of glucose in the urine This causes both mild weight loss and a mild reduction in blood sugar levels with little risk of hypoglycemia 42 Oral preparations may be available alone or in combination with other agents 43 Along with GLP 1 agonists they are considered preferred second or third agents for type 2 diabetics sub optimally controlled with metformin alone according to most recent clinical practice guidelines 15 Because they are taken by mouth rather than injected like GLP 1 agonists patients who are injection averse may prefer these agents over the former They may be considered first line in diabetic patients with cardiovascular disease especially heart failure as these medications have been shown to reduce the risk of hospitalization in patients with such comorbidities 44 Because they are not available as generic medications however cost may limit their feasibility for many patients Furthermore there has been growing evidence that the effectiveness and safety of this drug class could depend on genetic variability of the patients 45 Examples include Dapagliflozin Canagliflozin Empagliflozin Remogliflozin The side effects of SGLT2 inhibitors are derived directly from their mechanism of action these include an increased risk of ketoacidosis urinary tract infections candidal vulvovaginitis and hypoglycemia 46 Comparison editThe following table compares some common anti diabetic agents generalizing classes although there may be substantial variation in individual drugs of each class When the table makes a comparison such as lower risk or more convenient the comparison is with the other drugs on the table Comparison of anti diabetic medication 47 48 Drug class 48 Mechanism of action 5 Advantages 48 Disadvantages 48 Sulfonylureas glyburide glimepiride glipizide Stimulating insulin release by pancreatic beta cells by inhibiting the KATP channel Inexpensive Fast onset of action No effect on blood pressure No detrimental effect on low density lipoprotein Lower risk of gastrointestinal side effects than metformin Convenient dosing Cause an average of 2 5 kg weight gain Increase the risk of hypoglycemia Glyburide increases risk of hypoglycemia slightly more compared to glimepiride and glipizide Metformin Acts on the liver to reduce gluconeogenesis and causes a decrease in insulin resistance via increasing AMPK signalling Associated with weight loss Lower risk of hypoglycemia compared to other antidiabetics Decreases low density lipoprotein Decreases triglycerides No effect on blood pressure Lowered all cause mortality in diabetics Inexpensive Higher risk of gastrointestinal side effects Due to the risk of potentially fatal lactic acidosis contraindicated in people with shock with acute or chronic moderate or severe kidney disease or at risk for impaired kidney function from intravenous dye and with acute or chronic metabolic acidosis Risk of lactic acidosis also is increased for people with unstable or acute heart failure liver disease or alcoholism or who are recovering from major surgery Increased risk of vitamin B12 deficiency 5 Metallic taste 5 Alpha glucosidase inhibitors acarbose miglitol voglibose Inhibit carbohydrate digestion in the small intestine by inhibiting enzymes that break down polysaccharides Slightly lower risk of hypoglycemia compared to sulfonylureas Associated with modest weight loss Decreases triglycerides No detrimental effect on cholesterol Less effective than most other diabetes pills in lowering glycated hemoglobin Increased risk of GI side effects than other diabetes pills except metformin Inconvenient dosing Thiazolidinediones Pioglitazone Rosiglitazone Reduce insulin resistance by activating PPAR g in fat and muscle Lower the risk of hypoglycemia May slightly increase high density lipoprotein Rosiglitazone linked to decreased triglycerides Convenient dosing Increase the risk of heart failure Cause an average of 2 5 kg weight gain Are associated with a higher risk of edema anemia and bone fractures Can increase low density lipoprotein Rosiglitazone has been linked to increased triglycerides and an increased risk of a heart attack Pioglitazone has been linked