fbpx
Wikipedia

Transiting Exoplanet Survey Satellite

Transiting Exoplanet Survey Satellite (TESS, Explorer 95 or MIDEX-7) is a space telescope for NASA's Explorer program, designed to search for exoplanets using the transit method in an area 400 times larger than that covered by the Kepler mission.[6] It was launched on 18 April 2018, atop a Falcon 9 launch vehicle and was placed into a highly elliptical 13.70-day orbit around the Earth.[6][2][7][8][9] The first light image from TESS was taken on 7 August 2018, and released publicly on 17 September 2018.[1][10][11]

Transiting Exoplanet Survey Satellite
TESS satellite
NamesExplorer 95
TESS
MIDEX-7
Mission typeSpace observatory[1][2]
OperatorNASA / MIT
COSPAR ID2018-038A
SATCAT no.43435
Websitetess.gsfc.nasa.gov
tess.mit.edu
Mission duration2 years (planned)
4 years, 8 months, 22 days (in progress)
Spacecraft properties
SpacecraftExplorer XCV
Spacecraft typeTransiting Exoplanet Survey Satellite
BusLEOStar-2/750[3]
ManufacturerOrbital ATK
Launch mass362 kg (798 lb) [4]
Dimensions3.7 × 1.2 × 1.5 m (12.1 × 3.9 × 4.9 ft)
Power530 watts
Start of mission
Launch date18 April 2018, 22:51:30 UTC[5]
RocketFalcon 9 Block 4 (B1045.1)
Launch siteCape Canaveral, SLC-40
ContractorSpaceX
Entered service25 July 2018
Orbital parameters
Reference systemGeocentric orbit
RegimeHighly elliptical orbit
Perigee altitude108,000 km (67,000 mi)
Apogee altitude375,000 km (233,000 mi)
Inclination37.00°
Period13.70 days

TESS satellite mission patch
Explorer program
← IRIS (Explorer 94)
ICON (Explorer 96) →
 

Over the course of the two-year primary mission, TESS was expected to ultimately detect about 1,250 transiting exoplanets orbiting the targeted stars, and an additional 13,000 transiting planets orbiting additional stars in the fields that TESS would observe.[12] As of 5 November 2022, TESS had identified 5,969 candidate exoplanets, of which only 268 had been confirmed and 1720 had been dismissed as false positives.[13] After the end of the primary mission around 4 July 2020, data from the primary mission continue to be searched for planets, while the extended missions continues to acquire additional data.

The primary mission objective for TESS was to survey the brightest stars near the Earth for transiting exoplanets over a two-year period.The TESS satellite uses an array of wide-field cameras to perform a survey of 85% of the sky. With TESS, it is possible to study the mass, size, density and orbit of a large cohort of small planets, including a sample of rocky planets in the habitable zones of their host stars. TESS provides prime targets for further characterization by the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. While previous sky surveys with ground-based telescopes have mainly detected giant exoplanets and the Kepler space telescope has mostly found planets around distant stars that are too faint for characterization, TESS finds many small planets around the nearest stars in the sky. TESS records the nearest and brightest main sequence stars hosting transiting exoplanets, which are the most favorable targets for detailed investigations.[14] By providing such detailed information about planetary systems with hot Jupiters, TESS makes it possible to better understand the architecture of such systems.[15][16]

TESS uses a novel highly elliptical orbit around the Earth with an apogee approximately at the distance of the Moon and a perigee of 108,000 km (67,000 mi). TESS orbits Earth twice during the time the Moon orbits once, a 2:1 resonance with the Moon.[17] The orbit is expected to remain stable for a minimum of ten years.

Led by the Massachusetts Institute of Technology (MIT) with seed funding from Google,[18] on 5 April 2013, it was announced that TESS, along with the Neutron Star Interior Composition Explorer (NICER), had been selected by NASA for launch.[19][20]

On 18 July 2019, after the first year of operation, the southern portion of the survey was completed, and the northern survey was started. The primary mission ended with the completion of the northern survey on 4 July 2020, which was followed by the first extended mission. The first extended mission concluded in September 2022 and the spacecraft enterered its second extended mission [21] which should last for another three years.

History

The concept of TESS was first discussed in 2005 by the Massachusetts Institute of Technology (MIT) and the Smithsonian Astrophysical Observatory (SAO).[22] The genesis of TESS was begun during 2006, when a design was developed from private funding by individuals, Google, and The Kavli Foundation.[23] In 2008, MIT proposed that TESS become a full NASA mission and submitted it for the Small Explorer program at Goddard Space Flight Center,[23] but it was not selected.[24] It was resubmitted in 2010 as an Explorer program mission, and was approved in April 2013 as a Medium Explorer mission.[25][23][26] TESS passed its critical design review (CDR) in 2015, allowing production of the satellite to begin.[23] While Kepler had cost US$640 million at launch, TESS cost only US$200 million (plus US$87 million for launch).[27][28] The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. TESS will survey 200,000 of the brightest stars near the Sun to search for transiting exoplanets. TESS was launched on 18 April 2018, aboard a SpaceX Falcon 9 launch vehicle.

In July 2019, an Extended Mission 2020 to 2022 was approved.[29] and on 3 January 2020, the Transit Exoplanet Survey Satellite reported the discovery of TOI-700 d, its first potentially habitable Earth-sized planet.

Mission overview

TESS is designed to carry out the first spaceborne all-sky transiting exoplanet survey.[19][30] It is equipped with four wide-angle telescopes and associated charge-coupled device (CCD) detectors. Science data are transmitted to Earth every two weeks. Full-frame images with an effective exposure time of two hours are transmitted as well, enabling scientists to search for unexpected transient phenomena, such as the optical counterparts to gamma-ray bursts. TESS also hosts a Guest Investigator program, allowing scientists from other organizations to use TESS for their own research. The resources allocated to Guest programs allow an additional 20,000 celestial bodies to be observed.[31]

TESS - Southern Sky panorama
(video (3:30); 18 July 2019)

Orbital dynamics

In order to obtain unobstructed imagery of both the northern and southern hemispheres of the sky, TESS utilizes a 2:1 lunar resonant orbit called P/2, an orbit that has never been used before (although Interstellar Boundary Explorer (IBEX) uses a similar P/3 orbit). The highly elliptical orbit has a 375,000 km (233,000 mi) apogee, timed to be positioned approximately 90° away from the position of the Moon to minimize its destabilizing effect. This orbit should remain stable for decades and will keep TESS's cameras in a stable temperature range. The orbit is entirely outside the Van Allen belts to avoid radiation damage to TESS, and most of the orbit is spent far outside the belts. Every 13.70 days at its perigee of 108,000 km (67,000 mi), TESS downlinks to Earth over a period of approximately 3 hours the data it has collected during the just finished orbit.[32]

Science objectives

 
TESS – first light
(7 August 2018)[1][10][11]
 
The 26 observation sectors of the sky planned for TESS

TESS's two-year all-sky survey would focus on nearby G-, K-, and M-type stars with apparent magnitudes brighter than magnitude 12.[33] Approximately 500,000 stars were to be studied, including the 1,000 closest red dwarfs across the whole sky,[34][35] an area 400 times larger than that covered by the Kepler mission. TESS was expected to find more than 3,000 transiting exoplanet candidates, including 500 Earth-sized planets and super-Earths.[34] Of those discoveries, an estimated 20 were expected to be super-Earths located in the habitable zone around a star.[36] The stated goal of the mission was to determine the masses of at least 50 Earth-sized planets (at most 4 times Earth radius). Most detected exoplanets are expected to be between 30 and 300 light-years away.

The survey was broken up into 26 observation sectors, each sector being 24° × 96°, with an overlap of sectors at the ecliptic poles to allow additional sensitivity toward smaller and longer-period exoplanets in that region of the celestial sphere. The spacecraft will spend two 13.70-day orbits observing each sector, mapping the southern hemisphere of sky in its first year of operation and the northern hemisphere in its second year.[37] The cameras actually take images every 2 seconds, but all the raw images would represent much more data volume than can be stored or downlinked. To deal with this, cutouts around 15,000 selected stars (per orbit) will be coadded over a 2-minute period and saved on board for downlink, while full-frame images will also be coadded over a 30-minute period and saved for downlink. The actual data downlinks will occur every 13.70 days near perigee.[38] This means that during the 2 years, TESS will continuously survey 85% of the sky for 27 days, with certain parts being surveyed across multiple runs. The survey methodology was designed such that the area that will be surveyed, essentially continuously, over an entire year (351 observation days) and makes up about 5% of the entire sky, will encompass the regions of sky (near the ecliptic poles) which will be observable at any time of year with the James Webb Space Telescope (JWST).[39]

In October 2019, Breakthrough Listen started a collaboration with scientists from the TESS team to look for signs of advanced extraterrestrial life. Thousands of new planets found by TESS will be scanned for "technosignatures" by Breakthrough Listen partner facilities across the globe. Data from TESS monitoring of stars will also be searched for anomalies.[40]

Asteroseismology

The TESS team also plans to use a 30-minute observation cadence for full-frame images, which has been noted for imposing a hard Nyquist limit that can be problematic for asteroseismology of stars.[41] Asteroseismology is the science that studies the internal structure of stars by the interpretation of their frequency spectra. Different oscillation modes penetrate to different depths inside the star. The Kepler and PLATO observatories are also intended for asteroseismology.[42]

Extended mission

During the 27 month Extended Mission, data collection was slightly changed:[43]

  • A new set of target stars will be selected
  • The number of stars monitored at 2-minute cadence was increased from 15,000 to 20,000 per observing sector.
  • Up to 1000 stars per sector will be monitored at a new fast 20-second cadence.
  • The full-frame image cadence will be increased from every 30 minutes to every 10 minutes.
  • The pointings and gaps in coverage will be slightly different during the extended mission.
  • Regions near the ecliptic will be covered.

Launch

 
Falcon 9 launch vehicle carrying TESS, launching from Space Launch Complex 40 at Cape Canaveral in April 2018.

In December 2014, SpaceX was awarded the contract to launch TESS in August 2017,[44] for a total contract value of US$87 million.[45] The 362 kg (798 lb) spacecraft was originally scheduled to launch on 20 March 2018, but this was pushed back by SpaceX to allow additional time to prepare the launch vehicle and meet NASA launch service requirements.[46] A static fire of the Falcon 9 rocket was completed on 11 April 2018, at approximately 18:30 UTC.[47] The launch was postponed again from 16 April 2018,[7] and TESS was eventually launched on a SpaceX Falcon 9 launch vehicle from the SLC-40 launch site at Cape Canaveral Air Force Station (CCAFS) on 18 April 2018.[8][9]

The Falcon 9 launch sequence included a 149-second burn by the first stage, followed by a 6-minute second stage burn. Meanwhile, the first-stage booster performed controlled-reentry maneuvers and successfully landed on the autonomous drone ship Of Course I Still Love You. An experimental water landing was performed for the fairing,[48] as part of SpaceX's attempt to develop fairing reusability.

After coasting for 35 minutes, the second stage performed a final 54-second burn that placed TESS into a supersynchronous transfer orbit of 200 × 270,000 km (120 × 167,770 mi) at an inclination of 28.50°.[48][49] The second stage released the payload, after which the stage itself was placed in a heliocentric orbit.

Spacecraft

 
TESS spacecraft before launch

In 2013, Orbital Sciences Corporation received a four-year, US$75 million contract to build TESS for NASA.[50] TESS uses an Orbital Sciences LEOStar-2 satellite bus, capable of three-axis stabilization using four hydrazine thrusters plus four reaction wheels providing better than three arcsecond fine spacecraft pointing control. Power is provided by two single-axis solar arrays generating 400 watts. A Ka-band dish antenna provides a 100 Mbit/s science downlink.[34][51]

Operational orbit

 
Animation of Transiting Exoplanet Survey Satellite's trajectory from 18 April 2018 to 18 December 2019
  Transiting Exoplanet Survey Satellite ·   Earth ·   Moon
 
Planned orbital maneuvers after release from Falcon 9's second stage. Horizontal axis schematically represents longitude relative to the Moon, vertical axis is altitude. A1M = Apogee 1 manoeuvre, P1M = Perigee 1 manoeuvre, etc., TCM = trajectory correction manoeuvre (optional), PAM = period adjustment manoeuvre.

