fbpx
Wikipedia

Population ecology

Population ecology is a sub-field of ecology that deals with the dynamics of species populations and how these populations interact with the environment, such as birth and death rates, and by immigration and emigration.[2]

Map of population trends of native and invasive species of jellyfish[1]
  Increase (high certainty)
  Increase (low certainty)
  Stable/variable
  Decrease
  No data

The discipline is important in conservation biology, especially in the development of population viability analysis which makes it possible to predict the long-term probability of a species persisting in a given patch of habitat.[3] Although population ecology is a subfield of biology, it provides interesting problems for mathematicians and statisticians who work in population dynamics.[4]

History edit

In the 1940s, ecology was divided into autecology—the study of individual species in relation to the environment—and synecology—the study of groups of species in relation to the environment. The term autecology (from Ancient Greek: αὐτο, aúto, "self"; οίκος, oíkos, "household"; and λόγος, lógos, "knowledge"), refers to roughly the same field of study as concepts such as life cycles and behaviour as adaptations to the environment by individual organisms. Eugene Odum, writing in 1953, considered that synecology should be divided into population ecology, community ecology and ecosystem ecology, renaming autecology as 'species ecology' (Odum regarded "autecology" as an archaic term), thus that there were four subdivisions of ecology.[2]

Terminology edit

A population is defined as a group of interacting organisms of the same species. A demographic structure of a population is how populations are often quantified. The total number of individuals in a population is defined as a population size, and how dense these individuals are is defined as population density. There is also a population's geographic range, which has limits that a species can tolerate (such as temperature).

Population size can be influenced by the per capita population growth rate (rate at which the population size changes per individual in the population.) Births, deaths, emigration, and immigration rates all play a significant role in growth rate. The maximum per capita growth rate for a population is known as the intrinsic rate of increase.

In a population, carrying capacity is known as the maximum population size of the species that the environment can sustain, which is determined by resources available. In many classic population models, r is represented as the intrinsic growth rate, where K is the carrying capacity, and N0 is the initial population size.[5]

Terms used to describe natural groups of individuals in ecological studies[6]
Term Definition
Species population All individuals of a species.
Metapopulation A set of spatially disjunct populations, among which there is some migration.
Population A group of conspecific individuals that is demographically, genetically, or spatially disjunct from other groups of individuals.
Aggregation A spatially clustered group of individuals.
Deme A group of individuals more genetically similar to each other than to other individuals, usually with some degree of spatial isolation as well.
Local population A group of individuals within an investigator-delimited area smaller than the geographic range of the species and often within a population (as defined above). A local population could be a disjunct population as well.
Subpopulation An arbitrary spatially delimited subset of individuals from within a population (as defined above).
Immigration The number of individuals that join a population over time.[7]
Emigration The number of individuals that leave a population over time.[7]

Population dynamics edit

The development of population ecology owes much to the mathematical models known as population dynamics, which were originally formulae derived from demography at the end of the 18th and beginning of 19th century.[8]

The beginning of population dynamics is widely regarded as the work of Malthus,[9] formulated as the Malthusian growth model. According to Malthus, assuming that the conditions (the environment) remain constant (ceteris paribus), a population will grow (or decline) exponentially.[8]: 18  This principle provided the basis for the subsequent predictive theories, such as the demographic studies such as the work of Benjamin Gompertz and Pierre François Verhulst in the early 19th century, who refined and adjusted the Malthusian demographic model.[10]

A more general model formulation was proposed by F. J. Richards in 1959,[11] further expanded by Simon Hopkins, in which the models of Gompertz, Verhulst and also Ludwig von Bertalanffy are covered as special cases of the general formulation. The Lotka–Volterra predator-prey equations are another famous example, as well as the alternative Arditi–Ginzburg equations.

Exponential vs. logistic growth edit

When describing growth models, there are two types of models that can be used: exponential and logistic.

When the per capita rate of increase takes the same positive value regardless of population size, then it shows exponential growth.

When the per capita rate of increase decreases as the population increases towards a maximum limit, then the graph shows logistic growth.[12]

Fisheries and wildlife management edit

In fisheries and wildlife management, population is affected by three dynamic rate functions.

