fbpx
Wikipedia

Plagioclase

Plagioclase (/ˈplæ(i)əˌkls, ˈpl-, -ˌklz/ PLAJ-(ee)-ə-klayss, PLAYJ-, -⁠klayz)[4] is a series of tectosilicate (framework silicate) minerals within the feldspar group. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a continuous solid solution series, more properly known as the plagioclase feldspar series. This was first shown by the German mineralogist Johann Friedrich Christian Hessel (1796–1872) in 1826. The series ranges from albite to anorthite endmembers (with respective compositions NaAlSi3O8 to CaAl2Si2O8), where sodium and calcium atoms can substitute for each other in the mineral's crystal lattice structure. Plagioclase in hand samples is often identified by its polysynthetic crystal twinning or "record-groove" effect.

Plagioclase
A photomicrograph of a plagioclase crystal (gray) under cross polarized light. The plagioclase crystal shows a distinct banding effect called polysynthetic twinning.
General
CategoryFeldspar mineral group, tectosilicate
Formula
(repeating unit)
NaAlSi3O8 – CaAl2Si2O8
IMA symbolPl[1]
Crystal systemTriclinic
Crystal classPinacoidal (1)
(same H-M symbol)
Space groupC1
Identification
ColorWhite, gray, or bluish white
Mohs scale hardness6–6.5
LusterVitreous
StreakWhite
DiaphaneityTransparent to translucent
Specific gravity2.62 (albite) to 2.76 (anorthite)[2]
Optical propertiesBiaxial (+) albite, biaxial (-) anorthite[2]
Refractive indexAlbite: nα 1.527, nβ 1.532 nγ 1.538
Anorthite: nα 1.577 nβ 1.585 nγ 1.590[2]
SolubilityAlbite insoluble in HCl, anorthite decomposed by HCl[2]
References[3]
Plagioclase displaying cleavage. (unknown scale)
In volcanic rocks, fine-grained plagioclase can display a "microlitic" texture of many small crystals.

Plagioclase is a major constituent mineral in Earth's crust and is consequently an important diagnostic tool in petrology for identifying the composition, origin and evolution of igneous rocks. Plagioclase is also a major constituent of rock in the highlands of the Moon. Analysis of thermal emission spectra from the surface of Mars suggests that plagioclase is the most abundant mineral in the crust of Mars.[5]

Its name comes from Ancient Greek πλάγιος (plágios) 'oblique', and κλάσις (klásis) 'fracture', in reference to its two cleavage angles.

Properties edit

Plagioclase is the most common and abundant mineral group in the Earth's crust. Part of the feldspar family of minerals, it is abundant in igneous and metamorphic rock, and it is also common as a detrital mineral in sedimentary rock.[6][7] It is not a single mineral, but is a solid solution of two end members, albite or sodium feldspar (NaAlSi3O8) and anorthite or calcium feldspar (CaAl2Si2O8). These can be present in plagioclase in any proportion from pure anorthite to pure albite.[8] The composition of plagioclase can thus be written as Na1−xCaxAl1+xSi3−xO8 where x ranges from 0 for pure albite to 1 for pure anorthite. This solid solution series is known as the plagioclase series.[9][10] The composition of a particular sample of plagioclase is customarily expressed as the mol% of anorthite in the sample. For example, plagioclase that is 40 mol% anorthite would be described as An40 plagioclase.[11]

The ability of albite and anorthite to form solid solutions in any proportions at elevated temperature reflects the ease with which calcium and aluminium can substitute for sodium and silicon in the plagioclase crystal structure. Although a calcium ion has a charge of +2, versus +1 for a sodium ion, the two ions have very nearly the same effective radius. The difference in charge is accommodated by the coupled substitution of aluminium (charge +3) for silicon (charge +4), both of which can occupy tetrahedral sites (surrounded by four oxygen ions). This contrasts with potassium, which has the same charge as sodium, but is a significantly larger ion. As a result of the size and charge difference between potassium and calcium, there is a very wide miscibility gap between anorthite and potassium feldspar, (KAlSi3O8), the third common rock-forming feldspar end member. Potassium feldspar does form a solid solution series with albite, due to the identical charges of sodium and potassium ions, which is known as the alkali feldspar series. Thus, almost all feldspar found on Earth is either plagioclase or alkali feldspar, with the two series overlapping for pure albite. When a plagioclase composition is described by its anorthite mol% (such as An40 in the previous example) it is assumed that the remainder is albite, with only a minor component of potassium feldspar.[12]

Plagioclase of any composition shares many basic physical characteristics, while other characteristics vary smoothly with composition.[9] The Mohs hardness of all plagioclase species is 6 to 6.5,[12] and cleavage is perfect on [001] and good on [010], with the cleavage planes meeting at an angle of 93 to 94 degrees.[13] It is from this slightly oblique cleavage angle that plagioclase gets its name, Ancient Greek plágios (πλάγιος 'oblique') + klásis (κλάσις 'fracture'). The name was introduced by August Breithaupt in 1847.[10] There is also a poor cleavage on [110] rarely seen in hand samples.[13]

