fbpx
Wikipedia

MOST (spacecraft)

The Microvariability and Oscillations of Stars/Microvariabilité et Oscillations STellaire (MOST), was Canada's first space telescope. Up until nearly 10 years after its launch it was also the smallest space telescope in orbit (for which its creators nicknamed it the "Humble Space Telescope", in reference to one of the largest, the Hubble).[2] MOST was the first spacecraft dedicated to the study of asteroseismology, subsequently followed by the now-completed CoRoT and Kepler missions. It was also the first Canadian science satellite launched since ISIS II, 32 years previously.

Microvariability and Oscillations of Stars/Microvariabilité et Oscillations STellaire
NamesMOST
Mission typeAstronomy
OperatorCSA
COSPAR ID2003-031D
SATCAT no.27843
Website
Mission durationFinal: 15 years, 9 months
Spacecraft properties
Launch mass53 kg (117 lb)
Dimensions60 cm × 60 cm × 24 cm (23.6 in × 23.6 in × 9.4 in)
Power35 W
Start of mission
Launch date30 June 2003, 14:15 (2003-06-30UTC14:15) UTC
RocketRockot/Breeze-KM
Launch sitePlesetsk 133/3
ContractorEurockot
End of mission
DisposalDecommissioned
DeactivatedMarch 2019 (2019-04)
Orbital parameters
Reference systemGeocentric
RegimePolar
Semi-major axis7,203 km (4,476 mi)
Eccentricity0.0010821
Perigee altitude824.7 km (512.4 mi)
Apogee altitude840.3 km (522.1 mi)
Inclination98.7157 degrees
Period101.4 minutes
RAAN126.1054 degrees
Argument of perigee129.3968 degrees
Mean anomaly230.8168 degrees
Mean motion14.20521415 rev/day
Epoch27 April 2016, 11:16:58 UTC[1]
Revolution no.66487
Main telescope
TypeMaksutov catadioptric
Diameter15 cm (5.9 in)
Focal length88.2 cm (34.7 in)
Wavelengths350-750 nm (Visible light)
 

Description edit

As its name suggests, its primary mission was to monitor variations in star light, which it did by observing a single target for a long period of time (up to 60 days). Typically, larger space telescopes cannot afford to remain focused on a single target for so long due to the demand for their resources.

At 53 kg (117 lb), 60 cm (24 in) wide and tall, and 24 cm (9 in) deep,[3] it was the size and weight of a small chest or an extra-large suitcase filled with electronics. This places it in the microsatellite category.

MOST was developed as a joint effort of the Canadian Space Agency, Dynacon Enterprises Limited (now Microsatellite Systems Canada Inc), the Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies, and the University of British Columbia. Led by Principal Investigator Jaymie Matthews, the MOST science team's plan was to use observations from MOST to use asteroseismology to help date the age of the universe, and to search for visible-light signatures from extrasolar planets.

MOST featured an instrument[4] comprising a visible-light dual-CCD camera, fed by a 15-cm aperture Maksutov telescope. One CCD gathered science images, while the other provided images used by star-tracking software that, along with a set of four reaction wheels (computer-controlled motorized flywheels that are similar to gyroscopes) maintained pointing with an error of less than 1 arc-second, better pointing by far than any other microsatellite to date.

The design of the rest of MOST was inspired by and based on microsatellite bus designs pioneered by AMSAT, and first brought to commercial viability by the microsatellite company SSTL (based at the University of Surrey in the United Kingdom); during the early stages of MOST development, the core group of AMSAT microsatellite satellite designers advised and mentored the MOST satellite design team, via a know-how transfer arrangement with UTIAS. This approach to satellite design is notable for making use of commercial-grade electronics, along with a "small team," "early prototyping" engineering development approach rather different from that used in most other space-engineering programs, to achieve relatively very low costs: MOST's life-cycle cost (design, build, launch and operate) was less than $10 million in Canadian funds (about 7 million Euros or 6 million USD, at exchange rates at time of launch).

Operation history edit

Development of the satellite was managed by the Canadian Space Agency's Space Science Branch, and was funded under its Small Payloads Program; its operations were (as of 2012) managed by the CSA's Space Exploration Branch. It was operated by SFL (where the primary MOST ground station is located) jointly with Microsat Systems Canada Inc. (since the sale of Dynacon's space division to MSCI in 2008). As of ten years after launch, despite failures of two of its components (one of the four reaction wheels and one of the two CCD driver boards), the satellite was still operating well, as a result of both on-going on-board software upgrades as well as built-in hardware redundancy, allowing improvements to performance and to reconfigure around failed hardware units.

In 2008, the MOST Satellite Project Team won the Canadian Aeronautics and Space Institute's Alouette Award,[5][6] which recognizes outstanding contributions to advancement in Canadian space technology, applications, science or engineering.

