fbpx
Wikipedia

QNX

QNX (/ˌkjuː ˌɛn ˈɛks/ or /ˈkjuːnɪks/) is a commercial Unix-like real-time operating system, aimed primarily at the embedded systems market. QNX was one of the first commercially successful microkernel operating systems.[citation needed]

QNX
The default desktop in QNX 6.4.1
DeveloperBlackBerry (formerly QNX Software Systems)
OS familyUnix-like
Working stateCurrent
Source modelClosed source
Initial release1982; 41 years ago (1982)
Latest release7.1 / July 2020; 2 years ago (2020-07)
Marketing targetEmbedded systems
Package managerAble to use Pkgsrc framework from NetBSD project
PlatformsCurrent: x86-64, ARM32, ARM64
Former: MIPS, PowerPC, SH-4, StrongARM, XScale
Kernel typeRTOS (microkernel)
UserlandPOSIX
LicenseProprietary
Official websiteblackberry.qnx.com

The product was originally developed in the early 1980s by Canadian company Quantum Software Systems, later renamed QNX Software Systems.

As of 2022, it is used in a variety of devices including cars.[1]

History

Gordon Bell and Dan Dodge, both students at the University of Waterloo in 1980, took a course in real-time operating systems, in which the students constructed a basic real-time microkernel and user programs. Both were convinced there was a commercial need for such a system, and moved to the high-tech planned community Kanata, Ontario, to start Quantum Software Systems that year. In 1982, the first version of QUNIX was released for the Intel 8088 CPU. In 1984, Quantum Software Systems renamed QUNIX to QNX in an effort to avoid any trademark infringement challenges.

One of the first widespread uses of the QNX real-time OS (RTOS) was in the nonembedded world when it was selected as the operating system for the Ontario education system's own computer design, the Unisys ICON. Over the years QNX was used mostly for larger projects, as its 44k kernel was too large to fit inside the one-chip computers of the era. The system garnered a reputation for reliability[citation needed] and became used in running machinery in many industrial applications.

In the late-1980s, Quantum realized that the market was rapidly moving towards the Portable Operating System Interface (POSIX) model and decided to rewrite the kernel to be much more compatible at a low level. The result was QNX 4. During this time Patrick Hayden, while working as an intern, along with Robin Burgener (a full-time employee at the time), developed a new windowing system. This patented[2] concept was developed into the embeddable graphical user interface (GUI) named the QNX Photon microGUI. QNX also provided a version of the X Window System.

To demonstrate the OS's capability and relatively small size, in the late 1990s QNX released a demo image that included the POSIX-compliant QNX 4 OS, a full graphical user interface, graphical text editor, TCP/IP networking, web browser and web server that all fit on a bootable 1.44 MB floppy disk for the 386 PC.[3][4]

Toward the end of the 1990s, the company, then named QNX Software Systems, began work on a new version of QNX, designed from the ground up to be symmetric multiprocessing (SMP) capable, and to support all current POSIX application programming interfaces (APIs) and any new POSIX APIs that could be anticipated while still retaining the microkernel architecture. This resulted in QNX Neutrino, released in 2001.

Along with the Neutrino kernel, QNX Software Systems became a founding member of the Eclipse (integrated development environment) consortium. The company released a suite of Eclipse plug-ins packaged with the Eclipse workbench in 2002, and named QNX Momentics Tool Suite.

In 2004, the company announced it had been sold to Harman International Industries. Before this acquisition, QNX software was already widely used in the automotive industry for telematics systems. Since the purchase by Harman, QNX software has been designed into over 200 different automobile makes and models, in telematics systems, and in infotainment and navigation units.[citation needed] The QNX CAR Application Platform was running in over 20 million vehicles as of mid-2011.[5] The company has since released several middleware products including the QNX Aviage Multimedia Suite, the QNX Aviage Acoustic Processing Suite and the QNX HMI Suite.

The microkernels of Cisco Systems' IOS-XR (ultra high availability IOS, introduced 2004)[6][7] and IOS Software Modularity (introduced 2006)[8] are based on QNX.