Once injected into the initial orbit by the Falcon 9 second stage, the spacecraft performed four additional independent burns that placed it into a lunar flyby orbit.[52] On 17 May 2018, the spacecraft underwent a gravity assist by the Moon at 8,253.5 km (5,128.5 mi) above the surface,[53] and performed the final period adjustment burn on 30 May 2018.[54] It achieved an orbital period of 13.65 days in the desired 2:1 resonance with the Moon, at 90° phase offset to the Moon at apogee, which is expected to be a stable orbit for at least 20 years, thus requiring very little fuel to maintain.[8] The entire maneuvering phase was expected to take a total of two months, and put the craft in an eccentric orbit (17–75 REarth) at a 37° inclination. The total delta-v budget for orbit maneuvers was 215 m/s (710 ft/s), which is 80% of the mission's total available reserves. If TESS receives an on-target or slightly above nominal orbit insertion by the Falcon 9, a theoretical mission duration in excess of 15 years would be possible from a consumables standpoint.[49]

Project timeline

The first light image was made on 7 August 2018, and released publicly on September 17, 2018.[1][10][11][55]

TESS completed its commissioning phase at the end of July and the science phase officially started on 25 July 2018.[56]

For the first two years of operation TESS monitored both the southern (year 1) and northern (year 2) celestial hemispheres. During its nominal mission TESS tiles the sky in 26 separate segments, with a 27.4-day observing period per segment.[37] The first southern survey was completed in July 2019. The first northern survey finished in July 2020.

A 27-month First Extended mission ran until September 2022.

Instruments

The sole instrument on TESS is a package of four wide-field-of-view charge-coupled device (CCD) cameras. Each camera features four low-noise, low-power 4 megapixel CCDs created by MIT Lincoln Laboratory. The four CCDs are arranged in a 2 x 2 detector array for a total of 16 megapixels per camera and 16 CCDs for the entire instrument. Each camera has a 24° × 24° field of view, a 100 mm (3.9 in) effective pupil diameter, a lens assembly with seven optical elements, and a bandpass range of 600 to 1000 nm.[34][3] The TESS lenses have a combined field of view of 24° × 96° (2300 deg2, around 5% of the entire sky) and a focal ratio of f/1.4. The ensquared energy, the fraction of the total energy of the point-spread function that is within a square of the given dimensions centered on the peak, is 50% within 15 × 15 μm and 90% within 60 × 60 μm.[3] For comparison, Kepler's primary mission only covered an area of the sky measuring 105 deg2, though the K2 extension has covered many such areas for shorter times.

Ground operations

The TESS ground system is divided between eight sites around the United States. These include Space Network and the Jet Propulsion Laboratory's NASA Deep Space Network for command and telemetry, Orbital ATK's Mission Operations Center, Massachusetts Institute of Technology's Payload Operations Center, the Ames Research Center's Science Processing Operations Center, The Goddard Space Flight Center's Flight Dynamics Facility, the Smithsonian Astrophysical Observatory's TESS Science Office, and the Mikulski Archive for Space Telescopes (MAST).[57]

Stable light source for tests

One of the issues facing the development of this type of instrument is having an ultra-stable light source to test on. In 2015, a group at the University of Geneva made a breakthrough in the development of a stable light source. While this instrument was created to support ESA's CHEOPS exoplanet observatory, one was also ordered by the TESS program.[58] Although both observatories plan to look at bright nearby stars using the transit method, CHEOPS is focused on collecting more data on known exoplanets, including those found by TESS and other survey missions.[59]

Results

 
Test image taken before the start of science operations. The image is centered on the constellation Centaurus. In the top right corner the edge of the Coalsack Nebula can be seen, the bright star in the bottom left is Beta Centauri.
 
Exoplanet LHS 3844 b (artist concept)

Current mission results as of 18 November 2022: 273 confirmed exoplanets discovered by TESS, with 4079 candidate-planets that are still awaiting confirmation or rejection as false positive by the scientific community.[60]

TESS team partners include the Massachusetts Institute of Technology, the Kavli Institute for Astrophysics and Space Research, NASA's Goddard Space Flight Center, MIT's Lincoln Laboratory, Orbital ATK, NASA's Ames Research Center, the Harvard-Smithsonian Center for Astrophysics, and the Space Telescope Science Institute.

TESS started science operations on 25 July 2018.[61] The first announced finding from the mission was the observation of comet C/2018 N1.[61] The first exoplanet detection announcement was on 18 September 2018, announcing the discovery of a super-Earth in the Pi Mensae system orbiting the star every 6 days, adding to a known Super-Jupiter orbiting the same star every 5.9 years.[62]

On 20 September 2018, the discovery of an ultra-short period planet was announced, slightly larger than Earth, orbiting the red dwarf LHS 3844. With an orbital period of 11 hours, LHS 3844 b is one of the planets with the shortest known period. It orbits its star at a distance of 932,000 km (579,000 mi). LHS 3844 b is also one of the closest known exoplanets to Earth, at a distance of 14.9 parsecs.[63]

TESS's third discovered exoplanet is HD 202772A b, a hot Jupiter orbiting the brighter component of the visual binary star HD 202772, located in the constellation Capricornus at a distance of about 480 light-years from Earth. The discovery was announced on 5 October 2018. HD 202772A b orbits its host star once every 3.3 days. It is an inflated hot Jupiter, and a rare example of hot Jupiters around evolved stars. It is also one of the most strongly irradiated planets known, with an equilibrium temperature of 2,100 K (1,830 °C; 3,320 °F).[64]

On 15 April 2019, TESS' first discovery of an earth-sized planet was reported. HD 21749 c is a planet described as "likely rocky", with about 89% of Earth's diameter and orbits the K-type main sequence star HD 21749 in about 8 days. The planet's surface temperature is estimated to be as high as 427 °C. Both known planets in the system, HD 21749 b and HD 21749 c, were discovered by TESS. HD 21749 c represents the 10th confirmed planet discovery by TESS.[65]

Data on exoplanet candidates continue to be made available at MAST.[66] As of 20 April 2019, the total number of candidates on the list was up to 335. Besides candidates identified as previously discovered exoplanets, this list also includes ten newly discovered exoplanets, including the five mentioned above. Forty-four of the candidates from Sector 1 in this list were selected for follow-up observations by the TESS Follow-Up Program (TFOP), which aims to aid the discovery of 50 planets with a planetary radius of R < 4 RE through repeated observations.[67] The list of candidate exoplanets continues to grow as additional results are being published on the same MAST page.

On 18 July 2019, after the first year of operation the southern portion of the survey was completed, it turned its cameras to the Northern Sky. As of this time it has discovered 21 planets and has over 850 candidate exoplanets.[68]

TOI 700 system
 
TOI 700 multiplanetary system
 
Exoplanet TOI 700 d (artist concept)

On 23 July 2019, the discovery of the young exoplanet DS Tuc Ab (HD 222259 Ab) in the ~45 Myr old Tucana-Horologium young moving group was published in a paper. TESS did first observe the planet in November 2018 and it was confirmed in March 2019. The young planet is larger than Neptune, but smaller than Saturn. The system is bright enough to follow up with radial velocity and transmission spectroscopy.[69][70] ESA's CHEOPS mission will observe the transits of the young exoplanet DS Tuc Ab. A team of scientists got 23.4 orbits approved in the first Announcement of Opportunity (AO-1) for the CHEOPS Guest Observers (GO) Programme to characterize the planet.[71]

On 31 July 2019, the discovery of exoplanets around the M-type dwarf star GJ 357 at a distance of 31 light years from Earth was announced.[72] TESS directly observed the transit of GJ 357 b, a hot earth with an equilibrium temperature of around 250 °C. Follow-up ground observations and analyses of historic data lead to the discovery of GJ 357 c and GJ 357 d. While GJ 357 b and GJ 357 c are too close to the star to be habitable, GJ 357 d resides at the outer edge of the star's habitable zone and may possess habitable conditions if it has an atmosphere. With at least 6.1 ME it is classified as a Super-Earth.[72]

As of September 2019, over 1000 TESS Objects of Interest (ToI) have been listed in the public database,[73] at least 29 of which are confirmed planets, about 20 of which within the stated goal of the mission of Earth-sized (<4 Earth radii).[74]

On 26 September 2019, it was announced that TESS did observe its first tidal disruption event (TDE), called ASASSN-19bt. The TESS data revealed that ASASSN-19bt began to brighten on 21 January 2019, ~8.3 days before the discovery by ASAS-SN.[75][76]

On 6 January 2020, NASA reported the discovery of TOI 700 d, the first Earth-sized exoplanet in the habitable zone discovered by the TESS. The exoplanet orbits the star TOI 700 100 light-years away in the Dorado constellation.[77] The TOI 700 system contains two other planets: TOI 700b, another Earth-sized planet, and TOI-700c, a super-Earth. This system is unique in that the larger planet is found between the two smaller planets. It is currently unknown how this arrangement of planets came to be, whether these planets formed in this order or if the larger planet migrated to its current orbit.[78] On the same day, NASA announced that astronomers used TESS data to show that Alpha Draconis is an eclipsing binary star.[79] The same day, the discovery of TOI 1338b was announced, the first circumbinary planet discovered with TESS. TOI 1338b is around 6.9 times larger than Earth, or between the sizes of Neptune and Saturn. It lies in a system 1,300 light-years away in the constellation Pictor. The stars in the system make an eclipsing binary, which occurs when the stellar companions circle each other in our plane of view. One is about 10% more massive than our Sun, while the other is cooler, dimmer and only one-third the Sun's mass. TOI 1338b's transits are irregular, between every 93 and 95 days, and vary in depth and duration thanks to the orbital motion of its stars. TESS only sees the transits crossing the larger star — the transits of the smaller star are too faint to detect. Although the planet transits irregularly, its orbit is stable for at least the next 10 million years. The orbit's angle to us, however, changes enough that the planet transit will cease after November 2023 and resume eight years later.[80]

On 25 January 2021, a team led by astrochemist Tansu Daylan, with the help of two high school interns as part of the Science Research Mentoring Program at Harvard & MIT, discovered and validated four extrasolar planets — composed of one super-earth and three sub-neptunes - hosted by the bright, nearby, Sun-like star HD 108236. The two high schoolers, 18 year old Jasmine Wright of Bedford High School in Bedford, Massachusetts, and 16 year old Kartik Pinglé of Cambridge Ringe And Latin School, of Cambridge, Massachusetts, are reported to be the youngest individuals in history to discover a planet, let alone four.[81][82]

On 27 January 2021, several news agencies reported that a team using TESS had determined that TIC 168789840, a stellar system with six stars in three binary pairs was oriented so astronomers could observe the eclipses of all the stars.[83][84][85][86][87] It is the first six star system of its kind.

In March 2021, NASA announced that TESS found 2200 exoplanet candidates.[88] By the end of 2021, TESS had discovered over 5000 candidates.[89]

On 17 May 2021, an international team of scientists, including researchers from NASA's Jet Propulsion Laboratory and the University of New Mexico, reported, and confirmed by a ground based telescope, the space telescope's first discovery of a Neptune-sized exoplanet, TOI-1231 b, inside a habitable zone.[90] The planet orbits a nearby red dwarf star, 90 light-years away in the Vela constellation.[90]

Exoplanet search programs

The TESS Objects of Interest (TOI) are assigned by the TESS team[91] and the Community TOIs (CTOI) are assigned by independent researchers.[92] The primary mission of TESS produced 2241 TOIs.[91] Other small and large collaborations of researchers try to confirm the TOIs and CTOIs, or try to find new CTOIs.

Some of the collaborations with names that are searching exclusively for TESS planets are:

Collaborations with currently a smaller amount of discovery papers:

  • Warm gIaNts with tEss collaboration (WINE)[96]
  • TESS Giants Transiting Giants[97]
  • The TESS Grand Unified Hot Jupiter Survey[98]

The TESS community is also producing software and programs to help validate the planet candidates, such as TRICERATOPS,[99] DAVE,[100] Lightkurve,[101] Eleanor[102] and Planet Patrol.[103]

In popular culture

TESS is featured accurately in the 2018 film Clara.

