fbpx
Wikipedia

Power sector of Andhra Pradesh

Power sector of Andhra Pradesh is divided into 4 categories namely Regulation, Generation, Transmission and Distribution. Andhra Pradesh Electricity Regulatory Commission (APERC) is the regulatory body.[1] APGENCO deals with the electricity production and also maintenance, proposes new projects and upgrades existing ones as well.[2] The APGENCO also set up a Special Purpose Vehicle (SPV), named as Andhra Pradesh Power Development Company Limited (APPDCL), a joint venture company of APGENCO (with 50% equity) and IL&FS (50% equity) to set up Krishnapatanam thermal power project (2x800 MW).[3]

APTRANSCO is set up for transmission of power.[4] Power distribution in the state is divided into three divisions, namely Eastern Power Distribution Corporation Limited (APEPDCL), Central Power Distribution Corporation Limited (APCPDCL[5]) and Southern Power Distribution Corporation Limited (APSPDCL), which distributes the power to the households, agriculture and the industries.[6] APGENCO, APPDCL, NTPC and other private firms contribute to the generation of power in the state of Andhra Pradesh.[7][8][9] Andhra Pradesh has become the second state in India to achieve 100% electrification of all households.[10] Weighted average cost of power generation and purchases is INR 3.45 per kWh which is highest in the country.[11] Andhra Pradesh is also leader by installing 433 nos electric vehicle charging stations (EVCS) out of 927 nos installed in the entire country as on 30 June 2020.[12]

Under the program of installing 500 GW capacity of renewable power capacity by 2030, nearly 59 GW (25%) of solar and wind power is identified out of 236.58 GW in three districts of the state.[13]

The newly formed Andhra Pradesh Green Energy Corporation Limited (APGECL), a 100% subsidiary of APGENCO, will be the trading agency/licensee for the 10 GW solar project in a phased manner and for connecting it to the grid.[14] The 10 GW solar projects would be used to meet the entire agriculture power consumption which will be met during the day time for nine hours duration daily.[15] Andhra Pradesh is also leading in installation of solar power /off grid agriculture pump sets.[16] A renewable energy export policy for Andhra Pradesh was also announced to facilitate the setting up of 120 GW solar, wind and solar-wind hybrid energy parks by using 0.5 million acres of land.[17] New & Renewable Energy Development Corporation of Andhra Pradesh (NREDCAP), a state owned company, is actively involved in promoting renewable energy projects in the state.[18] Roof top solar power cost/unit in the state are falling below the domestic power tariff.[19]

The total installed utility power generation capacity is nearly 24,854 MW in the state as of 31 March 2020[20] APtransCo has made long term power purchase agreements for 19,068 MW as of 31 March 2019.[21][22] The per capita electricity consumption is 1234 units with 63,143 million KWh gross electricity supplied in the year 2018–19.[21][23] The performance of Krishnapatanam thermal power station (2X800 MW) with super critical pressure technology is not satisfactory even after one year commercial operation as the units rarely operate at rated capacity forcing the state to purchase costly power from day ahead trading in IEX.[24][25]

Power sector of Andhra Pradesh flow chart
Dr Narla Tata Rao Thermal Power Station (500 MW Unit)

Short term power purchases edit

APDisComs purchase regularly from the energy exchange, etc. to meet the peak load and energy shortages. As the power purchases/sales are done on daily basis without proper planning and optimum utilization of APGENCO power generation capacity, APERC has given guidelines to the DisComs for implementation while making short term (less than one year duration) purchases and sales in the year 2022.[26][27]

Non-renewable edit

Thermal power edit

 
 
Krishnapatnam
 
Ibrahimpatnam
 
Parawada
 
Muddanur
 
Thamminapatnam
 
Pudimadaka
 
Polaki
class=notpageimage|
Map of coal based thermal power plants in the Indian state of Andhra Pradesh. Blue are operational and Red are proposed[28]

Thermal power plants are based on the fuel coal, gas, diesel etc. Public sector undertaking NTPC, state level power generating companies and private firms are engaged in this sector for power generation.

Currently operating coal based thermal power plants in Andhra Pradesh are listed below.[29][30]

Name Operator Location District Sector Capacity
(MW)
Coordinates
Simhadri Super Thermal Power Plant NTPC Parawada Visakhapatnam Central 2,000 17°35′38″N 83°5′23″E / 17.59389°N 83.08972°E / 17.59389; 83.08972 (Simhadri Super Thermal Power Plant)
Dr Narla Tatarao TPS APGENCO Vijayawada Krishna State 2,560 16°35′58″N 80°32′12″E / 16.59944°N 80.53667°E / 16.59944; 80.53667 (Dr Narla Tata Rao Thermal Power Station)
Rayalaseema Thermal Power Station[31] APGENCO Muddanur Kadapa State 1,650 14°42′14″N 78°27′29″E / 14.70389°N 78.45806°E / 14.70389; 78.45806 (Rayalaseema Thermal Power Station)
Sri Damodaram Sanjeevaiah Thermal Power Station APPDCL Krishnapatnam Nellore Joint 2,400 14°19′39″N 80°07′15″E / 14.32750°N 80.12083°E / 14.32750; 80.12083 (Sri Damodaram Sanjeevaiah Thermal Power Station)
Vizag Thermal Power Station Hinduja Gajuwaka Visakhapatnam Private 1,040 17°33′45″N 83°8′15″E / 17.56250°N 83.13750°E / 17.56250; 83.13750 (Hinduja Thermal Power Station)
Simhapuri Thermal Power Station SEPL Krishnapatanam Nellore Private 600 14°12′35″N 80°05′23″E / 14.20972°N 80.08972°E / 14.20972; 80.08972 (Simhapuri Thermal Power Station)
Meenakshi Thermal Power Station MEPL Krishnapatanam Nellore Private 1,000 14°12′57″N 80°05′19″E / 14.21583°N 80.08861°E / 14.21583; 80.08861 (Meenakshi Thermal Power Station)
Sembcorp Energy India Limited SEIL Krishnapatanam Nellore Private 1,320 14°19′45″N 80°08′27″E / 14.32917°N 80.14083°E / 14.32917; 80.14083 (Pynampuram Power Station)
SGPL Power Station SGPL Krishnapatanam Nellore Private 1,320 14°21′5″N 80°08′37″E / 14.35139°N 80.14361°E / 14.35139; 80.14361 (SGPL Power Station)
TOTAL 13,890

Gas fuel-based edit

 
 
 
 
 
 
 
 
 
 
class=notpageimage|
Map of currently operating combined cycle gas turbine power plants in the Indian state of Andhra Pradesh

The following are the list of presently installed combined cycle gas turbine power plants and diesel engine power plants in the state. However many of these power plants are not operating due to non-availability of natural gas and high cost of liquid fuels.[32]

Power station Operator Location District Sector Capacity
(MW)
Plant Coordinates
APGPCL Plant APGPCL Vijjeswaram W. Godavari Joint 272 16°56′02″N 81°43′27″E / 16.93389°N 81.72417°E / 16.93389; 81.72417 (APGPCL Plant)
Lanco Kondapalli Power Plant Lanco Infratech Kondapalli Krishna Private 1466 16°38′20″N 80°33′00″E / 16.63889°N 80.55000°E / 16.63889; 80.55000 (Lanco Kondapalli Power Plant)
Gautami Combined Cycle Power Plant GVK Peddapuram E. Godavari Private 464 17°02′21″N 82°08′43″E / 17.03917°N 82.14528°E / 17.03917; 82.14528 (Gautami Combined Cycle Power Plant)
Konaseema Combined Cycle Power Plant Konaseema Gas Power Limited (KGPL) Ravulapalem E. Godavari Private 445 16°44′05″N 81°51′44″E / 16.73472°N 81.86222°E / 16.73472; 81.86222 (Konaseema Combined Cycle Power Plant)
Vemagiri Combined Cycle Power Plant GMR Vemagiri E. Godavari Private 370 16°55′29″N 81°48′46″E / 16.92472°N 81.81278°E / 16.92472; 81.81278 (Vemagiri Combined Cycle Power Plant)
GMR Rajamundry Combined Cycle Power Plant[33] GMR Vemagiri E. Godavari Private 768 16°55′28″N 81°48′46″E / 16.92444°N 81.81278°E / 16.92444; 81.81278 (Vemagiri Combined Cycle Power Plant)
Samarlakota Combined Cycle Power Plant[34] Reliance Samarlakota E. Godavari Private 1870 17°02′19″N 82°08′05″E / 17.03861°N 82.13472°E / 17.03861; 82.13472 (Samarlakota Combined Cycle Power Plant)
Godavari Gas Power Plant[35] APGENCO Jegurupadu E. Godavari State 216 16°55′55″N 81°51′37″E / 16.93194°N 81.86028°E / 16.93194; 81.86028 (Godavari Gas Power Plant)
Jegurupadu Combined Cycle Power Plant GVK Jegurupadu E. Godavari Private 229 16°55′54″N 81°51′36″E / 16.93167°N 81.86000°E / 16.93167; 81.86000 (Jegurupadu Combined Cycle Power Plant)
Spectrum Combined Cycle Power Plant Spectrum Kakinada E. Godavari Private 209 17°03′31″N 82°18′34″E / 17.05861°N 82.30944°E / 17.05861; 82.30944 (Spectrum Combined Cycle Power Plant)
GMR (barge mounted) Power Plant GMR Kakinada E. Godavari Private 237 17°03′32″N 82°18′33″E / 17.05889°N 82.30917°E / 17.05889; 82.30917 (GMR barge mounted power station)
LVS Diesel Engine Power Station Greenko Vishakhapatnam Visakhapatnam Private 37 17°50′45″N 83°14′13″E / 17.84583°N 83.23694°E / 17.84583; 83.23694 (LVS Power Ltd)
Panduranga CCPP PESPL Annadevarapeta W. Godavari Private 116 17°07′45″N 81°36′09″E / 17.12917°N 81.60250°E / 17.12917; 81.60250 (Panduranga CCPP)
RVK Energy power plant[36] KSK Energy Ventures Rajahmundry E. Godavari Private 436
Sriba power plant Sriba industries Chigurukota Krishna Private 30
Silkroad sugar power plant EID Parry Kakinada E. Godavari Private 35
Srivathsa Power plant Asian Genco Private 17
Total 7,217

Renewable edit

Hydroelectric edit

This is the list of major hydroelectric power plants in Andhra Pradesh.[37]

 
Srisailam Dam
 
Srisailam right bank power house
Power station name Operator Location Sector Unit wise Capacity
MW
Capacity

MW[25]

Donkarayi PH APGENCO E. Godavari State 1x25 25.00
Hampi canal Power House (PH) APGENCO Joint project of AP, TS & Karnataka
Located in Karnataka
State 4 x 9
(AP Share-28.8)
28.80
Lower Sileru PH APGENCO E. Godavari State 4 x 115 460.00
Machkund PH APGENCO Joint project of AP, TS & Odisha
Located in Odisha
State 3 x 17 + 3 x 23
(AP Share-84)
84.00
Nagarjuna Sagar Right Canal PH APGENCO Nagarjuna Sagar Dam, Guntur district State 3 x 30 90.00
Nagarjuna Sagar tail pond PH APGENCO Nagarjuna Sagar Dam, Guntur district State 2 x 25 50.00
Penna Ahobilam PH APGENCO Korrakodu, Anantapur district State 2 x 10 20.00
Srisailam Right Bank PH APGENCO Srisailam, Kurnool State 7 x 110 770.00
TB Dam PH APGENCO Joint project of AP, TS & Karnataka
Located in Karnataka
State 4 × 9
(AP Share-28.8)
28.80
Upper Sileru PH APGENCO Visakhapatnam State 4 x 60 240.00
Somasila PH Balaji Energy Nellore Private 2 x 5, 2 x 4, 1 x 2, 1 x 3[38][39] 23.00
Chettipeta Mini Hydel[40] APGENCO West Godavari district State 2 x 0.5 1.00
Polavaram Hydro-Electric project APGENCO Anguluru, East Godavari district State 12 x 80
Under Construction[41]
Pinnapuram Pumped Storage Project (PSP) Greenko Energy near Nandyal, Kurnool district Private 4 x 240, 2 x 120
Under Construction[42][43]
Veeraballi PSP Astha Green near Veeraballi, Kadapa district Private 2720 MW
Under investigation[44]
Upper Sileru PSP APGENCO near Sileru village, Visakhapatnam State 9 x 150 MW
Under hold due to very high cost[45]
Chitravati PSP APGENCO near Peddakotla village, Anantapuramu district State 2 x 250 MW
Under investigation[46]
Singanamala PSP NREDCAP Anantapuramu district State 800 MW
Under investigation[47]
Overall capacity in (MW)[22] 1820.60

Pumped storage hydroelectricity projects edit

Pumped hydroelectric energy storage (PHES) projects with high water head are the cheap means of converting intermittent renewable power generation sources like solar PV or wind power in to base load supply for round the clock needs throughout the year.[48][49] AP state is endowed with vast PHES potential adequate to utilise its vast solar PV power generation potential (above 1,000,000 MW installed on 16,000 km2 marginal lands) to meet ultimate green energy requirements of its peak population (60 million).[50] AP is considering on a major scale to install PHES projects to make available the surplus wind / solar power during the peak load hours.[51][52] PHESs also generate income, in addition to hydroelectricity cess/royalty, to the state in the form of water use charges at commercial rates for the evaporation loss or consumptive water from the reservoirs. The area occupied by the high head PHES is less than the area occupied by the equivalent battery energy storage system (BESS) housed in a three storied building. High head PHES installation cost (< US$40 per KWh in a day) is less than the cost of land and buildings required to house the equivalent BESS.[53][54] PHES are more suitable in India where energy and water storage needs are complementary.[54][55] Unlike the static BESS, the rotating turbo-generator of a PHES will enhance dynamic inertia (GD2) of the grid which contributes to a stable grid to ride through the power disturbances when power generation in the grid is dominated by the static solar PV power.[56] Variable speed PHES plants also deliver the power grid ancillary services.[57] In high head PHES, unlined pressure tunnels/shafts are constructed to the extent feasible for reducing construction cost.[58]

 
Blast-hole drilling at an opencast mine.