In September 2007, QNX Software Systems announced the availability of some of its source code.[9]

On April 9, 2010, Research In Motion (later renamed to BlackBerry Limited) announced they would acquire QNX Software Systems from Harman International Industries.[10] On the same day, QNX source code access was restricted from the public and hobbyists.[11]

In September 2010, the company announced a tablet computer, the BlackBerry PlayBook, and a new operating system BlackBerry Tablet OS based on QNX to run on the tablet.[12]

On October 18, 2011, Research In Motion announced "BBX",[13] which was later renamed BlackBerry 10, in December 2011.[14] Blackberry 10 devices build upon the BlackBerry PlayBook QNX based operating system for touch devices, but adapt the user interface for smartphones using the Qt based Cascades Native User-Interface framework.

At the Geneva Motor Show, Apple demonstrated CarPlay which provides an iOS-like user interface to head units in compatible vehicles. Once configured by the automaker, QNX can be programmed to hand off its display and some functions to an Apple CarPlay device.[15][16]

On December 11, 2014, Ford Motor Company stated that it would replace Microsoft Auto with QNX.[1]

In January 2017, QNX announced the upcoming release of its SDP 7.0, with support for Intel and ARM 32- and 64-bit platforms, and support for C++14. It was released in March 2017.[17]

Technology

As a microkernel-based OS, QNX is based on the idea of running most of the operating system kernel in the form of a number of small tasks, named Resource Managers. This differs from the more traditional monolithic kernel, in which the operating system kernel is one very large program composed of a huge number of parts, with special abilities. In the case of QNX, the use of a microkernel allows users (developers) to turn off any functions they do not need without having to change the OS. Instead, such services will simply not run.

The QNX kernel, procnto, contains only CPU scheduling, interprocess communication, interrupt redirection and timers. Everything else runs as a user process, including a special process known as proc which performs process creation and memory management by operating in conjunction with the microkernel. This is made possible by two key mechanisms: subroutine-call type interprocess communication, and a boot loader which can load an image containing the kernel and any desired set of user programs and shared libraries. There are no device drivers in the kernel. The network stack is based on NetBSD code.[18] Along with its support for its own, native, device drivers, QNX supports its legacy, io-net manager server, and the network drivers ported from NetBSD.[19]

QNX interprocess communication consists of sending a message from one process to another and waiting for a reply. This is a single operation, called MsgSend. The message is copied, by the kernel,[citation needed] from the address space of the sending process to that of the receiving process. If the receiving process is waiting for the message, control of the CPU is transferred at the same time, without a pass through the CPU scheduler. Thus, sending a message to another process and waiting for a reply does not result in "losing one's turn" for the CPU. This tight integration between message passing and CPU scheduling is one of the key mechanisms that makes QNX message passing broadly usable. Most Unix and Linux interprocess communication mechanisms lack this tight integration, although a user space implementation of QNX-type messaging for Linux does exist. Mishandling of this subtle issue is a primary reason for the disappointing performance of some other microkernel systems such as early versions of Mach.[citation needed] The recipient process need not be on the same physical machine.

All I/O operations, file system operations, and network operations were meant to work through this mechanism, and the data transferred was copied during message passing. Later versions of QNX reduce the number of separate processes and integrate the network stack and other function blocks into single applications for performance reasons.

Message handling is prioritized by thread priority. Since I/O requests are performed using message passing, high priority threads receive I/O service before low priority threads, an essential feature in a hard real-time system.

The boot loader is the other key component of the minimal microkernel system. Because user programs can be built into the boot image, the set of device drivers and support libraries needed for startup need not be, and are not, in the kernel. Even such functions as program loading are not in the kernel, but instead are in shared user-space libraries loaded as part of the boot image. It is possible to put an entire boot image into ROM, which is used for diskless embedded systems.

Neutrino supports symmetric multiprocessing and processor affinity, called bound multiprocessing (BMP) in QNX terminology. BMP is used to improve cache hitting and to ease the migration of non-SMP safe applications to multi-processor computers.

Neutrino supports strict priority-preemptive scheduling and adaptive partition scheduling (APS). APS guarantees minimum CPU percentages to selected groups of threads, even though others may have higher priority. The adaptive partition scheduler is still strictly priority-preemptive when the system is underloaded. It can also be configured to run a selected set of critical threads strictly real time, even when the system is overloaded.