The luster is vitreous to pearly and the diaphaneity is transparent to translucent.[8] The tenacity is brittle, and the fracture is uneven or conchoidal, but the fracture is rarely observed due to the strong tendency of the mineral to cleave instead.[14] At low temperature, the crystal structure belongs to the triclinic system, space group P1[15][16] Well-formed crystals are rare and are most commonly sodic in composition.[17] Well-shaped samples are instead typically cleavage fragments. Well-formed crystals are typically bladed or tabular parallel to [010].[8]

Plagioclase is usually white to greyish-white in color, with a slight tendency for more calcium-rich samples to be darker.[9] Impurities can infrequently tint the mineral greenish, yellowish, or flesh-red.[8] Ferric iron (Fe3+) gives a pale yellow color in plagioclase feldspar from Lake County, Oregon.[18] The specific gravity increases smoothly with calcium content, from 2.62 for pure albite to 2.76 for pure anorthite, and this can provide a useful estimate of composition if measured accurately.[8] The index of refraction likewise varies smoothly from 1.53 to 1.58, and, if measured carefully, this also gives a useful composition estimate.[13]

Plagioclase almost universally shows a characteristic polysynthetic twinning that produces twinning striations on [010]. These striations allow plagioclase to be distinguished from alkali feldspar. Plagioclase often also displays Carlsbad, Baveno, and Manebach Law twinning.[8]

Plagioclase series members edit

The composition of a plagioclase feldspar is typically denoted by its overall fraction of anorthite (%An) or albite (%Ab). There are several named plagioclase feldspars that fall between albite and anorthite in the series. The following table shows their compositions in terms of constituent anorthite and albite percentages.[19][20]

Plagioclase minerals and their compositions
Name % CaAl2Si2O8
% NaAlSi3O8 Image
Anorthite 90–100 10–0  
Bytownite 70–90 30–10  
Labradorite 50–70 50–30  
Andesine 30–50 70–50  
Oligoclase 10–30 90–70  
Albite 0–10 100–90  

The distinction between these minerals cannot easily be made in the field. The composition can be roughly determined by specific gravity, but accurate measurement requires chemical or optical tests.[8] The composition in a crushed grain mount can be obtained by the Tsuboi method, which yields an accurate measurement of the minimum refractive index that in turn gives an accurate composition. In thin section, the composition can be determined by either the Michel Lévy or Carlsbad-albite methods. The former relies on accurate measure of minimum index of refraction, while the latter relies on measuring the extinction angle under a polarizing microscope. The extinction angle is an optical characteristic and varies with the albite fraction (%Ab).[21]

Endmembers edit

Intermediate members edit

The intermediate members of the plagioclase group are very similar to each other and normally cannot be distinguished except by their optical properties. The specific gravity in each member (albite 2.62) increases 0.02 per 10% increase in anorthite (2.75).

 
Labradorite displaying typical iridescent effect termed labradorescence. (unknown scale)
  • Labradorite is the characteristic feldspar of the more basic rock types such as gabbro or basalt.[28] Labradorite frequently shows an iridescent display of colors due to light refracting within the lamellae of the crystal.[29] It is named after Labrador, where it is a constituent of the intrusive igneous rock anorthosite which is composed almost entirely of plagioclase.[28] A variety of labradorite known as spectrolite is found in Finland.[30][31]
  • Andesine is a characteristic mineral of rocks such as diorite which contain a moderate amount of silica and related volcanics such as andesite.[28]
  • Oligoclase is common in granite and monzonite.[28] The name oligoclase is derived from the Greek olígos ('small, slight') + klásis ('fracture'), in reference to the fact that its cleavage angle differs significantly from 90°. The term was first used by Breithaupt in 1826.[32] Sunstone is mainly oligoclase (sometimes albite) with flakes of hematite.[28]

Petrogenesis edit

 
Bowen's reaction series
 
QAPF diagram for classification of plutonic rocks

Plagioclase is the primary aluminium-bearing mineral in mafic rocks formed at low pressure.[33] It is normally the first and most abundant feldspar to crystallize from a cooling primitive magma.[34] Anorthite has a much higher melting point than albite, and, as a result, calcium-rich plagioclase is the first to crystallize.[28] The plagioclase becomes more enriched in sodium as the temperature drops, forming Bowen's continuous reaction series. However, the composition with which plagioclase crystallizes also depends on the other components of the melt, so it is not by itself a reliable thermometer.[35]