The water reservoir of a PHES is created by building embankment dams wherever required up to the required height and length. The rock required for building the dams is excavated from the reservoir area. Cheaper drilling and blasting method is extensively used deploying state of the art earth moving equipment because huge quantity of rock excavation is required for the construction of the rock-fill dams.[59][60]

 
A rock-fill embankment dam.

Polavaram right bank PHES: A 103,000 MW PHES project is under investigation with an upper reservoir, located near Parantapalle hamlet in West Godavari district, with 90 tmcft live storage at 700 m msl full reservoir level (FRL). The turkey-nest type upper reservoir is 18 km long from north to south and 1.1 km wide and its water surface area is 16 km2 with 200 m water depth and nearly 90 tmcft live storage.[61] The adjacent Polavaram reservoir at FRL 45 m msl with 194 tmcft gross storage is the lower reservoir as perennial water source. The average water head available is 600 m with a provision to draw 33 tmcft/day from the Polavaram reservoir by the PHES units located in semi open or underground power houses. To run the PHES on daily basis, the lower reservoir is to be kept empty by 33 tmcft below its FRL for holding the water released by PHES in generation mode. Another 33 tmcft is used to compensate the loss of storage capacity in the lower reservoir. This buffer storage is released in to lower reservoir for irrigation, etc. needs once in a year at the end of monsoon year and it is replenished at the earliest from the flood water inflows into the lower reservoir. Also seepage and evaporation losses from the upper reservoir are met from the buffer storage sourced from flood waters and not drawn from the lower reservoir storage. The excess buffer storage maintained in this upper reservoir can also serve up to 24 tmcft for other PHESs in the state which are using Godavari basin water and have no buffer storage of their own (ex: Jalaput PHES). The upper reservoir can be further expanded by 3.5 km length on its south side to enhance the live / buffer storage substantially. The PHES project can produce 412 billion KWh at 4000 hours/year or 12 hours/day operation in generation mode by consuming the surplus power generated from the solar and wind power plants during the day time. This PHES can also moderate the severe floods by utilizing empty volume kept in the lower reservoir or operating in pump mode (maximum 7.63 lakh cusecs) to fill the upper reservoir. In case of emergency / repairs, the entire water storage in the upper reservoir can be emptied safely into the lower reservoir / river within 24 hours by running the PHES in generation mode.

Srisailam right bank PHES: A 77,000 MW PHES project is feasible with an upper reservoir, located on the right bank side within 1000 m distance of Srisailam reservoir, with 87 tmcft live storage at 650 m msl FRL. The reservoir bunds are constructed on 500 m msl contour line by 155 m high and the water surface area of the upper reservoir is nearly 20 km2. The adjacent Srisailam reservoir at FRL 270 m msl with 185 tmcft live storage is the lower reservoir with perennial water source. The average water head available is 340 m with provision to draw water from the Srisailam reservoir by the PHES units located in semi open or underground power houses. The PHES project can produce 308 billion KWh at 4000 hours/year or 12 hours/day operation in generation mode. Only 43.5 tmcft (50%) reservoir storage is used for power generation on daily basis and the remaining half kept as buffer storage to compensate the loss of storage in downstream reservoir due to PHES by releasing water once in a year in to the Srisailam reservoir to meet irrigation water requirements. The buffer storage is replenished later at the earliest during the monsoon/floods. This PHES can also moderate the severe floods by utilizing empty volume kept in the lower reservoir or operating in pump mode (maximum 10 lakh cusecs) to fill the upper reservoir.

Feasible PHES projects edit

List of feasible PHES locations
PHES name/
lower reservoir[62]
Power potential
(MW)
Power generation
(Billion KWh/yr)
Upper reservoir Average water
head (meters)
Remarks
Location Coordinate River basin Water area
(km2)
Live storage
(tmcft)
FRL
(m msl)
MDDL
(m msl)
Polavaram right bank PHES 103,000 412 West Godavari district 17°27′33″N 81°29′43″E / 17.45917°N 81.49528°E / 17.45917; 81.49528 (Polavavaram right bank PHES) Godavari 16 90 700 500 600 57 tmcft buffer storage available. The distance between the two reservoirs is nearly 1.7 km.
Srisailam right bank PHES 77,000 308 Kurnool district 16°02′33″N 78°30′51″E / 16.04250°N 78.51417°E / 16.04250; 78.51417 (Srisailam right bank PHEP) Krishna 20 87 650 500 340 43.5 tmcft buffer storage included. The distance between the two reservoirs is nearly 1.1 km.
Gandikota PHES1 28,000 112 Kadapa district 14°49′47″N 78°13′41″E / 14.82972°N 78.22806°E / 14.82972; 78.22806 (Gandikota PHES1) Penna 21 52 435 335 210 Buffer storage 26 tmcft provided. The distance between the two reservoirs is nearly 2.1 km.
Gandikota PHES2[63] 600 1.12 Kadapa district 14°46′29″N 78°17′7″E / 14.77472°N 78.28528°E / 14.77472; 78.28528 (Gandikota PHES2) Penna 1 0.16 515 505 303 It is a peaking PHES with six hours daily operation in generation mode. No buffer storage is provided. The distance between the two reservoirs is nearly 2.8 km.
Paidipalem PHES1 1,850 7.4 Kadapa district 14°43′47″N 78°11′9″E / 14.72972°N 78.18583°E / 14.72972; 78.18583 (Paidipalem PHES1) Penna 1 2.5 600 510 285 Buffer storage 1.25 tmcft provided. The distance between the two reservoirs is nearly 3.1 km.
Paidipalem PHES2 2,750 11 Kadapa district 14°41′21″N 78°13′25″E / 14.68917°N 78.22361°E / 14.68917; 78.22361 (Paidipalem PHES2) Penna 1.5 3.7 600 500 285 Buffer storage 1.85 tmcft provided. The distance between the two reservoirs is nearly 2.9 km.
Buggavanka PHES 600 2.4 Kadapa district 14°24′5″N 78°52′15″E / 14.40139°N 78.87083°E / 14.40139; 78.87083 (Buggavanka PHES) Penna 0.8 0.9 470 410 260 Buffer storage 0.45 tmcft provided. The distance between the two reservoirs is nearly 3.5 km.
Annamayya PHES[64] 1150 4.6 Kadapa district 14°12′25″N 78°57′51″E / 14.20694°N 78.96417°E / 14.20694; 78.96417 (Annamayya PHES) Penna 1.1 1.6 555 455 285 Buffer storage 0.8 tmcft provided. Distance between the two reservoirs is nearly 6 km.
Mylavaram PHES 14,000 56 Kadapa district 14°48′1″N 78°16′35″E / 14.80028°N 78.27639°E / 14.80028; 78.27639 (Mylavaram PHES) Penna 9 20 500 375 275 Buffer storage 10 tmcft provided. The distance between the two reservoirs is nearly 3.7 km.
Brahmamsagar PHES 13,000 52 Kadapa district 14°46′27″N 78°52′3″E / 14.77417°N 78.86750°E / 14.77417; 78.86750 (Brahmamsagar PHES) Penna 9.5 38 400 250 130 Buffer storage 19 tmcft provided. The distance between the two reservoirs is nearly 1.5 km.
Telugu Ganga subsidiary reservoirs PHES 2,600 10.4 Kurnool district 14°51′25″N 78°43′51″E / 14.85694°N 78.73083°E / 14.85694; 78.73083 (Telugu Ganga PHES) Penna 4 8 400 250 120 Buffer storage 4 tmcft provided. The distance between the two reservoirs is nearly 1.5 km.
Owk PHES1 4,700 18.8 Kurnool district 15°14′51″N 78°2′49″E / 15.24750°N 78.04694°E / 15.24750; 78.04694 (Owk PHES1) Penna 100 210 500 350 220 Works on a seasonal basis to store 201.7 tmcft Krishna and Godavari waters as well as on daily basis. The stored water is also used as carryover storage to meet water shortages in drought years. Buffer storage 4.15 tmcft included. This upper reservoir will supply irrigation water to the Handri catchment area in the Kurnool district and the left bank side of the Penna river in the Ananthapur district including water supply augmentation to the Handri-Neeva project. This upper reservoir is so planned by its area location to cut across the local Erramala hill range from east to west to supply irrigation water mostly by gravity. The distance between the two reservoirs is nearly 5.7 km.
Owk PHES2 [65] 800 1.65 Kurnool district 15°9′37″N 78°4′5″E / 15.16028°N 78.06806°E / 15.16028; 78.06806 (Owk PHES2) Penna 0.6 0.4 400 380 165 Peaking PHES for 6 hours daily operation. No Buffer storage is provided. The distance between the two reservoirs is nearly 1.5 km.
Gorakallu PHES 12,500 50 Kurnool district 15°35′33″N 78°22′17″E / 15.59250°N 78.37139°E / 15.59250; 78.37139 (Gorakallu PHES) Penna 37 100 450 300 170 Works on a seasonal basis to store 71.4 tmcft Krishna and Godavari waters and otherwise as PHES on daily basis. The stored water is also used as carryover storage to meet water shortages in drought years. Buffer storage 14.28 tmcft included. The distance between the two reservoirs is nearly 2.3 km.
Velugodu PHES 7,800 31 Kurnool district 15°42′21″N 78°39′25″E / 15.70583°N 78.65694°E / 15.70583; 78.65694 (veligodu PHES) Penna 40 100 420 270 100 Works on a seasonal basis to store 70 tmcft Krishna and Godavari waters and otherwise as PHES on daily basis. The stored water is also used as carryover storage to meet water shortages in drought years. Buffer storage 15 tmcft included. The distance between the two reservoirs is nearly 3.1 km.
Mid Pennar PHES 2,600 10.4 Anantapur district 14°52′47″N 77°23′27″E / 14.87972°N 77.39083°E / 14.87972; 77.39083 (Mid Pennar PHES) Penna 3.75 10 525 375 100 Buffer storage 5 tmcft included. The distance between the two reservoirs is nearly 0.7 km.
Chitravati PHES[66] 500 0.95 Anantapur district 14°34′27″N 77°56′3″E / 14.57417°N 77.93417°E / 14.57417; 77.93417 (Chitravati PHES) Penna 0.5 0.21 475 455 176 Peaking load PHES. No buffer storage is included. The distance between the two reservoirs is nearly 0.81 km.
Somasila PHES[67] 1,200 2.3 Nellore district 14°30′57″N 79°16′25″E / 14.51583°N 79.27361°E / 14.51583; 79.27361 (Somasila PHES) Penna 1 0.18 624 600 511 Peaking load PHES. No buffer storage is included. The distance between the two reservoirs is nearly 2.9 km.
Kalyani PHES 3,700 14.8 Chittoor district 13°43′9″N 79°18′47″E / 13.71917°N 79.31306°E / 13.71917; 79.31306 (Kalyani PHES) Swarnamukhi 1.5 1.8 1100 1000 790 Buffer storage 0.9 tmcft included. The distance between the two reservoirs is nearly 7.5 km. The upper reservoir of the PHES can also supply water to Tirumala in case of water shortages.
Yeleru PHES 5,500 22 East Godavari district 17°20′1″N 82°9′23″E / 17.33361°N 82.15639°E / 17.33361; 82.15639 (Yeleru PHES) Yeleru 2.00 5.3 500 350 400 Buffer storage 2.65 tmcft included. The distance between the two reservoirs is nearly 5.5 km.
Tandava PHES 9,200 36.8 Visakhapatnam district 17°43′35″N 82°27′47″E / 17.72639°N 82.46306°E / 17.72639; 82.46306 (Tandava PHES) Tandava 1.50 4 1050 850 875 Buffer storage 2 tmcft included. The distance between the two reservoirs is nearly 7.5 km.
Raiwada PHES 2,350 9.4 Visakhapatnam district 18°3′17″N 82°54′55″E / 18.05472°N 82.91528°E / 18.05472; 82.91528 (Raiwada PHES) Sarada 0.50 2 635 485 450 Buffer storage 1 tmcft included. The distance between the two reservoirs is nearly 4.85 km.
Pedderu PHES 1,425 5.5 Visakhapatnam district 17°52′37″N 82°40′9″E / 17.87694°N 82.66917°E / 17.87694; 82.66917 (Pedderu PHES) Sarada 0.25 0.7 950 850 780 Buffer storage 0.35 tmcft included. The distance between the two reservoirs is nearly 3.1 km. Water to rock ratio at least 2.
Konam PHES 2,200 8.8 Visakhapatnam district 17°55′47″N 82°40′19″E / 17.92972°N 82.67194°E / 17.92972; 82.67194 (Konam PHES) Sarada 1.2 1.7 725 625 495 Buffer storage 0.85 tmcft included. The distance between the two reservoirs is nearly 5.8 km.
NTR PHES 650 2.6 Visakhapatnam district 17°57′35″N 82°46′35″E / 17.95972°N 82.77639°E / 17.95972; 82.77639 (NTR PHES) Sarada 0.2 0.4 775 700 640 Buffer storage 0.2 tmcft included. The distance between the two reservoirs is nearly 2.6 km.
Varaha PHES 1,300 4.2 Visakhapatnam district 17°49′25″N 82°42′5″E / 17.82361°N 82.70139°E / 17.82361; 82.70139 (Varaha PHES) Varaha 0.52 0.75 820 750 660 Buffer storage 0.37 tmcft included. The distance between the two reservoirs is nearly 3.6 km. Water to rock ratio at least 2.
Tatipudi PHES 9,000 36 Vizianagaram district 18°15′25″N 83°8′41″E / 18.25694°N 83.14472°E / 18.25694; 83.14472 (Tatipudi PHES) Gosthani 2 6.5 700 500 535 Buffer storage 3.25 tmcft included. Distance between the two reservoirs is nearly 7.5 km.
Andra PHES 2,500 10 Vizianagaram district 18°22′7″N 83°9′55″E / 18.36861°N 83.16528°E / 18.36861; 83.16528 (Andra PHES) Champavati 0.7 1.8 800 710 520 Buffer storage 0.9 tmcft included. Distance between the two reservoirs is nearly 4.3 km.
Peddagadda PHES 3,100 12.4 Vizianagaram district 18°23′41″N 83°4′41″E / 18.39472°N 83.07806°E / 18.39472; 83.07806 (Peddagadda PHES) Nagavali 1.8 2 790 650 600 Buffer storage 1 tmcft included. Distance between the two reservoirs is nearly 7 km.
Vengalaraya Sagar PHES 2,250 9 Vizianagaram district 18°37′7″N 83°14′55″E / 18.61861°N 83.24861°E / 18.61861; 83.24861 (Vengalaraya Sagar PHES) Nagavali 0.5 2 660 510 430 Buffer storage 1 tmcft included. The distance between the two reservoirs is nearly 2.65 km. Water to rock ratio at least 2.
Vattigedda PHES 1,250 5 Vizianagaram district 18°49′41″N 83°37′23″E / 18.82806°N 83.62306°E / 18.82806; 83.62306 (Vattigadda PHES) Nagavali 0.9 1.8 440 290 255 Buffer storage 0.9 tmcft included. The distance between the two reservoirs is nearly 2.85 km. Water to rock ratio at least 2.
Nagavali PHES 250 1 Vizianagaram district 18°36′57″N 83°50′1″E / 18.61583°N 83.83361°E / 18.61583; 83.83361 (Nagavali PHES) Nagavali 4 10 300 140 200 Pumps water @ 5500 cusecs on a seasonal basis to store 9.75 tmcft Nagavali river flood waters. The stored water during monsoon months is released back in later months during the night time for irrigation needs. Rest of the year, PHES works on a daily basis to generate power during nighttime. The stored water is also used as carryover storage to meet water shortages in drought years. A new barrage with 0.25 tmcft live storage will be constructed near 18°32′57″N 83°48′5″E / 18.54917°N 83.80139°E / 18.54917; 83.80139 (Nagavali River) across the Nagavali river to divert water to the tunnel of the PHES. Buffer storage 0.25 tmcft included. The distance between the upper reservoir and the river is nearly 8.25 km.
Jhanjavati PHES 2,350 9.4 Vizianagaram district 18°53′7″N 83°23′51″E / 18.88528°N 83.39750°E / 18.88528; 83.39750 (Jhanjavati PHES) Nagavali 0.5 1.5 530 330 300 No buffer storage required as the lower reservoir is not used presently. The distance between the two reservoirs is nearly 2.37 km. Water to rock ratio at least 2. The unused reservoir area on the right of the Jhanjavati river is isolated from the river by constructing a 2.2 km long earth bund up to 150 m msl to create 1.5 tmcft water storage for using as a lower reservoir.
Hiramandalam PHES[68] 2,500 10 Srikakulam district 18°41′19″N 83°52′57″E / 18.68861°N 83.88250°E / 18.68861; 83.88250 (Hiramandalam PHES) Vamsadhara 3 7 240 90 135 3.5 tmcft buffer storage included. The distance between the two reservoirs is nearly 4.5 km.
Gotta barrage PHES[69] 750 + 10,000 = 10,750 1.5 Srikakulam district 18°41′39″N 84°1′15″E / 18.69417°N 84.02083°E / 18.69417; 84.02083 (Gotta barrage PHES) Vamsadhara 40 80 220 70 135 The main purpose of this PHES is to store up to 79 tmcft flood waters which are going waste to the sea every year. The stored water is also used as carryover storage to meet water shortages in drought years. The PHES pumps flood water @ 23,000 cusecs from the Vamsdhara river during the monsoon months and works as PHES the rest of the year. Buffer storage 0.5 tmcft included. The distance between the two reservoirs is nearly 7.3 km.