The QNX operating system also contained a web browser known as 'Voyager'.[20]

Due to its microkernel architecture QNX is also a distributed operating system. Dan Dodge and Peter van der Veen hold U.S. Patent 6,697,876: Distributed kernel operating system based on the QNX operating system's distributed processing features known commercially as Transparent Distributed Processing. This allows the QNX kernels on separate devices to access each other's system services using effectively the same communication mechanism as is used to access local services.[non-primary source needed]

Releases

QNX RTOS History[21]
Version Date Distribution medium Notes
1981 QUNIX Founded.
Beta 1983 As QNX Beta
1.0 1984
2.0 1987 Elements of 4.3BSD like TCP/IP and PPP merged into QNX 2.0.
2.21 1989 QNX 2.21
4.0 1990 QNX 4.0
4.1 1994 Elements of 4.4BSD into QNX 4.1
4.2 1995 QNX 4.2
4.22 1995 QNX 4.22
4.24 1995 QNX/Neutrino 1.0 is forked from QNX 4.24
4.25 1997 QNX 4.25 continues after fork with QNX/Neutrino 1.0.
QNX/Neutrino Microkernel history—Forked from QNX 4.24 in 1996.
Release Date Notes
1.0 1996 QNX/Neutrino 1.0 as forked from QNX 4.24
2.0 1998 QNX/Neutrino 2.0
2.10 1999 QNX/Neutrino 2.10 (QRTP)
6 January 18, 2001 QNX RTOS 6
6.1.0 2001 QNX RTOS 6
6.1.0 (patch A) September 28, 2001
6.2 June 4, 2002 QNX 6.2 (Momentics)
6.2 (patch A) October 18, 2002 QNX 6.2
6.2.1 February 18, 2003 QNX 6.2.1 (Momentics)
6.3 June 3, 2004 QNX 6.3
6.3.0 SP1 ?
6.3.0 SP2 ?
6.3.0 SP3/
OS 6.3.2
?
6.3.2 ?
6.4.0 October 30, 2008 QNX Neutrino RTOS 6.4.0
6.4.1 May 2009 QNX Neutrino RTOS 6.4.1
6.5.0 July 2010 QNX Neutrino RTOS 6.5.0 is forked to produce BBX,
as announced on October 18, 2011, and later previewed,
named "BlackBerry 10 OS" on May 1, 2012.
6.5 SP1 July 11, 2012 QNX Neutrino RTOS 6.5 SP1
6.6 February 28, 2014 QNX 6.6
7.0 January 4, 2017 QNX SDP 7.0, first version with 64-bit support
7.1 July 23, 2020 QNX SDP 7.1

Uses

The BlackBerry PlayBook tablet computer designed by BlackBerry uses a version of QNX as the primary operating system. The BlackBerry 10 operating system is also based on QNX.

QNX is also used in car infotainment systems with many major car makers offering variants that include an embedded QNX architecture. It is supported by popular SSL/TLS libraries such as wolfSSL.[22]

In recent[when?] years QNX has been used in automated drive or ADAS systems for automotive projects that require a functional safety certification. QNX provides this with its QNX OS for Safety products.[23]

QNX Neutrino (2001) has been ported to a number of platforms and now runs on practically any modern central processing unit (CPU) family that is used in the embedded market. This includes the PowerPC, x86, MIPS, SH-4, and the closely interrelated of ARM, StrongARM, and XScale.

Licensing

QNX offers a license for noncommercial and academic users.[24]

Community

  • OpenQNX is a QNX Community Portal established and run independently. An IRC channel and Newsgroups access via web is available. Diverse industries are represented by the developers on the site.[25]
  • Foundry27 is a web-based QNX community established by the company. It serves as a hub to QNX Neutrino development where developers can register, choose the license, and get the source code and related toolkit of the RTOS.[26]