See also

References

  1. ^ a b c d Overbye, Dennis (20 September 2018). "NASA's TESS Starts Collecting Planets - The satellite, launched in April, has already identified at least 73 stars that may harbor exoplanets, most of them new to astronomers". NASA. Retrieved 23 September 2018.   This article incorporates text from this source, which is in the public domain.
  2. ^ a b Overbye, Dennis (26 March 2018). "Meet Tess, Seeker of Alien Worlds". The New York Times. Retrieved 26 March 2018.
  3. ^ a b c Ricker, George R.; Winn, Joshua N.; Vanderspek, Roland; et al. (January–March 2015). (PDF). Journal of Astronomical Telescopes, Instruments, and Systems. 1 (1): 014003. arXiv:1406.0151. Bibcode:2015JATIS...1a4003R. doi:10.1117/1.JATIS.1.1.014003. S2CID 1342382. Archived from the original (PDF) on 11 January 2020. Retrieved 28 February 2018.
  4. ^ (PDF). Orbital ATK. 2018. Archived from the original (PDF) on 17 February 2018. Retrieved 21 May 2018.
  5. ^ Gebhardt, Chris (18 April 2018). "SpaceX successfully launches TESS on a mission to search for near-Earth exoplanets". NASASpaceFlight.com. Retrieved 20 May 2018.
  6. ^ a b Ricker, George R.; Winn, Joshua N.; Vanderspek, Roland; Latham, David W.; Bakos, Gáspár Á.; Bean, Jacob L.; Berta-Thompson, Zachory K.; Brown, Timothy M.; Buchhave, Lars; Butler, Nathaniel R.; Butler, R. Paul; Chaplin, William J.; Charbonneau, David; Christensen-Dalsgaard, Jørgen; Clampin, Mark; Deming, Drake; Doty, John; De Lee, Nathan; Dressing, Courtney; Dunham, Edward W.; Endl, Michael; Fressin, Francois; Ge, Jian; Henning, Thomas; Holman, Matthew J.; Howard, Andrew W.; Ida, Shigeru; Jenkins, Jon M.; et al. (24 October 2014). "Transiting Exoplanet Survey Satellite". Journal of Astronomical Telescopes, Instruments, and Systems. SPIE Digital Library. 1: 014003. doi:10.1117/1.JATIS.1.1.014003.
  7. ^ a b "Launch Schedule". Spaceflight Now. 27 February 2018. Retrieved 28 February 2018.
  8. ^ a b c Amos, Jonathan (19 April 2018). "Planet-hunter launches from Florida". BBC News.
  9. ^ a b "NASA Planet Hunter on Its Way to Orbit". NASA. 19 April 2018. Retrieved 19 April 2018.   This article incorporates text from this source, which is in the public domain.
  10. ^ a b c Kazmierczak, Jeanette; Garner, Rob (17 September 2018). "NASA's TESS Shares First Science Image in Hunt to Find New Worlds". NASA. Retrieved 23 September 2018.   This article incorporates text from this source, which is in the public domain.
  11. ^ a b c "NASA's TESS Releases First Science Image". NASA. 17 September 2018. Retrieved 23 September 2018.   This article incorporates text from this source, which is in the public domain.
  12. ^ Barclay, Thomas; Pepper, Joshua; Quintana, Elisa V. (25 October 2018). "A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite (TESS)". The Astrophysical Journal. Supplement Series. 239 (1): 2. arXiv:1804.05050. Bibcode:2018ApJS..239....2B. doi:10.3847/1538-4365/aae3e9. ISSN 1538-4365.
  13. ^ "Transiting Exoplanets Survey Satellite (TESS)". Exoplanet Exploration: Planets Beyond our Solar System. NASA.   This article incorporates text from this source, which is in the public domain.
  14. ^ "NASA FY 2015 President's Budget Request Summary" (PDF). NASA. 10 March 2014.   This article incorporates text from this source, which is in the public domain.
  15. ^ Wenz, John (10 October 2019). "Lessons from scorching hot weirdo-planets". Knowable Magazine. Annual Reviews. doi:10.1146/knowable-101019-2. Retrieved 4 April 2022.
  16. ^ Dawson, Rebekah I.; Johnson, John Asher (14 September 2018). "Origins of Hot Jupiters". Annual Review of Astronomy and Astrophysics. 56 (1): 175–221. arXiv:1801.06117. Bibcode:2018ARA&A..56..175D. doi:10.1146/annurev-astro-081817-051853. S2CID 119332976. Retrieved 5 April 2022.
  17. ^ McGiffin, Daniel A.; Mathews, Michael; Cooley, Steven (1 June 2001). "HIGH EARTH ORBIT DESIGN FOR LUNAR-ASSISTED MEDIUM CLASS EXPLORER MISSIONS". 2001 Flight Mechanics Symposium. NASA.   This article incorporates text from this source, which is in the public domain.
  18. ^ Chandler, David (19 March 2008). "MIT aims to search for Earth-like planets with Google's help". MIT.
  19. ^ a b Harrington, J. D. (5 April 2013). "NASA Selects Explorer Investigations for Formulation" (Press release). NASA.   This article incorporates text from this source, which is in the public domain.
  20. ^ "NASA selects MIT-led TESS project for 2017 mission". MIT. 5 April 2013. Retrieved 6 April 2013.
  21. ^ Barclay, Thomas. "NASA - TESS Science Support Center". TESS. Retrieved 4 November 2022.
  22. ^ Ricker, George R.; Winn, Joshua N.; Vanderspek, Roland; Latham, David W.; Bakos, Gaspar A.; Bean, Jacob L.; Berta-Thompson, Zachory K.; Brown, Timothy M.; Buchhave, Lars; Butler, Nathaniel R.; Butler, R. Paul (24 October 2014). "The Transiting Exoplanet Survey Satellite". Journal of Astronomical Telescopes, Instruments, and Systems. 1 (1): 014003. arXiv:1406.0151. doi:10.1117/1.JATIS.1.1.014003. ISSN 2329-4124. S2CID 1342382.
  23. ^ a b c d . Transiting Exoplanet Survey Satellite. NASA. Archived from the original on 29 July 2014. Retrieved 23 October 2015.   This article incorporates text from this source, which is in the public domain.
  24. ^ Hand, Eric (22 June 2009). "No SMEX-love for TESS". Nature (journal). Retrieved 23 October 2015.
  25. ^ George R. Ricker; Joshua N. Winn; Roland Vanderspek; David W. Latham; Gáspár Á. Bakos; Jacob L. Bean; et al. (2014). "Transiting Exoplanet Survey Satellite (TESS)". In Jacobus M. Oschmann Jr; Mark Clampin; Giovanni G. Fazio; Howard A. MacEwen (eds.). Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave. Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave. Vol. 9143. SPIE. p. 914320. doi:10.1117/12.2063489. hdl:1721.1/97916. ISBN 9780819496119.
  26. ^ "Medium-Class Explorers (MIDEX) Missions in Development". NASA. Retrieved 23 October 2015.   This article incorporates text from this source, which is in the public domain.
  27. ^ "Meet TESS, NASA's Next Planet Finder". Popular Mechanics. 30 October 2013. Retrieved 4 May 2018.
  28. ^ Clark, Stuart (19 April 2018). "Spacewatch: Tess embarks on planet-hunting mission for NASA". the Guardian. Retrieved 4 May 2018.
  29. ^ Mireles, Ismael (18 July 2019). "NASA Extends the TESS Mission through 2022".
  30. ^ Ricker, George R. (26 June 2014). Discovering New Earths and Super-Earths in the Solar Neighborhood. SPIE Astronomical Telescopes + Instrumentation 22–27 June 2014 Montréal, Québec, Canada. doi:10.1117/2.3201407.18.
  31. ^ "About TESS". NASA. 15 July 2016. Retrieved 25 March 2018.   This article incorporates text from this source, which is in the public domain.
  32. ^ "New Explorer Mission Chooses the 'Just-Right' Orbit". NASA. 31 July 2013.
  33. ^ Seager, Sara (2011). . Massachusetts Institute of Technology. Archived from the original on 25 November 2019. Retrieved 7 April 2013.
  34. ^ a b c d (PDF). NASA. October 2014. FS-2014-1-120-GSFC. Archived from the original (PDF) on 17 December 2014. Retrieved 17 December 2014.   This article incorporates text from this source, which is in the public domain.
  35. ^ Zastrow, Mark (30 May 2013). "Exoplanets After Kepler: What's next?". Sky & Telescope. Retrieved 17 December 2014.
  36. ^ Hadhazy, Adam (23 July 2015). "Super-Earths Might Be Our Best Bet For Finding Alien Life". Discover (magazine). Retrieved 23 October 2015.
  37. ^ a b "Home - TESS - Transiting Exoplanet Survey Satellite". tess.mit.edu. Retrieved 4 April 2018.
  38. ^ "TESS Observatory Guide" (PDF). NASA.   This article incorporates text from this source, which is in the public domain.
  39. ^ Crossfield, Ian (27 March 2017). Latest Exoplanet Results from NASA's Kepler/K2 Mission. SETI Talks 2017. SETI Institute. 42.3 minutes in.
  40. ^ "Breakthrough Initiatives". breakthroughinitiatives.org. Retrieved 12 November 2019.
  41. ^ Murphy, Simon J. (November 2015). "The potential for super-Nyquist asteroseismology with TESS" (PDF). Monthly Notices of the Royal Astronomical Society. 453 (3): 2569–2575. arXiv:1508.02717. Bibcode:2015MNRAS.453.2569M. doi:10.1093/mnras/stv1842. S2CID 54578476.
  42. ^ "Asteroseismic data analysis with Kepler, K2, TESS and PLATO". FindaPhD.com. Retrieved 31 October 2015.
  43. ^ "NASA's TESS Completes Primary Mission". NASA. 10 August 2020.   This article incorporates text from this source, which is in the public domain.
  44. ^ Berger, Brian (17 December 2014). "NASA Taps SpaceX To Launch TESS Satellite". SpaceNews. Retrieved 31 October 2015.
  45. ^ "NASA Awards Launch Services Contract for Transiting Exoplanet Survey Satellite" (Press release). NASA. 16 December 2014. Retrieved 17 December 2014.
  46. ^ Clark, Stephen (16 February 2018). "Exoplanet-hunting satellite arrives in Florida for April launch". Spaceflight Now. Retrieved 28 February 2018.
  47. ^ @NASA_TESS (11 April 2018). "The @SpaceX #Falcon9 fairing for @NASA_TESS arrived over the weekend..." (Tweet) – via Twitter.
  48. ^ a b "Launch Profile - Falcon 9 - TESS". Spaceflight101.com. Retrieved 22 April 2018.
  49. ^ a b "TESS Orbit Design". Spaceflight101.com. Retrieved 22 April 2018.
  50. ^ Leone, Dan (24 April 2013). "Orbital Gets $75M To Build TESS Exoplanet Telescope". SpaceNews. Retrieved 17 May 2016.
  51. ^ "TESS: Discovering Exoplanets Orbiting Nearby Stars" (PDF). Orbital Sciences. 2014. FS011_13_2998. Retrieved 17 December 2014.
  52. ^ @NASA_TESS (29 April 2018). "Mission Update: Team decided that the second apogee maneuver (Apogee 2 maneuver (A2M)), was not necessary..." (Tweet) – via Twitter.
  53. ^ @NASA_TESS (18 May 2018). "Mission Update: #TESS successfully completed a lunar flyby..." (Tweet) – via Twitter.
  54. ^ @NASA_TESS (1 June 2018). ".@NASA_TESS Mission Update: The..." (Tweet) – via Twitter.
  55. ^ @NASA_TESS (18 May 2018). "As part of camera commissioning, the #TESS science team snapped a two-second test exposure..." (Tweet) – via Twitter.   This article incorporates text from this source, which is in the public domain.
  56. ^ "NASA's TESS spacecraft starts science operations". nasa.gov. 27 July 2018. Retrieved 31 July 2018.   This article incorporates text from this source, which is in the public domain.
  57. ^ . NASA. Archived from the original on 29 July 2014. Retrieved 27 January 2018.   This article incorporates text from this source, which is in the public domain.
  58. ^ Peach, Matthew (1 October 2015). "Swiss group develops 'most stable light source' for satellite tests". Optics.org. Retrieved 23 October 2015.
  59. ^ Nowakowski, Tomasz (17 March 2015). "ESA's CHEOPS Satellite: The Pharaoh of Exoplanet Hunting". Astro Watch. Retrieved 29 October 2015.