The upper reservoir of this PHES can also be connected to the Hiramandalam reservoir at 18°40′5″N 83°56′37″E / 18.66806°N 83.94361°E / 18.66806; 83.94361 (Hiramandalam reservoir) (20 tmcft storage) by 9 km long tunnels to use 16.5 tmcft per day by installing a 10,000 MW PHES to generate power for nine months duration in a year when the reservoir is empty by 16.5 tmcft or more.

Kumbum PHES 2,200 8.8 Prakasam district 15°37′35″N 79°5′1″E / 15.62639°N 79.08361°E / 15.62639; 79.08361 (Kumbum PHES) Gundlakamma 5.5 5.8 380 255 140 Buffer storage 2.9 tmcft included. The distance between the two reservoirs is nearly 2.3 km.
Nallamala Sagar PHES1 26,500 106 Prakasam district 15°40′37″N 79°5′5″E / 15.67694°N 79.08472°E / 15.67694; 79.08472 (Nallamala PHES1) Gundlakamma 77 84.5 380 240 120 Buffer storage 42.25 tmcft included. The distance between the two reservoirs is nearly 2 km.
Nallamala Sagar PHES2 900 3.6 Prakasam district 15°39′25″N 79°4′23″E / 15.65694°N 79.07306°E / 15.65694; 79.07306 (Nallamala PHES2) Gundlakamma 1.5 2.5 380 230 130 Buffer storage 1.25 tmcft included. Distance between the two reservoirs is nearly 1.75 km.
Nagarjuna Sagar Dam Right Bank PHES 1,500 1.5 Kurnool district 16°5′39″N 78°54′51″E / 16.09417°N 78.91417°E / 16.09417; 78.91417 (Nagarjunasagar Dam Right Bank PHES) Krishna - - 270 245 90 Mainly works to pump water from existing Nagarjunasagar reservoir into existing Srisailam reservoir on a seasonal basis to store Krishna and Godavari waters and otherwise as PHES on daily basis. The distance between the two reservoirs is nearly 3.1 km.
Nagarjuna Sagar Right Bank PHES1 37,000 148 Prakasam district 16°5′51″N 78°55′51″E / 16.09750°N 78.93083°E / 16.09750; 78.93083 (Nagarjunasagar Right Bank PHES1) Krishna 8 34 650 500 425 Buffer storage 17 tmcft provided. The minimum level to be maintained in Nagarjunasagar reservoir is 164 m msl. The distance between the two reservoirs is nearly 1.1 km.
Nagarjuna Sagar Right Bank PHES2 112,000 448 Prakasam district 16°7′45″N 78°56′19″E / 16.12917°N 78.93861°E / 16.12917; 78.93861 (Nagarjunasagar Right Bank PHES2) Krishna 21 101 650 500 425 Buffer storage 55.5 tmcft provided. The minimum level to be maintained in Nagarjunasagar reservoir is 164 m msl. The distance between the two reservoirs is nearly 1.5 km.
Nagarjuna Sagar Right Bank PHES3 66,000 264 Prakasam district 16°10′7″N 78°55′35″E / 16.16861°N 78.92639°E / 16.16861; 78.92639 (Nagarjunasagar Right Bank PHES3) Krishna 11 59 650 500 428 Buffer storage 29.5 tmcft provided. The minimum level to be maintained in Nagarjunasagar reservoir is 164 m msl and the corresponding loss of live storage located below this level in Nagarjunasagar reservoir can be included in the buffer storage of PHESs. The distance between the two reservoirs is nearly 2.9 km.
Nagarjuna Sagar tail pond PHES 1,500 1.0 Guntur district 16°34′39″N 79°20′25″E / 16.57750°N 79.34028°E / 16.57750; 79.34028 (Nagarjuna Sagar tail pond PHES) Krishna - - 180 164 105 Mainly works to pump water from existing Nagarjuna Sagar tail pond into existing Nagarjuna Sagar reservoir on a seasonal basis to store Krishna and Godavari waters and otherwise as PHES on daily basis.
Pulichintala Right Bank PHES 300 0.2 Guntur district 16°37′49″N 79°31′11″E / 16.63028°N 79.51972°E / 16.63028; 79.51972 (Pulichintala Right Bank PHES) Krishna - 2 75 72 25 Mainly works to pump water from existing Pulichintala reservoir into existing Nagarjuna Sagar tail pond on a seasonal basis to store Krishna and Godavari waters and otherwise as PHES on daily basis.
Vykuntapuram PHES 400 0.2 Guntur district 16°46′43″N 80°3′55″E / 16.77861°N 80.06528°E / 16.77861; 80.06528 (Vykuntapuram PHES) Krishna - - 55 50 25 Mainly works to pump water from backwaters of new Vykuntapuram barrage across Krishna river upstream of Prakasam Barrage to existing Pulichintala reservoir on a seasonal basis to store Krishna and Godavari waters and otherwise as PHES on daily basis.
Jalaput PHES 65,000 260 Visakhapatnam district 18°26′53″N 82°28′11″E / 18.44806°N 82.46972°E / 18.44806; 82.46972 (Jalaputk PHES) Sileru - 31.5 838.4 818.6 380 The PHES is constructed by connecting existing Jalaput reservoir with existing Balimela Reservoir (MDDL at 439 m msl, FRL at 462 m msl and live storage 95 tmcft) by a 13 km long unlined pressure tunnel/penstock with underground power station.[58]
Donkarayi PHES 35,000 140 Visakhapatnam district 17°54′47″N 81°51′45″E / 17.91306°N 81.86250°E / 17.91306; 81.86250 (Donkarayi PHES) Sileru 20 26 900 750 550 13 tmcft buffer storage provided. The buffer storage can be enhanced by another 35 tmcft by increasing the FRL to 950 m msl to serve other PHES which are using Godavari water. Distance between the two reservoirs is nearly 3.7 km.
Bhupathipalem PHES 800 3.2 East Godavari district 17°28′35″N 81°47′49″E / 17.47639°N 81.79694°E / 17.47639; 81.79694 (Bhupathipalem PHES) Godavari 1 1 540 480 310 0.5 tmcft buffer storage provided. The distance between the two reservoirs is nearly 4.5 km.
Polavaram Left bank PHES1 43,000 172 East Godavari district 17°29′51″N 81°27′53″E / 17.49750°N 81.46472°E / 17.49750; 81.46472 (Polavavaram left bank PHES1) Godavari 5 18 600 450 470 The required 18 tmcft buffer storage is provided in other PHESs located in the Godavari river basin. The distance between the two reservoirs is nearly 3.1 km.
Polavaram Left bank PHES2 12,000 48 East Godavari district 17°29′15″N 81°31′37″E / 17.48750°N 81.52694°E / 17.48750; 81.52694 (Polavavaram left bank PHES2) Godavari 2 4.5 600 450 530 The required 4.5 tmcft buffer storage is provided in other PHESs located in the Godavari river basin. The distance between the two reservoirs is nearly 1.7 km.
Rayalaseema PHES 6,200 24.8 Chittoor district 13°44′25″N 79°12′5″E / 13.74028°N 79.20139°E / 13.74028; 79.20139 (Rayalaseema PHES) Penna 6 2.1 610 600 550 The main purpose of this PHES is to transfer Krishna and Godavari waters @ 50,000 cusecs to high lands of Rayalaseema with only one lift from 80 m msl 13°57′47″N 79°32′5″E / 13.96306°N 79.53472°E / 13.96306; 79.53472 near Venkatagiri town in Nellore district to the upper reservoir at 610 m msl in Chittoor district to irrigate by gravity canal vast high lands in Rayalaseema region up to Bhairivani tippa reservoir on Vedavathi River in Ananthapur district.[70] This underground power station will also work as PHES. PHES powerhouse is to be connected to a 41 km long unlined pressure tunnel which will work as penstocks to the turbine units.[58][71]
Total 735,550 2,900 - - - 460 1225 - - -

Notes: Power potential (MW) is in generation mode, MDDL→ Minimum Draw Down Level or lowest bed level of the reservoir, FRL→ Full Reservoir Level, m msl→ meters above mean sea level. The total water storage includes nearly 432 tmcft of irrigation components. PHES water storage is 793 tmcft only. The PHES land requirement is nearly 1% of the land required (41,250 km2) for equivalent electricity generation by Solar PV power plants.[54] The power potential doubles in case of pumping operation for six hours in a day for the same water storage.

Solar edit

 
 
Nambulapulakunta
 
Vinukonda
 
Kovvur
 
Galiveedu
 
Pinnapuram
 
Nagalapuram
 
Kalyandurg
 
Nallapadu
 
Jaggayapeta
 
Nagarimadugu
class=notpageimage|
Map of currently operating and proposed Solar power plants in the Indian state of Andhra Pradesh. Green are currently Operating and blue are proposed.