See also

References

  1. ^ a b Burns, Matt (December 11, 2014). "Ford Ditches Microsoft For QNX In Latest In-Vehicle Tech Platform". TechCrunch. Retrieved February 26, 2015.
  2. ^ US5745759
  3. ^ Hildebrand, Dan (6 June 1997). "Think Small. (The 1.44M Web Challenge)". marc.info.
  4. ^ . Archived from the original on 28 November 1999. Retrieved 3 August 2020.
  5. ^ QNX CAR http://www.qnx.com/products/qnxcar/
  6. ^ QNX Staff (2004-08-17). "QNX Delivers Extremely Reliable Microkernel for Massively Scalable Routing System". Retrieved 2012-03-16.
  7. ^ "CRS-1 and IOS XR Operational Best Practices". Cisco.
  8. ^ Brad Reese- BradReese.Com (2006-09-26). "Which OS is behind IOS?". Retrieved 2012-03-16.
  9. ^ Leroux, Paul (12 September 2007). "QNX Publishes Neutrino Source Code and Opens Development Process". www.qnx.com.
  10. ^ "RIM to buy QNX Software". The Globe and Mail. Toronto. The Canadian Press. 9 April 2010. Retrieved 2010-04-09.
  11. ^ "foundry27: View Wiki Page: UpdatedQNXSourceAccessPolicyFAQ". community.qnx.com.
  12. ^ RIM Unveils The BlackBerry PlayBook, official press release, September 27, 2010
  13. ^ Molen, Brad (18 October 2011). "Research in Motion announces BBX, 'combines the best of BlackBerry and QNX'". Engadget. Retrieved 20 January 2013.
  14. ^ Arthur, Charles (2011-12-07). "BlackBerry-maker RIM forced to drop BBX name for new software". Guardian. London. Retrieved 2013-01-20.
  15. ^ Hartley, Matt (3 March 2014). "Apple Inc CarPlay brings iPhone features to GM, BMW, Ford and other car dashboards". Financial Post. Retrieved 2014-03-28.
  16. ^ "BlackBerry's QNX: Why it's so valuable to Apple, Google, auto industry". ZDNet. Retrieved 2014-10-27.
  17. ^ "BlackBerry QNX Launches its Most Advanced and Secure Embedded Software Platform for Autonomous Drive and Connected Cars". 2017-01-04.
  18. ^ Core Networking 6.4: Neutrino’s Next Gen Networking Stack and Foundry27 [1]
  19. ^ "foundry27: View Wiki Page: Drivers_wiki_page". community.qnx.com.
  20. ^ "QNX Neutrino RTOS – Embedded OS | BlackBerry QNX | BlackBerry QNX".
  21. ^ Lévénez, Éric (May 1, 2011). "UNIX History". levenez.com. Retrieved May 18, 2011.
  22. ^ "wolfSSL Build Sizes for the QNX Embedded RTOS". wolfSSL. 17 September 2010. Retrieved 2019-02-13.
  23. ^ QNX OS for Safety
  24. ^ "QNX Neutrino Realtime Operating System". QNX. 2010-07-15. Retrieved 2012-10-15.
  25. ^ OpenQNX Community Portal: Announce
  26. ^ QNX Press Releases: Foundry27

Further reading

  • Dan Hildebrand (1992). "An Architectural Overview of QNX". Proceedings of the Workshop on Micro-kernels and Other Kernel Architectures: 113–126. ISBN 1-880446-42-1.

External links

  • Official website
  • QNX at Curlie
  • Development for QNX phones
  • Foundry27
  • QNX User Community
  • Open source applications
  • GUIdebook > GUIs > QNX
  • QNX used for Canadian Nuclear Power Plants
  • QNX demo floppy disk