The liquidus of plagioclase (the temperature at which the plagioclase first begins to crystallize) is about 1,215 °C (2,219 °F) for olivine basalt, with a composition of 50.5 wt% silica; 1,255 °C (2,291 °F) in andesite with a silica content of 60.7 wt%; and 1,275 °C (2,327 °F) in dacite with a silica content of 69.9 wt%. These values are for dry magma. The liquidus is greatly lowered by the addition of water, and much more for plagioclase than for mafic minerals. The eutectic (minimum melting mixture) for a mixture of anorthite and diopside shifts from 40 wt% anorthite to 78 wt% anorthite as the water vapor pressure goes from 1 bar to 10 kbar. The presence of water also shifts the composition of the crystallizing plagioclase towards anorthite. The eutectic for this wet mixture drops to about 1,010 °C (1,850 °F).[36]

Crystallizing plagioclase is always richer in anorthite than the melt from which it crystallizes. This plagioclase effect causes the residual melt to be enriched in sodium and silicon and depleted in aluminium and calcium. However, the simultaneous crystallization of mafic minerals not containing aluminium can partially offset the depletion in aluminium.[37] In volcanic rock, the crystallized plagioclase incorporates most of the potassium in the melt as a trace element.[34]

New plagioclase crystals nucleate only with difficulty, and diffusion is very slow within the solid crystals.[35] As a result, as a magma cools, increasingly sodium-rich plagioclase is usually crystallized onto the rims of existing plagioclase crystals, which retain their more calcium-rich cores. This results in compositional zoning of plagioclase in igneous rocks.[28] In rare cases, plagioclase shows reverse zoning, with a more calcium-rich rim on a more sodium-rich core. Plagioclase also sometimes shows oscillatory zoning, with the zones fluctuating between sodium-rich and calcium-rich compositions, though this is usually superimposed on an overall normal zoning trend.[16]

Classification of igneous rocks edit

Plagioclase is very important for the classification of crystalline igneous rocks. Generally, the more silica is present in the rock, the fewer the mafic minerals, and the more sodium-rich the plagioclase. Alkali feldspar appears as the silica content becomes high.[28] Under the QAPF classification, plagioclase is one of the three key minerals, along with quartz and alkali feldspar, used to make the initial classification of the rock type. Low-silica igneous rocks are further divided into dioritic rocks having sodium-rich plagioclase (An<50) and gabbroic rocks having calcium-rich plagioclase (An>50). Anorthosite is an intrusive rock composed of at least 90% plagioclase.[38][39][40]

Albite is an end member of both the alkali and plagioclase series. However, it is included in the alkali feldspar fraction of the rock in the QAPF classification.[40]

In metamorphic rocks edit

Plagioclase is also common in metamorphic rock.[41][28] Plagioclase tends to be albite in low-grade metamorphic rock, while oligoclase to andesine are more common in medium- to high-grade metamorphic rock. Metacarbonate rock sometimes contains fairly pure anorthite.[42]

In sedimentary rocks edit

Feldspar makes up between 10 and 20 percent of the framework grains in typical sandstones. Alkali feldspar is usually more abundant than plagioclase in sandstone because Alkali feldspars are more resistant to chemical weathering and more stable, but sandstone derived from volcanic rock contains more plagioclase.[43] Plagioclase weathers relatively rapidly to clay minerals such as smectite.[44]

At the Mohorovičić discontinuity edit

The Mohorovičić discontinuity, which defines the boundary between the Earth's crust and the upper mantle, is thought to be the depth where feldspar disappears from the rock.[45] While plagioclase is the most important aluminium-bearing mineral in the crust, it breaks down at the high pressure of the upper mantle, with the aluminium tending to be incorporated into clinopyroxene as Tschermak's molecule (CaAl2SiO6) or in jadeite NaAlSi2O6. At still higher pressure, the aluminium is incorporated into garnet.[46]

Exsolution edit

At very high temperatures, plagioclase forms a solid solution with potassium feldspar, but this becomes highly unstable on cooling. The plagioclase separates from the potassium feldspar, a process called exsolution. The resulting rock, in which fine streaks of plagioclase (lamellae) are present in potassium feldspar, is called perthite.[19]

The solid solution between anorthite and albite remains stable to lower temperatures, but ultimately becomes unstable as the rock approaches ambient surface temperatures. The resulting exsolution results in very fine lamellar and other intergrowths, normally detected only by sophisticated means.[8] However, exsolution in the andesite to labradorite compositional range sometimes produces lamellae with thicknesses comparable to the wavelength of visible light. This acts like a diffraction grating, causing the labradorite to show the beautiful play of colors known as chatoyance.[29]

Uses edit

In addition to its importance to geologists in classifying igneous rocks, plagioclase finds practical use as construction aggregate, as dimension stone, and in powdered form as a filler in paint, plastics, and rubber. Sodium-rich plagioclase finds use in the manufacture of glass and ceramics.[47]

Anorthosite could someday be important as a source of aluminium.[47]