to an increased risk of bladder cancer Have a slower onset of action Require monitoring for hepatotoxicity Expensive SGLT2 inhibitorsGenerics editMany anti diabetes drugs are available as generics These include 49 Sulfonylureas glimepiride glipizide glyburide Biguanides metformin Thiazolidinediones Tzd pioglitazone Actos generic Alpha glucosidase inhibitors Acarbose Meglitinides nateglinide Combination of sulfonylureas plus metformin known by generic names of the two drugs No generics are available for dipeptidyl peptidase 4 inhibitors Onglyza the glifozins the incretins and various combinations Sitagliptin patent expired in July 2022 leading to launch of generic sitagliptin 50 brands This lowered the cost of therapy for type 2 diabetes using sitagliptin Alternative Medicine editThe effect of Ayurvedic treatments has been researched however due to methodological flaws of relevant studies and research it has not been possible to draw conclusions regarding efficacy of these treatments and there is insufficient evidence to recommend them 51 References edit a b Dahlen AD Dashi G Maslov I Attwood MM Jonsson J Trukhan V Schioth HB January 2022 Trends in Antidiabetic Drug Discovery FDA Approved Drugs New Drugs in Clinical Trials and Global Sales Front Pharmacol 12 4119 doi 10 3389 fphar 2021 807548 PMC 8807560 PMID 35126141 Powers AC 2011 Diabetes Mellitus In Longo DL Fauci AS Kasper DL Hauser SL Jameson JL Loscalzo J eds Harrison s Principles of Internal Medicine 18th ed McGraw Hill ISBN 978 0071748896 a b Donner T Sarkar S 2000 Insulin Pharmacology Therapeutic Regimens and Principles of Intensive Insulin Therapy In Feingold KR Anawalt B Boyce A Chrousos G eds Endotext MDText com Inc PMID 25905175 Retrieved November 16 2019 a b Hemmingsen B Metzendorf MI Richter B March 2021 Ultra long acting insulin analogues for people with type 1 diabetes mellitus The Cochrane Database of Systematic Reviews 3 4 CD013498 doi 10 1002 14651858 cd013498 pub2 PMC 8094220 PMID 33662147 a b c d Table entries taken from page 185 in Elizabeth D Agabegi Agabegi Steven S 2008 Step Up to Medicine Step Up Series Hagerstwon MD Lippincott Williams amp Wilkins ISBN 978 0 7817 7153 5 Eurich DT McAlister FA Blackburn DF Majumdar SR Tsuyuki RT Varney J Johnson JA September 2007 Benefits and harms of antidiabetic agents in patients with diabetes and heart failure systematic review BMJ 335 7618 497 doi 10 1136 bmj 39314 620174 80 PMC 1971204 PMID 17761999 Fimognari FL Pastorelli R Incalzi RA April 2006 Phenformin induced lactic acidosis in an older diabetic patient a recurrent drama phenformin and lactic acidosis Diabetes Care 29 4 950 951 doi 10 2337 diacare 29 04 06 dc06 0012 PMID 16567854 Archived from the original on December 9 2012 Verdonck LF Sangster B van Heijst AN de Groot G Maes RA 1981 Buformin concentrations in a case of fatal lactic acidosis Diabetologia 20 1 45 46 doi 10 1007 BF01789112 PMID 7202882 diabetesinsulinPPAR www healthvalue net Archived from the original on March 3 2016 Retrieved May 6 2018 European Medicines Agency European Medicines Agency recommends suspension of Avandia Avandamet and Avaglim Archived February 3 2014 at the Wayback Machine EMA 23 September 2009 Lincoff AM Wolski K Nicholls SJ Nissen SE September 2007 Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus a meta analysis of randomized trials JAMA 298 10 1180 1188 doi 10 1001 jama 298 10 1180 PMID 17848652 Hinterthuer A October 1 2008 Retired Drugs Failed Blockbusters Homicidal Tampering Fatal Oversights Wired News Archived from the original on December 4 2008 Retrieved June 21 2009 Haffner SM 2007 Expert Column A Diabetes Outcome Progression Trial ADOPT Medscape Retrieved September 21 2007 Gagnon L October 24 2006 DREAM Rosiglitazone Effective in Preventing Diabetes Medscape Archived from the original on December 2 2008 Retrieved September 21 2007 a b c d Garber AJ Abrahamson MJ Barzilay JI Blonde L Bloomgarden ZT Bush MA et al January 2019 Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm 2019 Executive Summary Endocrine Practice 25 1 69 100 doi 10 4158 cs 2018 0535 PMID 30742570 Nissen SE Wolski K June 2007 Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes The New England Journal of Medicine 356 24 2457 2471 doi 10 1056 NEJMoa072761 PMID 17517853 Wood S July 31 2007 FDA Advisory Panels Acknowledge Signal of Risk With Rosiglitazone but Stop Short of Recommending Its Withdrawal Heartwire Archived from the original on March 18 2014 Retrieved September 21 2007 Ajjan RA Grant PJ July 2008 The cardiovascular safety of rosiglitazone Expert Opinion on Drug Safety 7 4 367 376 doi 10 1517 14740338 7 4 367 PMID 18613801 S2CID 73109231 Erdmann E Dormandy JA Charbonnel B Massi Benedetti M Moules IK Skene AM May 2007 The effect of pioglitazone on recurrent myocardial infarction in 2 445 patients with type 2 diabetes and previous myocardial infarction results from the PROactive PROactive 05 Study Journal of the American College of Cardiology 49 17 1772 1780 doi 10 1016 j jacc 2006 12 048 PMID 17466227 Muller G Wied S Frick W July 2000 Cross talk of pp125 FAK and pp59 Lyn non receptor tyrosine kinases to insulin mimetic signaling in adipocytes Molecular and Cellular Biology 20 13 4708 4723 doi 10 1128 mcb 20 13 4708 4723 2000 PMC 85892 PMID 10848597 Melior Pharmaceuticals Announces Positive Phase 2A Results in Type 2 Diabetes Study businesswire com June 13 2016 Archived from the original on August 12 2017 Retrieved May 6 2018 a b c d e f g h i Shyangdan DS Royle P Clar C Sharma P Waugh N Snaith A October 2011 Glucagon like peptide analogues for type 2 diabetes mellitus The Cochrane Database of Systematic Reviews 2011 10 CD006423 doi 10 1002 14651858 cd006423 pub2 PMC 6486297 PMID 21975753 a b c d Brophy S Davies H Mannan S Brunt H Williams R September 2011 Interventions for latent autoimmune diabetes LADA in adults The Cochrane Database of Systematic Reviews 2011 9 CD006165 doi 10 1002 14651858 cd006165 pub3 PMC 6486159 PMID 21901702 Rendell M September 2004 Advances in diabetes for the millennium drug therapy of type 2 diabetes MedGenMed 6 3 Suppl 9 PMC 1474831 PMID 15647714 a b Helping the pancreas produce insulin HealthValue Archived from the original on September 27 2007 Retrieved September 21 2007 Victoza liraglutide is Approved to Reduce the Risk of Three Major Adverse Cardiovascular Events in Type 2 Diabetes Patients Drugs com Retrieved November 16 2019 Briones M Bajaj M June 2006 Exenatide a GLP 1 receptor agonist as novel therapy for Type 2 diabetes mellitus Expert Opinion on Pharmacotherapy 7 8 1055 1064 doi 10 1517 14656566 7 8 1055 PMID 16722815 S2CID 43740629 Gallwitz B December 2006 Exenatide in type 2 diabetes treatment effects in clinical studies and animal study data International Journal of Clinical Practice 60 12 1654 1661 doi 10 1111 j 1742 1241 2006 01196 x PMID 17109672 S2CID 8800490 Cvetkovic RS Plosker GL 2007 Exenatide a review of its use in patients with type 2 diabetes mellitus as an adjunct to metformin and or a sulfonylurea Drugs 67 6 935 954 doi 10 2165 00003495 200767060 00008 PMID 17428109 S2CID 195691202 Novo Nordisk Files for Regulatory Approval of Liraglutide in Both the US and Europe Archived from the original on December 15 2017 Retrieved January 23 2018 May 2008 Liraglutide Provides Significantly Better Glucose Control Than Insulin Glargine in Phase 3 Study Archived from the original on July 23 2010 Retrieved February 9 2010 Liraglutide Provides Significantly Better Glucose Control Than Insulin Glargine In Phase 3 Study June 2007 Clinical Study Shows Liraglutide Reduced Blood Sugar Weight and Blood Pressure in Patients with Type 2 Diabetes Archived from the original on February 5 2009 Retrieved February 9 2010 Clinical Study Shows Liraglutide Reduced Blood Sugar Weight And Blood Pressure In Patients With Type 2 Diabetes June 2008 Liraglutide Next Generation Antidiabetic Medication Archived from the original on June 18 2010 Retrieved February 9 2010 Quarterly R amp D Update Novo Nordisk A S Archived from the original on January 9 2010 Retrieved February 9 2010 Oct 2008 Inc results of LEAD 6 extension Novo Nordisk Receives US Approval for Victoza R Liraglutide for the Treatment of Type 2 Diabetes Archived from the original on January 29 2010 Retrieved February 9 2010 