juː, juː, commercial, unix, like, real, time, operating, system, aimed, primarily, embedded, systems, market, first, commercially, successful, microkernel, operating, systems, citation, needed, default, desktop, 1developerblackberry, formerly, software, system. QNX ˌ k juː ˌ ɛ n ˈ ɛ k s or ˈ k juː n ɪ k s is a commercial Unix like real time operating system aimed primarily at the embedded systems market QNX was one of the first commercially successful microkernel operating systems citation needed QNXThe default desktop in QNX 6 4 1DeveloperBlackBerry formerly QNX Software Systems OS familyUnix likeWorking stateCurrentSource modelClosed sourceInitial release1982 41 years ago 1982 Latest release7 1 July 2020 2 years ago 2020 07 Marketing targetEmbedded systemsPackage managerAble to use Pkgsrc framework from NetBSD projectPlatformsCurrent x86 64 ARM32 ARM64Former MIPS PowerPC SH 4 StrongARM XScaleKernel typeRTOS microkernel UserlandPOSIXLicenseProprietaryOfficial websiteblackberry wbr qnx wbr comThe product was originally developed in the early 1980s by Canadian company Quantum Software Systems later renamed QNX Software Systems As of 2022 update it is used in a variety of devices including cars 1 Contents 1 History 2 Technology 3 Releases 4 Uses 5 Licensing 6 Community 7 See also 8 References 9 Further reading 10 External linksHistory EditThis section is in list format but may read better as prose You can help by converting this section if appropriate Editing help is available April 2022 Gordon Bell and Dan Dodge both students at the University of Waterloo in 1980 took a course in real time operating systems in which the students constructed a basic real time microkernel and user programs Both were convinced there was a commercial need for such a system and moved to the high tech planned community Kanata Ontario to start Quantum Software Systems that year In 1982 the first version of QUNIX was released for the Intel 8088 CPU In 1984 Quantum Software Systems renamed QUNIX to QNX in an effort to avoid any trademark infringement challenges One of the first widespread uses of the QNX real time OS RTOS was in the nonembedded world when it was selected as the operating system for the Ontario education system s own computer design the Unisys ICON Over the years QNX was used mostly for larger projects as its 44k kernel was too large to fit inside the one chip computers of the era The system garnered a reputation for reliability citation needed and became used in running machinery in many industrial applications In the late 1980s Quantum realized that the market was rapidly moving towards the Portable Operating System Interface POSIX model and decided to rewrite the kernel to be much more compatible at a low level The result was QNX 4 During this time Patrick Hayden while working as an intern along with Robin Burgener a full time employee at the time developed a new windowing system This patented 2 concept was developed into the embeddable graphical user interface GUI named the QNX Photon microGUI QNX also provided a version of the X Window System To demonstrate the OS s capability and relatively small size in the late 1990s QNX released a demo image that included the POSIX compliant QNX 4 OS a full graphical user interface graphical text editor TCP IP networking web browser and web server that all fit on a bootable 1 44 MB floppy disk for the 386 PC 3 4 Toward the end of the 1990s the company then named QNX Software Systems began work on a new version of QNX designed from the ground up to be symmetric multiprocessing SMP capable and to support all current POSIX application programming interfaces APIs and any new POSIX APIs that could be anticipated while still retaining the microkernel architecture This resulted in QNX Neutrino released in 2001 Along with the Neutrino kernel QNX Software Systems became a founding member of the Eclipse integrated development environment consortium The company released a suite of Eclipse plug ins packaged with the Eclipse workbench in 2002 and named QNX Momentics Tool Suite In 2004 the company announced it had been sold to Harman International Industries Before this acquisition QNX software was already widely used in the automotive industry for telematics systems Since the purchase by Harman QNX software has been designed into over 200 different automobile makes and models in telematics systems and in infotainment and navigation units citation needed The QNX CAR Application Platform was running in over 20 million vehicles as of mid 2011 5 The company has since released several middleware products including the QNX Aviage Multimedia Suite the QNX Aviage Acoustic Processing Suite and the QNX HMI Suite The microkernels of Cisco Systems IOS XR ultra high availability IOS introduced 2004 6 7 and IOS Software Modularity introduced 2006 8 are based on QNX In September 2007 QNX Software Systems announced the availability of some of its source code 9 On April 9 2010 Research In Motion later renamed to BlackBerry Limited announced they would acquire QNX Software Systems from Harman International Industries 10 On the same day QNX source code access was restricted from the public and hobbyists 11 In September 2010 the company announced a tablet computer the BlackBerry PlayBook and a new operating system BlackBerry Tablet OS based on QNX to run on the tablet 12 On October 18 2011 Research In Motion announced BBX 13 which was