  • Natality or birth rate, often recruitment, which means reaching a certain size or reproductive stage. Usually refers to the age a fish can be caught and counted in nets.
  • Population growth rate, which measures the growth of individuals in size and length. More important in fisheries, where population is often measured in biomass.
  • Mortality, which includes harvest mortality and natural mortality. Natural mortality includes non-human predation, disease and old age.

If N1 is the number of individuals at time 1 then

 
where N0 is the number of individuals at time 0, B is the number of individuals born, D the number that died, I the number that immigrated, and E the number that emigrated between time 0 and time 1.

If we measure these rates over many time intervals, we can determine how a population's density changes over time. Immigration and emigration are present, but are usually not measured.

All of these are measured to determine the harvestable surplus, which is the number of individuals that can be harvested from a population without affecting long-term population stability or average population size. The harvest within the harvestable surplus is termed "compensatory" mortality, where the harvest deaths are substituted for the deaths that would have occurred naturally. Harvest above that level is termed "additive" mortality, because it adds to the number of deaths that would have occurred naturally. These terms are not necessarily judged as "good" and "bad," respectively, in population management. For example, a fish & game agency might aim to reduce the size of a deer population through additive mortality. Bucks might be targeted to increase buck competition, or does might be targeted to reduce reproduction and thus overall population size.

For the management of many fish and other wildlife populations, the goal is often to achieve the largest possible long-run sustainable harvest, also known as maximum sustainable yield (or MSY). Given a population dynamic model, such as any of the ones above, it is possible to calculate the population size that produces the largest harvestable surplus at equilibrium.[13] While the use of population dynamic models along with statistics and optimization to set harvest limits for fish and game is controversial among some scientists,[14] it has been shown to be more effective than the use of human judgment in computer experiments where both incorrect models and natural resource management students competed to maximize yield in two hypothetical fisheries.[15][16] To give an example of a non-intuitive result, fisheries produce more fish when there is a nearby refuge from human predation in the form of a nature reserve, resulting in higher catches than if the whole area was open to fishing.[17][18]

r/K selection edit

At its most elementary level, interspecific competition involves two species utilizing a similar resource. It rapidly gets more complicated, but stripping the phenomenon of all its complications, this is the basic principle: two consumers consuming the same resource.[19]: 222 

An important concept in population ecology is the r/K selection theory. For example, if an animal has the choice of producing one or a few offspring, or to put a lot of effort or little effort in offspring—these are all examples of trade-offs. In order for species to thrive, they must choose what is best for them, leading to a clear distinction between r and K selected species.[20]

The first variable is r (the intrinsic rate of natural increase in population size, density independent) and the second variable is K (the carrying capacity of a population, density dependent).[21] An r-selected species (e.g., many kinds of insects, such as aphids[22]) is one that has high rates of fecundity, low levels of parental investment in the young, and high rates of mortality before individuals reach maturity. Evolution favors productivity in r-selected species.

In contrast, a K-selected species (such as humans) has low rates of fecundity, high levels of parental investment in the young, and low rates of mortality as individuals mature. Evolution in K-selected species favors efficiency in the conversion of more resources into fewer offspring.[23][24] K-selected species generally experience stronger competition, where populations generally live near carrying capacity. These species have heavy investment in offspring, resulting in longer lived organisms, and longer period of maturation. Offspring of K-selected species generally have a higher probability of survival, due to heavy parental care and nurturing.[20]

Top-down and bottom-up controls edit

Top-down controls edit

In some populations, organisms in lower trophic levels are controlled by organisms at the top. This is known as top-down control.

For example, the presence of top carnivores keep herbivore populations in check. If there were no top carnivores in the ecosystem, then herbivore populations would rapidly increase, leading to all plants being eaten. This ecosystem would eventually collapse.[25]

Bottom-up controls edit

Bottom-up controls, on the other hand, are driven by producers in the ecosystem. If plant populations change, then the population of all species would be impacted.

For example, if plant populations decreased significantly, the herbivore populations would decrease, which would lead to a carnivore population decreasing too. Therefore, if all of the plants disappeared, then the ecosystem would collapse. Another example would be if there were too many plants available, then two herbivore populations may compete for the same food. The competition would lead to an eventual removal of one population.[25]

Do all ecosystems have to be either top-down or bottom-up? edit

An ecosystem does not have to be either top-down or bottom-up. There are occasions where an ecosystem could be bottom-up sometimes, such as a marine ecosystem, but then have periods of top-down control due to fishing.[26]

Survivorship curves edit

Survivorship curves show the distribution of populations according to age. Survivorship curves are important to be able to compare generations, populations, or even different species.[27]

Humans and most other mammals have a type I survivorship because death occurs in older years. Typically, Type I survivorship curves characterize K-selected species.