Termination of operations funding by CSA edit

On 30 April 2014, the Canadian Space Agency announced that funding to continue operating MOST would be withdrawn as of 9 September 2014,[7] apparently as a result of funding cuts to the Canadian Space Agency's budget by the Harper government,[8] despite the fact that the satellite continues to be fully operational and capable of making on-going science observations. P.I. Jaymie Matthews responded by saying that "he will consider all options to keep the satellite in orbit, and that includes a direct appeal to the public."

Post-CSA-funded operations edit

In October 2014, the MOST Satellite was acquired by MSCI, which then commenced commercial operation of the satellite, offering a variety of potential uses including continuing the original MOST mission in partnership with Dr. Matthews, but also other planetary studies, attitude control system algorithm R&D, and Earth observation. MOST was finally decommissioned in March 2019, after an apparent failure of its power subsystem.[9]

Discoveries edit

The MOST team has reported a number of discoveries. In 2004 they reported that the star Procyon does not oscillate to the extent that had been expected,[10] although this has been disputed.[11][12]

In 2006 observations revealed a previously unknown class of variable stars, the "slowly pulsating B supergiants" (SPBsg).[13] In 2011, MOST detected transits by exoplanet 55 Cancri e of its primary star, based on two weeks of nearly continuous photometric monitoring, confirming an earlier detection of this planet, and allowing investigations into the planet's composition. In 2019, MOST photometry was used to disprove claims of permanent starspots on the surface of HD 189733 A that were alleged to be caused by interactions between the magnetic fields of the star and its "hot Jupiter" exoplanet.[14]

MOST target campaigns edit

See also edit

References edit

  1. ^ "XTE Satellite details 1995-074A NORAD 23757". N2YO. 27 April 2016. Retrieved 27 April 2016.
  2. ^ Strauss, Stephen (30 June 2003). "'Humble' Canadian space telescope set for launch". Globe and Mail. Retrieved 29 June 2018.
  3. ^ Rucinski (2003). "MOST (microvariability & oscillations of stars) Canadian astronomical micro-satellite". Advances in Space Research. 31 (2): 371–373. Bibcode:2003AdSpR..31..371R. doi:10.1016/S0273-1177(02)00628-2.
  4. ^ (PDF). Archived from the original (PDF) on 26 December 2011. Retrieved 27 March 2012.{{cite web}}: CS1 maint: archived copy as title (link) Walker et al., "The MOST Asteroseismology Mission: Ultraprecise Photometry from Space," Publications of the Astronomical Society of the Pacific , Vol.115, No.811 (September 2003), pp.1023-1035, DOI: 10.1086/377358.
  5. ^ The Alouette Award, The recipients 14 May 2012 at the Wayback Machine Canadian Aeronautics and Space Institute website, retrieved 5 October 2011.
  6. ^ MOST Team Wins Alouette Award 2008 UTIAS SFL website.
  7. ^ CSA announces termination of MOST operations funding 6 May 2014 at the Wayback Machine
  8. ^ CBC story, "MOST space telescope eyes crowdfunding to stay in orbit"
  9. ^ Black, Chuck (11 April 2019). "After a Long and Productive Life, the Iconic Canadian MOST Space Telescope was Finally Decommissioned in March 2019". The Commercial Space Blog. Retrieved 23 April 2019.
  10. ^ . Archived from the original on 2013-07-29. Retrieved 2012-03-27.
  11. ^ Bouchy, François; et al. (2004), "Brief Communications Arising: Oscillations on the star Procyon", Nature, 432 (7015): 2, arXiv:astro-ph/0510303, Bibcode:2004Natur.432....2B, doi:10.1038/nature03165, PMID 15568216, S2CID 593117
  12. ^ Bedding, T. R.; et al. (2005), "The non-detection of oscillations in Procyon by MOST: Is it really a surprise?", Astronomy and Astrophysics, 432 (2): L43, arXiv:astro-ph/0501662, Bibcode:2005A&A...432L..43B, doi:10.1051/0004-6361:200500019, S2CID 53350078
  13. ^ [astro-ph/0606712] Most Detects G- and P-Modes in the B Supergiant HD 163899 (B2Ib/II)
  14. ^ Route, Matthew (10 February 2019). "The Rise of ROME. I. A Multiwavelength Analysis of the Star-Planet Interaction in the HD 189733 System". The Astrophysical Journal. 872 (1): 79. arXiv:1901.02048. Bibcode:2019ApJ...872...79R. doi:10.3847/1538-4357/aafc25. S2CID 119350145.
  15. ^ Shore, Randy (18 December 2014). . The Province. Archived from the original on 3 February 2015. Retrieved 19 December 2014.