See also edit

References edit

  1. ^ Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  2. ^ a b c d Klein, Cornelis and Cornelius S. Hurbut, Jr.; Manual of Mineralogy, Wiley, 20th ed., 1980, pp.454-456 ISBN 0-471-80580-7
  3. ^ Plagioclase Mineral Data, WebMineral.com
  4. ^ "Plagioclase". Merriam-Webster.com Dictionary. Retrieved 2024-02-13.
  5. ^ Milam, K. A.; et al. (2010). "Distribution and variation of plagioclase compositions on Mars". Journal of Geophysical Research: Planets. 115 (E9). Bibcode:2010JGRE..115.9004M. doi:10.1029/2009JE003495.
  6. ^ Nesse, William D. (2000). Introduction to mineralogy. New York: Oxford University Press. p. 219. ISBN 978-0-19-510691-6.
  7. ^ Klein, Cornelis; Hurlbut, Cornelius S. Jr. (1993). Manual of mineralogy : (after James D. Dana) (21st ed.). New York: Wiley. p. 543. ISBN 0-471-57452-X.
  8. ^ a b c d e f g h Klein & Hurlbut 1993, p. 542.
  9. ^ a b c Allaby, Michael (2013). "plagioclase". A dictionary of geology and earth sciences (Fourth ed.). Oxford: Oxford University Press. ISBN 978-0-19-965306-5.
  10. ^ a b Jackson, Julia A., ed. (1997). "plagioclase". Glossary of geology (Fourth ed.). Alexandria, Virginia: American Geological Institute. ISBN 0-922152-34-9.
  11. ^ Sinkankas, John (1964). Mineralogy for amateurs. Princeton, N.J.: Van Nostrand. p. 450. ISBN 0-442-27624-9.
  12. ^ a b Nesse 2000, pp. 208–209.
  13. ^ a b c Nesse 2000, p. 216.
  14. ^ Sinkankas 1964, p. 457.
  15. ^ Klein & Hurlbut 1993, p. 541.
  16. ^ a b Nesse 2000, p. 215.
  17. ^ Sinkankas 1964, pp. 456–457.
  18. ^ "Minerals Colored by Metal Ions". minerals.gps.caltech.edu. Retrieved 2023-03-01.
  19. ^ a b Sinkankas 1964, p. 450.
  20. ^ Nesse 2000, p. 209.
  21. ^ Nesse 2000, p. 217-219.
  22. ^ "anorthite". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  23. ^ Deer, W.A., Howie, R.A. and Zussman, J. (1966). An Introduction to the Rock Forming Minerals. London: Longman. p. 336. ISBN 0-582-44210-9.{{cite book}}: CS1 maint: multiple names: authors list (link)
  24. ^ "albite". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  25. ^ Jackson 1997, albite.
  26. ^ Klein & Hurlbut 1993, p. 568.
  27. ^ "bytownite". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  28. ^ a b c d e f g h i j Klein & Hurlbut 1993, p. 543.
  29. ^ a b Nesse 2000, p. 213.
  30. ^ Michael O'Donoghue, Gems, Butterworth-Heinemann, 6th ed., 2006, pp. 238-267, ISBN 0-7506-5856-8
  31. ^ Walter Schumann, Gemstones of the World, Sterling, 3rd ed., 2007, pp. 52 – 53, 182 ISBN 1-4027-4016-6
  32. ^ "oligoclase". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  33. ^ McBirney, Anthony R. (1984). Igneous Petrology. Freeman, Cooper, and Company. p. 270.
  34. ^ a b McBirney 1984, p. 104.
  35. ^ a b McBirney 1984, p. 107.
  36. ^ McBirney 1984, pp. 318–320.
  37. ^ McBirney 1984, p. 396.
  38. ^ Le Bas, M. J.; Streckeisen, A. L. (1991). "The IUGS systematics of igneous rocks". Journal of the Geological Society. 148 (5): 825–833. Bibcode:1991JGSoc.148..825L. CiteSeerX 10.1.1.692.4446. doi:10.1144/gsjgs.148.5.0825. S2CID 28548230.
  39. ^ "Rock Classification Scheme – Vol 1 – Igneous" (PDF). British Geological Survey: Rock Classification Scheme. 1: 1–52. 1999.
  40. ^ a b Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. pp. 139–143. ISBN 978-0-521-88006-0.
  41. ^ Nesse 2000, p. 219.
  42. ^ Nesse 2000, pp. 219–220.
  43. ^ Boggs, Sam (2006). Principles of sedimentology and stratigraphy (4th ed.). Upper Saddle River, N.J.: Pearson Prentice Hall. pp. 120–121. ISBN 0-13-154728-3.
  44. ^ Leeder, M. R. (2011). Sedimentology and sedimentary basins : from turbulence to tectonics (2nd ed.). Chichester, West Sussex, UK: Wiley-Blackwell. pp. 10–11. ISBN 978-1-4051-7783-2.
  45. ^ Philpotts & Ague 2009, p. 2.
  46. ^ McBirney 1984, p. 270.
  47. ^ a b Nesse 2000, p. 220.