Type II survivorship shows that death at any age is equally probable.

Type III curves indicate few surviving the younger years, but after a certain age, individuals are much more likely to survive. Type III survivorship typically characterizes r-selected species.[28]

Metapopulation edit

Populations are also studied and conceptualized through the "metapopulation" concept. The metapopulation concept was introduced in 1969:[29]

"as a population of populations which go extinct locally and recolonize."[30]: 105 

Metapopulation ecology is a simplified model of the landscape into patches of varying levels of quality.[31] Patches are either occupied or they are not. Migrants moving among the patches are structured into metapopulations either as sources or sinks. Source patches are productive sites that generate a seasonal supply of migrants to other patch locations. Sink patches are unproductive sites that only receive migrants. In metapopulation terminology there are emigrants (individuals that leave a patch) and immigrants (individuals that move into a patch). Metapopulation models examine patch dynamics over time to answer questions about spatial and demographic ecology. An important concept in metapopulation ecology is the rescue effect, where small patches of lower quality (i.e., sinks) are maintained by a seasonal influx of new immigrants. Metapopulation structure evolves from year to year, where some patches are sinks, such as dry years, and become sources when conditions are more favorable. Ecologists utilize a mixture of computer models and field studies to explain metapopulation structure.[32]

Journals edit

The first journal publication of the Society of Population Ecology, titled Population Ecology (originally called Researches on Population Ecology) was released in 1952.[33]

Scientific articles on population ecology can also be found in the Journal of Animal Ecology, Oikos and other journals.