External links edit

  • MOST website by the Canadian Space Agency
  • by the University of British Columbia
  • MOST website by the University of Toronto
  • by Microsat Systems Canada Inc.

most, spacecraft, microvariability, oscillations, stars, microvariabilité, oscillations, stellaire, most, canada, first, space, telescope, until, nearly, years, after, launch, also, smallest, space, telescope, orbit, which, creators, nicknamed, humble, space, . The Microvariability and Oscillations of Stars Microvariabilite et Oscillations STellaire MOST was Canada s first space telescope Up until nearly 10 years after its launch it was also the smallest space telescope in orbit for which its creators nicknamed it the Humble Space Telescope in reference to one of the largest the Hubble 2 MOST was the first spacecraft dedicated to the study of asteroseismology subsequently followed by the now completed CoRoT and Kepler missions It was also the first Canadian science satellite launched since ISIS II 32 years previously Microvariability and Oscillations of Stars Microvariabilite et Oscillations STellaireNamesMOSTMission typeAstronomyOperatorCSACOSPAR ID2003 031DSATCAT no 27843WebsiteMOST home pageMission durationFinal 15 years 9 monthsSpacecraft propertiesLaunch mass53 kg 117 lb Dimensions60 cm 60 cm 24 cm 23 6 in 23 6 in 9 4 in Power35 WStart of missionLaunch date30 June 2003 14 15 2003 06 30UTC14 15 UTCRocketRockot Breeze KMLaunch sitePlesetsk 133 3ContractorEurockotEnd of missionDisposalDecommissionedDeactivatedMarch 2019 2019 04 Orbital parametersReference systemGeocentricRegimePolarSemi major axis7 203 km 4 476 mi Eccentricity0 0010821Perigee altitude824 7 km 512 4 mi Apogee altitude840 3 km 522 1 mi Inclination98 7157 degreesPeriod101 4 minutesRAAN126 1054 degreesArgument of perigee129 3968 degreesMean anomaly230 8168 degreesMean motion14 20521415 rev dayEpoch27 April 2016 11 16 58 UTC 1 Revolution no 66487Main telescopeTypeMaksutov catadioptricDiameter15 cm 5 9 in Focal length88 2 cm 34 7 in Wavelengths350 750 nm Visible light Contents 1 Description 2 Operation history 2 1 Termination of operations funding by CSA 2 2 Post CSA funded operations 3 Discoveries 4 MOST target campaigns 5 See also 6 References 7 External linksDescription editAs its name suggests its primary mission was to monitor variations in star light which it did by observing a single target for a long period of time up to 60 days Typically larger space telescopes cannot afford to remain focused on a single target for so long due to the demand for their resources At 53 kg 117 lb 60 cm 24 in wide and tall and 24 cm 9 in deep 3 it was the size and weight of a small chest or an extra large suitcase filled with electronics This places it in the microsatellite category MOST was developed as a joint effort of the Canadian Space Agency Dynacon Enterprises Limited now Microsatellite Systems Canada Inc the Space Flight Laboratory SFL at the University of Toronto Institute for Aerospace Studies and the University of British Columbia Led by Principal Investigator Jaymie Matthews the MOST science team s plan was to use observations from MOST to use asteroseismology to help date the age of the universe and to search for visible light signatures from extrasolar planets MOST featured an instrument 4 comprising a visible light dual CCD camera fed by a 15 cm aperture Maksutov telescope One CCD gathered science images while the other provided images used by star tracking software that along with a set of four reaction wheels computer controlled motorized flywheels that are similar to gyroscopes maintained pointing with an error of less than 1 arc second better pointing by far than any other microsatellite to date The design of the rest of MOST was inspired by and based on microsatellite bus designs pioneered by AMSAT and first brought to commercial viability by the microsatellite company SSTL based at the University of Surrey in the United Kingdom during the early stages of MOST development the core group of AMSAT microsatellite satellite designers advised and mentored the MOST satellite design team via a know how transfer arrangement with UTIAS This approach to satellite design is notable for making use of commercial grade electronics along with a small team early prototyping engineering development approach rather different from that used in most other space engineering programs to achieve relatively very low costs MOST s life cycle cost design build launch and operate was less than 10 million in Canadian funds about 7 million Euros or 6 million USD at exchange rates at time of launch Operation history editDevelopment of the satellite was managed by the Canadian Space Agency s Space Science Branch and was funded under its Small Payloads Program its operations were as of 2012 managed by the CSA s Space Exploration Branch It was operated by SFL where the primary MOST ground station is located jointly with Microsat Systems Canada Inc since the sale of Dynacon s space division to MSCI in 2008 As of ten years after launch despite failures of two of its components one of the four reaction wheels and one of the two CCD driver boards the satellite was still operating