External links edit

plagioclase, plaj, klayss, playj, klayz, series, tectosilicate, framework, silicate, minerals, within, feldspar, group, rather, than, referring, particular, mineral, with, specific, chemical, composition, plagioclase, continuous, solid, solution, series, more,. Plagioclase ˈ p l ae dʒ i e ˌ k l eɪ s ˈ p l eɪ dʒ ˌ k l eɪ z PLAJ ee e klayss PLAYJ klayz 4 is a series of tectosilicate framework silicate minerals within the feldspar group Rather than referring to a particular mineral with a specific chemical composition plagioclase is a continuous solid solution series more properly known as the plagioclase feldspar series This was first shown by the German mineralogist Johann Friedrich Christian Hessel 1796 1872 in 1826 The series ranges from albite to anorthite endmembers with respective compositions NaAlSi3O8 to CaAl2Si2O8 where sodium and calcium atoms can substitute for each other in the mineral s crystal lattice structure Plagioclase in hand samples is often identified by its polysynthetic crystal twinning or record groove effect PlagioclaseA photomicrograph of a plagioclase crystal gray under cross polarized light The plagioclase crystal shows a distinct banding effect called polysynthetic twinning GeneralCategoryFeldspar mineral group tectosilicateFormula repeating unit NaAlSi3O8 CaAl2Si2O8IMA symbolPl 1 Crystal systemTriclinicCrystal classPinacoidal 1 same H M symbol Space groupC1IdentificationColorWhite gray or bluish whiteMohs scale hardness6 6 5LusterVitreousStreakWhiteDiaphaneityTransparent to translucentSpecific gravity2 62 albite to 2 76 anorthite 2 Optical propertiesBiaxial albite biaxial anorthite 2 Refractive indexAlbite na 1 527 nb 1 532 ng 1 538Anorthite na 1 577 nb 1 585 ng 1 590 2 SolubilityAlbite insoluble in HCl anorthite decomposed by HCl 2 References 3 Plagioclase displaying cleavage unknown scale In volcanic rocks fine grained plagioclase can display a microlitic texture of many small crystals Plagioclase is a major constituent mineral in Earth s crust and is consequently an important diagnostic tool in petrology for identifying the composition origin and evolution of igneous rocks Plagioclase is also a major constituent of rock in the highlands of the Moon Analysis of thermal emission spectra from the surface of Mars suggests that plagioclase is the most abundant mineral in the crust of Mars 5 Its name comes from Ancient Greek plagios plagios oblique and klasis klasis fracture in reference to its two cleavage angles Contents 1 Properties 2 Plagioclase series members 2 1 Endmembers 2 2 Intermediate members 3 Petrogenesis 3 1 Classification of igneous rocks 3 2 In metamorphic rocks 3 3 In sedimentary rocks 3 4 At the Mohorovicic discontinuity 3 5 Exsolution 4 Uses 5 See also 6 References 7 External linksProperties editPlagioclase is the most common and abundant mineral group in the Earth s crust Part of the feldspar family of minerals it is abundant in igneous and metamorphic rock and it is also common as a detrital mineral in sedimentary rock 6 7 It is not a single mineral but is a solid solution of two end members albite or sodium feldspar NaAlSi3O8 and anorthite or calcium feldspar CaAl2Si2O8 These can be present in plagioclase in any proportion from pure anorthite to pure albite 8 The composition of plagioclase can thus be written as Na1 xCaxAl1 xSi3 xO8 where x ranges from 0 for pure albite to 1 for pure anorthite This solid solution series is known as the plagioclase series 9 10 The composition of a particular sample of plagioclase is customarily expressed as the mol of anorthite in the sample For example plagioclase that is 40 mol anorthite would be described as An40 plagioclase 11 The ability of albite and anorthite to form solid solutions in any proportions at elevated temperature reflects the ease with which calcium and aluminium can substitute for sodium and silicon in the plagioclase crystal structure Although a calcium ion has a charge of 2 versus 1 for a sodium ion the two ions have very nearly the same effective radius The difference in charge is accommodated by the coupled substitution of aluminium charge 3 for silicon charge 4 both of which can occupy tetrahedral sites surrounded by four oxygen ions This contrasts with potassium which has the same charge as sodium but is a significantly larger ion As a result of the size and charge difference between potassium and calcium there is a very wide miscibility gap between anorthite and potassium feldspar KAlSi3O8 the third common rock forming feldspar end member Potassium feldspar does form a solid solution series with albite due to the identical charges of sodium and potassium ions which is known as the alkali feldspar series Thus almost all feldspar found on Earth is either plagioclase or alkali feldspar with the two series overlapping for pure albite When a plagioclase composition is described by its anorthite mol such as An40 in the previous example it is assumed that the remainder is albite with only a minor component of potassium feldspar 12 Plagioclase of any composition shares many basic physical characteristics while other characteristics