See also edit

References edit

  1. ^ Brotz, Lucas; Cheung, William W. L; Kleisner, Kristin; Pakhomov, Evgeny; Pauly, Daniel (2012). "Increasing jellyfish populations: Trends in Large Marine Ecosystems". Hydrobiologia. 690 (1): 3–20. doi:10.1007/s10750-012-1039-7.
  2. ^ a b Odum, Eugene P. (1959). Fundamentals of Ecology (Second ed.). Philadelphia and London: W. B. Saunders Co. p. 9, 546. ISBN 9780721669410. OCLC 554879.
  3. ^
  4. ^ Kingsland, S. (1995). Modeling Nature: Episodes in the History of Population Ecology. University of Chicago Press. ISBN 978-0-226-43728-6.
  5. ^ "Population Dynamics | e-cology". Retrieved 2021-12-08.
  6. ^ Wells, J. V.; Richmond, M. E. (1995). (PDF). Wildlife Society Bulletin. 23 (3): 458–462. Archived from the original (PDF) on November 4, 2005.
  7. ^ a b Rockwood, Larry L. (2015-06-15). Introduction to Population Ecology. John Wiley & Sons. ISBN 978-1-118-94757-9.
  8. ^ a b Turchin, P. (2001). "Does Population Ecology Have General Laws?". Oikos. 94 (1): 17–26. doi:10.1034/j.1600-0706.2001.11310.x. S2CID 27090414.
  9. ^ Malthus, Thomas Robert. An Essay on the Principle of Population: Library of Economics
  10. ^ Verhulst, P. H. (1838). "Notice sur la loi que la population poursuit dans son accroissement". Corresp. Mathématique et Physique. 10: 113–121.
  11. ^ Richards, F. J. (June 1959). "A Flexible Growth Function for Empirical Use". Journal of Experimental Botany. 10 (29): 290–300. doi:10.1093/jxb/10.2.290. JSTOR 23686557. Retrieved 16 November 2020.
  12. ^ "Exponential growth & logistic growth (article)". Khan Academy. Retrieved 2021-12-08.
  13. ^ Clark, Colin (1990). Mathematical bioeconomics : the optimal management of renewable resources. New York: Wiley. ISBN 978-0471508830.[page needed]
  14. ^ Finley, C; Oreskes, N (2013). "Maximum sustained yield: A policy disguised as science". ICES Journal of Marine Science. 70 (2): 245–50. doi:10.1093/icesjms/fss192.
  15. ^ Holden, Matthew H; Ellner, Stephen P (2016). "Human judgment vs. Quantitative models for the management of ecological resources". Ecological Applications. 26 (5): 1553–1565. arXiv:1603.04518. doi:10.1890/15-1295. PMID 27755756. S2CID 1279459.
  16. ^ Collins, Nathan (March 11, 2016). "Sometimes, Even Bad Models Make Better Decisions Than People". Pacific Standard. Retrieved 2023-08-20.
  17. ^ Chakraborty, Kunal; Das, Kunal; Kar, T. K (2013). "An ecological perspective on marine reserves in prey–predator dynamics". Journal of Biological Physics. 39 (4): 749–76. doi:10.1007/s10867-013-9329-5. PMC 3758828. PMID 23949368.
  18. ^ Lv, Yunfei; Yuan, Rong; Pei, Yongzhen (2013). "A prey-predator model with harvesting for fishery resource with reserve area". Applied Mathematical Modelling. 37 (5): 3048–62. doi:10.1016/j.apm.2012.07.030.
  19. ^ Vandermeer, J. H.; Goldberg, D. E. (2003). Population ecology: First principles. Woodstock, Oxfordshire: Princeton University Press. ISBN 978-0-691-11440-8.
  20. ^ a b "r and K selection". www2.nau.edu. Retrieved 2021-12-08.
  21. ^ Begon, M.; Townsend, C. R.; Harper, J. L. (2006). Ecology: From Individuals to Ecosystems (4th ed.). Oxford, UK: Blackwell Publishing. ISBN 978-1-4051-1117-1.
  22. ^ Whitham, T. G. (1978). "Habitat Selection by Pemphigus Aphids in Response to Response Limitation and Competition". Ecology. 59 (6): 1164–1176. doi:10.2307/1938230. JSTOR 1938230.
  23. ^ MacArthur, R.; Wilson, E. O. (1967). "The Theory of Island Biogeography". Princeton, NJ: Princeton University Press. {{cite journal}}: Cite journal requires |journal= (help)
  24. ^ Pianka, E. R. (1972). "r and K Selection or b and d Selection?". The American Naturalist. 106 (951): 581–588. doi:10.1086/282798. S2CID 83947445.
  25. ^ a b "The top-down vs bottom-up control in an ecosystem". Eco-intelligent™. 2018-04-26. Retrieved 2021-12-08.
  26. ^ Lynam, Christopher Philip; Llope, Marcos; Möllmann, Christian; Helaouët, Pierre; Bayliss-Brown, Georgia Anne; Stenseth, Nils C. (2017-02-21). "Interaction between top-down and bottom-up control in marine food webs". Proceedings of the National Academy of Sciences. 114 (8): 1952–1957. Bibcode:2017PNAS..114.1952L. doi:10.1073/pnas.1621037114. ISSN 0027-8424. PMC 5338359. PMID 28167770.
  27. ^ "Survivorship Curves | Learn Science at Scitable". www.nature.com. Retrieved 2021-12-08.
  28. ^ "Survivorship Curves" (PDF).
  29. ^ Levins, R. (1969). "Some demographic and genetic consequences of environmental heterogeneity for biological control". Bulletin of the Entomological Society of America. Columbia University Press. 15 (3): 237–240. doi:10.1093/besa/15.3.237. ISBN 978-0-231-12680-9.
  30. ^ Levins, R. (1970). Gerstenhaber, M. (ed.). Extinction. In: Some Mathematical Questions in Biology. AMS Bookstore. pp. 77–107. ISBN 978-0-8218-1152-8.
  31. ^ Hanski, I. (1998). (PDF). Nature. 396 (6706): 41–49. Bibcode:1998Natur.396...41H. doi:10.1038/23876. S2CID 4405264. Archived from the original (PDF) on 2010-12-31.
  32. ^ Hanski, I.; Gaggiotti, O. E., eds. (2004). Ecology, genetics and evolution of metapopulations. Burlington, MA: Elsevier Academic Press. ISBN 978-0-12-323448-3.
  33. ^ "Population Ecology". John Wiley & Sons. doi:10.1002/(ISSN)1438-390X.