well as a result of both on going on board software upgrades as well as built in hardware redundancy allowing improvements to performance and to reconfigure around failed hardware units In 2008 the MOST Satellite Project Team won the Canadian Aeronautics and Space Institute s Alouette Award 5 6 which recognizes outstanding contributions to advancement in Canadian space technology applications science or engineering Termination of operations funding by CSA edit On 30 April 2014 the Canadian Space Agency announced that funding to continue operating MOST would be withdrawn as of 9 September 2014 7 apparently as a result of funding cuts to the Canadian Space Agency s budget by the Harper government 8 despite the fact that the satellite continues to be fully operational and capable of making on going science observations P I Jaymie Matthews responded by saying that he will consider all options to keep the satellite in orbit and that includes a direct appeal to the public Post CSA funded operations edit In October 2014 the MOST Satellite was acquired by MSCI which then commenced commercial operation of the satellite offering a variety of potential uses including continuing the original MOST mission in partnership with Dr Matthews but also other planetary studies attitude control system algorithm R amp D and Earth observation MOST was finally decommissioned in March 2019 after an apparent failure of its power subsystem 9 Discoveries editThe MOST team has reported a number of discoveries In 2004 they reported that the star Procyon does not oscillate to the extent that had been expected 10 although this has been disputed 11 12 In 2006 observations revealed a previously unknown class of variable stars the slowly pulsating B supergiants SPBsg 13 In 2011 MOST detected transits by exoplanet 55 Cancri e of its primary star based on two weeks of nearly continuous photometric monitoring confirming an earlier detection of this planet and allowing investigations into the planet s composition In 2019 MOST photometry was used to disprove claims of permanent starspots on the surface of HD 189733 A that were alleged to be caused by interactions between the magnetic fields of the star and its hot Jupiter exoplanet 14 MOST target campaigns editProcyon HD 209458 b HD 163899 guide star 55 Cancri e HIP 116454 b 15 See also edit nbsp Spaceflight portalAsteroseismology Study of oscillations in starsReferences edit XTE Satellite details 1995 074A NORAD 23757 N2YO 27 April 2016 Retrieved 27 April 2016 Strauss Stephen 30 June 2003 Humble Canadian space telescope set for launch Globe and Mail Retrieved 29 June 2018 Rucinski 2003 MOST microvariability amp oscillations of stars Canadian astronomical micro satellite Advances in Space Research 31 2 371 373 Bibcode 2003AdSpR 31 371R doi 10 1016 S0273 1177 02 00628 2 Archived copy PDF Archived from the original PDF on 26 December 2011 Retrieved 27 March 2012 a href Template Cite web html title Template Cite web cite web a CS1 maint archived copy as title link Walker et al The MOST Asteroseismology Mission Ultraprecise Photometry from Space Publications of the Astronomical Society of the Pacific Vol 115 No 811 September 2003 pp 1023 1035 DOI 10 1086 377358 The Alouette Award The recipients Archived 14 May 2012 at the Wayback Machine Canadian Aeronautics and Space Institute website retrieved 5 October 2011 MOST Team Wins Alouette Award 2008 UTIAS SFL website CSA announces termination of MOST operations funding Archived 6 May 2014 at the Wayback Machine CBC story MOST space telescope eyes crowdfunding to stay in orbit Black Chuck 11 April 2019 After a Long and Productive Life the Iconic Canadian MOST Space Telescope was Finally Decommissioned in March 2019 The Commercial Space Blog Retrieved 23 April 2019 CSA Small Satellite Makes Big Discovery Archived from the original on 2013 07 29 Retrieved 2012 03 27 Bouchy Francois et al 2004 Brief Communications Arising Oscillations on the star Procyon Nature 432 7015 2 arXiv astro ph 0510303 Bibcode 2004Natur 432 2B doi 10 1038 nature03165 PMID 15568216 S2CID 593117 Bedding T R et al 2005 The non detection of oscillations in Procyon by MOST Is it really a surprise Astronomy and Astrophysics 432 2 L43 arXiv astro ph 0501662 Bibcode 2005A amp A 432L 43B doi 10 1051 0004 6361 200500019 S2CID 53350078 astro ph 0606712 Most Detects G and P Modes in the B Supergiant HD 163899 B2Ib II Route Matthew 10 February 2019 The Rise of ROME I A Multiwavelength Analysis of the Star Planet Interaction in the HD 189733 System The Astrophysical Journal 872 1 79 arXiv 1901 02048 Bibcode 2019ApJ 872 79R doi 10 3847 1538 4357 aafc25 S2CID 119350145 Shore Randy 18 December 2014 UBC astronomers help spot new waterworld planet in our galactic neighbourhoody The Province Archived from the original on 3 February 2015 Retrieved 19 December 2014 External links editMOST website by the Canadian Space Agency MOST website by the University of British Columbia MOST website by the University of Toronto MOST website by Microsat Systems Canada Inc Retrieved from https en wikipedia org w index php title MOST spacecraft amp oldid 1172327623, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.