  60. ^ "NASA Exoplanet Archive". exoplanetarchive.ipac.caltech.edu. Retrieved 16 October 2022.
  61. ^ a b Garner, Rob (6 August 2018). "Planet-Hunting TESS Catches a Comet Before Starting Science". NASA.
  62. ^ Huang, Chelsea X.; et al. (2018). "TESS Discovery of a Transiting Super-Earth in the Π Mensae System". The Astrophysical Journal. 868 (2): L39. arXiv:1809.05967. Bibcode:2018ApJ...868L..39H. doi:10.3847/2041-8213/aaef91. PMC 6662726. PMID 31360431.
  63. ^ Vanderspek, Roland; et al. (19 September 2018). "TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844". The Astrophysical Journal. 871 (2): L24. arXiv:1809.07242. doi:10.3847/2041-8213/aafb7a. S2CID 119009146.
  64. ^ Wang, Songhu; et al. (5 October 2018). "HD 202772A B: A Transiting Hot Jupiter Around A Bright, Mildly Evolved Star In A Visual Binary Discovered By Tess". The Astronomical Journal. 157 (2): 51. arXiv:1810.02341. doi:10.3847/1538-3881/aaf1b7. S2CID 59499230.
  65. ^ Garner, Rob (15 April 2019). "NASA's TESS Discovers its First Earth-size Planet". NASA. Retrieved 20 April 2019.   This article incorporates text from this source, which is in the public domain.
  66. ^ "TESS-DATA-ALERTS: Data Products From TESS Data Alerts". archive.stsci.edu. Retrieved 20 April 2019.
  67. ^ "Followup". TESS - Transiting Exoplanet Survey Satellite. Retrieved 20 April 2019.
  68. ^ NASA.gov NASA's TESS Mission Completes First Year of Survey, Turns to Northern Sky   This article incorporates text from this source, which is in the public domain.
  69. ^ Albright, Charlotte (14 August 2019). "Dartmouth Astronomer on Leading Discovery of a New Planet". news.dartmouth.edu. Retrieved 16 November 2019.
  70. ^ Newton, Elisabeth R.; Mann, Andrew W.; Tofflemire, Benjamin M.; Pearce, Logan; Rizzuto, Aaron C.; Vanderburg, Andrew; Martinez, Raquel A.; Wang, Jason J.; Ruffio, Jean-Baptiste; Kraus, Adam L.; Johnson, Marshall C. (23 July 2019). "TESS Hunt for Young and Maturing Exoplanets (THYME): A Planet in the 45 Myr Tucana–Horologium Association". The Astrophysical Journal. 880 (1): L17. arXiv:1906.10703. Bibcode:2019ApJ...880L..17N. doi:10.3847/2041-8213/ab2988. ISSN 2041-8213. S2CID 195658207.
  71. ^ "AO-1 Programmes - CHEOPS Guest Observers Programme - Cosmos". cosmos.esa.int. Retrieved 16 November 2019.
  72. ^ a b Garner, Rob (30 July 2019). "NASA's TESS Helps Find Intriguing New World". NASA. Retrieved 31 July 2019.   This article incorporates text from this source, which is in the public domain.
  73. ^ "ExoFOP". exofop.ipac.caltech.edu.
  74. ^ "Publications".
  75. ^ Garner, Rob (25 September 2019). "TESS Spots Its 1st Star-shredding Black Hole". NASA. Retrieved 16 November 2019.   This article incorporates text from this source, which is in the public domain.
  76. ^ Holoien, Thomas W.-S.; Vallely, Patrick J.; Auchettl, Katie; Stanek, K. Z.; Kochanek, Christopher S.; French, K. Decker; Prieto, Jose L.; Shappee, Benjamin J.; Brown, Jonathan S.; Fausnaugh, Michael M.; Dong, Subo (26 September 2019). "Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS". The Astrophysical Journal. 883 (2): 111. arXiv:1904.09293. Bibcode:2019ApJ...883..111H. doi:10.3847/1538-4357/ab3c66. ISSN 1538-4357. S2CID 128307681.
  77. ^ Andreolo, Claire; Cofield, Calla; Kazmierczak, Jeanette (6 January 2020). "NASA Planet Hunter Finds Earth-Size Habitable-Zone World". NASA. Retrieved 6 January 2020.   This article incorporates text from this source, which is in the public domain.
  78. ^ "The TESS Mission's First Earth-Like Planet Found in an Interesting Trio". aasnova.org. 18 February 2020. Retrieved 28 February 2020.
  79. ^ Reddy, Francis (6 January 2020). "TESS Shows Ancient North Star Undergoes Eclipses". NASA. Retrieved 9 January 2020.   This article incorporates text from this source, which is in the public domain.
  80. ^ "TESS Discovers Its 1st Planet Orbiting 2 Stars". NASA. 6 January 2020. Retrieved 9 January 2020.   This article incorporates text from this source, which is in the public domain.
  81. ^ Daylan, Tansu (25 January 2021). "TESS Discovery of a Super-Earth and Three Sub-Neptunes Hosted by the Bright, Sun-like Star HD 108236". The Astronomical Journal. 161 (2): 85. arXiv:2004.11314. Bibcode:2021AJ....161...85D. doi:10.3847/1538-3881/abd73e. S2CID 216080635. Retrieved 30 May 2021.
  82. ^ "High schoolers discover four exoplanets through Harvard & Smithsonian mentorship program". The Harvard Gazette. 28 January 2021. Retrieved 30 May 2021.
  83. ^ "Discovery Alert: First Six-star System Where All Six Stars Undergo Eclipses". NASA Goddard Space Flight Center. 27 January 2021. from the original on 27 January 2021. Retrieved 29 January 2021. The system, also called TIC 168789840, is the first known sextuple composed of three sets of eclipsing binaries, stellar pairs whose orbits tip into our line of sight so we observe the stars alternatively passing in front of each other.   This article incorporates text from this source, which is in the public domain.
  84. ^ Natali Anderson (25 January 2021). "TESS Discovers Sextuply-Eclipsing Six-Star System". Sci-News. from the original on 26 January 2021. Retrieved 29 January 2021. 'Prior to the discovery of TIC 168789840, there were 17 known sextuple star systems according to the June 2020 update of the Multiple Star Catalog,' lead author Dr. Brian Powell of NASA's Goddard Space Flight Center and colleagues wrote in their paper.
  85. ^ Jamie Carter (28 January 2021). "A Weird 'Sextuple' Star System Has Been Found By NASA Where Six Suns Eclipse Each Other". Forbes magazine. from the original on 29 January 2021. Retrieved 29 January 2021.
  86. ^ "Astronomers find a system of six stars made of three eclipsing binaries". WION (TV channel). 28 January 2021. from the original on 28 January 2021. Retrieved 29 January 2021. The primary stars in all three binaries are all slightly bigger and more massive than the Sun and about as hot. The system, also called TIC 168789840, is located about 1,900 light-years away in the constellation Eridanus.
  87. ^ Robin George Andrews (23 January 2021). "Six Stars, Six Eclipses: 'The Fact That It Exists Blows My Mind'". The New York Times. from the original on 28 January 2021. Retrieved 29 January 2021. But only one of the pairs could have any planets. Two of the system's binaries orbit extremely close to one another, forming their own quadruple subsystem. Any planets there would likely be ejected or engulfed by one of the four stars. The third binary is farther out, orbiting the other two once every 2,000 years or so, making it a possible exoplanetary haven.
  88. ^ "Space Telescope Delivers the Goods: 2,200 Possible Planets". NASA. 23 March 2021. Retrieved 24 March 2021.   This article incorporates text from this source, which is in the public domain.
  89. ^ "TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates".
  90. ^ a b Burt, Jennifer A.; Dragomir, Diana; Mollière, Paul; Youngblood, Allison; et al. (17 May 2021). "TOI-1231b: A Temperate, Neptune-sized Planet Transiting the Nearby M3 Dwarf NLTT 24399". The Astronomical Journal. 162 (3): 87. arXiv:2105.08077. Bibcode:2021AJ....162...87B. doi:10.3847/1538-3881/ac0432. S2CID 234763319.
  91. ^ a b Guerrero, Natalia M.; Seager, S.; Huang, Chelsea X.; Vanderburg, Andrew; Garcia Soto, Aylin; Mireles, Ismael; Hesse, Katharine; Fong, William; Glidden, Ana; Shporer, Avi; Latham, David W.; Collins, Karen A.; Quinn, Samuel N.; Burt, Jennifer; Dragomir, Diana (1 June 2021). "The TESS Objects of Interest Catalog from the TESS Prime Mission". The Astrophysical Journal Supplement Series. 254: 39. doi:10.3847/1538-4365/abefe1. ISSN 0067-0049.
  92. ^ "ExoFOP Help page". exofop.ipac.caltech.edu. Retrieved 8 September 2022.
  93. ^ "NASA/ADS, search Planet Hunters TESS". ui.adsabs.harvard.edu. Retrieved 8 September 2022.
  94. ^ "NASA/ADS, search for THYME". ui.adsabs.harvard.edu. Retrieved 8 September 2022.
  95. ^ "NASA/ADS, searching The TESS-Keck Survey or TKS". ui.adsabs.harvard.edu. Retrieved 8 September 2022.
  96. ^ "NASA/ADS, search for WINE". ui.adsabs.harvard.edu. Retrieved 8 September 2022.
  97. ^ "NASA/ADS searching TESS Giants Transiting Giants". ui.adsabs.harvard.edu. Retrieved 8 September 2022.
  98. ^ "NASA/ADS, searching TESS Grand Unified Hot Jupiter Survey". ui.adsabs.harvard.edu. Retrieved 8 September 2022.
  99. ^ Giacalone, Steven; Dressing, Courtney D.; Jensen, Eric L. N.; Collins, Karen A.; Ricker, George R.; Vanderspek, Roland; Seager, S.; Winn, Joshua N.; Jenkins, Jon M.; Barclay, Thomas; Barkaoui, Khalid; Cadieux, Charles; Charbonneau, David; Collins, Kevin I.; Conti, Dennis M. (1 January 2021). "Vetting of 384 TESS Objects of Interest with TRICERATOPS and Statistical Validation of 12 Planet Candidates". The Astronomical Journal. 161: 24. doi:10.3847/1538-3881/abc6af. ISSN 0004-6256.
  100. ^ Kostov, Veselin B.; Mullally, Susan E.; Quintana, Elisa V.; Coughlin, Jeffrey L.; Mullally, Fergal; Barclay, Thomas; Colón, Knicole D.; Schlieder, Joshua E.; Barentsen, Geert; Burke, Christopher J. (1 March 2019). "Discovery and Vetting of Exoplanets. I. Benchmarking K2 Vetting Tools". The Astronomical Journal. 157: 124. doi:10.3847/1538-3881/ab0110. ISSN 0004-6256.
  101. ^ Lightkurve Collaboration; Cardoso, José Vinícius de Miranda; Hedges, Christina; Gully-Santiago, Michael; Saunders, Nicholas; Cody, Ann Marie; Barclay, Thomas; Hall, Oliver; Sagear, Sheila; Turtelboom, Emma; Zhang, Johnny; Tzanidakis, Andy; Mighell, Ken; Coughlin, Jeff; Bell, Keaton (1 December 2018). "Lightkurve: Kepler and TESS time series analysis in Python". Astrophysics Source Code Library: ascl:1812.013.
  102. ^ Feinstein, Adina D.; Montet, Benjamin T.; Foreman-Mackey, Daniel; Bedell, Megan E.; Saunders, Nicholas; Bean, Jacob L.; Christiansen, Jessie L.; Hedges, Christina; Luger, Rodrigo; Scolnic, Daniel; Cardoso, José Vinícius de Miranda (1 September 2019). "eleanor: An Open-source Tool for Extracting Light Curves from the TESS Full-frame Images". Publications of the Astronomical Society of the Pacific. 131: 094502. doi:10.1088/1538-3873/ab291c. ISSN 0004-6280.
  103. ^ Kostov, Veselin B.; Kuchner, Marc J.; Cacciapuoti, Luca; Acharya, Sovan; Ahlers, John P.; Andrés-Carcasona, Marc; Brande, Jonathan; de Lima, Lucas T.; Di Fraia, Marco Z.; Fornear, Aline U.; Gallo, Francesco; Hyogo, Michiharu; Ienco, Riccardo M.; de Lambilly, Julien S.; Luca, Hugo A. D. (1 April 2022). "Planet Patrol: Vetting Transiting Exoplanet Candidates with Citizen Science". Publications of the Astronomical Society of the Pacific. 134: 044401. doi:10.1088/1538-3873/ac5de0. ISSN 0004-6280.