Further reading edit

  • Henderson, Kirsten; Loreau, Michel (2019). "An ecological theory of changing human population dynamics". Kirsten Henderson (Centre for Biodiversity, Theory, and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France) and Michel Loreau. People and Nature, British Ecological Society. 1: 31–43. doi:10.1002/pan3.8.

Bibliography edit

  • Kareiva, Peter (1989). "Renewing the Dialogue between Theory and Experiments in Population Ecology". In Roughgarden J., R.M. May and S. A. Levin (ed.). Perspectives in ecological theory. New Jersey: Princeton University Press. p. 394.


population, ecology, field, ecology, that, deals, with, dynamics, species, populations, these, populations, interact, with, environment, such, birth, death, rates, immigration, emigration, population, trends, native, invasive, species, jellyfish, increase, hig. Population ecology is a sub field of ecology that deals with the dynamics of species populations and how these populations interact with the environment such as birth and death rates and by immigration and emigration 2 Map of population trends of native and invasive species of jellyfish 1 Increase high certainty Increase low certainty Stable variable Decrease No dataThe discipline is important in conservation biology especially in the development of population viability analysis which makes it possible to predict the long term probability of a species persisting in a given patch of habitat 3 Although population ecology is a subfield of biology it provides interesting problems for mathematicians and statisticians who work in population dynamics 4 Contents 1 History 2 Terminology 3 Population dynamics 3 1 Exponential vs logistic growth 4 Fisheries and wildlife management 5 r K selection 6 Top down and bottom up controls 6 1 Top down controls 6 2 Bottom up controls 6 3 Do all ecosystems have to be either top down or bottom up 7 Survivorship curves 8 Metapopulation 9 Journals 10 See also 11 References 12 Further reading 13 BibliographyHistory editIn the 1940s ecology was divided into autecology the study of individual species in relation to the environment and synecology the study of groups of species in relation to the environment The term autecology from Ancient Greek aὐto auto self oikos oikos household and logos logos knowledge refers to roughly the same field of study as concepts such as life cycles and behaviour as adaptations to the environment by individual organisms Eugene Odum writing in 1953 considered that synecology should be divided into population ecology community ecology and ecosystem ecology renaming autecology as species ecology Odum regarded autecology as an archaic term thus that there were four subdivisions of ecology 2 Terminology editA population is defined as a group of interacting organisms of the same species A demographic structure of a population is how populations are often quantified The total number of individuals in a population is defined as a population size and how dense these individuals are is defined as population density There is also a population s geographic range which has limits that a species can tolerate such as temperature Population size can be influenced by the per capita population growth rate rate at which the population size changes per individual in the population Births deaths emigration and immigration rates all play a significant role in growth rate The maximum per capita growth rate for a population is known as the intrinsic rate of increase In a population carrying capacity is known as the maximum population size of the species that the environment can sustain which is determined by resources available In many classic population models r is represented as the intrinsic growth rate where K is the carrying capacity and N0 is the initial population size 5 Terms used to describe natural groups of individuals in ecological studies 6 Term DefinitionSpecies population All individuals of a species Metapopulation A set of spatially disjunct populations among which there is some migration Population A group of conspecific individuals that is demographically genetically or spatially disjunct from other groups of individuals Aggregation A spatially clustered group of individuals Deme A group of individuals more genetically similar to each other than to other individuals usually with some degree of spatial isolation as well Local population A group of individuals within an investigator delimited area smaller than the geographic range of the species and often within a population as defined above A local population could be a disjunct population as well Subpopulation An arbitrary spatially delimited subset of individuals from within a population as defined above Immigration The number of individuals that join a population over time 7 Emigration The number of individuals that leave a population over time 7 Population dynamics editMain article Population dynamics The development of population ecology owes much to the mathematical models known as population dynamics which were originally formulae derived from demography at the end of the 18th and