January 2009 National Prescribing Service August 1 2010 Dipeptidyl peptidase 4 inhibitors gliptins for type 2 diabetes mellitus RADAR Retrieved March 7 2021 Amori RE Lau J Pittas AG July 2007 Efficacy and safety of incretin therapy in type 2 diabetes systematic review and meta analysis JAMA 298 2 194 206 doi 10 1001 jama 298 2 194 PMID 17622601 Barzilei N Mahoney EM Guo H 2009 Sitagliptin is well tolerated and leads to rapid improvement in blood glucose in the first days of monotherapy in patients aged 65 years and older with T2DM Diabetes 58 587 Doucet J Chacra A Maheux P Lu J Harris S Rosenstock J April 2011 Efficacy and safety of saxagliptin in older patients with type 2 diabetes mellitus Current Medical Research and Opinion 27 4 863 869 doi 10 1185 03007995 2011 554532 PMID 21323504 S2CID 206965817 Pratley RE Rosenstock J Pi Sunyer FX Banerji MA Schweizer A Couturier A Dejager S December 2007 Management of type 2 diabetes in treatment naive elderly patients benefits and risks of vildagliptin monotherapy Diabetes Care 30 12 3017 3022 doi 10 2337 dc07 1188 PMID 17878242 Pratley RE McCall T Fleck PR Wilson CA Mekki Q November 2009 Alogliptin use in elderly people a pooled analysis from phase 2 and 3 studies Journal of the American Geriatrics Society 57 11 2011 2019 doi 10 1111 j 1532 5415 2009 02484 x PMID 19793357 S2CID 28683917 Dietrich E Powell J Taylor JR November 2013 Canagliflozin a novel treatment option for type 2 diabetes Drug Design Development and Therapy 7 1399 1408 doi 10 2147 DDDT S48937 PMC 3840773 PMID 24285921 Center for Drug Evaluation and Research Drug Safety and Availability Sodium glucose Cotransporter 2 SGLT2 Inhibitors www fda gov Archived from the original on November 29 2016 Retrieved August 26 2017 UpToDate www uptodate com Retrieved November 16 2019 Imamovic Kadric S Kulo Cesic A Dujic T Pharmacogenetics of new classes of antidiabetic drugs Bosn J of Basic Med Sci 2021 DOI https doi org 10 17305 bjbms 2021 5646 SGLT2 Inhibitors Gliflozins Drugs Suitability Benefits amp Side Effects Archived from the original on August 27 2017 Retrieved August 26 2017 Cambon Thomsen A Rial Sebbag E Knoppers BM August 2007 Trends in ethical and legal frameworks for the use of human biobanks The European Respiratory Journal 30 2 373 382 doi 10 1183 09031936 00165006 PMID 17666560 adapted from table 2 which includes a list of issues a b c d Consumer Reports Health Best Buy Drugs The Oral Diabetes Drugs Treating Type 2 Diabetes PDF Best Buy Drugs Consumer Reports 20 Archived PDF from the original on February 27 2013 Retrieved September 18 2012 which is citing Agency for Healthcare Research and Quality March 2011 Oral Diabetes Medications for Adults With Type 2 Diabetes An Update PDF Comparative Effectiveness Review 27 Archived from the original PDF on September 27 2013 Retrieved November 28 2012 Bennett WL Maruthur NM Singh S Segal JB Wilson LM Chatterjee R et al May 2011 Comparative effectiveness and safety of medications for type 2 diabetes an update including new drugs and 2 drug combinations Annals of Internal Medicine 154 9 602 613 doi 10 7326 0003 4819 154 9 201105030 00336 PMC 3733115 PMID 21403054 The Oral Diabetes Drugs Treating Type 2 Diabetes Comparing Effectiveness Safety and Price PDF Archived PDF from the original on June 15 2013 Retrieved July 17 2013 Sitagliptin Generic Alternatives www sastimedic com January 31 2024 Retrieved January 31 2024 Sridharan K Mohan R Ramaratnam S Panneerselvam D et al Cochrane Metabolic and Endocrine Disorders Group December 2011 Ayurvedic treatments for diabetes mellitus The Cochrane Database of Systematic Reviews 12 CD008288 doi 10 1002 14651858 CD008288 pub2 PMC 3718571 PMID 22161426 Further reading editLebovitz Harold E 2004 Therapy For Diabetes Mellitus and Related Disorders 4th ed Alexandria VA American Diabetes Association ISBN 978 1 58040 187 6 Adams Michael Ian Holland Norman Norwood 2003 Core Concepts in Pharmacology Englewood Cliffs NJ Prentice Hall ISBN 978 0 13 089329 1 Retrieved from https en wikipedia org w index php title Diabetes medication amp oldid 1217192142, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.