The state is endowed with vast photovoltaic power potential on its marginally productive lands.[72] The state has total installed solar power capacity of 4,116.01 MW as of 30 June 2021.[38][73][74][75][76]

The state is planning to add 10,050 MW solar power capacity to provide power supply to farming sector during the day time.[77][78] Out of 10,050 MW, 6,400 MW capacity at 10 sites were offered for bidding. The winning tariffs are Rs 2.50 per unit which are at least 25% more than the earlier awarded tariffs of Rs 2 per unit in November 2020 even after reducing scope of work (no HV transmission line construction outside the solar park), state providing the land on lease, giving state guarantee for the timely payment for the power sold, allowing the state guarantee as security to get financial assistance at lower interest rates, disregarding higher solar power potential at these sites compared to Western and northern regions, etc.[79][80] The AP high court has stayed the award of contracts to the successful bidders on the grounds that these contracts are excluded from the jurisdiction of APERC in contravention of the electricity act, 2003.[81][82]

The state has offered five Ultra Mega Solar Power Projects with a total capacity of 12,200 MW to developers under renewable power export policy outside the state.[83][84][85][86][87]

Name Operator Location District Sector Installed Capacity (MW)
Kurnool Ultra Mega Solar Park[88] NTPC Pinnapuram Kurnool district  central 1,000
NP Kunta Ultra Mega Solar Power Project Many Nambulapulakunta (Kadiri) Anantapur district  central 978
Ananthapuramu - II Mega Solar Park[89] APGENCO Talaricheruvu Anantapur district  state 400
Galiveedu Solar Park[90] Marrikommadinne, Galiveedu mandal Kadapa district  central 400
Kadapa Ultra Mega Solar Park[91] ENGIE Ponnampalle, Mylavaram mandal Kadapa district  state 250
Amruth Solar Power Plant[92] Amrit Jal Ventures Kadiri Anantapur district  private 1
MEIL solar thermal[93] Megha Engineering & Infrastructures Limited Nagalapuram Anantapur district 50
Banaganapalle solar Welspun Vemulapadu, Banaganapalle mandal Kurnool district 70
Hindupur solar ACME Patraganipalle, Hindupur mandal Anantapur district 50
Yadiki solar Azure Power Vemulapadu, Yadiki mandal Anantapur district 50
Kuppam solar ACME Morsanapalli, Kuppam mandal Chittoor district Private 40
Parigi solar First Solar Beechiganipalle, Parigi mandal Anantapur district 40
Mudasarlova Reservoir Solar Park APGENCO Visakhapatnam Visakhapatnam district  state 2
Simhadri floating solar NTPC Visakhapatnam Visakhapatnam district  central 25

Wind power edit

 
 
Kolimigundla
 
Atmakur
 
Puthlur
 
Ramagiri
 
Nallakonda
 
Gandikota
 
Tirumala
 
Srisailam
 
Araku
class=notpageimage|
Map of currently operating and proposed Wind power plants[94] in the Indian state of Andhra Pradesh

The state has total installed wind power capacity of 4,083.57 MW as on 30 June 2021.[38][73][74][95][96]

Name Operator Location District Sector Unit wise Capacity (MW) Installed Capacity (MW)
Ramagiri Wind Mills[97] APGENCO Ramagiri Anantapur State 10x0.2 2.00
Narmada Wind farm[98] CLP Wind Farms (India) Private Ltd. Nallakonda Anantapur Private 1 x 50.4 50.04
Puthlur RCI Wind farm[99] Wescare (India) Ltd. Puthlur Anantapur Private 1 x 20 20.00

Other utility power plants edit

In addition to above projects, there are nearly 103 MW small Hydro plants, nearly 490 MW bagasse, industrial & municipal waste, bio-mass co-generation, & bio-mass based power projects, nearly 78.79 mini power plants (grid connected) and nearly 67.20 MW other (grid connected) plants based on isolated gas wells, etc. in private sector.[38][37] These power plants are not covering captive power capacity in various industries that are not grid connected. In addition, there are innumerable diesel generator sets installed in the state for stand by supply and emergency power supply needs during power outages.

Transmission system edit

Per capita power generation[100]
Year Kwh/head
2014–15
1,040
2015–16
1,230
2016–17
1,319
2017–18
1,388
2018–19
1,480
2019–20
1,507
2020–21
1,434
2021–22
1,567

The state has well spread transmission system. APTransCo / DisComs owned and operated transmission lines from 400 kV to 11 kV is 231,127 circuit kilometers excluding the HT lines owned and operated by PGCIL in the state.[101][102] For importing and exporting power, the state grid is well interconnected with adjoining western and eastern regional grids in addition to adjoining state grids.[103] The spread of high voltage transmission lines (≥ 11 kV) is such that it can form a square matrix of area 1.93 km2 (i.e. on average, at least one HT line within 0.7 km vicinity) in 160,205 km2 total area of the state. DisComs owned and operated LT lines (below 11 kV) are 292,158 circuit kilometers. It represents that there is at least one HT or LT line availability on average within the vicinity of 306 meters in the entire state area. The state has 3183 nos substations (≥ 33 kV) which represents one substation in every 50.33 km2 area on average (i.e. one substation with in 3.6 km distance on average).[22] However the maximum peak load met is 9,453 MW as of 14 October 2018.[73] Huge installed capacity of the transmission network and the substations are being underutilized with low demand factor.

See also edit

References edit

  1. ^ "Regulatory body of AP power sector". Andhra Pradesh Electricity Regulatory Commission. Retrieved 4 July 2014.
  2. ^ . APGENCO. Archived from the original on 14 July 2014. Retrieved 19 June 2014.
  3. ^ . apgenco. Archived from the original on 12 June 2014. Retrieved 4 July 2014.
  4. ^ . Transmission Corporation of AP. Archived from the original on 20 June 2014. Retrieved 4 July 2014.
  5. ^ "APCPDCL". Retrieved 29 September 2023.
  6. ^ . Archived from the original on 19 June 2016. Retrieved 4 July 2016.
  7. ^ "Andhra Pradesh pulls out of PPAs with NTPC". 30 June 2020. Retrieved 4 July 2020.
  8. ^ "Power Allocation from Central Sector". Retrieved 4 July 2017.
  9. ^ "Merit Order Despatch of Electricity". Retrieved 4 July 2017.
  10. ^ "Andhra Pradesh becomes second state to achieve 100% electrification". The Economic Times. Retrieved 13 September 2016.
  11. ^ "Weighted average cost of power". Retrieved 29 January 2021.
  12. ^ "Details of EVCS in India". Retrieved 11 July 2020.
  13. ^ "Transmission System for Integration of over 500 GW RE Capacity by 2030" (PDF). CEA. Retrieved 18 December 2022.
  14. ^ "Andhra High Court Quashes the 6.4 GW Solar Project Tender by APEGCL". 17 June 2021. Retrieved 18 June 2021.
  15. ^ "Andhra Pradesh Amends 10 GW Agricultural Solar Program to Mitigate Cash Flow Issues". Retrieved 23 June 2020.
  16. ^ "Energization of pump sets as on 31 March 2019" (PDF). Retrieved 4 July 2019.
  17. ^ "Andhra Pradesh Launches Policy to Export Renewable Power to Other States". 21 July 2020. Retrieved 23 July 2020.
  18. ^ "GIS map of RE power projects and EV charging stations in AP state". Retrieved 3 June 2021.
  19. ^ "Residential Rooftop Solar To Cost Rs 31,200/Kw In Andhra Pradesh after Subsidy". Retrieved 6 July 2021.
  20. ^ "All India Installed Capacity of Utility Power Stations" (PDF). Retrieved 25 April 2020.
  21. ^ a b "Salient features at a glance" (PDF). Retrieved 13 May 2020.
  22. ^ a b c "Salient features of A.P.Transco / A.P.Genco / Discoms" (PDF). Retrieved 13 March 2018.
  23. ^ Raghavendra, V. (12 March 2016). "Uninterrupted power for HT consumers soon". The Hindu. Retrieved 13 March 2016.
  24. ^ "Daily area wise prices". Retrieved 23 October 2016.
  25. ^ a b "Station wise daily power generation data". Retrieved 13 October 2020.
  26. ^ "Andhra Pradesh issues short term power procurement regulations". 14 February 2022. Retrieved 15 February 2022.
  27. ^ "APERC short term power procurement regulations, 2022" (PDF). Retrieved 15 February 2022.
  28. ^ "List of Upcoming Thermal Plants in India".
  29. ^ "List of power stations in India" (PDF). Cea.nic.in. Retrieved 4 July 2019.
  30. ^ "All the World's Coal Power Plants in One Map". 19 August 2019. Retrieved 4 November 2019.
  31. ^ "Coal-Fired Plants in Andhra Pradesh". Gallery. Power Plants Around The World. 5 April 2014. Archived from the original on 6 December 2012. Retrieved 10 May 2014.
  32. ^ (PDF). Archived from the original (PDF) on 4 April 2015. Retrieved 15 May 2015.
  33. ^ "GMR Rajahmundry Ltd". Retrieved 12 May 2015.
  34. ^ "Reliance Power begins equipment exports from its Samalkot project to Bangladesh proj to cut debt". Retrieved 29 June 2021.
  35. ^ "Two Andhra PSUs acquire 216 MW gas power plant from GVK". Retrieved 15 December 2016.
  36. ^ "See Annexure 2.3, Draft National Electricity Plan, 2016, CEA" (PDF). Retrieved 15 December 2016.
  37. ^ a b "Salient data on 31 January 2016 of APTrasCo, APGenCo, Discoms" (PDF). Retrieved 27 March 2016.
  38. ^ a b c d "Status of Renewable Energy Power Projects Commissioned in AP State, NREDCAP" (PDF). Retrieved 1 July 2021.
  39. ^ "Balaji Energy to setup 10 MW Somasila hydro electric project". Retrieved 27 March 2019.
  40. ^ "Chetti Peta Mini Hydro Power Plant". Alternate Hydro Energy Center. Retrieved 5 July 2014.
  41. ^ "AP Genco paves a new trend in works contracts". Retrieved 27 March 2018.
  42. ^ "AFRY awarded Detailed Design Consultancy Services Contract for a 1200 MW Pumped Storage Project". Retrieved 4 May 2020.
  43. ^ "Pre Feasibility Report of Pinnapuram IRESP - Storage Project" (PDF). Retrieved 4 September 2020.
  44. ^ "2720 MW Pumped Storage Project (page 5)" (PDF). Retrieved 4 September 2020.
  45. ^ "1350 MW Upper Sileru Pumped Storage Project" (PDF). Retrieved 4 June 2021.
  46. ^ "Environment and Forest Clearances for Dam Projects in 2021". Retrieved 17 January 2022.
  47. ^ "Comments on Power Ministry Draft Guidelines on Pump Storage Projects in India". Retrieved 9 March 2023.
  48. ^ "Pumped hydro electricity storage is making a comeback in India, and the world is taking notice". Retrieved 20 May 2020.
  49. ^ "Declining Renewable Costs Drive Focus on Energy Storage". Retrieved 20 May 2020.
  50. ^ "Interactive map showing the feasible locations of PSS projects in Andhra Pradesh state". Retrieved 19 November 2019.
  51. ^ "Preparation of feasibility reports for pumped-storage hydroelectricity projects, NREDCAP, GoAP" (PDF). Retrieved 20 November 2019.
  52. ^ "Andhra Pradesh gov't approves 2.75 GW solar-wind-pumped hydro project by Greenko". Retrieved 20 November 2019.
  53. ^ "Getting to 100% renewables requires cheap energy storage. But how cheap?". Retrieved 20 May 2020.
  54. ^ a b c Hunt, Julian D.; Byers, Edward; Wada, Yoshihide; Parkinson, Simon; Gernaat, David E. H. J.; Langan, Simon; Van Vuuren, Detlef P.; Riahi, Keywan (2020). "Global resource potential of seasonal pumped hydropower storage for energy and water storage". Nature Communications. 11 (1): 947. Bibcode:2020NatCo..11..947H. doi:10.1038/s41467-020-14555-y. PMC 7031375. PMID 32075965.
  55. ^ "Converting to Full-Power". Retrieved 10 August 2020.
  56. ^ "100% renewable electricity at no extra cost, a piece of cake?". Retrieved 20 May 2020.
  57. ^ "Variable Speed Is Key To World's Biggest Pumped Hydro Energy Storage Project, China's Fengning Plant". 4 July 2018. Retrieved 28 August 2020.
  58. ^ a b c "Unlined pressure conduits - used in hydropower plants" (PDF). Retrieved 20 August 2020.
  59. ^ "Dam built by robots? Japan's Obayashi tests it out". Retrieved 23 July 2020.
  60. ^ "Overburden blasting in a mega coal mine". YouTube. Retrieved 23 October 2020.
  61. ^ "Elon Musk Should Build Pumped Hydro With Tesla Energy, The Boring Co., & Coal Miners". 9 November 2019. Retrieved 17 May 2020.
  62. ^ "List of existing water reservoirs in AP state". Retrieved 15 February 2022.
  63. ^ "Gandikota PHES: Techno-commercial Feasibility Report" (PDF). Retrieved 14 September 2020.
  64. ^ "Annamayya (Cheyyeru) Reservoir". Retrieved 23 July 2020.
  65. ^ "Owk PHES: Techno-commercial Feasibility Report" (PDF). Retrieved 14 September 2020.
  66. ^ "Chitravati PHES: Techno-commercial Feasibility Report" (PDF). Retrieved 14 September 2020.
  67. ^ "Somasila PHES: Techno-commercial Feasibility Report" (PDF). Retrieved 14 September 2020.
  68. ^ "Hiramandalam Reservoir". Retrieved 23 July 2020.
  69. ^ "Gotta Barrage". Retrieved 23 July 2020.
  70. ^ "Multipurpose Freshwater Coastal Reservoirs and Their Role in Mitigating Climate Change" (PDF). Retrieved 23 May 2023.
  71. ^ "Development of Tunnelling Technology in China over the Past 40 Years" (PDF). Retrieved 23 June 2022.
  72. ^ "Global solar atlas". Retrieved 1 January 2021.
  73. ^ a b c "Salient features of A.P.TRANSCO / A.P.GENCO / DISCOMS" (PDF). Retrieved 24 February 2019.
  74. ^ a b "(page 17) Aggregate Revenue Requirement and Tariff Proposal for the Retail Supply Business for FY 2018-19, APSPDCL". Retrieved 5 January 2018.
  75. ^ (PDF). Ministry of New and Renewable Energy, Govt. of India. Archived from the original (PDF) on 12 July 2017. Retrieved 24 October 2016.
  76. ^ "Andhra Pradesh Solar Power Corporation Ltd". Retrieved 24 October 2016.
  77. ^ "10,050 MW mega solar power plants to come up in two phases in Andhra Pradesh". Retrieved 13 May 2020.
  78. ^ "Bid documents (6050 MW) submitted for judicial review (s.no. 6 to 15)". Retrieved 2 October 2020.
  79. ^ "AP HC directs State not to enter into deals on 6,400 MW solar tender". 8 January 2021. Retrieved 4 February 2021.
  80. ^ "Gujarat 700 MW award cancellation will impact solar investment". Retrieved 11 February 2021.
  81. ^ "Adani group bags 3,000 MW solar power parks in Andhra Pradesh". Retrieved 4 February 2021.
  82. ^ "Renewable Energy: Delays in signing PPAs and the future challenges for procurement". Retrieved 11 February 2021.
  83. ^ "Kadiri ultra-mega solar park (4000 MW)" (PDF). Retrieved 2 October 2020.
  84. ^ "Obuladevucheruvu ultra-mega solar park (2400MW)" (PDF). Retrieved 2 October 2020.
  85. ^ "Ralla Anantapuram ultra-mega solar park (2400 MW)" (PDF). Retrieved 2 October 2020.
  86. ^ "Badvel ultra-mega solar park (1400MW)" (PDF). Retrieved 2 October 2020.
  87. ^ "Kalasapadu ultra-mega solar park (2000MW)" (PDF). Retrieved 2 October 2020.
  88. ^ "Softbank Joint Venture SB Energy Commissions 350 Megawatt Solar Project In India". 21 April 2017. Retrieved 22 April 2017.
  89. ^ "Solar plant commissioned". The Hindu. 19 February 2019. Retrieved 20 February 2019.
  90. ^ "SECI Refuses to Lower Tariffs for Andhra Solar Projects". Retrieved 17 February 2020.
  91. ^ "ENGIE fully commissions 250 MW Kadapa solar project in Andhra Pradesh". Retrieved 17 February 2020.
  92. ^ "Amrit Jal Ventures commissions solar unit in Kadiri". The Hindu Business Line. 8 March 2012. Retrieved 4 July 2014.
  93. ^ . National Renewable Energy Laboratory. Archived from the original on 28 April 2015. Retrieved 29 April 2015.
  94. ^ "Potential windfarm (India)". The Wind Power. Retrieved 31 March 2010.
  95. ^ "State wise installed capacity as of 19 October 2016". 19 October 2016. Retrieved 20 October 2016.
  96. ^ "Installed capacity of wind power projects in India". Retrieved 27 July 2015.
  97. ^ "Ramgiri windfarm (India)". The Wind Power. Retrieved 5 July 2014.
  98. ^ "CLP to develop two new windfarms". Panchabuta Renewable Energy & Cleantech in India. 7 March 2011. Retrieved 4 July 2014.
  99. ^ "Puthlur RCI windfarm (India)". The Wind Power. Retrieved 4 July 2014.
  100. ^ "Per capita power consumption, CEA Dash Board". Retrieved 22 April 2021.
  101. ^ "Salient data of APTrasCo, APGenCo, Discoms" (PDF). Retrieved 27 October 2015.
  102. ^ "Power map of southern region" (PDF). Retrieved 27 October 2015.
  103. ^ "Connectivity between Southern Grid and Other Power Grids Can Support 19.95 GW". Retrieved 2 April 2018.