beginning of 19th century 8 The beginning of population dynamics is widely regarded as the work of Malthus 9 formulated as the Malthusian growth model According to Malthus assuming that the conditions the environment remain constant ceteris paribus a population will grow or decline exponentially 8 18 This principle provided the basis for the subsequent predictive theories such as the demographic studies such as the work of Benjamin Gompertz and Pierre Francois Verhulst in the early 19th century who refined and adjusted the Malthusian demographic model 10 A more general model formulation was proposed by F J Richards in 1959 11 further expanded by Simon Hopkins in which the models of Gompertz Verhulst and also Ludwig von Bertalanffy are covered as special cases of the general formulation The Lotka Volterra predator prey equations are another famous example as well as the alternative Arditi Ginzburg equations Exponential vs logistic growth edit When describing growth models there are two types of models that can be used exponential and logistic When the per capita rate of increase takes the same positive value regardless of population size then it shows exponential growth When the per capita rate of increase decreases as the population increases towards a maximum limit then the graph shows logistic growth 12 Fisheries and wildlife management editMain article Population dynamics of fisheries See also Matrix population models In fisheries and wildlife management population is affected by three dynamic rate functions Natality or birth rate often recruitment which means reaching a certain size or reproductive stage Usually refers to the age a fish can be caught and counted in nets Population growth rate which measures the growth of individuals in size and length More important in fisheries where population is often measured in biomass Mortality which includes harvest mortality and natural mortality Natural mortality includes non human predation disease and old age If N1 is the number of individuals at time 1 thenN 1 N 0 B D I E displaystyle N 1 N 0 B D I E nbsp where N0 is the number of individuals at time 0 B is the number of individuals born D the number that died I the number that immigrated and E the number that emigrated between time 0 and time 1 If we measure these rates over many time intervals we can determine how a population s density changes over time Immigration and emigration are present but are usually not measured All of these are measured to determine the harvestable surplus which is the number of individuals that can be harvested from a population without affecting long term population stability or average population size The harvest within the harvestable surplus is termed compensatory mortality where the harvest deaths are substituted for the deaths that would have occurred naturally Harvest above that level is termed additive mortality because it adds to the number of deaths that would have occurred naturally These terms are not necessarily judged as good and bad respectively in population management For example a fish amp game agency might aim to reduce the size of a deer population through additive mortality Bucks might be targeted to increase buck competition or does might be targeted to reduce reproduction and thus overall population size For the management of many fish and other wildlife populations the goal is often to achieve the largest possible long run sustainable harvest also known as maximum sustainable yield or MSY Given a population dynamic model such as any of the ones above it is possible to calculate the population size that produces the largest harvestable surplus at equilibrium 13 While the use of population dynamic models along with statistics and optimization to set harvest limits for fish and game is controversial among some scientists 14 it has been shown to be more effective than the use of human judgment in computer experiments where both incorrect models and natural resource management students competed to maximize yield in two hypothetical fisheries 15 16 To give an example of a non intuitive result fisheries produce more fish when there is a nearby refuge from human predation in the form of a nature reserve resulting in higher catches than if the whole area was open to fishing 17 18 r K selection editMain article r K selection At its most elementary level interspecific competition involves two species utilizing a similar resource It rapidly gets more complicated but stripping the phenomenon of all its complications this is the basic principle two consumers consuming the same resource 19 222 An important concept in population ecology is the r K selection theory For example if an animal has the choice of producing one or a few offspring or to put a lot of effort or little effort in offspring these are all examples of trade offs In order for species to thrive they must choose what is best for them leading to a clear distinction between r and K selected species 20 The first variable is r the intrinsic rate of natural increase in population size density independent and the second variable is K the carrying