Further reading

  • Ricker, George R.; et al. (24 October 2014). "Transiting Exoplanet Survey Satellite". Journal of Astronomical Telescopes, Instruments, and Systems. 1 (1): 914320. arXiv:1406.0151. Bibcode:2014SPIE.9143E..20R. doi:10.1117/1.JATIS.1.1.014003. S2CID 1342382.
  • Stassun, Keivan (18 November 2014). TESS and Galactic Science (PDF). WFIRST Meeting. California Institute of Technology.

External links

  • by NASA
  • TESS website by NASA Goddard
  • TESS website by Massachusetts Institute of Technology (MIT)
  • TESS discovered exoplanets by MIT
  • TESS website by the Kavli Foundation
  • Planet Hunters TESS: anyone can help classifying TESS data
  • TESS listing of Southern Sky panoramas (July 18, 2019)
  • TESS launch closeup, atop Falcon 9 rocket. APOD (April 21, 2018)
  • Interactive 3D simulation of TESS's 2:1 lunar resonant orbit

transiting, exoplanet, survey, satellite, tess, redirects, here, other, uses, tess, this, article, needs, updated, please, help, update, this, article, reflect, recent, events, newly, available, information, january, 2022, tess, explorer, midex, space, telesco. TESS redirects here For other uses see Tess This article needs to be updated Please help update this article to reflect recent events or newly available information January 2022 Transiting Exoplanet Survey Satellite TESS Explorer 95 or MIDEX 7 is a space telescope for NASA s Explorer program designed to search for exoplanets using the transit method in an area 400 times larger than that covered by the Kepler mission 6 It was launched on 18 April 2018 atop a Falcon 9 launch vehicle and was placed into a highly elliptical 13 70 day orbit around the Earth 6 2 7 8 9 The first light image from TESS was taken on 7 August 2018 and released publicly on 17 September 2018 1 10 11 Transiting Exoplanet Survey SatelliteTESS satelliteNamesExplorer 95TESSMIDEX 7Mission typeSpace observatory 1 2 OperatorNASA MITCOSPAR ID2018 038ASATCAT no 43435Websitetess wbr gsfc wbr nasa wbr gov tess wbr mit wbr eduMission duration2 years planned 4 years 8 months 22 days in progress Spacecraft propertiesSpacecraftExplorer XCVSpacecraft typeTransiting Exoplanet Survey SatelliteBusLEOStar 2 750 3 ManufacturerOrbital ATKLaunch mass362 kg 798 lb 4 Dimensions3 7 1 2 1 5 m 12 1 3 9 4 9 ft Power530 wattsStart of missionLaunch date18 April 2018 22 51 30 UTC 5 RocketFalcon 9 Block 4 B1045 1 Launch siteCape Canaveral SLC 40ContractorSpaceXEntered service25 July 2018Orbital parametersReference systemGeocentric orbitRegimeHighly elliptical orbitPerigee altitude108 000 km 67 000 mi Apogee altitude375 000 km 233 000 mi Inclination37 00 Period13 70 daysTESS satellite mission patch Explorer program IRIS Explorer 94 ICON Explorer 96 Wikinews has related news NASA launches exoplanet hunting satellite TESS Over the course of the two year primary mission TESS was expected to ultimately detect about 1 250 transiting exoplanets orbiting the targeted stars and an additional 13 000 transiting planets orbiting additional stars in the fields that TESS would observe 12 As of 5 November 2022 TESS had identified 5 969 candidate exoplanets of which only 268 had been confirmed and 1720 had been dismissed as false positives 13 After the end of the primary mission around 4 July 2020 data from the primary mission continue to be searched for planets while the extended missions continues to acquire additional data The primary mission objective for TESS was to survey the brightest stars near the Earth for transiting exoplanets over a two year period The TESS satellite uses an array of wide field cameras to perform a survey of 85 of the sky With TESS it is possible to study the mass size density and orbit of a large cohort of small planets including a sample of rocky planets in the habitable zones of their host stars TESS provides prime targets for further characterization by the James Webb Space Telescope JWST as well as other large ground based and space based telescopes of the future While previous sky surveys with ground based telescopes have mainly detected giant exoplanets and the Kepler space telescope has mostly found planets around distant stars that are too faint for characterization TESS finds many small planets around the nearest stars in the sky TESS records the nearest and brightest main sequence stars hosting transiting exoplanets which are the most favorable targets for detailed investigations 14 By providing such detailed information about planetary systems with hot Jupiters TESS makes it possible to better understand the architecture of such systems 15 16 TESS uses a novel highly elliptical orbit around the Earth with an apogee approximately at the distance of the Moon and a perigee of 108 000 km 67 000 mi TESS orbits Earth twice during the time the Moon orbits once a 2 1 resonance with the Moon 17 The orbit is expected to remain stable for a minimum of ten years Led by the Massachusetts Institute of Technology MIT with seed funding from Google 18 on 5 April 2013 it was announced that TESS along with the Neutron Star Interior Composition Explorer NICER had been selected by NASA for launch 19 20 On 18 July 2019 after the first year of operation the southern portion of the survey was completed and the northern survey was started The primary mission ended with the completion of the northern survey on 4 July 2020 which was followed by the first extended mission The first extended mission concluded in September 2022 and the spacecraft enterered its second extended mission 21 which should last for another three years Contents 1 History 2 Mission overview 2 1 Orbital dynamics 2 2 Science objectives 2 3 Asteroseismology 2 4 Extended mission 3 Launch 4 Spacecraft 4 1 Operational orbit 4 2 Project timeline 5 Instruments 6 Ground operations 7 Stable light source for tests 8 Results 8 1 Exoplanet search programs 9 In popular culture 10 See also 11 References 12 Further reading 13 External linksHistory EditThe concept of TESS was first discussed in 2005 by the Massachusetts Institute of Technology MIT and the Smithsonian Astrophysical Observatory SAO 22 The genesis of TESS was begun during 2006 when a design was developed from private funding by individuals Google and The Kavli Foundation 23 In 2008 MIT proposed that TESS become a full NASA mission and submitted it for the Small Explorer program at Goddard Space Flight Center 23 but it was not selected 24 It was resubmitted in 2010 as an Explorer program mission and was approved in April 2013 as a Medium Explorer mission 25 23 26 TESS passed its critical design review CDR in 2015 allowing production of the satellite to begin 23 While Kepler had cost US 640 million at launch TESS cost only US 200 million plus US 87 million for launch 27 28 The mission will find exoplanets that periodically block part of the light from their host stars events called transits TESS will survey 200 000 of the brightest stars near the Sun to search for transiting exoplanets TESS was launched on 18 April 2018 aboard a SpaceX Falcon 9 launch vehicle In July 2019 an Extended Mission 2020 to 2022 was approved 29 and on 3 January 2020 the Transit Exoplanet Survey Satellite reported the discovery of TOI 700 d its first potentially habitable Earth sized planet Mission overview EditTESS is designed to carry out the first spaceborne all sky transiting exoplanet survey 19 30 It is equipped with four wide angle telescopes and associated charge coupled device CCD detectors Science data are transmitted to Earth every two weeks Full frame images with an effective exposure time of two hours are transmitted as well enabling scientists to search for unexpected transient phenomena such as the optical counterparts to gamma ray bursts TESS also hosts a Guest Investigator program allowing scientists from other organizations to use TESS for their own research The resources allocated to Guest programs allow an additional 20 000 celestial bodies to be observed 31 source source source source source source source source source source source source TESS Southern Sky panorama video 3 30 18 July 2019 Orbital dynamics Edit In order to obtain unobstructed imagery of both the northern and southern hemispheres of the sky TESS utilizes a 2 1 lunar resonant orbit called P 2 an orbit that has never been used before although Interstellar Boundary Explorer IBEX uses a similar P 3 orbit The highly elliptical orbit has a 375 000 km 233 000 mi apogee timed to be positioned approximately 90 away from the position of the Moon to minimize its destabilizing effect This orbit should remain stable for decades and will keep TESS s cameras in a stable temperature range The orbit is entirely outside the Van Allen belts to avoid radiation damage to TESS and most of the orbit is spent far outside the belts Every 13 70 days at its perigee of 108 000 km 67 000 mi TESS downlinks to Earth over a period of approximately 3 hours the data it has collected during the just finished orbit 32 Science objectives Edit TESS first light 7 August 2018 1 10 11 The 26 observation sectors of the sky planned for TESS TESS s two year all sky survey would focus on nearby G K and M type stars with apparent magnitudes brighter than magnitude 12 33 Approximately 500 000 stars were to be studied including the 1 000 closest red dwarfs across the whole sky 34 35 an area 400 times larger than that covered by the Kepler mission TESS was expected to find more than 3 000 transiting exoplanet candidates including 500 Earth sized planets and super Earths 34 Of those discoveries an estimated 20 were expected to be super Earths located in the habitable zone around a star 36 The stated goal of the mission was to determine the masses of at least 50 Earth sized planets at most 4 times Earth radius Most detected exoplanets are expected to be between 30 and 300 light years away The survey was broken up into 26 observation sectors each sector being 24 96 with an overlap of sectors at the ecliptic poles to allow additional sensitivity toward smaller and longer period exoplanets in that region of the celestial sphere The spacecraft will spend two 13 70 day orbits observing each sector mapping the southern hemisphere of sky in its first year of operation and the northern hemisphere in its second year 37 The cameras actually take images every 2 seconds but all the raw images would represent much more data volume than can be stored or downlinked To deal with this cutouts around 15 000 selected stars per orbit will be coadded over a 2 minute period and saved on board for downlink while full frame images will also be coadded over a 30 minute period and saved for downlink The actual data downlinks will occur every 13 70 days near perigee 38 This means that during the 2 years TESS will continuously survey 85 of the sky for 27 days with certain parts being surveyed across multiple runs The survey methodology was designed such that the area that will be surveyed essentially continuously over an entire year 351 observation days and makes up about 5 of the entire sky will encompass the regions of sky near the ecliptic poles which will be observable at any time of year with the James Webb Space Telescope JWST 39 In October 2019 Breakthrough Listen started a collaboration with scientists from the TESS team to look for signs of advanced extraterrestrial life Thousands of new planets found by TESS will be scanned for technosignatures by Breakthrough Listen partner facilities across the globe Data from TESS monitoring of stars will also be searched for anomalies 40 Asteroseismology Edit The TESS team also plans to use a 30 minute observation cadence for full frame images which has been noted for imposing a hard Nyquist limit that can be problematic for asteroseismology of stars 41 Asteroseismology is the science that studies the internal structure of stars by the interpretation of their frequency spectra Different oscillation modes penetrate to different depths inside the star The Kepler and PLATO observatories are also intended for asteroseismology 42 Extended mission Edit During the 27 month Extended Mission data collection was slightly changed 43 A new set of target stars will be selected The number of stars monitored at 2 minute cadence was increased