External links edit

  • Coal based power plants in India on SourceWatch
  • Electricity grid maps of southern region

power, sector, andhra, pradesh, divided, into, categories, namely, regulation, generation, transmission, distribution, andhra, pradesh, electricity, regulatory, commission, aperc, regulatory, body, apgenco, deals, with, electricity, production, also, maintenan. Power sector of Andhra Pradesh is divided into 4 categories namely Regulation Generation Transmission and Distribution Andhra Pradesh Electricity Regulatory Commission APERC is the regulatory body 1 APGENCO deals with the electricity production and also maintenance proposes new projects and upgrades existing ones as well 2 The APGENCO also set up a Special Purpose Vehicle SPV named as Andhra Pradesh Power Development Company Limited APPDCL a joint venture company of APGENCO with 50 equity and IL amp FS 50 equity to set up Krishnapatanam thermal power project 2x800 MW 3 APTRANSCO is set up for transmission of power 4 Power distribution in the state is divided into three divisions namely Eastern Power Distribution Corporation Limited APEPDCL Central Power Distribution Corporation Limited APCPDCL 5 and Southern Power Distribution Corporation Limited APSPDCL which distributes the power to the households agriculture and the industries 6 APGENCO APPDCL NTPC and other private firms contribute to the generation of power in the state of Andhra Pradesh 7 8 9 Andhra Pradesh has become the second state in India to achieve 100 electrification of all households 10 Weighted average cost of power generation and purchases is INR 3 45 per kWh which is highest in the country 11 Andhra Pradesh is also leader by installing 433 nos electric vehicle charging stations EVCS out of 927 nos installed in the entire country as on 30 June 2020 12 Under the program of installing 500 GW capacity of renewable power capacity by 2030 nearly 59 GW 25 of solar and wind power is identified out of 236 58 GW in three districts of the state 13 The newly formed Andhra Pradesh Green Energy Corporation Limited APGECL a 100 subsidiary of APGENCO will be the trading agency licensee for the 10 GW solar project in a phased manner and for connecting it to the grid 14 The 10 GW solar projects would be used to meet the entire agriculture power consumption which will be met during the day time for nine hours duration daily 15 Andhra Pradesh is also leading in installation of solar power off grid agriculture pump sets 16 A renewable energy export policy for Andhra Pradesh was also announced to facilitate the setting up of 120 GW solar wind and solar wind hybrid energy parks by using 0 5 million acres of land 17 New amp Renewable Energy Development Corporation of Andhra Pradesh NREDCAP a state owned company is actively involved in promoting renewable energy projects in the state 18 Roof top solar power cost unit in the state are falling below the domestic power tariff 19 The total installed utility power generation capacity is nearly 24 854 MW in the state as of 31 March 2020 20 APtransCo has made long term power purchase agreements for 19 068 MW as of 31 March 2019 21 22 The per capita electricity consumption is 1234 units with 63 143 million KWh gross electricity supplied in the year 2018 19 21 23 The performance of Krishnapatanam thermal power station 2X800 MW with super critical pressure technology is not satisfactory even after one year commercial operation as the units rarely operate at rated capacity forcing the state to purchase costly power from day ahead trading in IEX 24 25 Power sector of Andhra Pradesh flow chartDr Narla Tata Rao Thermal Power Station 500 MW Unit Contents 1 Short term power purchases 2 Non renewable 2 1 Thermal power 2 2 Gas fuel based 3 Renewable 3 1 Hydroelectric 3 2 Pumped storage hydroelectricity projects 3 3 Feasible PHES projects 3 4 Solar 3 5 Wind power 4 Other utility power plants 5 Transmission system 6 See also 7 References 8 External linksShort term power purchases editAPDisComs purchase regularly from the energy exchange etc to meet the peak load and energy shortages As the power purchases sales are done on daily basis without proper planning and optimum utilization of APGENCO power generation capacity APERC has given guidelines to the DisComs for implementation while making short term less than one year duration purchases and sales in the year 2022 26 27 Non renewable editThermal power edit nbsp nbsp Krishnapatnam nbsp Ibrahimpatnam nbsp Parawada nbsp Muddanur nbsp Thamminapatnam nbsp Pudimadaka nbsp Polakiclass notpageimage Map of coal based thermal power plants in the Indian state of Andhra Pradesh Blue are operational and Red are proposed 28 Thermal power plants are based on the fuel coal gas diesel etc Public sector undertaking NTPC state level power generating companies and private firms are engaged in this sector for power generation Currently operating coal based thermal power plants in Andhra Pradesh are listed below 29 30 Name Operator Location District Sector Capacity MW CoordinatesSimhadri Super Thermal Power Plant NTPC Parawada Visakhapatnam Central 2 000 17 35 38 N 83 5 23 E 17 59389 N 83 08972 E 17 59389 83 08972 Simhadri Super Thermal Power Plant Dr Narla Tatarao TPS APGENCO Vijayawada Krishna State 2 560 16 35 58 N 80 32 12 E 16 59944 N 80 53667 E 16 59944 80 53667 Dr Narla Tata Rao Thermal Power Station Rayalaseema Thermal Power Station 31 APGENCO Muddanur Kadapa State 1 650 14 42 14 N 78 27 29 E 14 70389 N 78 45806 E 14 70389 78 45806 Rayalaseema Thermal Power Station Sri Damodaram Sanjeevaiah Thermal Power Station APPDCL Krishnapatnam Nellore Joint 2 400 14 19 39 N 80 07 15 E 14 32750 N 80 12083 E 14 32750 80 12083 Sri Damodaram Sanjeevaiah Thermal Power Station Vizag Thermal Power Station Hinduja Gajuwaka Visakhapatnam Private 1 040 17 33 45 N 83 8 15 E 17 56250 N 83 13750 E 17 56250 83 13750 Hinduja Thermal Power Station Simhapuri Thermal Power Station SEPL Krishnapatanam Nellore Private 600 14 12 35 N 80 05 23 E 14 20972 N 80 08972 E 14 20972 80 08972 Simhapuri Thermal Power Station Meenakshi Thermal Power Station MEPL Krishnapatanam Nellore Private 1 000 14 12 57 N 80 05 19 E 14 21583 N 80 08861 E 14 21583 80 08861 Meenakshi Thermal Power Station Sembcorp Energy India Limited SEIL Krishnapatanam Nellore Private 1 320 14 19 45 N 80 08 27 E 14 32917 N 80 14083 E 14 32917 80 14083 Pynampuram Power Station SGPL Power Station SGPL Krishnapatanam Nellore Private 1 320 14 21 5 N 80 08 37 E 14 35139 N 80 14361 E 14 35139 80 14361 SGPL Power Station TOTAL 13 890Gas fuel based edit nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp class notpageimage Map of currently operating combined cycle gas turbine power plants in the Indian state of Andhra Pradesh The following are the list of presently installed combined cycle gas turbine power plants and diesel engine power plants in the state However many of these power plants are not operating due to non availability of natural gas and high cost of liquid fuels 32 Power station Operator Location District Sector Capacity MW Plant CoordinatesAPGPCL Plant APGPCL Vijjeswaram W Godavari Joint 272 16 56 02 N 81 43 27 E 16 93389 N 81 72417 E 16 93389 81 72417 APGPCL Plant Lanco Kondapalli Power Plant Lanco Infratech Kondapalli Krishna Private 1466 16 38 20 N 80 33 00 E 16 63889 N 80 55000 E 16 63889 80 55000 Lanco Kondapalli Power Plant Gautami Combined Cycle Power Plant GVK Peddapuram E Godavari Private 464 17 02 21 N 82 08 43 E 17 03917 N 82 14528 E 17 03917 82 14528 Gautami Combined Cycle Power Plant Konaseema Combined Cycle Power Plant Konaseema Gas Power Limited KGPL Ravulapalem E Godavari Private 445 16 44 05 N 81 51 44 E 16 73472 N 81 86222 E 16 73472 81 86222 Konaseema Combined Cycle Power Plant Vemagiri Combined Cycle Power Plant GMR Vemagiri E Godavari Private 370 16 55 29 N 81 48 46 E 16 92472 N 81 81278 E 16 92472 81 81278 Vemagiri Combined Cycle Power Plant GMR Rajamundry Combined Cycle Power Plant 33 GMR Vemagiri E Godavari Private 768 16 55 28 N 81 48 46 E 16 92444 N 81 81278 E 16 92444 81 81278 Vemagiri Combined Cycle Power Plant Samarlakota Combined Cycle Power Plant 34 Reliance Samarlakota E Godavari Private 1870 17 02 19 N 82 08 05 E 17 03861 N 82 13472 E 17 03861 82 13472 Samarlakota Combined Cycle Power Plant Godavari Gas Power Plant 35 APGENCO Jegurupadu E Godavari State 216 16 55 55 N 81 51 37 E 16 93194 N 81 86028 E 16 93194 81 86028 Godavari Gas Power Plant Jegurupadu Combined Cycle Power Plant GVK Jegurupadu E Godavari Private 229 16 55 54 N 81 51 36 E 16 93167 N 81 86000 E 16 93167 81 86000 Jegurupadu Combined Cycle Power Plant Spectrum Combined Cycle Power Plant Spectrum Kakinada E Godavari Private 209 17 03 31 N 82 18 34 E 17 05861 N 82 30944 E 17 05861 82 30944 Spectrum Combined Cycle Power Plant GMR barge mounted Power Plant GMR Kakinada E Godavari Private 237 17 03 32 N 82 18 33 E 17 05889 N 82 30917 E 17 05889 82 30917 GMR barge mounted power station LVS Diesel Engine Power Station Greenko Vishakhapatnam Visakhapatnam Private 37 17 50 45 N 83 14 13 E 17 84583 N 83 23694 E 17 84583 83 23694 LVS Power Ltd Panduranga CCPP PESPL Annadevarapeta W Godavari Private 116 17 07 45 N 81 36 09 E 17 12917 N 81 60250 E 17 12917 81 60250 Panduranga CCPP RVK Energy power plant 36 KSK Energy Ventures Rajahmundry E Godavari Private 436Sriba power plant Sriba industries Chigurukota Krishna Private 30Silkroad sugar power plant EID Parry Kakinada E Godavari Private 35Srivathsa Power plant Asian Genco Private 17Total 7 217Renewable editHydroelectric edit This is the list of major hydroelectric power plants in Andhra Pradesh 37 nbsp Srisailam Dam nbsp Srisailam right bank power housePower station name Operator Location Sector Unit wise CapacityMW CapacityMW 25 Donkarayi PH APGENCO E Godavari State 1x25 25 00Hampi canal Power House PH APGENCO Joint project of AP TS amp KarnatakaLocated in Karnataka State 4 x 9 AP Share 28 8 28 80Lower Sileru PH APGENCO E Godavari State 4 x 115 460 00Machkund PH APGENCO Joint project of AP TS amp OdishaLocated in Odisha State 3 x 17 3 x 23 AP Share 84 84 00Nagarjuna Sagar Right Canal PH APGENCO Nagarjuna Sagar Dam Guntur district State 3 x 30 90 00Nagarjuna Sagar tail pond PH APGENCO Nagarjuna Sagar Dam Guntur district State 2 x 25 50 00Penna Ahobilam PH APGENCO Korrakodu Anantapur district State 2 x 10 20 00Srisailam Right Bank PH APGENCO Srisailam Kurnool State 7 x 110 770 00TB Dam PH APGENCO Joint project of AP TS amp KarnatakaLocated in Karnataka State 4 9 AP Share 28 8 28 80Upper Sileru PH APGENCO Visakhapatnam State 4 x 60 240 00Somasila PH Balaji Energy Nellore Private 2 x 5 2 x 4 1 x 2 1 x 3 38 39 23 00Chettipeta Mini Hydel 40 APGENCO West Godavari district State 2 x 0 5 1 00Polavaram Hydro Electric project APGENCO Anguluru East Godavari district State 12 x 80 Under Construction 41 Pinnapuram Pumped Storage Project PSP Greenko Energy near Nandyal Kurnool district Private 4 x 240 2 x 120 Under Construction 42 43 Veeraballi PSP Astha Green near Veeraballi Kadapa district Private 2720 MW Under investigation 44 Upper Sileru PSP APGENCO near Sileru village Visakhapatnam State 9 x 150 MW Under hold due to very high cost 45 Chitravati PSP APGENCO near Peddakotla village Anantapuramu district State 2 x 250 MW Under investigation 46 Singanamala PSP NREDCAP Anantapuramu district State 800 MW Under investigation 47 Overall capacity in MW 22 1820 60Pumped storage hydroelectricity projects edit Pumped hydroelectric energy storage PHES projects with high water head are the cheap means of converting intermittent renewable power generation sources like solar PV or wind power in to base load supply for round the clock needs throughout the year 48 49 AP state is endowed with vast PHES potential adequate to utilise its vast solar PV power generation potential above 1 000 000 MW installed on 16 000 km2 marginal lands to meet ultimate green energy requirements of its peak population 60 million 50 AP is considering on a major scale to install PHES projects to make available the surplus wind solar power during the peak load hours 51 52 PHESs also generate income in addition to hydroelectricity cess royalty to the state in the form of water use charges at commercial rates for the evaporation loss or consumptive water from the reservoirs The area occupied by the high head PHES is less than the area occupied by the equivalent battery energy storage system BESS housed in a three storied building High head PHES installation cost lt US 40 per KWh in a day is less than the cost of land and buildings required to house the equivalent BESS 53 54 PHES are more suitable in India where energy and water storage needs are complementary 