capacity of a population density dependent 21 An r selected species e g many kinds of insects such as aphids 22 is one that has high rates of fecundity low levels of parental investment in the young and high rates of mortality before individuals reach maturity Evolution favors productivity in r selected species In contrast a K selected species such as humans has low rates of fecundity high levels of parental investment in the young and low rates of mortality as individuals mature Evolution in K selected species favors efficiency in the conversion of more resources into fewer offspring 23 24 K selected species generally experience stronger competition where populations generally live near carrying capacity These species have heavy investment in offspring resulting in longer lived organisms and longer period of maturation Offspring of K selected species generally have a higher probability of survival due to heavy parental care and nurturing 20 Top down and bottom up controls editMain article Trophic cascade Top down controls edit In some populations organisms in lower trophic levels are controlled by organisms at the top This is known as top down control For example the presence of top carnivores keep herbivore populations in check If there were no top carnivores in the ecosystem then herbivore populations would rapidly increase leading to all plants being eaten This ecosystem would eventually collapse 25 Bottom up controls edit Bottom up controls on the other hand are driven by producers in the ecosystem If plant populations change then the population of all species would be impacted For example if plant populations decreased significantly the herbivore populations would decrease which would lead to a carnivore population decreasing too Therefore if all of the plants disappeared then the ecosystem would collapse Another example would be if there were too many plants available then two herbivore populations may compete for the same food The competition would lead to an eventual removal of one population 25 Do all ecosystems have to be either top down or bottom up edit An ecosystem does not have to be either top down or bottom up There are occasions where an ecosystem could be bottom up sometimes such as a marine ecosystem but then have periods of top down control due to fishing 26 Survivorship curves editMain article Survivorship curves Survivorship curves show the distribution of populations according to age Survivorship curves are important to be able to compare generations populations or even different species 27 Humans and most other mammals have a type I survivorship because death occurs in older years Typically Type I survivorship curves characterize K selected species Type II survivorship shows that death at any age is equally probable Type III curves indicate few surviving the younger years but after a certain age individuals are much more likely to survive Type III survivorship typically characterizes r selected species 28 Metapopulation editMain article MetapopulationPopulations are also studied and conceptualized through the metapopulation concept The metapopulation concept was introduced in 1969 29 as a population of populations which go extinct locally and recolonize 30 105 Metapopulation ecology is a simplified model of the landscape into patches of varying levels of quality 31 Patches are either occupied or they are not Migrants moving among the patches are structured into metapopulations either as sources or sinks Source patches are productive sites that generate a seasonal supply of migrants to other patch locations Sink patches are unproductive sites that only receive migrants In metapopulation terminology there are emigrants individuals that leave a patch and immigrants individuals that move into a patch Metapopulation models examine patch dynamics over time to answer questions about spatial and demographic ecology An important concept in metapopulation ecology is the rescue effect where small patches of lower quality i e sinks are maintained by a seasonal influx of new immigrants Metapopulation structure evolves from year to year where some patches are sinks such as dry years and become sources when conditions are more favorable Ecologists utilize a mixture of computer models and field studies to explain metapopulation structure 32 Journals editThe first journal publication of the Society of Population Ecology titled Population Ecology originally called Researches on Population Ecology was released in 1952 33 Scientific articles on population ecology can also be found in the Journal of Animal Ecology Oikos and other journals See also editDensity dependent inhibition Ecological overshoot Irruptive growth Lists of organisms by population Overpopulation Population density Population distribution Population dynamics Population dynamics of fisheries Population genetics Population growth Theoretical ecologyReferences edit Brotz Lucas Cheung William W L Kleisner Kristin Pakhomov Evgeny Pauly Daniel 2012 Increasing jellyfish populations Trends in Large Marine Ecosystems Hydrobiologia 690 1 3 20 doi 10 1007 s10750 012 1039 