vary smoothly with composition 9 The Mohs hardness of all plagioclase species is 6 to 6 5 12 and cleavage is perfect on 001 and good on 010 with the cleavage planes meeting at an angle of 93 to 94 degrees 13 It is from this slightly oblique cleavage angle that plagioclase gets its name Ancient Greek plagios plagios oblique klasis klasis fracture The name was introduced by August Breithaupt in 1847 10 There is also a poor cleavage on 110 rarely seen in hand samples 13 The luster is vitreous to pearly and the diaphaneity is transparent to translucent 8 The tenacity is brittle and the fracture is uneven or conchoidal but the fracture is rarely observed due to the strong tendency of the mineral to cleave instead 14 At low temperature the crystal structure belongs to the triclinic system space group P1 15 16 Well formed crystals are rare and are most commonly sodic in composition 17 Well shaped samples are instead typically cleavage fragments Well formed crystals are typically bladed or tabular parallel to 010 8 Plagioclase is usually white to greyish white in color with a slight tendency for more calcium rich samples to be darker 9 Impurities can infrequently tint the mineral greenish yellowish or flesh red 8 Ferric iron Fe3 gives a pale yellow color in plagioclase feldspar from Lake County Oregon 18 The specific gravity increases smoothly with calcium content from 2 62 for pure albite to 2 76 for pure anorthite and this can provide a useful estimate of composition if measured accurately 8 The index of refraction likewise varies smoothly from 1 53 to 1 58 and if measured carefully this also gives a useful composition estimate 13 Plagioclase almost universally shows a characteristic polysynthetic twinning that produces twinning striations on 010 These striations allow plagioclase to be distinguished from alkali feldspar Plagioclase often also displays Carlsbad Baveno and Manebach Law twinning 8 Plagioclase series members editThe composition of a plagioclase feldspar is typically denoted by its overall fraction of anorthite An or albite Ab There are several named plagioclase feldspars that fall between albite and anorthite in the series The following table shows their compositions in terms of constituent anorthite and albite percentages 19 20 Plagioclase minerals and their compositions Name CaAl2Si2O8 NaAlSi3O8 ImageAnorthite 90 100 10 0 nbsp Bytownite 70 90 30 10 nbsp Labradorite 50 70 50 30 nbsp Andesine 30 50 70 50 nbsp Oligoclase 10 30 90 70 nbsp Albite 0 10 100 90 nbsp The distinction between these minerals cannot easily be made in the field The composition can be roughly determined by specific gravity but accurate measurement requires chemical or optical tests 8 The composition in a crushed grain mount can be obtained by the Tsuboi method which yields an accurate measurement of the minimum refractive index that in turn gives an accurate composition In thin section the composition can be determined by either the Michel Levy or Carlsbad albite methods The former relies on accurate measure of minimum index of refraction while the latter relies on measuring the extinction angle under a polarizing microscope The extinction angle is an optical characteristic and varies with the albite fraction Ab 21 Endmembers edit Anorthite was named by Gustav Rose in 1823 from Greek an not orthos straight literally oblique referring to its triclinic crystallization 22 Anorthite is a comparatively rare mineral but occurs in the basic plutonic rocks of some orogenic calc alkaline suites 23 Albite is named from the Latin albus in reference to its unusually pure white color The name was first applied by Johan Gottlieb Gahn and Jons Jacob Berzelius in 1815 24 It is a relatively common and important rock making mineral associated with the more silica rich rock types in hydrothermal veins with greenschist facies metamorphic rocks 25 and in pegmatite dikes often as the variety cleavelandite and associated with rarer minerals like tourmaline and beryl 26 Intermediate members edit The intermediate members of the plagioclase group are very similar to each other and normally cannot be distinguished except by their optical properties The specific gravity in each member albite 2 62 increases 0 02 per 10 increase in anorthite 2 75 Bytownite named after the former name for Ottawa Ontario Canada Bytown 27 is a rare mineral occasionally found in more basic rocks 28 nbsp Labradorite displaying typical iridescent effect termed labradorescence unknown scale Labradorite is the characteristic feldspar of the more basic rock types such as gabbro or basalt 28 Labradorite frequently shows an iridescent display of colors due to light refracting within the lamellae of the crystal 29 It is named after Labrador where it is a constituent of the intrusive igneous rock anorthosite which is composed almost entirely of plagioclase 28 A variety of labradorite known as spectrolite is found in Finland 30 31 Andesine is a characteristic mineral of rocks such as diorite which contain a moderate amount of silica and related volcanics such as andesite 28 Oligoclase is common in granite and monzonite 28 The name