from 15 000 to 20 000 per observing sector Up to 1000 stars per sector will be monitored at a new fast 20 second cadence The full frame image cadence will be increased from every 30 minutes to every 10 minutes The pointings and gaps in coverage will be slightly different during the extended mission Regions near the ecliptic will be covered Launch Edit Falcon 9 launch vehicle carrying TESS launching from Space Launch Complex 40 at Cape Canaveral in April 2018 In December 2014 SpaceX was awarded the contract to launch TESS in August 2017 44 for a total contract value of US 87 million 45 The 362 kg 798 lb spacecraft was originally scheduled to launch on 20 March 2018 but this was pushed back by SpaceX to allow additional time to prepare the launch vehicle and meet NASA launch service requirements 46 A static fire of the Falcon 9 rocket was completed on 11 April 2018 at approximately 18 30 UTC 47 The launch was postponed again from 16 April 2018 7 and TESS was eventually launched on a SpaceX Falcon 9 launch vehicle from the SLC 40 launch site at Cape Canaveral Air Force Station CCAFS on 18 April 2018 8 9 The Falcon 9 launch sequence included a 149 second burn by the first stage followed by a 6 minute second stage burn Meanwhile the first stage booster performed controlled reentry maneuvers and successfully landed on the autonomous drone ship Of Course I Still Love You An experimental water landing was performed for the fairing 48 as part of SpaceX s attempt to develop fairing reusability After coasting for 35 minutes the second stage performed a final 54 second burn that placed TESS into a supersynchronous transfer orbit of 200 270 000 km 120 167 770 mi at an inclination of 28 50 48 49 The second stage released the payload after which the stage itself was placed in a heliocentric orbit Spacecraft Edit TESS spacecraft before launch In 2013 Orbital Sciences Corporation received a four year US 75 million contract to build TESS for NASA 50 TESS uses an Orbital Sciences LEOStar 2 satellite bus capable of three axis stabilization using four hydrazine thrusters plus four reaction wheels providing better than three arcsecond fine spacecraft pointing control Power is provided by two single axis solar arrays generating 400 watts A Ka band dish antenna provides a 100 Mbit s science downlink 34 51 Operational orbit Edit Animation of Transiting Exoplanet Survey Satellite s trajectory from 18 April 2018 to 18 December 2019 Transiting Exoplanet Survey Satellite Earth Moon Planned orbital maneuvers after release from Falcon 9 s second stage Horizontal axis schematically represents longitude relative to the Moon vertical axis is altitude A1M Apogee 1 manoeuvre P1M Perigee 1 manoeuvre etc TCM trajectory correction manoeuvre optional PAM period adjustment manoeuvre Once injected into the initial orbit by the Falcon 9 second stage the spacecraft performed four additional independent burns that placed it into a lunar flyby orbit 52 On 17 May 2018 the spacecraft underwent a gravity assist by the Moon at 8 253 5 km 5 128 5 mi above the surface 53 and performed the final period adjustment burn on 30 May 2018 54 It achieved an orbital period of 13 65 days in the desired 2 1 resonance with the Moon at 90 phase offset to the Moon at apogee which is expected to be a stable orbit for at least 20 years thus requiring very little fuel to maintain 8 The entire maneuvering phase was expected to take a total of two months and put the craft in an eccentric orbit 17 75 REarth at a 37 inclination The total delta v budget for orbit maneuvers was 215 m s 710 ft s which is 80 of the mission s total available reserves If TESS receives an on target or slightly above nominal orbit insertion by the Falcon 9 a theoretical mission duration in excess of 15 years would be possible from a consumables standpoint 49 Project timeline Edit The first light image was made on 7 August 2018 and released publicly on September 17 2018 1 10 11 55 TESS completed its commissioning phase at the end of July and the science phase officially started on 25 July 2018 56 For the first two years of operation TESS monitored both the southern year 1 and northern year 2 celestial hemispheres During its nominal mission TESS tiles the sky in 26 separate segments with a 27 4 day observing period per segment 37 The first southern survey was completed in July 2019 The first northern survey finished in July 2020 A 27 month First Extended mission ran until September 2022 Instruments EditThe sole instrument on TESS is a package of four wide field of view charge coupled device CCD cameras Each camera features four low noise low power 4 megapixel CCDs created by MIT Lincoln Laboratory The four CCDs are arranged in a 2 x 2 detector array for a total of 16 megapixels per camera and 16 CCDs for the entire instrument Each camera has a 24 24 field of view a 100 mm 3 9 in effective pupil diameter a lens assembly with seven optical elements and a bandpass range of 600 to 1000 nm 34 3 The TESS lenses have a combined field of view of 24 96 2300 deg2 around 5 of the entire sky and a focal ratio of f 1 4 The ensquared energy the fraction of the total energy of the point spread function that is within a square of the given dimensions centered on the peak is 50 within 15 15 mm and 90 within 60 60 mm 3 For comparison Kepler s primary mission only covered an area of the sky measuring 105 deg2 though the K2 extension has covered many such areas for shorter times Ground operations EditThe TESS ground system is divided between eight sites around the United States These include Space Network and the Jet Propulsion Laboratory s NASA Deep Space Network for command and telemetry Orbital ATK s Mission Operations Center Massachusetts Institute of Technology s Payload Operations Center the Ames Research Center s Science Processing Operations Center The Goddard Space Flight Center s Flight Dynamics Facility the Smithsonian Astrophysical Observatory s TESS Science Office and the Mikulski Archive for Space Telescopes MAST 57 Stable light source for tests EditOne of the issues facing the development of this type of instrument is having an ultra stable light source to test on In 2015 a group at the University of Geneva made a breakthrough in the development of a stable light source While this instrument was created to support ESA s CHEOPS exoplanet observatory one was also ordered by the TESS program 58 Although both observatories plan to look at bright nearby stars using the transit method CHEOPS is focused on collecting more data on known exoplanets including those found by TESS and other survey missions 59 Results Edit Test image taken before the start of science operations The image is centered on the constellation Centaurus In the top right corner the edge of the Coalsack Nebula can be seen the bright star in the bottom left is Beta Centauri Exoplanet LHS 3844 b artist concept Current mission results as of 18 November 2022 273 confirmed exoplanets discovered by TESS with 4079 candidate planets that are still awaiting confirmation or rejection as false positive by the scientific community 60 TESS team partners include the Massachusetts Institute of Technology the Kavli Institute for Astrophysics and Space Research NASA s Goddard Space Flight Center MIT s Lincoln Laboratory Orbital ATK NASA s Ames Research Center the Harvard Smithsonian Center for Astrophysics and the Space Telescope Science Institute TESS started science operations on 25 July 2018 61 The first announced finding from the mission was the observation of comet C 2018 N1 61 The first exoplanet detection announcement was on 18 September 2018 announcing the discovery of a super Earth in the Pi Mensae system orbiting the star every 6 days adding to a known Super Jupiter orbiting the same star every 5 9 years 62 On 20 September 2018 the discovery of an ultra short period planet was announced slightly larger than Earth orbiting the red dwarf LHS 3844 With an orbital period of 11 hours LHS 3844 b is one of the planets with the shortest known period It orbits its star at a distance of 932 000 km 579 000 mi LHS 3844 b is also one of the closest known exoplanets to Earth at a distance of 14 9 parsecs 63 TESS s third discovered exoplanet is HD 202772A b a hot Jupiter orbiting the brighter component of the visual binary star HD 202772 located in the constellation Capricornus at a distance of about 480 light years from Earth The discovery was announced on 5 October 2018 HD 202772A b orbits its host star once every 3 3 days It is an inflated hot Jupiter and a rare example of hot Jupiters around evolved stars It is also one of the most strongly irradiated planets known with an equilibrium temperature of 2 100 K 1 830 C 3 320 F 64 On 15 April 2019 TESS first discovery of an earth sized planet was reported HD 21749 c is a planet described as likely rocky with about 89 of Earth s diameter and orbits the K type main sequence star HD 21749 in about 8 days The planet s surface temperature is estimated to be as high as 427 C Both known planets in the system HD 21749 b and HD 21749 c were discovered by TESS HD 21749 c represents the 10th confirmed planet discovery by TESS 65 Data on exoplanet candidates continue to be made available at MAST 66 As of 20 April 2019 the total number of candidates on the list was up to 335 Besides candidates identified as previously discovered exoplanets this list also includes ten newly discovered exoplanets including the five mentioned above Forty four of the candidates from Sector 1 in this list were selected for follow up observations by the TESS Follow Up Program TFOP which aims to aid the discovery of 50 planets with a planetary radius of R lt 4 RE through repeated observations 67 The list of candidate exoplanets continues to grow as additional results are being published on the same MAST page On 18 July 2019 after the first year of operation the southern portion of the survey was completed it turned its cameras to the Northern Sky As of this time it has discovered 21 planets and has over 850 candidate exoplanets 68 TOI 700 system TOI 700 multiplanetary system Exoplanet TOI 700 d artist concept On 23 July 2019 the discovery of the young exoplanet DS Tuc Ab HD 222259 Ab in the 45 Myr old Tucana Horologium young moving group was published in a paper TESS did first observe the planet in November 2018 and it was confirmed in March 2019 The young planet is larger than Neptune but smaller than Saturn The system is bright enough to follow up with radial velocity and transmission spectroscopy 69 70 ESA s CHEOPS mission will observe the transits of the young exoplanet DS Tuc Ab A team of scientists got 23 4 orbits approved in the first Announcement of Opportunity AO 1 for the CHEOPS Guest Observers GO Programme to characterize the planet 71 On 31 July 2019 the discovery of exoplanets around the M type dwarf star GJ 357 at a distance of 31 light years from Earth was announced 72 TESS directly observed the transit of GJ 357 b a hot earth with an equilibrium temperature of around 250 C Follow up ground observations and analyses of historic data lead to the discovery of GJ 357 c and GJ 357 d While GJ 357 b and GJ 357 c are too close to the star to be habitable GJ 357 d resides at the outer edge of the star s habitable zone and may possess habitable conditions if it has an atmosphere With at least 6 1 ME it is classified as a Super Earth 72 As of September 2019 over 1000 TESS Objects of Interest ToI have been listed in the public database 73 at least 29 of which are confirmed planets about 20 of which within the stated goal of the mission of Earth sized lt 4 Earth radii 74 On 26 September 2019 it was announced that TESS did observe its first tidal disruption event TDE called ASASSN 19bt The TESS data revealed that ASASSN 19bt began to brighten on 21 January 2019 8 3 days before the discovery by ASAS SN 75 76 On 6 January 2020 NASA reported the discovery of TOI 700 d the first Earth sized exoplanet in the habitable zone discovered by the TESS The exoplanet orbits the star TOI 700 100 light years away in the Dorado constellation 77 The TOI 700 system contains two other planets TOI 700b another Earth sized planet and TOI 700c a super Earth This system is unique