54 55 Unlike the static BESS the rotating turbo generator of a PHES will enhance dynamic inertia GD2 of the grid which contributes to a stable grid to ride through the power disturbances when power generation in the grid is dominated by the static solar PV power 56 Variable speed PHES plants also deliver the power grid ancillary services 57 In high head PHES unlined pressure tunnels shafts are constructed to the extent feasible for reducing construction cost 58 nbsp Blast hole drilling at an opencast mine The water reservoir of a PHES is created by building embankment dams wherever required up to the required height and length The rock required for building the dams is excavated from the reservoir area Cheaper drilling and blasting method is extensively used deploying state of the art earth moving equipment because huge quantity of rock excavation is required for the construction of the rock fill dams 59 60 nbsp A rock fill embankment dam Polavaram right bank PHES A 103 000 MW PHES project is under investigation with an upper reservoir located near Parantapalle hamlet in West Godavari district with 90 tmcft live storage at 700 m msl full reservoir level FRL The turkey nest type upper reservoir is 18 km long from north to south and 1 1 km wide and its water surface area is 16 km2 with 200 m water depth and nearly 90 tmcft live storage 61 The adjacent Polavaram reservoir at FRL 45 m msl with 194 tmcft gross storage is the lower reservoir as perennial water source The average water head available is 600 m with a provision to draw 33 tmcft day from the Polavaram reservoir by the PHES units located in semi open or underground power houses To run the PHES on daily basis the lower reservoir is to be kept empty by 33 tmcft below its FRL for holding the water released by PHES in generation mode Another 33 tmcft is used to compensate the loss of storage capacity in the lower reservoir This buffer storage is released in to lower reservoir for irrigation etc needs once in a year at the end of monsoon year and it is replenished at the earliest from the flood water inflows into the lower reservoir Also seepage and evaporation losses from the upper reservoir are met from the buffer storage sourced from flood waters and not drawn from the lower reservoir storage The excess buffer storage maintained in this upper reservoir can also serve up to 24 tmcft for other PHESs in the state which are using Godavari basin water and have no buffer storage of their own ex Jalaput PHES The upper reservoir can be further expanded by 3 5 km length on its south side to enhance the live buffer storage substantially The PHES project can produce 412 billion KWh at 4000 hours year or 12 hours day operation in generation mode by consuming the surplus power generated from the solar and wind power plants during the day time This PHES can also moderate the severe floods by utilizing empty volume kept in the lower reservoir or operating in pump mode maximum 7 63 lakh cusecs to fill the upper reservoir In case of emergency repairs the entire water storage in the upper reservoir can be emptied safely into the lower reservoir river within 24 hours by running the PHES in generation mode Srisailam right bank PHES A 77 000 MW PHES project is feasible with an upper reservoir located on the right bank side within 1000 m distance of Srisailam reservoir with 87 tmcft live storage at 650 m msl FRL The reservoir bunds are constructed on 500 m msl contour line by 155 m high and the water surface area of the upper reservoir is nearly 20 km2 The adjacent Srisailam reservoir at FRL 270 m msl with 185 tmcft live storage is the lower reservoir with perennial water source The average water head available is 340 m with provision to draw water from the Srisailam reservoir by the PHES units located in semi open or underground power houses The PHES project can produce 308 billion KWh at 4000 hours year or 12 hours day operation in generation mode Only 43 5 tmcft 50 reservoir storage is used for power generation on daily basis and the remaining half kept as buffer storage to compensate the loss of storage in downstream reservoir due to PHES by releasing water once in a year in to the Srisailam reservoir to meet irrigation water requirements The buffer storage is replenished later at the earliest during the monsoon floods This PHES can also moderate the severe floods by utilizing empty volume kept in the lower reservoir or operating in pump mode maximum 10 lakh cusecs to fill the upper reservoir Feasible PHES projects edit List of feasible PHES locations PHES name lower reservoir 62 Power potential MW Power generation Billion KWh yr Upper reservoir Average waterhead meters RemarksLocation Coordinate River basin Water area km2 Live storage tmcft FRL m msl MDDL m msl Polavaram right bank PHES 103 000 412 West Godavari district 17 27 33 N 81 29 43 E 17 45917 N 81 49528 E 17 45917 81 49528 Polavavaram right bank PHES Godavari 16 90 700 500 600 57 tmcft buffer storage available The distance between the two reservoirs is nearly 1 7 km Srisailam right bank PHES 77 000 308 Kurnool district 16 02 33 N 78 30 51 E 16 04250 N 78 51417 E 16 04250 78 51417 Srisailam right bank PHEP Krishna 20 87 650 500 340 43 5 tmcft buffer storage included The distance between the two reservoirs is nearly 1 1 km Gandikota PHES1 28 000 112 Kadapa district 14 49 47 N 78 13 41 E 14 82972 N 78 22806 E 14 82972 78 22806 Gandikota PHES1 Penna 21 52 435 335 210 Buffer storage 26 tmcft provided The distance between the two reservoirs is nearly 2 1 km Gandikota PHES2 63 600 1 12 Kadapa district 14 46 29 N 78 17 7 E 14 77472 N 78 28528 E 14 77472 78 28528 Gandikota PHES2 Penna 1 0 16 515 505 303 It is a peaking PHES with six hours daily operation in generation mode No buffer storage is provided The distance between the two reservoirs is nearly 2 8 km Paidipalem PHES1 1 850 7 4 Kadapa district 14 43 47 N 78 11 9 E 14 72972 N 78 18583 E 14 72972 78 18583 Paidipalem PHES1 Penna 1 2 5 600 510 285 Buffer storage 1 25 tmcft provided The distance between the two reservoirs is nearly 3 1 km Paidipalem PHES2 2 750 11 Kadapa district 14 41 21 N 78 13 25 E 14 68917 N 78 22361 E 14 68917 78 22361 Paidipalem PHES2 Penna 1 5 3 7 600 500 285 Buffer storage 1 85 tmcft provided The distance between the two reservoirs is nearly 2 9 km Buggavanka PHES 600 2 4 Kadapa district 14 24 5 N 78 52 15 E 14 40139 N 78 87083 E 14 40139 78 87083 Buggavanka PHES Penna 0 8 0 9 470 410 260 Buffer storage 0 45 tmcft provided The distance between the two reservoirs is nearly 3 5 km Annamayya PHES 64 1150 4 6 Kadapa district 14 12 25 N 78 57 51 E 14 20694 N 78 96417 E 14 20694 78 96417 Annamayya PHES Penna 1 1 1 6 555 455 285 Buffer storage 0 8 tmcft provided Distance between the two reservoirs is nearly 6 km Mylavaram PHES 14 000 56 Kadapa district 14 48 1 N 78 16 35 E 14 80028 N 78 27639 E 14 80028 78 27639 Mylavaram PHES Penna 9 20 500 375 275 Buffer storage 10 tmcft provided The distance between the two reservoirs is nearly 3 7 km Brahmamsagar PHES 13 000 52 Kadapa district 14 46 27 N 78 52 3 E 14 77417 N 78 86750 E 14 77417 78 86750 Brahmamsagar PHES Penna 9 5 38 400 250 130 Buffer storage 19 tmcft provided The distance between the two reservoirs is nearly 1 5 km Telugu Ganga subsidiary reservoirs PHES 2 600 10 4 Kurnool district 14 51 25 N 78 43 51 E 14 85694 N 78 73083 E 14 85694 78 73083 Telugu Ganga PHES Penna 4 8 400 250 120 Buffer storage 4 tmcft provided The distance between the two reservoirs is nearly 1 5 km Owk PHES1 4 700 18 8 Kurnool district 15 14 51 N 78 2 49 E 15 24750 N 78 04694 E 15 24750 78 04694 Owk PHES1 Penna 100 210 500 350 220 Works on a seasonal basis to store 201 7 tmcft Krishna and Godavari waters as well as on daily basis The stored water is also used as carryover storage to meet water shortages in drought years Buffer storage 4 15 tmcft included This upper reservoir will supply irrigation water to the Handri catchment area in the Kurnool district and the left bank side of the Penna river in the Ananthapur district including water supply augmentation to the Handri Neeva project This upper reservoir is so planned by its area location to cut across the local Erramala hill range from east to west to supply irrigation water mostly by gravity The distance between the two reservoirs is nearly 5 7 km Owk PHES2 65 800 1 65 Kurnool district 15 9 37 N 78 4 5 E 15 16028 N 78 06806 E 15 16028 78 06806 Owk PHES2 Penna 0 6 0 4 400 380 165 Peaking PHES for 6 hours daily operation No Buffer storage is provided The distance between the two reservoirs is nearly 1 5 km Gorakallu PHES 12 500 50 Kurnool district 15 35 33 N 78 22 17 E 15 59250 N 78 37139 E 15 59250 78 37139 Gorakallu PHES Penna 37 100 450 300 170 Works on a seasonal basis to store 71 4 tmcft Krishna and Godavari waters and otherwise as PHES on daily basis The stored water is also used as carryover storage to meet water shortages in drought years Buffer storage 14 28 tmcft included The distance between the two reservoirs is nearly 2 3 km Velugodu PHES 7 800 31 Kurnool district 15 42 21 N 78 39 25 E 15 70583 N 78 65694 E 15 70583 78 65694 veligodu PHES Penna 40 100 420 270 100 Works on a seasonal basis to store 70 tmcft Krishna and Godavari waters and otherwise as PHES on daily basis The stored water is also used as carryover storage to meet water shortages in drought years Buffer storage 15 tmcft included The distance between the two reservoirs is nearly 3 1 km Mid Pennar PHES 2 600 10 4 Anantapur district 14 52 47 N 77 23 27 E 14 87972 N 77 39083 E 14 87972 77 39083 Mid Pennar PHES Penna 3 75 10 525 375 100 Buffer storage 5 tmcft included The distance between the two reservoirs is nearly 0 7 km Chitravati PHES 66 500 0 95 Anantapur district 14 34 27 N 77 56 3 E 14 57417 N 77 93417 E 14 57417 77 93417 Chitravati PHES Penna 0 5 0 21 475 455 176 Peaking load PHES No buffer storage is included The distance between the two reservoirs is nearly 0 81 km Somasila PHES 67 1 200 2 3 Nellore district 14 30 57 N 79 16 25 E 14 51583 N 79 27361 E 14 51583 79 27361 Somasila PHES Penna 1 0 18 624 600 511 Peaking load PHES No buffer storage is included The distance between the two reservoirs is nearly 2 9 km Kalyani PHES 3 700 14 8 Chittoor district 13 43 9 N 79 18 47 E 13 71917 N 79 31306 E 13 71917 79 31306 Kalyani PHES Swarnamukhi 1 5 1 8 1100 1000 790 Buffer storage 0 9 tmcft included The distance between the two reservoirs is nearly 7 5 km The upper reservoir of the PHES can also supply water to Tirumala in case of water shortages Yeleru PHES 5 500 22 East Godavari district 17 20 1 N 82 9 23 E 17 33361 N 82 15639 E 17 33361 82 15639 Yeleru PHES Yeleru 2 00 5 3 500 350 400 Buffer storage 2 65 tmcft included The distance between the two reservoirs is nearly 5 5 km Tandava PHES 9 200 36 8 Visakhapatnam district 17 43 35 N 82 27 47 E 17 72639 N 82 46306 E 17 72639 82 46306 Tandava PHES Tandava 1 50 4 1050 850 875 Buffer storage 2 tmcft included The distance between the two reservoirs is nearly 7 5 km Raiwada PHES 2 350 9 4 Visakhapatnam district 18 3 17 N 82 54 55 E 18 05472 N 82 91528 E 18 05472 82 91528 Raiwada PHES Sarada 0 50 2 635 485 450 Buffer storage 1 tmcft included The distance between the two reservoirs is nearly 4 85 km Pedderu PHES 1 425 5 5 Visakhapatnam district 17 52 37 N 82 40 9 E 17 87694 N 82 66917 E 17 87694 82 66917 Pedderu PHES Sarada 0 25 0 7 950 850 780 Buffer storage 0 35 tmcft included The distance between the two reservoirs is nearly 3 1 km Water to rock ratio at least 2 Konam PHES 2 200 8 8 Visakhapatnam district 17 55 47 N 82 40 19 E 17 92972 N 82 67194 E 17 92972 82 67194 Konam PHES Sarada 1 2 1 7 725 625 495 Buffer storage 0 85 tmcft included The distance between the two reservoirs is nearly 5 8 km NTR PHES 650 2 6 Visakhapatnam district 17 57 35 N 82 46 35 E 17 95972 N 82 77639 E 17 95972 82 77639 NTR PHES Sarada 0 2 0 4 775 700 640 Buffer storage 0 2 tmcft included The distance between the two reservoirs is nearly 2 6 km Varaha PHES 1 300 4 2 Visakhapatnam district 17 49 25 N 82 42 5 E 17 82361 N 82 70139 E 17 82361 82 70139 Varaha PHES Varaha 0 52 0 75 820 750 660 Buffer storage 0 37 tmcft included The distance between the two reservoirs is nearly 3 6 km Water to rock ratio at least 2 Tatipudi PHES 9 000 36 Vizianagaram district 18 15 25 N 83 8 41 E 18 25694 N 83 14472 E 18 25694 83 14472 Tatipudi PHES Gosthani 2 6 5 700 500 535 Buffer storage 3 25 tmcft included Distance between the two reservoirs is nearly 7 5 km Andra PHES 2 500 10 Vizianagaram district 18 22 7 N 83 9 55 E 18 36861 N 83 16528 E 18 36861 83 16528 Andra PHES Champavati 0 7 1 8 800 710 520 Buffer storage 0 9 tmcft included Distance between