oligoclase is derived from the Greek oligos small slight klasis fracture in reference to the fact that its cleavage angle differs significantly from 90 The term was first used by Breithaupt in 1826 32 Sunstone is mainly oligoclase sometimes albite with flakes of hematite 28 Petrogenesis edit nbsp Bowen s reaction series nbsp QAPF diagram for classification of plutonic rocksPlagioclase is the primary aluminium bearing mineral in mafic rocks formed at low pressure 33 It is normally the first and most abundant feldspar to crystallize from a cooling primitive magma 34 Anorthite has a much higher melting point than albite and as a result calcium rich plagioclase is the first to crystallize 28 The plagioclase becomes more enriched in sodium as the temperature drops forming Bowen s continuous reaction series However the composition with which plagioclase crystallizes also depends on the other components of the melt so it is not by itself a reliable thermometer 35 The liquidus of plagioclase the temperature at which the plagioclase first begins to crystallize is about 1 215 C 2 219 F for olivine basalt with a composition of 50 5 wt silica 1 255 C 2 291 F in andesite with a silica content of 60 7 wt and 1 275 C 2 327 F in dacite with a silica content of 69 9 wt These values are for dry magma The liquidus is greatly lowered by the addition of water and much more for plagioclase than for mafic minerals The eutectic minimum melting mixture for a mixture of anorthite and diopside shifts from 40 wt anorthite to 78 wt anorthite as the water vapor pressure goes from 1 bar to 10 kbar The presence of water also shifts the composition of the crystallizing plagioclase towards anorthite The eutectic for this wet mixture drops to about 1 010 C 1 850 F 36 Crystallizing plagioclase is always richer in anorthite than the melt from which it crystallizes This plagioclase effect causes the residual melt to be enriched in sodium and silicon and depleted in aluminium and calcium However the simultaneous crystallization of mafic minerals not containing aluminium can partially offset the depletion in aluminium 37 In volcanic rock the crystallized plagioclase incorporates most of the potassium in the melt as a trace element 34 New plagioclase crystals nucleate only with difficulty and diffusion is very slow within the solid crystals 35 As a result as a magma cools increasingly sodium rich plagioclase is usually crystallized onto the rims of existing plagioclase crystals which retain their more calcium rich cores This results in compositional zoning of plagioclase in igneous rocks 28 In rare cases plagioclase shows reverse zoning with a more calcium rich rim on a more sodium rich core Plagioclase also sometimes shows oscillatory zoning with the zones fluctuating between sodium rich and calcium rich compositions though this is usually superimposed on an overall normal zoning trend 16 Classification of igneous rocks edit Plagioclase is very important for the classification of crystalline igneous rocks Generally the more silica is present in the rock the fewer the mafic minerals and the more sodium rich the plagioclase Alkali feldspar appears as the silica content becomes high 28 Under the QAPF classification plagioclase is one of the three key minerals along with quartz and alkali feldspar used to make the initial classification of the rock type Low silica igneous rocks are further divided into dioritic rocks having sodium rich plagioclase An lt 50 and gabbroic rocks having calcium rich plagioclase An gt 50 Anorthosite is an intrusive rock composed of at least 90 plagioclase 38 39 40 Albite is an end member of both the alkali and plagioclase series However it is included in the alkali feldspar fraction of the rock in the QAPF classification 40 In metamorphic rocks edit Plagioclase is also common in metamorphic rock 41 28 Plagioclase tends to be albite in low grade metamorphic rock while oligoclase to andesine are more common in medium to high grade metamorphic rock Metacarbonate rock sometimes contains fairly pure anorthite 42 In sedimentary rocks edit Feldspar makes up between 10 and 20 percent of the framework grains in typical sandstones Alkali feldspar is usually more abundant than plagioclase in sandstone because Alkali feldspars are more resistant to chemical weathering and more stable but sandstone derived from volcanic rock contains more plagioclase 43 Plagioclase weathers relatively rapidly to clay minerals such as smectite 44 At the Mohorovicic discontinuity edit The Mohorovicic discontinuity which defines the boundary between the Earth s crust and the upper mantle is thought to be the depth where feldspar disappears from the rock 45 While plagioclase is the most important aluminium bearing mineral in the crust it breaks down at the high pressure of the upper mantle with the aluminium tending to be incorporated into clinopyroxene as Tschermak s molecule CaAl2SiO6 or in jadeite NaAlSi2O6 At still higher pressure the aluminium is incorporated into garnet 46 Exsolution edit At very high temperatures plagioclase forms a solid solution with potassium feldspar but this becomes highly