in that the larger planet is found between the two smaller planets It is currently unknown how this arrangement of planets came to be whether these planets formed in this order or if the larger planet migrated to its current orbit 78 On the same day NASA announced that astronomers used TESS data to show that Alpha Draconis is an eclipsing binary star 79 The same day the discovery of TOI 1338b was announced the first circumbinary planet discovered with TESS TOI 1338b is around 6 9 times larger than Earth or between the sizes of Neptune and Saturn It lies in a system 1 300 light years away in the constellation Pictor The stars in the system make an eclipsing binary which occurs when the stellar companions circle each other in our plane of view One is about 10 more massive than our Sun while the other is cooler dimmer and only one third the Sun s mass TOI 1338b s transits are irregular between every 93 and 95 days and vary in depth and duration thanks to the orbital motion of its stars TESS only sees the transits crossing the larger star the transits of the smaller star are too faint to detect Although the planet transits irregularly its orbit is stable for at least the next 10 million years The orbit s angle to us however changes enough that the planet transit will cease after November 2023 and resume eight years later 80 On 25 January 2021 a team led by astrochemist Tansu Daylan with the help of two high school interns as part of the Science Research Mentoring Program at Harvard amp MIT discovered and validated four extrasolar planets composed of one super earth and three sub neptunes hosted by the bright nearby Sun like star HD 108236 The two high schoolers 18 year old Jasmine Wright of Bedford High School in Bedford Massachusetts and 16 year old Kartik Pingle of Cambridge Ringe And Latin School of Cambridge Massachusetts are reported to be the youngest individuals in history to discover a planet let alone four 81 82 On 27 January 2021 several news agencies reported that a team using TESS had determined that TIC 168789840 a stellar system with six stars in three binary pairs was oriented so astronomers could observe the eclipses of all the stars 83 84 85 86 87 It is the first six star system of its kind In March 2021 NASA announced that TESS found 2200 exoplanet candidates 88 By the end of 2021 TESS had discovered over 5000 candidates 89 On 17 May 2021 an international team of scientists including researchers from NASA s Jet Propulsion Laboratory and the University of New Mexico reported and confirmed by a ground based telescope the space telescope s first discovery of a Neptune sized exoplanet TOI 1231 b inside a habitable zone 90 The planet orbits a nearby red dwarf star 90 light years away in the Vela constellation 90 Exoplanet search programs Edit The TESS Objects of Interest TOI are assigned by the TESS team 91 and the Community TOIs CTOI are assigned by independent researchers 92 The primary mission of TESS produced 2241 TOIs 91 Other small and large collaborations of researchers try to confirm the TOIs and CTOIs or try to find new CTOIs Some of the collaborations with names that are searching exclusively for TESS planets are The citizen science project Planet Hunters TESS 93 TESS Hunt for Young and Maturing Exoplanets THYME 94 The TESS Keck Survey TKS 95 Collaborations with currently a smaller amount of discovery papers Warm gIaNts with tEss collaboration WINE 96 TESS Giants Transiting Giants 97 The TESS Grand Unified Hot Jupiter Survey 98 The TESS community is also producing software and programs to help validate the planet candidates such as TRICERATOPS 99 DAVE 100 Lightkurve 101 Eleanor 102 and Planet Patrol 103 In popular culture EditTESS is featured accurately in the 2018 film Clara See also EditARIEL 2028 exoplanet atmospheres observatory CHEOPS 2019 exoplanet observatory CoRoT 2006 2012 exoplanet observatory Kepler 2009 2018 exoplanet observatory MOST 2003 2019 asteroseismology and exoplanet observatory PLATO 2026 exoplanet observatory SWEEPS 2006 Hubble Space Telescope exoplanet survey List of transiting exoplanetsReferences Edit a b c d Overbye Dennis 20 September 2018 NASA s TESS Starts Collecting Planets The satellite launched in April has already identified at least 73 stars that may harbor exoplanets most of them new to astronomers NASA Retrieved 23 September 2018 This article incorporates text from this source which is in the public domain a b Overbye Dennis 26 March 2018 Meet Tess Seeker of Alien Worlds The New York Times Retrieved 26 March 2018 a b c Ricker George R Winn Joshua N Vanderspek Roland et al January March 2015 Transiting Exoplanet Survey Satellite PDF Journal of Astronomical Telescopes Instruments and Systems 1 1 014003 arXiv 1406 0151 Bibcode 2015JATIS 1a4003R doi 10 1117 1 JATIS 1 1 014003 S2CID 1342382 Archived from the original PDF on 11 January 2020 Retrieved 28 February 2018 TESS Discovering Exoplanets Orbiting Nearby Stars Fact Sheet PDF Orbital ATK 2018 Archived from the original PDF on 17 February 2018 Retrieved 21 May 2018 Gebhardt Chris 18 April 2018 SpaceX successfully launches TESS on a mission to search for near Earth exoplanets NASASpaceFlight com Retrieved 20 May 2018 a b Ricker George R Winn Joshua N Vanderspek Roland Latham David W Bakos Gaspar A Bean Jacob L Berta Thompson Zachory K Brown Timothy M Buchhave Lars Butler Nathaniel R Butler R Paul Chaplin William J Charbonneau David Christensen Dalsgaard Jorgen Clampin Mark Deming Drake Doty John De Lee Nathan Dressing Courtney Dunham Edward W Endl Michael Fressin Francois Ge Jian Henning Thomas Holman Matthew J Howard Andrew W Ida Shigeru Jenkins Jon M et al 24 October 2014 Transiting Exoplanet Survey Satellite Journal of Astronomical Telescopes Instruments and Systems SPIE Digital Library 1 014003 doi 10 1117 1 JATIS 1 1 014003 a b Launch Schedule Spaceflight Now 27 February 2018 Retrieved 28 February 2018 a b c Amos Jonathan 19 April 2018 Planet hunter launches from Florida BBC News a b NASA Planet Hunter on Its Way to Orbit NASA 19 April 2018 Retrieved 19 April 2018 This article incorporates text from this source which is in the public domain a b c Kazmierczak Jeanette Garner Rob 17 September 2018 NASA s TESS Shares First Science Image in Hunt to Find New Worlds NASA Retrieved 23 September 2018 This article incorporates text from this source which is in the public domain a b c NASA s TESS Releases First Science Image NASA 17 September 2018 Retrieved 23 September 2018 This article incorporates text from this source which is in the public domain Barclay Thomas Pepper Joshua Quintana Elisa V 25 October 2018 A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite TESS The Astrophysical Journal Supplement Series 239 1 2 arXiv 1804 05050 Bibcode 2018ApJS 239 2B doi 10 3847 1538 4365 aae3e9 ISSN 1538 4365 Transiting Exoplanets Survey Satellite TESS Exoplanet Exploration Planets Beyond our Solar System NASA This article incorporates text from this source which is in the public domain NASA FY 2015 President s Budget Request Summary PDF NASA 10 March 2014 This article incorporates text from this source which is in the public domain Wenz John 10 October 2019 Lessons from scorching hot weirdo planets Knowable Magazine Annual Reviews doi 10 1146 knowable 101019 2 Retrieved 4 April 2022 Dawson Rebekah I Johnson John Asher 14 September 2018 Origins of Hot Jupiters Annual Review of Astronomy and Astrophysics 56 1 175 221 arXiv 1801 06117 Bibcode 2018ARA amp A 56 175D doi 10 1146 annurev astro 081817 051853 S2CID 119332976 Retrieved 5 April 2022 McGiffin Daniel A Mathews Michael Cooley Steven 1 June 2001 HIGH EARTH ORBIT DESIGN FOR LUNAR ASSISTED MEDIUM CLASS EXPLORER MISSIONS 2001 Flight Mechanics Symposium NASA This article incorporates text from this source which is in the public domain Chandler David 19 March 2008 MIT aims to search for Earth like planets with Google s help MIT a b Harrington J D 5 April 2013 NASA Selects Explorer Investigations for Formulation Press release NASA This article incorporates text from this source which is in the public domain NASA selects MIT led TESS project for 2017 mission MIT 5 April 2013 Retrieved 6 April 2013 Barclay Thomas NASA TESS Science Support Center TESS Retrieved 4 November 2022 Ricker George R Winn Joshua N Vanderspek Roland Latham David W Bakos Gaspar A Bean Jacob L Berta Thompson Zachory K Brown Timothy M Buchhave Lars Butler Nathaniel R Butler R Paul 24 October 2014 The Transiting Exoplanet Survey Satellite Journal of Astronomical Telescopes Instruments and Systems 1 1 014003 arXiv 1406 0151 doi 10 1117 1 JATIS 1 1 014003 ISSN 2329 4124 S2CID 1342382 a b c d Mission History Transiting Exoplanet Survey Satellite NASA Archived from the original on 29 July 2014 Retrieved 23 October 2015 This article incorporates text from this source which is in the public domain Hand Eric 22 June 2009 No SMEX love for TESS Nature journal Retrieved 23 October 2015 George R Ricker Joshua N Winn Roland Vanderspek David W Latham Gaspar A Bakos Jacob L Bean et al 2014 Transiting Exoplanet Survey Satellite TESS In Jacobus M Oschmann Jr Mark Clampin Giovanni G Fazio Howard A MacEwen eds Space Telescopes and Instrumentation 2014 Optical Infrared and Millimeter Wave Space Telescopes and Instrumentation 2014 Optical Infrared and Millimeter Wave Vol 9143 SPIE p 914320 doi 10 1117 12 2063489 hdl 1721 1 97916 ISBN 9780819496119 Medium Class Explorers MIDEX Missions in Development NASA Retrieved 23 October 2015 This article incorporates text from this source which is in the public domain Meet TESS NASA s Next Planet Finder Popular Mechanics 30 October 2013 Retrieved 4 May 2018 Clark Stuart 19 April 2018 Spacewatch Tess embarks on planet hunting mission for NASA the Guardian Retrieved 4 May 2018 Mireles Ismael 18 July 2019 NASA Extends the TESS Mission through 2022 Ricker George R 26 June 2014 Discovering New Earths and Super Earths in the Solar Neighborhood SPIE Astronomical Telescopes Instrumentation 22 27 June 2014 Montreal Quebec Canada doi 10 1117 2 3201407 18 About TESS NASA 15 July 2016 Retrieved 25 March 2018 This article incorporates text from this source which is in the public domain New Explorer Mission Chooses the Just Right Orbit NASA 31 July 2013 Seager Sara 2011 Exoplanet Space Missions Massachusetts Institute of Technology Archived from the original on 25 November 2019 Retrieved 7 April 2013 a b c d TESS Transiting Exoplanet Survey Satellite PDF NASA October 2014 FS 2014 1 120 GSFC Archived from the original PDF on 17 December 2014 Retrieved 17 December 2014 This article incorporates text from this source which is in the public domain Zastrow Mark 30 May 2013 Exoplanets After Kepler What s next Sky amp Telescope Retrieved 17 December 2014 Hadhazy Adam 23 July 2015 Super Earths Might Be Our Best Bet For Finding Alien Life Discover magazine Retrieved 23 October 2015 a b Home TESS Transiting Exoplanet Survey Satellite tess mit edu Retrieved 4 April 2018 TESS Observatory Guide PDF NASA This article incorporates text from this source which is in the public domain Crossfield Ian 27 March 2017 Latest Exoplanet Results from NASA s Kepler K2 Mission SETI Talks 2017 SETI Institute 42 3 minutes in Breakthrough Initiatives breakthroughinitiatives org Retrieved 12 November 2019 Murphy Simon J November 2015 The potential for super Nyquist asteroseismology with TESS PDF Monthly Notices of the Royal Astronomical Society 453 3 2569 2575 arXiv 1508 02717 Bibcode 2015MNRAS 453 2569M doi 10 1093 mnras stv1842 S2CID 54578476 Asteroseismic data analysis with Kepler K2 TESS and PLATO FindaPhD com Retrieved 31 October 2015 NASA s TESS Completes Primary Mission NASA 10 August 2020 This article incorporates text from this source which is in the public domain Berger Brian 17 December 2014 NASA Taps SpaceX To Launch TESS Satellite SpaceNews Retrieved 31 October 2015 NASA Awards Launch Services Contract for Transiting Exoplanet Survey Satellite Press release NASA 16 December 2014 Retrieved 17 December 2014 Clark Stephen 16 February 2018 Exoplanet hunting satellite arrives in Florida for April launch Spaceflight Now Retrieved 28 February 2018 NASA TESS 11 April 2018 The SpaceX Falcon9 fairing for NASA TESS arrived