the two reservoirs is nearly 4 3 km Peddagadda PHES 3 100 12 4 Vizianagaram district 18 23 41 N 83 4 41 E 18 39472 N 83 07806 E 18 39472 83 07806 Peddagadda PHES Nagavali 1 8 2 790 650 600 Buffer storage 1 tmcft included Distance between the two reservoirs is nearly 7 km Vengalaraya Sagar PHES 2 250 9 Vizianagaram district 18 37 7 N 83 14 55 E 18 61861 N 83 24861 E 18 61861 83 24861 Vengalaraya Sagar PHES Nagavali 0 5 2 660 510 430 Buffer storage 1 tmcft included The distance between the two reservoirs is nearly 2 65 km Water to rock ratio at least 2 Vattigedda PHES 1 250 5 Vizianagaram district 18 49 41 N 83 37 23 E 18 82806 N 83 62306 E 18 82806 83 62306 Vattigadda PHES Nagavali 0 9 1 8 440 290 255 Buffer storage 0 9 tmcft included The distance between the two reservoirs is nearly 2 85 km Water to rock ratio at least 2 Nagavali PHES 250 1 Vizianagaram district 18 36 57 N 83 50 1 E 18 61583 N 83 83361 E 18 61583 83 83361 Nagavali PHES Nagavali 4 10 300 140 200 Pumps water 5500 cusecs on a seasonal basis to store 9 75 tmcft Nagavali river flood waters The stored water during monsoon months is released back in later months during the night time for irrigation needs Rest of the year PHES works on a daily basis to generate power during nighttime The stored water is also used as carryover storage to meet water shortages in drought years A new barrage with 0 25 tmcft live storage will be constructed near 18 32 57 N 83 48 5 E 18 54917 N 83 80139 E 18 54917 83 80139 Nagavali River across the Nagavali river to divert water to the tunnel of the PHES Buffer storage 0 25 tmcft included The distance between the upper reservoir and the river is nearly 8 25 km Jhanjavati PHES 2 350 9 4 Vizianagaram district 18 53 7 N 83 23 51 E 18 88528 N 83 39750 E 18 88528 83 39750 Jhanjavati PHES Nagavali 0 5 1 5 530 330 300 No buffer storage required as the lower reservoir is not used presently The distance between the two reservoirs is nearly 2 37 km Water to rock ratio at least 2 The unused reservoir area on the right of the Jhanjavati river is isolated from the river by constructing a 2 2 km long earth bund up to 150 m msl to create 1 5 tmcft water storage for using as a lower reservoir Hiramandalam PHES 68 2 500 10 Srikakulam district 18 41 19 N 83 52 57 E 18 68861 N 83 88250 E 18 68861 83 88250 Hiramandalam PHES Vamsadhara 3 7 240 90 135 3 5 tmcft buffer storage included The distance between the two reservoirs is nearly 4 5 km Gotta barrage PHES 69 750 10 000 10 750 1 5 Srikakulam district 18 41 39 N 84 1 15 E 18 69417 N 84 02083 E 18 69417 84 02083 Gotta barrage PHES Vamsadhara 40 80 220 70 135 The main purpose of this PHES is to store up to 79 tmcft flood waters which are going waste to the sea every year The stored water is also used as carryover storage to meet water shortages in drought years The PHES pumps flood water 23 000 cusecs from the Vamsdhara river during the monsoon months and works as PHES the rest of the year Buffer storage 0 5 tmcft included The distance between the two reservoirs is nearly 7 3 km The upper reservoir of this PHES can also be connected to the Hiramandalam reservoir at 18 40 5 N 83 56 37 E 18 66806 N 83 94361 E 18 66806 83 94361 Hiramandalam reservoir 20 tmcft storage by 9 km long tunnels to use 16 5 tmcft per day by installing a 10 000 MW PHES to generate power for nine months duration in a year when the reservoir is empty by 16 5 tmcft or more Kumbum PHES 2 200 8 8 Prakasam district 15 37 35 N 79 5 1 E 15 62639 N 79 08361 E 15 62639 79 08361 Kumbum PHES Gundlakamma 5 5 5 8 380 255 140 Buffer storage 2 9 tmcft included The distance between the two reservoirs is nearly 2 3 km Nallamala Sagar PHES1 26 500 106 Prakasam district 15 40 37 N 79 5 5 E 15 67694 N 79 08472 E 15 67694 79 08472 Nallamala PHES1 Gundlakamma 77 84 5 380 240 120 Buffer storage 42 25 tmcft included The distance between the two reservoirs is nearly 2 km Nallamala Sagar PHES2 900 3 6 Prakasam district 15 39 25 N 79 4 23 E 15 65694 N 79 07306 E 15 65694 79 07306 Nallamala PHES2 Gundlakamma 1 5 2 5 380 230 130 Buffer storage 1 25 tmcft included Distance between the two reservoirs is nearly 1 75 km Nagarjuna Sagar Dam Right Bank PHES 1 500 1 5 Kurnool district 16 5 39 N 78 54 51 E 16 09417 N 78 91417 E 16 09417 78 91417 Nagarjunasagar Dam Right Bank PHES Krishna 270 245 90 Mainly works to pump water from existing Nagarjunasagar reservoir into existing Srisailam reservoir on a seasonal basis to store Krishna and Godavari waters and otherwise as PHES on daily basis The distance between the two reservoirs is nearly 3 1 km Nagarjuna Sagar Right Bank PHES1 37 000 148 Prakasam district 16 5 51 N 78 55 51 E 16 09750 N 78 93083 E 16 09750 78 93083 Nagarjunasagar Right Bank PHES1 Krishna 8 34 650 500 425 Buffer storage 17 tmcft provided The minimum level to be maintained in Nagarjunasagar reservoir is 164 m msl The distance between the two reservoirs is nearly 1 1 km Nagarjuna Sagar Right Bank PHES2 112 000 448 Prakasam district 16 7 45 N 78 56 19 E 16 12917 N 78 93861 E 16 12917 78 93861 Nagarjunasagar Right Bank PHES2 Krishna 21 101 650 500 425 Buffer storage 55 5 tmcft provided The minimum level to be maintained in Nagarjunasagar reservoir is 164 m msl The distance between the two reservoirs is nearly 1 5 km Nagarjuna Sagar Right Bank PHES3 66 000 264 Prakasam district 16 10 7 N 78 55 35 E 16 16861 N 78 92639 E 16 16861 78 92639 Nagarjunasagar Right Bank PHES3 Krishna 11 59 650 500 428 Buffer storage 29 5 tmcft provided The minimum level to be maintained in Nagarjunasagar reservoir is 164 m msl and the corresponding loss of live storage located below this level in Nagarjunasagar reservoir can be included in the buffer storage of PHESs The distance between the two reservoirs is nearly 2 9 km Nagarjuna Sagar tail pond PHES 1 500 1 0 Guntur district 16 34 39 N 79 20 25 E 16 57750 N 79 34028 E 16 57750 79 34028 Nagarjuna Sagar tail pond PHES Krishna 180 164 105 Mainly works to pump water from existing Nagarjuna Sagar tail pond into existing Nagarjuna Sagar reservoir on a seasonal basis to store Krishna and Godavari waters and otherwise as PHES on daily basis Pulichintala Right Bank PHES 300 0 2 Guntur district 16 37 49 N 79 31 11 E 16 63028 N 79 51972 E 16 63028 79 51972 Pulichintala Right Bank PHES Krishna 2 75 72 25 Mainly works to pump water from existing Pulichintala reservoir into existing Nagarjuna Sagar tail pond on a seasonal basis to store Krishna and Godavari waters and otherwise as PHES on daily basis Vykuntapuram PHES 400 0 2 Guntur district 16 46 43 N 80 3 55 E 16 77861 N 80 06528 E 16 77861 80 06528 Vykuntapuram PHES Krishna 55 50 25 Mainly works to pump water from backwaters of new Vykuntapuram barrage across Krishna river upstream of Prakasam Barrage to existing Pulichintala reservoir on a seasonal basis to store Krishna and Godavari waters and otherwise as PHES on daily basis Jalaput PHES 65 000 260 Visakhapatnam district 18 26 53 N 82 28 11 E 18 44806 N 82 46972 E 18 44806 82 46972 Jalaputk PHES Sileru 31 5 838 4 818 6 380 The PHES is constructed by connecting existing Jalaput reservoir with existing Balimela Reservoir MDDL at 439 m msl FRL at 462 m msl and live storage 95 tmcft by a 13 km long unlined pressure tunnel penstock with underground power station 58 Donkarayi PHES 35 000 140 Visakhapatnam district 17 54 47 N 81 51 45 E 17 91306 N 81 86250 E 17 91306 81 86250 Donkarayi PHES Sileru 20 26 900 750 550 13 tmcft buffer storage provided The buffer storage can be enhanced by another 35 tmcft by increasing the FRL to 950 m msl to serve other PHES which are using Godavari water Distance between the two reservoirs is nearly 3 7 km Bhupathipalem PHES 800 3 2 East Godavari district 17 28 35 N 81 47 49 E 17 47639 N 81 79694 E 17 47639 81 79694 Bhupathipalem PHES Godavari 1 1 540 480 310 0 5 tmcft buffer storage provided The distance between the two reservoirs is nearly 4 5 km Polavaram Left bank PHES1 43 000 172 East Godavari district 17 29 51 N 81 27 53 E 17 49750 N 81 46472 E 17 49750 81 46472 Polavavaram left bank PHES1 Godavari 5 18 600 450 470 The required 18 tmcft buffer storage is provided in other PHESs located in the Godavari river basin The distance between the two reservoirs is nearly 3 1 km Polavaram Left bank PHES2 12 000 48 East Godavari district 17 29 15 N 81 31 37 E 17 48750 N 81 52694 E 17 48750 81 52694 Polavavaram left bank PHES2 Godavari 2 4 5 600 450 530 The required 4 5 tmcft buffer storage is provided in other PHESs located in the Godavari river basin The distance between the two reservoirs is nearly 1 7 km Rayalaseema PHES 6 200 24 8 Chittoor district 13 44 25 N 79 12 5 E 13 74028 N 79 20139 E 13 74028 79 20139 Rayalaseema PHES Penna 6 2 1 610 600 550 The main purpose of this PHES is to transfer Krishna and Godavari waters 50 000 cusecs to high lands of Rayalaseema with only one lift from 80 m msl 13 57 47 N 79 32 5 E 13 96306 N 79 53472 E 13 96306 79 53472 near Venkatagiri town in Nellore district to the upper reservoir at 610 m msl in Chittoor district to irrigate by gravity canal vast high lands in Rayalaseema region up to Bhairivani tippa reservoir on Vedavathi River in Ananthapur district 70 This underground power station will also work as PHES PHES powerhouse is to be connected to a 41 km long unlined pressure tunnel which will work as penstocks to the turbine units 58 71 Total 735 550 2 900 460 1225 Notes Power potential MW is in generation mode MDDL Minimum Draw Down Level or lowest bed level of the reservoir FRL Full Reservoir Level m msl meters above mean sea level The total water storage includes nearly 432 tmcft of irrigation components PHES water storage is 793 tmcft only The PHES land requirement is nearly 1 of the land required 41 250 km2 for equivalent electricity generation by Solar PV power plants 54 The power potential doubles in case of pumping operation for six hours in a day for the same water storage Solar edit nbsp nbsp Nambulapulakunta nbsp Vinukonda nbsp Kovvur nbsp Galiveedu nbsp Pinnapuram nbsp Nagalapuram nbsp Kalyandurg nbsp Nallapadu nbsp Jaggayapeta nbsp Nagarimaduguclass notpageimage Map of currently operating and proposed Solar power plants in the Indian state of Andhra Pradesh Green are currently Operating and blue are proposed See also Solar power in India The state is endowed with vast photovoltaic power potential on its marginally productive lands 72 The state has total installed solar power capacity of 4 116 01 MW as of 30 June 2021 38 73 74 75 76 The state is planning to add 10 050 MW solar power capacity to provide power supply to farming sector during the day time 77 78 Out of 10 050 MW 6 400 MW capacity at 10 sites were offered for bidding The winning tariffs are Rs 2 50 per unit which are at least 25 more than the earlier awarded tariffs of Rs 2 per unit in November 2020 even after reducing scope of work no HV transmission line construction outside the solar park state providing the land on lease giving state guarantee for the timely payment for the power sold allowing the state guarantee as security to get financial assistance at lower interest rates disregarding higher solar power potential at these sites compared to Western and northern regions etc 79 80 The AP high court has stayed the award of contracts to the successful bidders on the grounds that these contracts are excluded from the jurisdiction of APERC in contravention of the electricity act 2003 81 82 The state has offered five Ultra Mega Solar Power Projects with a total capacity of 12 200 MW to developers under renewable power export policy outside the state 83 84 85 86 87 Name Operator Location District Sector Installed Capacity MW Kurnool Ultra Mega Solar Park 88 NTPC Pinnapuram Kurnool district central 1 000NP Kunta Ultra Mega Solar Power Project Many Nambulapulakunta Kadiri Anantapur district central 978Ananthapuramu II Mega Solar Park 89 APGENCO Talaricheruvu Anantapur district state 400Galiveedu Solar Park 90 Marrikommadinne Galiveedu mandal Kadapa district central 400Kadapa Ultra Mega Solar Park 91 ENGIE Ponnampalle Mylavaram mandal Kadapa district state 250Amruth Solar Power Plant 92 Amrit Jal Ventures Kadiri Anantapur district private 1MEIL solar thermal 93 Megha Engineering amp Infrastructures Limited Nagalapuram Anantapur district 50Banaganapalle solar Welspun Vemulapadu Banaganapalle mandal Kurnool district 70Hindupur solar ACME Patraganipalle Hindupur mandal Anantapur district 50Yadiki solar Azure Power Vemulapadu Yadiki mandal Anantapur district 50Kuppam solar ACME Morsanapalli Kuppam mandal Chittoor district Private 40Parigi solar First Solar Beechiganipalle Parigi mandal Anantapur district 40Mudasarlova Reservoir Solar Park APGENCO