unstable on cooling The plagioclase separates from the potassium feldspar a process called exsolution The resulting rock in which fine streaks of plagioclase lamellae are present in potassium feldspar is called perthite 19 The solid solution between anorthite and albite remains stable to lower temperatures but ultimately becomes unstable as the rock approaches ambient surface temperatures The resulting exsolution results in very fine lamellar and other intergrowths normally detected only by sophisticated means 8 However exsolution in the andesite to labradorite compositional range sometimes produces lamellae with thicknesses comparable to the wavelength of visible light This acts like a diffraction grating causing the labradorite to show the beautiful play of colors known as chatoyance 29 Uses editIn addition to its importance to geologists in classifying igneous rocks plagioclase finds practical use as construction aggregate as dimension stone and in powdered form as a filler in paint plastics and rubber Sodium rich plagioclase finds use in the manufacture of glass and ceramics 47 Anorthosite could someday be important as a source of aluminium 47 See also edit nbsp Minerals portalHypersolvus List of minerals Planetary differentiation SubsolvusReferences edit Warr L N 2021 IMA CNMNC approved mineral symbols Mineralogical Magazine 85 3 291 320 Bibcode 2021MinM 85 291W doi 10 1180 mgm 2021 43 S2CID 235729616 a b c d Klein Cornelis and Cornelius S Hurbut Jr Manual of Mineralogy Wiley 20th ed 1980 pp 454 456 ISBN 0 471 80580 7 Plagioclase Mineral Data WebMineral com Plagioclase Merriam Webster com Dictionary Retrieved 2024 02 13 Milam K A et al 2010 Distribution and variation of plagioclase compositions on Mars Journal of Geophysical Research Planets 115 E9 Bibcode 2010JGRE 115 9004M doi 10 1029 2009JE003495 Nesse William D 2000 Introduction to mineralogy New York Oxford University Press p 219 ISBN 978 0 19 510691 6 Klein Cornelis Hurlbut Cornelius S Jr 1993 Manual of mineralogy after James D Dana 21st ed New York Wiley p 543 ISBN 0 471 57452 X a b c d e f g h Klein amp Hurlbut 1993 p 542 a b c Allaby Michael 2013 plagioclase A dictionary of geology and earth sciences Fourth ed Oxford Oxford University Press ISBN 978 0 19 965306 5 a b Jackson Julia A ed 1997 plagioclase Glossary of geology Fourth ed Alexandria Virginia American Geological Institute ISBN 0 922152 34 9 Sinkankas John 1964 Mineralogy for amateurs Princeton N J Van Nostrand p 450 ISBN 0 442 27624 9 a b Nesse 2000 pp 208 209 a b c Nesse 2000 p 216 Sinkankas 1964 p 457 Klein amp Hurlbut 1993 p 541 a b Nesse 2000 p 215 Sinkankas 1964 pp 456 457 Minerals Colored by Metal Ions minerals gps caltech edu Retrieved 2023 03 01 a b Sinkankas 1964 p 450 Nesse 2000 p 209 Nesse 2000 p 217 219 anorthite Oxford English Dictionary Online ed Oxford University Press Subscription or participating institution membership required Deer W A Howie R A and Zussman J 1966 An Introduction to the Rock Forming Minerals London Longman p 336 ISBN 0 582 44210 9 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link albite Oxford English Dictionary Online ed Oxford University Press Subscription or participating institution membership required Jackson 1997 albite Klein amp Hurlbut 1993 p 568 bytownite Oxford English Dictionary Online ed Oxford University Press Subscription or participating institution membership required a b c d e f g h i j Klein amp Hurlbut 1993 p 543 a b Nesse 2000 p 213 Michael O Donoghue Gems Butterworth Heinemann 6th ed 2006 pp 238 267 ISBN 0 7506 5856 8 Walter Schumann Gemstones of the World Sterling 3rd ed 2007 pp 52 53 182 ISBN 1 4027 4016 6 oligoclase Oxford English Dictionary Online ed Oxford University Press Subscription or participating institution membership required McBirney Anthony R 1984 Igneous Petrology Freeman Cooper and Company p 270 a b McBirney 1984 p 104 a b McBirney 1984 p 107 McBirney 1984 pp 318 320 McBirney 1984 p 396 Le Bas M J Streckeisen A L 1991 The IUGS systematics of igneous rocks Journal of the Geological Society 148 5 825 833 Bibcode 1991JGSoc 148 825L CiteSeerX 10 1 1 692 4446 doi 10 1144 gsjgs 148 5 0825 S2CID 28548230 Rock Classification Scheme Vol 1 Igneous PDF British Geological Survey Rock Classification Scheme 1 1 52 1999 a b Philpotts Anthony R Ague Jay J 2009 Principles of igneous and metamorphic petrology 2nd ed Cambridge UK Cambridge University Press pp 139 143 ISBN 978 0 521 88006 0 Nesse 2000 p 219 Nesse 2000 pp 219 220 Boggs Sam 2006 Principles of sedimentology and stratigraphy 4th ed Upper Saddle River N J Pearson Prentice Hall pp 120 121 ISBN 0 13 154728 3 Leeder M R 2011 Sedimentology and sedimentary basins from turbulence to tectonics 2nd ed Chichester West Sussex UK Wiley Blackwell pp 10 11 ISBN 978 1 4051 7783 2 Philpotts amp Ague 2009 p 2 McBirney 1984 p 270 a b Nesse 2000 p 220 External links edit nbsp Wikimedia Commons has media related to Plagioclase nbsp Look up plagioclase in Wiktionary the free dictionary Retrieved from https en wikipedia org w index php title Plagioclase amp oldid 1212996307, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.