over the weekend Tweet via Twitter a b Launch Profile Falcon 9 TESS Spaceflight101 com Retrieved 22 April 2018 a b TESS Orbit Design Spaceflight101 com Retrieved 22 April 2018 Leone Dan 24 April 2013 Orbital Gets 75M To Build TESS Exoplanet Telescope SpaceNews Retrieved 17 May 2016 TESS Discovering Exoplanets Orbiting Nearby Stars PDF Orbital Sciences 2014 FS011 13 2998 Retrieved 17 December 2014 NASA TESS 29 April 2018 Mission Update Team decided that the second apogee maneuver Apogee 2 maneuver A2M was not necessary Tweet via Twitter NASA TESS 18 May 2018 Mission Update TESS successfully completed a lunar flyby Tweet via Twitter NASA TESS 1 June 2018 NASA TESS Mission Update The Tweet via Twitter NASA TESS 18 May 2018 As part of camera commissioning the TESS science team snapped a two second test exposure Tweet via Twitter This article incorporates text from this source which is in the public domain NASA s TESS spacecraft starts science operations nasa gov 27 July 2018 Retrieved 31 July 2018 This article incorporates text from this source which is in the public domain TESS Ground Operations NASA Archived from the original on 29 July 2014 Retrieved 27 January 2018 This article incorporates text from this source which is in the public domain Peach Matthew 1 October 2015 Swiss group develops most stable light source for satellite tests Optics org Retrieved 23 October 2015 Nowakowski Tomasz 17 March 2015 ESA s CHEOPS Satellite The Pharaoh of Exoplanet Hunting Astro Watch Retrieved 29 October 2015 NASA Exoplanet Archive exoplanetarchive ipac caltech edu Retrieved 16 October 2022 a b Garner Rob 6 August 2018 Planet Hunting TESS Catches a Comet Before Starting Science NASA Huang Chelsea X et al 2018 TESS Discovery of a Transiting Super Earth in the P Mensae System The Astrophysical Journal 868 2 L39 arXiv 1809 05967 Bibcode 2018ApJ 868L 39H doi 10 3847 2041 8213 aaef91 PMC 6662726 PMID 31360431 Vanderspek Roland et al 19 September 2018 TESS Discovery of an ultra short period planet around the nearby M dwarf LHS 3844 The Astrophysical Journal 871 2 L24 arXiv 1809 07242 doi 10 3847 2041 8213 aafb7a S2CID 119009146 Wang Songhu et al 5 October 2018 HD 202772A B A Transiting Hot Jupiter Around A Bright Mildly Evolved Star In A Visual Binary Discovered By Tess The Astronomical Journal 157 2 51 arXiv 1810 02341 doi 10 3847 1538 3881 aaf1b7 S2CID 59499230 Garner Rob 15 April 2019 NASA s TESS Discovers its First Earth size Planet NASA Retrieved 20 April 2019 This article incorporates text from this source which is in the public domain TESS DATA ALERTS Data Products From TESS Data Alerts archive stsci edu Retrieved 20 April 2019 Followup TESS Transiting Exoplanet Survey Satellite Retrieved 20 April 2019 NASA gov NASA s TESS Mission Completes First Year of Survey Turns to Northern Sky This article incorporates text from this source which is in the public domain Albright Charlotte 14 August 2019 Dartmouth Astronomer on Leading Discovery of a New Planet news dartmouth edu Retrieved 16 November 2019 Newton Elisabeth R Mann Andrew W Tofflemire Benjamin M Pearce Logan Rizzuto Aaron C Vanderburg Andrew Martinez Raquel A Wang Jason J Ruffio Jean Baptiste Kraus Adam L Johnson Marshall C 23 July 2019 TESS Hunt for Young and Maturing Exoplanets THYME A Planet in the 45 Myr Tucana Horologium Association The Astrophysical Journal 880 1 L17 arXiv 1906 10703 Bibcode 2019ApJ 880L 17N doi 10 3847 2041 8213 ab2988 ISSN 2041 8213 S2CID 195658207 AO 1 Programmes CHEOPS Guest Observers Programme Cosmos cosmos esa int Retrieved 16 November 2019 a b Garner Rob 30 July 2019 NASA s TESS Helps Find Intriguing New World NASA Retrieved 31 July 2019 This article incorporates text from this source which is in the public domain ExoFOP exofop ipac caltech edu Publications Garner Rob 25 September 2019 TESS Spots Its 1st Star shredding Black Hole NASA Retrieved 16 November 2019 This article incorporates text from this source which is in the public domain Holoien Thomas W S Vallely Patrick J Auchettl Katie Stanek K Z Kochanek Christopher S French K Decker Prieto Jose L Shappee Benjamin J Brown Jonathan S Fausnaugh Michael M Dong Subo 26 September 2019 Discovery and Early Evolution of ASASSN 19bt the First TDE Detected by TESS The Astrophysical Journal 883 2 111 arXiv 1904 09293 Bibcode 2019ApJ 883 111H doi 10 3847 1538 4357 ab3c66 ISSN 1538 4357 S2CID 128307681 Andreolo Claire Cofield Calla Kazmierczak Jeanette 6 January 2020 NASA Planet Hunter Finds Earth Size Habitable Zone World NASA Retrieved 6 January 2020 This article incorporates text from this source which is in the public domain The TESS Mission s First Earth Like Planet Found in an Interesting Trio aasnova org 18 February 2020 Retrieved 28 February 2020 Reddy Francis 6 January 2020 TESS Shows Ancient North Star Undergoes Eclipses NASA Retrieved 9 January 2020 This article incorporates text from this source which is in the public domain TESS Discovers Its 1st Planet Orbiting 2 Stars NASA 6 January 2020 Retrieved 9 January 2020 This article incorporates text from this source which is in the public domain Daylan Tansu 25 January 2021 TESS Discovery of a Super Earth and Three Sub Neptunes Hosted by the Bright Sun like Star HD 108236 The Astronomical Journal 161 2 85 arXiv 2004 11314 Bibcode 2021AJ 161 85D doi 10 3847 1538 3881 abd73e S2CID 216080635 Retrieved 30 May 2021 High schoolers discover four exoplanets through Harvard amp Smithsonian mentorship program The Harvard Gazette 28 January 2021 Retrieved 30 May 2021 Discovery Alert First Six star System Where All Six Stars Undergo Eclipses NASA Goddard Space Flight Center 27 January 2021 Archived from the original on 27 January 2021 Retrieved 29 January 2021 The system also called TIC 168789840 is the first known sextuple composed of three sets of eclipsing binaries stellar pairs whose orbits tip into our line of sight so we observe the stars alternatively passing in front of each other This article incorporates text from this source which is in the public domain Natali Anderson 25 January 2021 TESS Discovers Sextuply Eclipsing Six Star System Sci News Archived from the original on 26 January 2021 Retrieved 29 January 2021 Prior to the discovery of TIC 168789840 there were 17 known sextuple star systems according to the June 2020 update of the Multiple Star Catalog lead author Dr Brian Powell of NASA s Goddard Space Flight Center and colleagues wrote in their paper Jamie Carter 28 January 2021 A Weird Sextuple Star System Has Been Found By NASA Where Six Suns Eclipse Each Other Forbes magazine Archived from the original on 29 January 2021 Retrieved 29 January 2021 Astronomers find a system of six stars made of three eclipsing binaries WION TV channel 28 January 2021 Archived from the original on 28 January 2021 Retrieved 29 January 2021 The primary stars in all three binaries are all slightly bigger and more massive than the Sun and about as hot The system also called TIC 168789840 is located about 1 900 light years away in the constellation Eridanus Robin George Andrews 23 January 2021 Six Stars Six Eclipses The Fact That It Exists Blows My Mind The New York Times Archived from the original on 28 January 2021 Retrieved 29 January 2021 But only one of the pairs could have any planets Two of the system s binaries orbit extremely close to one another forming their own quadruple subsystem Any planets there would likely be ejected or engulfed by one of the four stars The third binary is farther out orbiting the other two once every 2 000 years or so making it a possible exoplanetary haven Space Telescope Delivers the Goods 2 200 Possible Planets NASA 23 March 2021 Retrieved 24 March 2021 This article incorporates text from this source which is in the public domain TESS Science Office at MIT hits milestone of 5 000 exoplanet candidates a b Burt Jennifer A Dragomir Diana Molliere Paul Youngblood Allison et al 17 May 2021 TOI 1231b A Temperate Neptune sized Planet Transiting the Nearby M3 Dwarf NLTT 24399 The Astronomical Journal 162 3 87 arXiv 2105 08077 Bibcode 2021AJ 162 87B doi 10 3847 1538 3881 ac0432 S2CID 234763319 a b Guerrero Natalia M Seager S Huang Chelsea X Vanderburg Andrew Garcia Soto Aylin Mireles Ismael Hesse Katharine Fong William Glidden Ana Shporer Avi Latham David W Collins Karen A Quinn Samuel N Burt Jennifer Dragomir Diana 1 June 2021 The TESS Objects of Interest Catalog from the TESS Prime Mission The Astrophysical Journal Supplement Series 254 39 doi 10 3847 1538 4365 abefe1 ISSN 0067 0049 ExoFOP Help page exofop ipac caltech edu Retrieved 8 September 2022 NASA ADS search Planet Hunters TESS ui adsabs harvard edu Retrieved 8 September 2022 NASA ADS search for THYME ui adsabs harvard edu Retrieved 8 September 2022 NASA ADS searching The TESS Keck Survey or TKS ui adsabs harvard edu Retrieved 8 September 2022 NASA ADS search for WINE ui adsabs harvard edu Retrieved 8 September 2022 NASA ADS searching TESS Giants Transiting Giants ui adsabs harvard edu Retrieved 8 September 2022 NASA ADS searching TESS Grand Unified Hot Jupiter Survey ui adsabs harvard edu Retrieved 8 September 2022 Giacalone Steven Dressing Courtney D Jensen Eric L N Collins Karen A Ricker George R Vanderspek Roland Seager S Winn Joshua N Jenkins Jon M Barclay Thomas Barkaoui Khalid Cadieux Charles Charbonneau David Collins Kevin I Conti Dennis M 1 January 2021 Vetting of 384 TESS Objects of Interest with TRICERATOPS and Statistical Validation of 12 Planet Candidates The Astronomical Journal 161 24 doi 10 3847 1538 3881 abc6af ISSN 0004 6256 Kostov Veselin B Mullally Susan E Quintana Elisa V Coughlin Jeffrey L Mullally Fergal Barclay Thomas Colon Knicole D Schlieder Joshua E Barentsen Geert Burke Christopher J 1 March 2019 Discovery and Vetting of Exoplanets I Benchmarking K2 Vetting Tools The Astronomical Journal 157 124 doi 10 3847 1538 3881 ab0110 ISSN 0004 6256 Lightkurve Collaboration Cardoso Jose Vinicius de Miranda Hedges Christina Gully Santiago Michael Saunders Nicholas Cody Ann Marie Barclay Thomas Hall Oliver Sagear Sheila Turtelboom Emma Zhang Johnny Tzanidakis Andy Mighell Ken Coughlin Jeff Bell Keaton 1 December 2018 Lightkurve Kepler and TESS time series analysis in Python Astrophysics Source Code Library ascl 1812 013 Feinstein Adina D Montet Benjamin T Foreman Mackey Daniel Bedell Megan E Saunders Nicholas Bean Jacob L Christiansen Jessie L Hedges Christina Luger Rodrigo Scolnic Daniel Cardoso Jose Vinicius de Miranda 1 September 2019 eleanor An Open source Tool for Extracting Light Curves from the TESS Full frame Images Publications of the Astronomical Society of the Pacific 131 094502 doi 10 1088 1538 3873 ab291c ISSN 0004 6280 Kostov Veselin B Kuchner Marc J Cacciapuoti Luca Acharya Sovan Ahlers John P Andres Carcasona Marc Brande Jonathan de Lima Lucas T Di Fraia Marco Z Fornear Aline U Gallo Francesco Hyogo Michiharu Ienco Riccardo M de Lambilly Julien S Luca Hugo A D 1 April 2022 Planet Patrol Vetting Transiting Exoplanet Candidates with Citizen Science Publications of the Astronomical Society of the Pacific 134 044401 doi 10 1088 1538 3873 ac5de0 ISSN 0004 6280 Further reading EditRicker George R et al 24 October 2014 Transiting Exoplanet Survey Satellite Journal of Astronomical Telescopes Instruments and Systems 1 1 914320 arXiv 1406 0151 Bibcode 2014SPIE 9143E 20R doi 10 1117 1 JATIS 1 1 014003 S2CID 1342382 Stassun Keivan 18 November 2014 TESS and Galactic Science PDF WFIRST Meeting California Institute of Technology External links Edit Wikimedia Commons has media related to Transiting Exoplanet Survey Satellite TESS twitter account by NASA TESS website by NASA Goddard TESS website by Massachusetts Institute of Technology MIT TESS discovered exoplanets by MIT TESS website by the Kavli Foundation Planet Hunters TESS anyone can help classifying TESS data TESS listing of Southern Sky panoramas July 18 2019 TESS launch closeup atop Falcon 9 rocket APOD April 21 2018 Interactive 3D simulation of TESS s 2 1 lunar resonant orbit Portals Astronomy Stars Spaceflight Solar System Science Retrieved from https en wikipedia org w index php title Transiting Exoplanet Survey Satellite amp oldid 1130665228, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.