later renamed BlackBerry 10 in December 2011 14 Blackberry 10 devices build upon the BlackBerry PlayBook QNX based operating system for touch devices but adapt the user interface for smartphones using the Qt based Cascades Native User Interface framework At the Geneva Motor Show Apple demonstrated CarPlay which provides an iOS like user interface to head units in compatible vehicles Once configured by the automaker QNX can be programmed to hand off its display and some functions to an Apple CarPlay device 15 16 On December 11 2014 Ford Motor Company stated that it would replace Microsoft Auto with QNX 1 In January 2017 QNX announced the upcoming release of its SDP 7 0 with support for Intel and ARM 32 and 64 bit platforms and support for C 14 It was released in March 2017 17 Technology EditAs a microkernel based OS QNX is based on the idea of running most of the operating system kernel in the form of a number of small tasks named Resource Managers This differs from the more traditional monolithic kernel in which the operating system kernel is one very large program composed of a huge number of parts with special abilities In the case of QNX the use of a microkernel allows users developers to turn off any functions they do not need without having to change the OS Instead such services will simply not run The QNX kernel procnto contains only CPU scheduling interprocess communication interrupt redirection and timers Everything else runs as a user process including a special process known as proc which performs process creation and memory management by operating in conjunction with the microkernel This is made possible by two key mechanisms subroutine call type interprocess communication and a boot loader which can load an image containing the kernel and any desired set of user programs and shared libraries There are no device drivers in the kernel The network stack is based on NetBSD code 18 Along with its support for its own native device drivers QNX supports its legacy io net manager server and the network drivers ported from NetBSD 19 QNX interprocess communication consists of sending a message from one process to another and waiting for a reply This is a single operation called MsgSend The message is copied by the kernel citation needed from the address space of the sending process to that of the receiving process If the receiving process is waiting for the message control of the CPU is transferred at the same time without a pass through the CPU scheduler Thus sending a message to another process and waiting for a reply does not result in losing one s turn for the CPU This tight integration between message passing and CPU scheduling is one of the key mechanisms that makes QNX message passing broadly usable Most Unix and Linux interprocess communication mechanisms lack this tight integration although a user space implementation of QNX type messaging for Linux does exist Mishandling of this subtle issue is a primary reason for the disappointing performance of some other microkernel systems such as early versions of Mach citation needed The recipient process need not be on the same physical machine All I O operations file system operations and network operations were meant to work through this mechanism and the data transferred was copied during message passing Later versions of QNX reduce the number of separate processes and integrate the network stack and other function blocks into single applications for performance reasons Message handling is prioritized by thread priority Since I O requests are performed using message passing high priority threads receive I O service before low priority threads an essential feature in a hard real time system The boot loader is the other key component of the minimal microkernel system Because user programs can be built into the boot image the set of device drivers and support libraries needed for startup need not be and are not in the kernel Even such functions as program loading are not in the kernel but instead are in shared user space libraries loaded as part of the boot image It is possible to put an entire boot image into ROM which is used for diskless embedded systems Neutrino supports symmetric multiprocessing and processor affinity called bound multiprocessing BMP in QNX terminology BMP is used to improve cache hitting and to ease the migration of non SMP safe applications to multi processor computers Neutrino supports strict priority preemptive scheduling and adaptive partition scheduling APS APS guarantees minimum CPU percentages to selected groups of threads even though others may have higher priority The adaptive partition scheduler is still strictly priority preemptive when the system is underloaded It can also be configured to run a selected set of critical threads strictly real time even when the system is overloaded The QNX operating system also contained a web browser known as Voyager 20 Due to its microkernel architecture QNX is also a distributed operating system Dan Dodge and Peter van der Veen hold U S Patent 6 697 876 Distributed kernel operating system based on the QNX operating system s distributed processing features known commercially as Transparent Distributed Processing This allows the QNX kernels on separate devices to access each other s system services using effectively the same communication mechanism as is used to access local services non primary source needed Releases