7 a b Odum Eugene P 1959 Fundamentals of Ecology Second ed Philadelphia and London W B Saunders Co p 9 546 ISBN 9780721669410 OCLC 554879 AAAS Atlas of Population and Environment Kingsland S 1995 Modeling Nature Episodes in the History of Population Ecology University of Chicago Press ISBN 978 0 226 43728 6 Population Dynamics e cology Retrieved 2021 12 08 Wells J V Richmond M E 1995 Populations metapopulations and species populations What are they and who should care PDF Wildlife Society Bulletin 23 3 458 462 Archived from the original PDF on November 4 2005 a b Rockwood Larry L 2015 06 15 Introduction to Population Ecology John Wiley amp Sons ISBN 978 1 118 94757 9 a b Turchin P 2001 Does Population Ecology Have General Laws Oikos 94 1 17 26 doi 10 1034 j 1600 0706 2001 11310 x S2CID 27090414 Malthus Thomas Robert An Essay on the Principle of Population Library of Economics Verhulst P H 1838 Notice sur la loi que la population poursuit dans son accroissement Corresp Mathematique et Physique 10 113 121 Richards F J June 1959 A Flexible Growth Function for Empirical Use Journal of Experimental Botany 10 29 290 300 doi 10 1093 jxb 10 2 290 JSTOR 23686557 Retrieved 16 November 2020 Exponential growth amp logistic growth article Khan Academy Retrieved 2021 12 08 Clark Colin 1990 Mathematical bioeconomics the optimal management of renewable resources New York Wiley ISBN 978 0471508830 page needed Finley C Oreskes N 2013 Maximum sustained yield A policy disguised as science ICES Journal of Marine Science 70 2 245 50 doi 10 1093 icesjms fss192 Holden Matthew H Ellner Stephen P 2016 Human judgment vs Quantitative models for the management of ecological resources Ecological Applications 26 5 1553 1565 arXiv 1603 04518 doi 10 1890 15 1295 PMID 27755756 S2CID 1279459 Collins Nathan March 11 2016 Sometimes Even Bad Models Make Better Decisions Than People Pacific Standard Retrieved 2023 08 20 Chakraborty Kunal Das Kunal Kar T K 2013 An ecological perspective on marine reserves in prey predator dynamics Journal of Biological Physics 39 4 749 76 doi 10 1007 s10867 013 9329 5 PMC 3758828 PMID 23949368 Lv Yunfei Yuan Rong Pei Yongzhen 2013 A prey predator model with harvesting for fishery resource with reserve area Applied Mathematical Modelling 37 5 3048 62 doi 10 1016 j apm 2012 07 030 Vandermeer J H Goldberg D E 2003 Population ecology First principles Woodstock Oxfordshire Princeton University Press ISBN 978 0 691 11440 8 a b r and K selection www2 nau edu Retrieved 2021 12 08 Begon M Townsend C R Harper J L 2006 Ecology From Individuals to Ecosystems 4th ed Oxford UK Blackwell Publishing ISBN 978 1 4051 1117 1 Whitham T G 1978 Habitat Selection by Pemphigus Aphids in Response to Response Limitation and Competition Ecology 59 6 1164 1176 doi 10 2307 1938230 JSTOR 1938230 MacArthur R Wilson E O 1967 The Theory of Island Biogeography Princeton NJ Princeton University Press a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Pianka E R 1972 r and K Selection or b and d Selection The American Naturalist 106 951 581 588 doi 10 1086 282798 S2CID 83947445 a b The top down vs bottom up control in an ecosystem Eco intelligent 2018 04 26 Retrieved 2021 12 08 Lynam Christopher Philip Llope Marcos Mollmann Christian Helaouet Pierre Bayliss Brown Georgia Anne Stenseth Nils C 2017 02 21 Interaction between top down and bottom up control in marine food webs Proceedings of the National Academy of Sciences 114 8 1952 1957 Bibcode 2017PNAS 114 1952L doi 10 1073 pnas 1621037114 ISSN 0027 8424 PMC 5338359 PMID 28167770 Survivorship Curves Learn Science at Scitable www nature com Retrieved 2021 12 08 Survivorship Curves PDF Levins R 1969 Some demographic and genetic consequences of environmental heterogeneity for biological control Bulletin of the Entomological Society of America Columbia University Press 15 3 237 240 doi 10 1093 besa 15 3 237 ISBN 978 0 231 12680 9 Levins R 1970 Gerstenhaber M ed Extinction In Some Mathematical Questions in Biology AMS Bookstore pp 77 107 ISBN 978 0 8218 1152 8 Hanski I 1998 Metapopulation dynamics PDF Nature 396 6706 41 49 Bibcode 1998Natur 396 41H doi 10 1038 23876 S2CID 4405264 Archived from the original PDF on 2010 12 31 Hanski I Gaggiotti O E eds 2004 Ecology genetics and evolution of metapopulations Burlington MA Elsevier Academic Press ISBN 978 0 12 323448 3 Population Ecology John Wiley amp Sons doi 10 1002 ISSN 1438 390X Further reading editHenderson Kirsten Loreau Michel 2019 An ecological theory of changing human population dynamics Kirsten Henderson Centre for Biodiversity Theory and Modelling Theoretical and Experimental Ecology Station CNRS Moulis France and Michel Loreau People and Nature British Ecological Society 1 31 43 doi 10 1002 pan3 8 Bibliography editKareiva Peter 1989 Renewing the Dialogue between Theory and Experiments in Population Ecology In Roughgarden J R M May and S A Levin ed Perspectives in ecological theory New Jersey Princeton University Press p 394 Retrieved from https en wikipedia org w index php title Population ecology amp oldid 1199600288, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.