Visakhapatnam Visakhapatnam district state 2Simhadri floating solar NTPC Visakhapatnam Visakhapatnam district central 25Wind power edit nbsp nbsp Kolimigundla nbsp Atmakur nbsp Puthlur nbsp Ramagiri nbsp Nallakonda nbsp Gandikota nbsp Tirumala nbsp Srisailam nbsp Arakuclass notpageimage Map of currently operating and proposed Wind power plants 94 in the Indian state of Andhra Pradesh See also Wind power in India The state has total installed wind power capacity of 4 083 57 MW as on 30 June 2021 38 73 74 95 96 Name Operator Location District Sector Unit wise Capacity MW Installed Capacity MW Ramagiri Wind Mills 97 APGENCO Ramagiri Anantapur State 10x0 2 2 00Narmada Wind farm 98 CLP Wind Farms India Private Ltd Nallakonda Anantapur Private 1 x 50 4 50 04Puthlur RCI Wind farm 99 Wescare India Ltd Puthlur Anantapur Private 1 x 20 20 00Other utility power plants editIn addition to above projects there are nearly 103 MW small Hydro plants nearly 490 MW bagasse industrial amp municipal waste bio mass co generation amp bio mass based power projects nearly 78 79 mini power plants grid connected and nearly 67 20 MW other grid connected plants based on isolated gas wells etc in private sector 38 37 These power plants are not covering captive power capacity in various industries that are not grid connected In addition there are innumerable diesel generator sets installed in the state for stand by supply and emergency power supply needs during power outages Transmission system editPer capita power generation 100 Year Kwh head2014 15 1 0402015 16 1 2302016 17 1 3192017 18 1 3882018 19 1 4802019 20 1 5072020 21 1 4342021 22 1 567See also Electricity sector in India Electricity transmission and distribution The state has well spread transmission system APTransCo DisComs owned and operated transmission lines from 400 kV to 11 kV is 231 127 circuit kilometers excluding the HT lines owned and operated by PGCIL in the state 101 102 For importing and exporting power the state grid is well interconnected with adjoining western and eastern regional grids in addition to adjoining state grids 103 The spread of high voltage transmission lines 11 kV is such that it can form a square matrix of area 1 93 km2 i e on average at least one HT line within 0 7 km vicinity in 160 205 km2 total area of the state DisComs owned and operated LT lines below 11 kV are 292 158 circuit kilometers It represents that there is at least one HT or LT line availability on average within the vicinity of 306 meters in the entire state area The state has 3183 nos substations 33 kV which represents one substation in every 50 33 km2 area on average i e one substation with in 3 6 km distance on average 22 However the maximum peak load met is 9 453 MW as of 14 October 2018 73 Huge installed capacity of the transmission network and the substations are being underutilized with low demand factor See also editTransmission system performance parameters Grid energy storage HVDC Sileru Barsoor List of power stations in India Electricity sector in India Energy policy of India List of largest power stations in the world States of India by installed power capacityReferences edit Regulatory body of AP power sector Andhra Pradesh Electricity Regulatory Commission Retrieved 4 July 2014 APGENGO overview APGENCO Archived from the original on 14 July 2014 Retrieved 19 June 2014 APGENCO and APPDCL apgenco Archived from the original on 12 June 2014 Retrieved 4 July 2014 APTRANSCO Transmission Corporation of AP Archived from the original on 20 June 2014 Retrieved 4 July 2014 APCPDCL Retrieved 29 September 2023 Consumer wise real Time AP Power Supply Position Archived from the original on 19 June 2016 Retrieved 4 July 2016 Andhra Pradesh pulls out of PPAs with NTPC 30 June 2020 Retrieved 4 July 2020 Power Allocation from Central Sector Retrieved 4 July 2017 Merit Order Despatch of Electricity Retrieved 4 July 2017 Andhra Pradesh becomes second state to achieve 100 electrification The Economic Times Retrieved 13 September 2016 Weighted average cost of power Retrieved 29 January 2021 Details of EVCS in India Retrieved 11 July 2020 Transmission System for Integration of over 500 GW RE Capacity by 2030 PDF CEA Retrieved 18 December 2022 Andhra High Court Quashes the 6 4 GW Solar Project Tender by APEGCL 17 June 2021 Retrieved 18 June 2021 Andhra Pradesh Amends 10 GW Agricultural Solar Program to Mitigate Cash Flow Issues Retrieved 23 June 2020 Energization of pump sets as on 31 March 2019 PDF Retrieved 4 July 2019 Andhra Pradesh Launches Policy to Export Renewable Power to Other States 21 July 2020 Retrieved 23 July 2020 GIS map of RE power projects and EV charging stations in AP state Retrieved 3 June 2021 Residential Rooftop Solar To Cost Rs 31 200 Kw In Andhra Pradesh after Subsidy Retrieved 6 July 2021 All India Installed Capacity of Utility Power Stations PDF Retrieved 25 April 2020 a b Salient features at a glance PDF Retrieved 13 May 2020 a b c Salient features of A P Transco A P Genco Discoms PDF Retrieved 13 March 2018 Raghavendra V 12 March 2016 Uninterrupted power for HT consumers soon The Hindu Retrieved 13 March 2016 Daily area wise prices Retrieved 23 October 2016 a b Station wise daily power generation data Retrieved 13 October 2020 Andhra Pradesh issues short term power procurement regulations 14 February 2022 Retrieved 15 February 2022 APERC short term power procurement regulations 2022 PDF Retrieved 15 February 2022 List of Upcoming Thermal Plants in India List of power stations in India PDF Cea nic in Retrieved 4 July 2019 All the World s Coal Power Plants in One Map 19 August 2019 Retrieved 4 November 2019 Coal Fired Plants in Andhra Pradesh Gallery Power Plants Around The World 5 April 2014 Archived from the original on 6 December 2012 Retrieved 10 May 2014 Utilization of stranded gas based power plants See Annexures I amp II PDF Archived from the original PDF on 4 April 2015 Retrieved 15 May 2015 GMR Rajahmundry Ltd Retrieved 12 May 2015 Reliance Power begins equipment exports from its Samalkot project to Bangladesh proj to cut debt Retrieved 29 June 2021 Two Andhra PSUs acquire 216 MW gas power plant from GVK Retrieved 15 December 2016 See Annexure 2 3 Draft National Electricity Plan 2016 CEA PDF Retrieved 15 December 2016 a b Salient data on 31 January 2016 of APTrasCo APGenCo Discoms PDF Retrieved 27 March 2016 a b c d Status of Renewable Energy Power Projects Commissioned in AP State NREDCAP PDF Retrieved 1 July 2021 Balaji Energy to setup 10 MW Somasila hydro electric project Retrieved 27 March 2019 Chetti Peta Mini Hydro Power Plant Alternate Hydro Energy Center Retrieved 5 July 2014 AP Genco paves a new trend in works contracts Retrieved 27 March 2018 AFRY awarded Detailed Design Consultancy Services Contract for a 1200 MW Pumped Storage Project Retrieved 4 May 2020 Pre Feasibility Report of Pinnapuram IRESP Storage Project PDF Retrieved 4 September 2020 2720 MW Pumped Storage Project page 5 PDF Retrieved 4 September 2020 1350 MW Upper Sileru Pumped Storage Project PDF Retrieved 4 June 2021 Environment and Forest Clearances for Dam Projects in 2021 Retrieved 17 January 2022 Comments on Power Ministry Draft Guidelines on Pump Storage Projects in India Retrieved 9 March 2023 Pumped hydro electricity storage is making a comeback in India and the world is taking notice Retrieved 20 May 2020 Declining Renewable Costs Drive Focus on Energy Storage Retrieved 20 May 2020 Interactive map showing the feasible locations of PSS projects in Andhra Pradesh state Retrieved 19 November 2019 Preparation of feasibility reports for pumped storage hydroelectricity projects NREDCAP GoAP PDF Retrieved 20 November 2019 Andhra Pradesh gov t approves 2 75 GW solar wind pumped hydro project by Greenko Retrieved 20 November 2019 Getting to 100 renewables requires cheap energy storage But how cheap Retrieved 20 May 2020 a b c Hunt Julian D Byers Edward Wada Yoshihide Parkinson Simon Gernaat David E H J Langan Simon Van Vuuren Detlef P Riahi Keywan 2020 Global resource potential of seasonal pumped hydropower storage for energy and water storage Nature Communications 11 1 947 Bibcode 2020NatCo 11 947H doi 10 1038 s41467 020 14555 y PMC 7031375 PMID 32075965 Converting to Full Power Retrieved 10 August 2020 100 renewable electricity at no extra cost a piece of cake Retrieved 20 May 2020 Variable Speed Is Key To World s Biggest Pumped Hydro Energy Storage Project China s Fengning Plant 4 July 2018 Retrieved 28 August 2020 a b c Unlined pressure conduits used in hydropower plants PDF Retrieved 20 August 2020 Dam built by robots Japan s Obayashi tests it out Retrieved 23 July 2020 Overburden blasting in a mega coal mine YouTube Retrieved 23 October 2020 Elon Musk Should Build Pumped Hydro With Tesla Energy The Boring Co amp Coal Miners 9 November 2019 Retrieved 17 May 2020 List of existing water reservoirs in AP state Retrieved 15 February 2022 Gandikota PHES Techno commercial Feasibility Report PDF Retrieved 14 September 2020 Annamayya Cheyyeru Reservoir Retrieved 23 July 2020 Owk PHES Techno commercial Feasibility Report PDF Retrieved 14 September 2020 Chitravati PHES Techno commercial Feasibility Report PDF Retrieved 14 September 2020 Somasila PHES Techno commercial Feasibility Report PDF Retrieved 14 September 2020 Hiramandalam Reservoir Retrieved 23 July 2020 Gotta Barrage Retrieved 23 July 2020 Multipurpose Freshwater Coastal Reservoirs and Their Role in Mitigating Climate Change PDF Retrieved 23 May 2023 Development of Tunnelling Technology in China over the Past 40 Years PDF Retrieved 23 June 2022 Global solar atlas Retrieved 1 January 2021 a b c Salient features of A P TRANSCO A P GENCO DISCOMS PDF Retrieved 24 February 2019 a b page 17 Aggregate Revenue Requirement and Tariff Proposal for the Retail Supply Business for FY 2018 19 APSPDCL Retrieved 5 January 2018 State wise installed solar power capacity PDF Ministry of New and Renewable Energy Govt of India Archived from the original PDF on 12 July 2017 Retrieved 24 October 2016 Andhra Pradesh Solar Power Corporation Ltd Retrieved 24 October 2016 10 050 MW mega solar power plants to come up in two phases in Andhra Pradesh Retrieved 13 May 2020 Bid documents 6050 MW submitted for judicial review s no 6 to 15 Retrieved 2 October 2020 AP HC directs State not to enter into deals on 6 400 MW solar tender 8 January 2021 Retrieved 4 February 2021 Gujarat 700 MW award cancellation will impact solar investment Retrieved 11 February 2021 Adani group bags 3 000 MW solar power parks in Andhra Pradesh Retrieved 4 February 2021 Renewable Energy Delays in signing PPAs and the future challenges for procurement Retrieved 11 February 2021 Kadiri ultra mega solar park 4000 MW PDF Retrieved 2 October 2020 Obuladevucheruvu ultra mega solar park 2400MW PDF Retrieved 2 October 2020 Ralla Anantapuram ultra mega solar park 2400 MW PDF Retrieved 2 October 2020 Badvel ultra mega solar park 1400MW PDF Retrieved 2 October 2020 Kalasapadu ultra mega solar park 2000MW PDF Retrieved 2 October 2020 Softbank Joint Venture SB Energy Commissions 350 Megawatt Solar Project In India 21 April 2017 Retrieved 22 April 2017 Solar plant commissioned The Hindu 19 February 2019 Retrieved 20 February 2019 SECI Refuses to Lower Tariffs for Andhra Solar Projects Retrieved 17 February 2020 ENGIE fully commissions 250 MW Kadapa solar project in Andhra Pradesh Retrieved 17 February 2020 Amrit Jal Ventures commissions solar unit in Kadiri The Hindu Business Line 8 March 2012 Retrieved 4 July 2014 Megha Solar Plant National Renewable Energy Laboratory Archived from the original on 28 April 2015 Retrieved 29 April 2015 Potential windfarm India The Wind Power Retrieved 31 March 2010 State wise installed capacity as of 19 October 2016 19 October 2016 Retrieved 20 October 2016 Installed capacity of wind power projects in India Retrieved 27 July 2015 Ramgiri windfarm India The Wind Power Retrieved 5 July 2014 CLP to develop two new windfarms Panchabuta Renewable Energy amp Cleantech in India 7 March 2011 Retrieved 4 July 2014 Puthlur RCI windfarm India The Wind Power Retrieved 4 July 2014 Per capita power consumption CEA Dash Board Retrieved 22 April 2021 Salient data of APTrasCo APGenCo Discoms PDF Retrieved 27 October 2015 Power map of southern region PDF Retrieved 27 October 2015 Connectivity between Southern Grid and Other Power Grids Can Support 19 95 GW Retrieved 2 April 2018 External links editCoal based power plants in India on SourceWatch Electricity grid maps of southern region Retrieved from https en wikipedia org w index php title Power sector of Andhra Pradesh amp oldid 1177702408, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.