EditQNX RTOS History 21 Version Date Distribution medium Notes1981 QUNIX Founded Beta 1983 As QNX Beta1 0 19842 0 1987 Elements of 4 3BSD like TCP IP and PPP merged into QNX 2 0 2 21 1989 QNX 2 214 0 1990 QNX 4 04 1 1994 Elements of 4 4BSD into QNX 4 14 2 1995 QNX 4 24 22 1995 QNX 4 224 24 1995 QNX Neutrino 1 0 is forked from QNX 4 244 25 1997 QNX 4 25 continues after fork with QNX Neutrino 1 0 QNX Neutrino Microkernel history Forked from QNX 4 24 in 1996 Release Date Notes1 0 1996 QNX Neutrino 1 0 as forked from QNX 4 242 0 1998 QNX Neutrino 2 02 10 1999 QNX Neutrino 2 10 QRTP 6 January 18 2001 QNX RTOS 66 1 0 2001 QNX RTOS 66 1 0 patch A September 28 20016 2 June 4 2002 QNX 6 2 Momentics 6 2 patch A October 18 2002 QNX 6 26 2 1 February 18 2003 QNX 6 2 1 Momentics 6 3 June 3 2004 QNX 6 36 3 0 SP1 6 3 0 SP2 6 3 0 SP3 OS 6 3 2 6 3 2 6 4 0 October 30 2008 QNX Neutrino RTOS 6 4 06 4 1 May 2009 QNX Neutrino RTOS 6 4 16 5 0 July 2010 QNX Neutrino RTOS 6 5 0 is forked to produce BBX as announced on October 18 2011 and later previewed named BlackBerry 10 OS on May 1 2012 6 5 SP1 July 11 2012 QNX Neutrino RTOS 6 5 SP16 6 February 28 2014 QNX 6 67 0 January 4 2017 QNX SDP 7 0 first version with 64 bit support7 1 July 23 2020 QNX SDP 7 1Uses EditThe BlackBerry PlayBook tablet computer designed by BlackBerry uses a version of QNX as the primary operating system The BlackBerry 10 operating system is also based on QNX QNX is also used in car infotainment systems with many major car makers offering variants that include an embedded QNX architecture It is supported by popular SSL TLS libraries such as wolfSSL 22 In recent when years QNX has been used in automated drive or ADAS systems for automotive projects that require a functional safety certification QNX provides this with its QNX OS for Safety products 23 QNX Neutrino 2001 has been ported to a number of platforms and now runs on practically any modern central processing unit CPU family that is used in the embedded market This includes the PowerPC x86 MIPS SH 4 and the closely interrelated of ARM StrongARM and XScale Licensing EditQNX offers a license for noncommercial and academic users 24 Community EditOpenQNX is a QNX Community Portal established and run independently An IRC channel and Newsgroups access via web is available Diverse industries are represented by the developers on the site 25 Foundry27 is a web based QNX community established by the company It serves as a hub to QNX Neutrino development where developers can register choose the license and get the source code and related toolkit of the RTOS 26 See also EditComparison of operating systems Android Auto Android Automotive NNG Open Handset Alliance Windows Embedded Automotive Ford SyncReferences Edit a b Burns Matt December 11 2014 Ford Ditches Microsoft For QNX In Latest In Vehicle Tech Platform TechCrunch Retrieved February 26 2015 US5745759 Hildebrand Dan 6 June 1997 Think Small The 1 44M Web Challenge marc info How we did it Archived from the original on 28 November 1999 Retrieved 3 August 2020 QNX CAR http www qnx com products qnxcar QNX Staff 2004 08 17 QNX Delivers Extremely Reliable Microkernel for Massively Scalable Routing System Retrieved 2012 03 16 CRS 1 and IOS XR Operational Best Practices Cisco Brad Reese BradReese Com 2006 09 26 Which OS is behind IOS Retrieved 2012 03 16 Leroux Paul 12 September 2007 QNX Publishes Neutrino Source Code and Opens Development Process www qnx com RIM to buy QNX Software The Globe and Mail Toronto The Canadian Press 9 April 2010 Retrieved 2010 04 09 foundry27 View Wiki Page UpdatedQNXSourceAccessPolicyFAQ community qnx com RIM Unveils The BlackBerry PlayBook official press release September 27 2010 Molen Brad 18 October 2011 Research in Motion announces BBX combines the best of BlackBerry and QNX Engadget Retrieved 20 January 2013 Arthur Charles 2011 12 07 BlackBerry maker RIM forced to drop BBX name for new software Guardian London Retrieved 2013 01 20 Hartley Matt 3 March 2014 Apple Inc CarPlay brings iPhone features to GM BMW Ford and other car dashboards Financial Post Retrieved 2014 03 28 BlackBerry s QNX Why it s so valuable to Apple Google auto industry ZDNet Retrieved 2014 10 27 BlackBerry QNX Launches its Most Advanced and Secure Embedded Software Platform for Autonomous Drive and Connected Cars 2017 01 04 Core Networking 6 4 Neutrino s Next Gen Networking Stack and Foundry27 1 foundry27 View Wiki Page Drivers wiki page community qnx com QNX Neutrino RTOS Embedded OS BlackBerry QNX BlackBerry QNX Levenez Eric May 1 2011 UNIX History levenez com Retrieved May 18 2011 wolfSSL Build Sizes for the QNX Embedded RTOS wolfSSL 17 September 2010 Retrieved 2019 02 13 QNX OS for Safety QNX Neutrino Realtime Operating System QNX 2010 07 15 Retrieved 2012 10 15 OpenQNX Community Portal Announce QNX Press Releases Foundry27Further reading EditDan Hildebrand 1992 An Architectural Overview of QNX Proceedings of the Workshop on Micro kernels and Other Kernel Architectures 113 126 ISBN 1 880446 42 1 External links Edit Wikimedia Commons has media related to QNX Official website QNX at Curlie Development for QNX phones Foundry27 QNX User Community Open source applications GUIdebook gt GUIs gt QNX QNX used for Canadian Nuclear Power Plants QNX demo floppy disk Retrieved from https en wikipedia org w index php title QNX amp oldid 1126682177, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.